

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0030643

APS ID 275994

Authorization ID 1244400

	Applicant and	Facility Information	
Applicant Name	Shippensburg Borough Authority	Facility Name	Shippensburg Borough STP
Applicant Address	111 N Fayette Street	Facility Address	963 Avon Drive
	Shippensburg, PA 17257-1101	<u> </u>	Shippensburg, PA 17257-8121
Applicant Contact	John Epley	Facility Contact	Wade Farner
Applicant Phone	(717) 532-5414	Facility Phone	(717) 532-5414
Client ID	121190	Site ID	452150
Ch 94 Load Status	Not Overloaded	Municipality	Shippensburg Borough
Connection Status	No Limitations	County	Cumberland
Date Application Rece	eived August 8, 2018	EPA Waived?	No
Date Application Acce	epted	If No, Reason	Major Facility, Significant CB Discharge
Purpose of Application	n NPDES Permit Renewal.		

Summary of Review

Shippensburg Borough Authority (Shippensburg) has applied to the Pennsylvania Department of Environmental Protection for reissuance of its NPDES permit. The permit was last reissued on January 17, 2014 and became effective on February 1, 2014. The permit was amended on September 29, 2015 to increase the facility's design flows. The permit expired on January 31, 2019.

Based on the review, it is recommended that the permit be drafted.

Sludge use and disposal description and location(s): Sludge is processed via on-site treatment units and then sent out for a land application under PAG073513.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		ງ່ແຈນ Xim Jinsu Kim / Environmental Engineering Specialist	August 1, 2022
Х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	August 15, 2022
Х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	August 15, 2022

Discharge, Receiving W	aters and Water Supply Informa	tion			
Outfall No. 001	Design Flow (MGD)	4.3 (interim) 4.95 (final)			
Latitude 40° 3' 35.00"	Longitude	77° 31' 53.00"			
Quad Name Shippensburg	Quad Code	1825			
Wastewater Description: Treated Sewage					
Receiving Waters Middle Spring Creek	Stream Code	10602			
NHD Com ID 56409839	 RMI	5.43			
Drainage Area 20.6	Yield (cfs/mi²)	0.1492			
Q ₇₋₁₀ Flow (cfs) 3.074	Q ₇₋₁₀ Basis	USGS 01570000			
Elevation (ft)	Slope (ft/ft)				
Watershed No. 7-B	Chapter 93 Class.	CWF, MF			
Existing Use None.	Existing Use Qualifier	None.			
Exceptions to Use None.	Exceptions to Criteria	None.			
Assessment Status Impaired					
Cause(s) of Impairment Suspended Solids					
Source(s) of Impairment Agriculture, Urban Run	off/Storm Sewers				
TMDL Status Final, 04/09/2001	Name Conodoguin	et Creek Watershed			
Background/Ambient Data	Data Source				
pH (SU) 8.1	WQN0241 (July - September	•)			
Temperature (°F)	WQN0241 (July – September				
Hardness (mg/L) 178	WQN0241				
Other:					
Nearest Downstream Public Water Supply Intake	Carlisle Borough				
PWS Waters Conodoguinet Creek	Flow at Intake (cfs) 48				
PWS RMI 35.95	Distance from Outfall (mi)				

Drainage Area

The discharge is to Middle Spring Creek at RM 5.43. A drainage area upstream of the discharge point is estimated to be 20.6 sq.mi., according to USGS StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

USGS StreamStats produced a Q7-10 flow of 6.74 cfs at the point of discharge. However, a depth to rock value used in calculating low flow statistics was higher than the maximum required in regression equations. As a result, USGS StreamStats indicated that estimates for low flow statistics were extrapolated with unknown errors. DEP has therefore determined to estimate the Q7-10 flow using a low flow method as follows:

USGS gage 01570000 on Conodoguinet Creek near Hogestown is located about 350' below the PA American Water Co. intake and is affected to some degree by the withdrawal. Recent stream flow retrievals resulted in a Q7-10 of 63.11 cfs at this gage. The average daily PWS withdrawal has been 4.529 MGD or 7.006 cfs. This results in a total flow of 70.116 cfs at the gage after adjustment for the PWS intake. The Q30-10 gage flow is 76.108 + 7.006 = 83.11. Gage information for Q1-10 flow is not available so the previous Q1-10:Q7-10 ratio is retained.

Q7-10 runoff rate = (63.11 + 7.006)/470 = 0.1492 cfs/sq.mi. Q30-10:Q7-10 = 83.11/70.116 = 1.185:1Q1-10:Q7-10 = 59.97/67.107 = 0.89.1

NPDES Permit No. PA0030643 A-1

NPDES Permit Fact Sheet Shippensburg Borough STP

Middle Spring Creek

Under 25 Pa Code §93.90, Middle Spring Creek from T303 (Avon Road) to Mouth has a designated protected water use of cold water fishes and migratory fishes. No special protection water is impacted by this discharge. PFBC lists this stream as a Class A Wild Trout stream from headwaters to T303 (Avon Road). The discharge is located downstream of this classification; therefore, no Class A Wild Trout Fishery is impacted by this discharge.

Public Water Supply Intake

The nearest downstream public water supply intake is Carlisle Borough, located on the Conodoguinet Creek approximately 34 miles from the discharge point. Given the distance, the discharge is not expected to impact the water supply.

	Treatment Facility Summary											
Treatment Facility Na	me: Shippensburg STP											
WQM Permit No.	Issuance Date											
2105402	August 1, 2005											
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)								
Sewage	Tertiary	Activated Sludge	UV	4.95								
Hydraulic Capacity	Organic Capacity			Biosolids								
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal								
6.0	8,034	Not Overloaded	Sludge Digester	Land applied								

Shippensburg owns and operates a municipal sanitary wastewater treatment plant located at 963 Avon Drive, Shippensburg PA 17257. This facility serves the areas of Shippensburg Borough (59.58%), Southampton Township Cumberland County (19.5%), Southampton Township Franklin County (13%), Orrstown Borough (0.22%), Letterkenny Township (1.2%), and Shippensburg Township (6.5%), totaling a population of 16,150. All sewer systems are 100% separated according to the application.

This facility is considered a major sewage facility with design flow greater than 1.0 MGD but less than 5.0 MGD. On February 5, 2012, DEP issued a Water Quality Management (WQM) permit no. 2105402 11-1, approving an upgrade providing overall increased capacity by increasing influent pump capacity, the addition of two (2) influent screening systems, the upgrade of the 5 stage BNR to include integrated fix film activated sludge (IFAS) system, upgrade of the tertiary filtration, upgrade of the UV disinfection system and miscellaneous sludge handling upgrades. While it was undergoing modifications, the facility has experienced issues associated with the implementation of the IFAS system, specifically associated with multiple IFAS media spills beginning in November 2013 and extending through March 2014. Since 2012, the WQM permit was amended in September 2015, February 2017, November 2017, and December 2018 to modify design flows and other items that are related to the 2012 upgrade project. As of the date of this fact sheet, this upgrade has not yet been fully completed. More details will be discussed later in this fact sheet.

Once the upgrade project is completed, the facility will utilize a complete IFAS activated sludge process including primary/secondary screening,

Ferric chloride is used for coagulant settling agent. Sludge is processed via thickeners (2), aerated holding tanks (2) and belt filter press. Any solids generated from this site is stored in storage pads (3) prior to being land applied under PAG073513.

There are five (5) commercial/industrial users connected to the sewer systems. These users are shown below.

			Significant
Name	Description	Flow (GPD)	Industrial User?
Volve Construction		Process 7,500; Sanitary	
Equipment	Build/Assemble Road Machinery	4,000	Yes
	Processing of septic system and portable		
Chamberlin & Wingert LLC	toilet wastes	Process 12,000	Yes
	Process dairy products for cheese and		
Schreiber Foods, Inc.	yogurt	Process 500,000	Yes
Cumberland Valley Rental	Launder Uniforms & Rugs	Process 13,000	Yes
	University w/multiple food preparation	Process 100,000;	
Shippensburg University	buildings/facilities	Sanitary 200,000	Yes

According to the application, the permittee is currently implementing an approved pretreatment program administered by EPA.

Shippensburg also utilizes two (2) outfalls receiving stormwater drained from the site.

		Compliance Histor	y										
Summary of DMRs:	A summary of	past 12-month DMR data	is prese	nt on th	ne next pa	ge.							
Summary of Inspections:	inspection. No composite san as required by 01/07/2021: administrative identified. The	administrative inspection of Chesapeake Bay nutrient monitoring. A number of errors were identified. The permittee was recommended to revise and resubmit corrected forms.											
	influent/effluen	01/27/2020: Michael Benham conducted a routine inspection and recommended influent/effluent composite samplers be connected to flow meters for flow-proportional composite sampling as required by the permit. No violations were noted at the time of inspection.											
Other Comments:	on August 7, 2	A Consent Order and Agreement (COA) was prepared on August 17, 2017 and amended on August 7, 2018 and November 26, 2019. This COA is for the IFAS upgrade project. More detailed information associated with this COA is available for a file review.											
	Since the last permit reissuance, there are five (5) permit violations related to untreated discharge (2/26/2014), unpermitted discharge (3/3/2014, 3/4/2014, 5/14/2018) and failure to monitor pollutants required by the permit (1/24/2017). Also, following effluent violations reported since the last permit reissuance.												
	Data	DADAMETED	DH-	1 : :4	UNIT OF	STATISTICAL BASE							
	Date Mar. 14	PARAMETER Ammonia-Nitrogen	12.01	7.5	mg/L	CODE Average Monthly							
		Ammonia-Nitrogen	226	206	lbs/day	Average Monthly							
		Total Phosphorus	1.11	0.5	mg/L	Average Monthly							
		Total Phosphorus	18.6	17.9	lbs/day	Average Monthly							
		Total Phosphorus	0.73	0.5	mg/L	Average Monthly							
		Total Suspended Solids	57	45	mg/L	Weekly Average							
		Total Suspended Solids	66	45	mg/L	Weekly Average							
		Total Phosphorus	0.55	0.5	mg/L	Average Monthly							
		Ammonia-Nitrogen	14.05	2.2	mg/L	Average Monthly							
		Total Phosphorus	0.59	0.5	mg/L	Average Monthly							
		Ammonia-Nitrogen	225	78	lbs/day	Average Monthly							
		Ammonia-Nitrogen	7.68	6.6	mg/L	Average Monthly							
		Ammonia-Nitrogen	10.12	6.6	mg/L	Average Monthly							
	Feb-17	Ammonia-Nitrogen	12.13	6.6	mg/L	Average Monthly							
	Jun-18	Total Phosphorus	0.69	0.5	mg/L	Average Monthly							
		Total Phosphorus	0.62	0.5	mg/L	Average Monthly							
	Dec-20	Ammonia-Nitrogen	9.24	6.3	mg/L	Average Monthly							
	,												
	DEP's databas	se shows that there is no	open vio	lation a	ssociated	with this facility.							

Effluent Data

DMR Data for Outfall 001 (from September 1, 2020 to August 31, 2021)

Parameter	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20
Flow (MGD)												
Average Monthly	2.0997	2.11	2.13	2.41	2.67	2.796	2.38	2.33	2.33	2.08	2.19	2.22
Flow (MGD)												
Daily Maximum	2.75	2.4	2.81	3.12	3.37	4.09	3.57	2.78	4.64	2.32	2.95	2.54
pH (S.U.)												
Minimum	7.2	7.3	7.3	7.1	7.2	7.2	7.2	7.1	6.9	7.1	7.0	6.8
pH (S.U.)												
Instantaneous												
Maximum	7.9	7.9	7.8	7.9	7.7	7.8	7.7	8.0	7.9	7.9	7.9	8.1
DO (mg/L)												
Minimum	7.9	8.0	8.3	8.4	8.6	8.9	9.2	9.2	8.5	8.1	8.3	7.9
CBOD5 (lbs/day)												
Average Monthly	< 37.9	< 38.9	< 45.5	< 43.3	< 86.1	167.6	147.7	146.6	< 139.1	101.7	86.1	39.2
CBOD5 (lbs/day)												
Weekly Average	< 59.17	< 58.78	< 62.47	< 52.04	< 119.34	219.26	212.84	225.29	< 407.33	242.78	213.71	42.74
CBOD5 (mg/L)												
Average Monthly	< 2.1	< 2.2	< 2.5	< 2.1	< 3.9	7.2	11.6	7.8	< 7.4	5.8	< 4.9	< 2.1
CBOD5 (mg/L)												
Weekly Average	< 2.6	< 3.3	< 3.6	< 2.3	< 5.5	9.6	7.7	12.7	< 22.1	14.2	< 12.5	< 2.3
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	3222.8	4087.7	4323.8	3597.1	3720.9	4322.9	6708.9	3693.3	3978.3	3570.2	3304.7	3181.6
BOD5 (lbs/day)												
Raw Sewage Influent												
Daily Maximum	4243	4845.9	6635.3	4924.9	4514.9	5776.6	4260.2	4625.2	5266.5	5131.6	5072.6	4331.4
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	181	227	239	171	166	183	216	194	211	203	183	169
TSS (lbs/day)												
Average Monthly	< 29.43	< 61.82	74.43	68.84	109.92	124.92	112.98	106.50	< 75.81	124.61	8.10	46.09
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	3758.3	5543.3	6358.7	4995.2	5680.4	4443.9	10955.8	4229.3	4169.1	5305.6	4462.6	4651.5
TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	6880.5	8306.0	11132.6	6264.2	7071.5	5692.1	5690.6	5114.1	5139.8	6164.9	5779.6	5603.1
TSS (lbs/day)												
Weekly Average	< 57.338	< 164.80	106.59	101.33	149.078	197.32	164.13	156.13	< 117.64	170.97	136.36	82.733

Parameter	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20
TSS (mg/L)												
Average Monthly	< 1.6	< 3.5	4.2	3.3	4.9	5.2	8.0	5.7	< 4.0	7.1	4.4	< 2.5
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	208	310	351	241	254	189	289	225	222	302	247	249
TSS (mg/L)												
Weekly Average	< 3.0	< 9.5	6.0	5.0	6.5	8.0	5.5	8.0	< 6.5	10	7.5	< 4.0
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 6	5	< 11	< 5	< 2	19	280	121	184	179	74	33
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	< 17	19	115	148	6	130	810	330	480	356	159	61
UV Transmittance (%)												
Minimum	34.13	42.90	70.40	70.70	70.80	00	00	0.00	37.10	47.80	56.40	63.80
Nitrate-Nitrite (mg/L)												
Average Monthly	< 5.86	< 4.60	4.21	< 5.86	< 5.90	< 3.84	< 4.46	< 6.65	< 2.79	3.68	< 6.18	< 6.23
Nitrate-Nitrite (lbs)												
Total Monthly	< 3264.2	< 2560.5	2290.8	< 3863.1	< 3991.7	< 2816.9	< 2451	< 3858.2	< 1709.3	1967.9	< 3497.0	3527.9
Total Nitrogen (mg/L)												
Average Monthly	< 7.29	< 5.61	< 6.41	< 7.74	< 7.86	6.99	< 9.26	10.87	< 14	8.24	< 8.44	< 8.00
Total Nitrogen (lbs)												
Effluent Net												
Total Monthly	< 4058	< 3120.1	< 3481	< 5054.9	< 5311.1	5075.2	< 5130.7	6417.9	< 8227.3	4385.1	< 4749.3	4528.8
Total Nitrogen (lbs)	40== 0									400= 4	47.40.0	45000
Total Monthly	< 4057.9	< 3120.1	< 3481.0	< 5054.9	< 5311.1	5075.2	< 5130.7	6417.9	< 8227.3	4385.1	< 4749.3	4528.8
Total Nitrogen (lbs)												
Effluent Net												. 50000
Total Annual												< 56399
Total Nitrogen (lbs) Total Annual												< 56399
Ammonia (lbs/day)												< 56399
Arimonia (ibs/day) Average Monthly	< 8.91	< 8.98	11.88	< 10.63	< 12.63	31.20	31.41	< 50.62	172.61	5.35	< 13.92	9.4
Ammonia (mg/L)	< 0.91	< 0.90	11.00	< 10.63	< 12.03	31.20	31.41	< 50.62	172.01	5.35	< 13.92	9.4
Arimonia (mg/L) Average Monthly	< 0.50	< 0.50	< 0.65	< 0.51	< 0.56	1.34	1.60	< 2.53	9.24	2.85	< 0.78	< 0.5
	< 0.50	< 0.50	< 0.05	< 0.51	< 0.50	1.34	1.00	< 2.55	9.24	2.00	< 0.76	< 0.5
Ammonia (lbs) Total Monthly	< 276.4	< 278.4	< 356.3	< 329.5	< 378.9	967.1	879.4	< 1569.2	5351.1	1510.6	< 431.4	282
Ammonia (lbs)	< 270.4	< 210.4	< 330.3	< 328.5	< 3/0.8	307.1	019.4	< 1309.2	JJJ 1. I	1310.0	< 431.4	202
Total Annual												< 11636
TKN (mg/L)												× 11030
Average Monthly	< 1.44	< 1.01	< 2.21	< 1.88	1.96	3.15	4.80	4.22	11.21	4.56	2.26	< 1.77
TKN (lbs)	\ 1.44	<u> </u>	\ Z.Z.I	× 1.00	1.30	3.13	4.00	7.22	11.21	4.50	2.20	× 1.77
Total Monthly	< 793.7	< 559.6	< 1190.2	< 1191.8	1319.5	2258.3	2679.7	2559.6	6518.0	2417.2	1252.3	1000.9
i otai ivioritilly	N 1 30.1	< 555.0	N 1130.Z	V 1191.0	1013.0	2200.0	2013.1	2000.0	0010.0	4711.4	1202.0	1000.3

NPDES Permit No. PA0030643

Parameter	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20
Total Phosphorus												
(lbs/day)												
Average Monthly	5.21	7.11	5.6	7.76	4.58	3.99	4.56	3.39	< 2.17	3.79	3.49	3.11
Total Phosphorus												
(mg/L)												
Average Monthly	0.29	0.39	0.31	0.36	0.21	0.17	0.23	0.18	< 0.12	0.21	0.19	0.17
Total Phosphorus (lbs)												
Effluent Net												
Total Monthly	162	220.5	167.4	240.5	137.5	123.7	127.7	105.1	< 67	113.6	108.1	93.2
Total Phosphorus (lbs)												
Total Monthly	161.6	220.5	167.4	240.5	137.5	123.7	127.7	105.1	< 67.4	113.6	108.1	93.2
Total Phosphorus (lbs)												
Effluent Net												
Total Annual												2815
Total Phosphorus (lbs)												
Total Annual												2815

Existing Effluent Limits and Monitoring Requirements

The tables below summarize effluent limits and monitoring requirements specified in the latest permit (permit amendment).

Interim

			Effluent L	imitations			Monitoring Re	quirements
Doromotor	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	896	1,434 Wkly Avg	XXX	25	40	50	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Suspended Solids	1,075	1,613 Wkly Avg	XXX	30	45	60	2/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
UV Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered
Ammonia-Nitrogen May 1 - Oct 31	78	XXX	XXX	2.2	XXX	4.4	2/week	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	236	XXX	XXX	6.6	XXX	13.2	2/week	24-Hr Composite
Total Phosphorus	17.9	XXX	XXX	0.5	XXX	1.0	2/week	24-Hr Composite

Final

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	1,032	1,651 Wkly Avg	XXX	25	40	50	2/week	24-Hr Composite
BOD5	,	, ,						24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Total Suspended Solids	.		VOVV	5 ,	2007	2007	6/	24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Total Suspended Solids	1,238	1,857 Wkly Avg	XXX	30	45	60	2/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
UV Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered
Ammonia-Nitrogen May 1 - Oct 31	86	XXX	xxx	2.1	XXX	4.2	2/week	24-Hr Composite
Ammonia-Nitrogen	260	XXX	XXX	6.3	XXX		2/week	24-Hr
Nov 1 - Apr 30	200	^^^		0.3		12.6	Z/week	Composite 24-Hr
Total Phosphorus	20.6	XXX	XXX	0.5	XXX	1.0	2/week	Composite

Chesapeake Bay

		E	ffluent Limitation	าร		Monitoring Requiremen	
Parameter ⁽¹⁾	Mass Ur	its (lbs)	Cor	ncentrations (m	Minimum ⁽²⁾	Required	
raiameter (7	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report		Report		2/week	24-Hr Composite
KjeldahlN	Report	Короп		Report		2/week	24-Hr Composite
Nitrate-Nitrite as N	Report			Report		2/week	24-Hr Composite
Total Nitrogen	Report	Report		Report		1/month	Calculation
Total Phosphorus	Report	Report		Report		2/week	24-Hr Composite
Net Total Nitrogen	Report	60,273				1/month	Calculation
Net Total Phosphorus	Report	8,036				1/month	Calculation

Development of Effluent Limitations and Monitoring Requirements							
Outfall No.	001	Design Flow (MGD)	4.3 (interim) 4.95 (final)				
Latitude	40° 3' 35.00"	Longitude	-77° 31' 53.00"				
Wastewater I	Description: Sewage Effluent		_				

Design Flow

Effluent limits and monitoring requirements developed in the NPDES permit are based on the annual average design flow of the treatment facility. A treatment plant upgrade was originally proposed back in 2012 and the additional modification of the design flows (from 4.3 MGD to 4.95 MGD) proposed in 2015 also became part of this upgrade. As a result, the NPDES permit was amended in 2015 addressed this upgrade and include interim/final permit requirements for pre/post phases of the upgrade along with a quarterly progress report submission requirement. However, the construction for the entire upgrade project has still not yet completed, majorly due to construction delays/technical issues and addition of several minor modifications to the upgrade. Based on this, DEP has decided to reintroduce interim/final permit requirements for the upcoming permit renewal. The interim permit requirements will be developed based on the flow of 4.3 MGD and final permit requirements will be developed based on the flow of 4.95 MGD.

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)

Water Quality-Based Limitations

CBOD5, NH3-N and Dissolved Oxygen

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's technical guidance no. 391-2000-007 describes the technical methods contained in the model for conducting wasteload allocation analyses and for determining recommended limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. A model output indicates that existing interim (4.3 MGD) and final (4.95 MGD) effluent limits are still adequate and protective of water quality. No change is therefore recommended.

Toxics

DEP utilizes a Toxics Management Spreadsheet to facilitate calculations necessary for completing a reasonable potential analysis and determining WQBELs for toxic pollutants. The worksheet combines the functionality of DEP's Toxics Screening Analysis worksheet and PENTOXSD. The worksheet recommended a routine monitoring requirement for certain heavy metals including Total Aluminum, Total Copper Dissolved Iron, Total Iron, and Total Zinc for both interim and final permit conditions. Initially, the worksheet also recommended effluent limits for Bis(2-Ethylhexyl)Phthalate (DEHP). Shippensburg has been using a plastic container to collect samples which is not a preferred collection method for DEHP. DEP has then requested additional samples using a glass container. The results of additional samples were received and showed that

none of samples contained a detectable level of DEHP. DEP has therefore ruled out the need of permit requirements for DEHP.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxygen

A minimum DO limit of 5.0 mg/L is a DO water quality criterion found in 25 Pa. Code § 93.7(a). This limit is included in the existing NPDES permit based BPJ. It is still recommended to include this limit in the draft permit to ensure that the facility continues to achieve compliance with DEP water quality standards. This approach is consistent with DEP's SOP no. BPNPSM-PMT-033.

Total Phosphorus

Historically, an average monthly Total Phosphorus limit of 2.0 mg/L was recommended in NPDES permits, per DEP phosphorus guidance 391-2000-018, to control phosphorus effluent levels for any facilities that are expected to contribute 0.25% or more of the total phosphorus loading of the entire basin. DEP has previously determined that this facility meets the criteria. However, the limit of 0.5 mg/L was imposed in the permit. The fact sheet developed for the last permit renewal indicates that this 0.5 mg/L limit is based on an old Middle Spring Creek implementation plan requiring 95% removal. At this time, DEP does not find any rationale to relax or remove this requirement. Therefore, existing limits will remain unchanged in the permit in accordance with 40 CFR §122.44(I)(1).

Additional Considerations

Compliance Schedule

Given that it is unclear when the construction will be fully completed, developing a compliance schedule with specific dates would not be reasonable. However, a narrative Part C condition will be developed to require Shippensburg to continue to provide a quarterly progress report until the construction is completed.

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Influent BOD & TSS Monitoring

As a result of negotiation with EPA, the existing influent monitoring reporting requirement for TSS and BOD5 will be maintained in the draft permit. This requirement has been consistently assigned to all municipal wastewater treatment facilities.

E. Coli Monitoring

DEP's SOP no. BPNPSM-PMT-033 recommends a routine monitoring for E. Coli in all new and reissued sewage permits. Given the design flow of this facility, a monthly monitoring requirement will be included in the permit.

Ultraviolet (UV) light Disinfection

DEP's SOP no. BPNPSM-PMT-033 recommends a routine monitoring of UV light output transmittance or intensity when the facility is utilizing an UV disinfection system in lieu of chlorination. This recommendation was implemented so that permittees would demonstrate the effectiveness of UV disinfection. This approach is reasonable as it would ensure that the treatment unit is properly operated and maintained as it is also required under 40 CFR §122.41(e).

Total Dissolved Solids (TDS)

TDS and its associated solids including Bromide, Chloride, and Sulfate have become statewide pollutants of concern. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

-Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.

- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- -Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/L.

Shippensburg reported maximum effluent concentrations of 554 mg/L for TDS, 0.25 mg/L for Bromide, and <1.0 ug/L for 1,4-dioxane. Accordingly, the requirement to monitor for these pollutants is not necessary.

Conodoguinet Creek Watershed TMDL

A TMDL was developed in 2001 for 16 named sub-watersheds and 2 unnamed sub-watersheds in the Conodoguinet Creek basin including Middle Spring Creek to mainly address excess nutrient (particularly phosphorus) and sediment loads from non-point sources such as agriculture, construction, and urban/storm sewer runoffs. The TMDL discussed thirty-six (36) existing point source facilities within the basin in which the TMDL also pointed out that eight (8) of these facilities including Shippensburg contribute significant amounts of nitrogen and/or phosphorus to the watershed. It appears the TMDL does not address Total Phosphorus wasteload allocations (WLAs) for those facilities discharging directly into the Conodoguinet Creek nor any other sub-watersheds, except for one WLA for a point source in the Rowe Run watershed. This is likely because some of these watersheds were impaired due to sediment not nutrients; thus, the TMDL was developed to focus on those that are majorly contributing sediment impairment. The discharge from Shippensburg STP was in fact addressed in this TMDL as follows:

The Shippensburg Borough Authority sewerage treatment facility (NPDES PA0030643) is identified as a significant contributor of nutrients to Middle Spring Creek, but it was not included in the TMDL analysis for Middle Spring Creek because Middle Spring Creek was listed only for sediment, not nutrient enrichment. The Shippensburg Borough Authority sewerage facility will be, however, included in the calculations for the total load reduction analysis for the entire Conodoguinet Creek basin.

The TMDL predicted a total TP load reduction of 19,987 lbs/yr. and a total sediment load reduction of 20,552,580 lbs/yr. based on loading rates for phosphorus and sediment computed using the GWLF model. The TMDL also noted that there is no WLA for this TMDL because there are no known point source discharges in the watershed. At this time, no additional requirement will be given to this permit. In case the TMDL is revised to include a sediment WLA for this facility or to include a TP WLA based on any further stream assessment, DEP may reopen this permit to include those WLAs.

Chesapeake Bay TMDL

In August 2019, DEP finalized Phase 3 Chesapeake Bay Watershed Implementation Plan to provide the plans in place by 2025 to further achieve the nutrient and sediment reduction targets that would ultimately meet U.S EPA's expectations for the Chesapeake Bay TMDL. The Chesapeake Bay TMDL identifies the necessary pollution reductions from major sources of nitrogen, phosphorus and sediment across the Bay jurisdictions and sets pollution limits necessary to meet water quality standards. The Phase 3 WIP is an update to the Pennsylvania's Chesapeake Bay TMDL Strategy (2004), the Chesapeake WIP Phase I (2011) and Phase 2 WIP (2012). The more details on the TMDL are available at www.dep.pa.gov.

As part of the Phase 3 WIP process, a Supplement to the Phase 3 WIP was developed, providing an update on TMDL implementation for point sources and a discussion of adjustments to the permitting strategy as a result of implementation experience. According to this document, Shippensburg is a Phase 1 significant discharger located within the Chesapeake Bay watershed. The following Cap Loads specified in the current Supplement to the Phase 3 WIP will be included in the draft permit:

NPDES Permit No.	Phase	Facility	Latest Permit Issuance Date	Permit Expiration Date	Cap Load Compliance Start Date	TN Cap Load (lbs/yr)	TN Offsets Included in Cap Load (lbs/yr)	TP Cap Load (lbs/yr)	TN Delivery Ratio	TP Delivery Ratio
PA0030643	1	Shippensburg Borough Authority	09/29/2015	01/31/2019	10/1/2010	60,273	-	8,036	0.951	0.436

These Cap Loads were established based on the original design flow of 3.3 MGD (3.3 MGD * 8.34* 6 mg/L * 365 & 3.3 MGD * 8.34*0.8 mg/L * 365). In addition, Shippensburg is currently authorized to use 11,525 lbs/year as Total Nitrogen Offsets toward compliance with the above-referenced Total Nitrogen Cap Loads that were calculated based on the 25 lbs/year per on-lot sewage disposal systems (in EDUs) and the reported 461 on-lot sewage disposal systems that have been connected to the sewer system after January 1, 2003. These offsets will continue to be allowed and will be specified in the permit. No additional offsets were requested during this permit term.

Stormwater Requirements

Stormwater discharges from any POTWs (SIC Code 4952) described in 40 CFR § 122.26(b)(14)(ix) require coverage under an NPDES permit. Shippensburg currently utilizes two (2) outfalls collecting stormwater drained from the property. DEP's standard Part C stormwater requirements and site-specific best management practices (BMPs) will be included in the permit as this is a standard approach for major sewage facilities over 1.0 MGD.

Mass Loading Limitations

All effluent mass loading limits will be based on the formula: design flow x concentration limit x conversion factor of 8.34.

Class A Wild Trout Fishery

A Class A Wild Trout stream is not impacted by this discharge.

Anti-backsliding Requirements

Unless stated otherwise in this fact sheet, all permit requirements proposed in this fact sheet are at least as stringent as those specified in the existing permit.

Whole Effluent Toxicity (WET)

The permit amended in 2015 required Shippensburg to conduct a Whole Effluent Toxicity (WET) testing once the construction is complete. This decision was made because it has been widely known that adjustment or reconfiguration to the plant operation during any construction could potentially generate a sample interference for WET testing and thus, testing results may not be accurate. However, since the construction (upgrade) has not been completed and DEP tends to move forward with this permit renewal, DEP has requested Shippensburg to provide four (4) quarterly WET testing results for this permit renewal review.

	For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other:
The dilu	ution series used for the tests was: 100% 84% 68% 34% and 17%. The Target Instream Waste Concentrat

Summary of Four Most Recent Test Results

(TIWC) to be used for analysis of the results is: 68%.

(NOTE - Enter results into one table, depending on which data analysis method was used).

NOEC/LC50 Data Analysis

	Ceriodaphnia Results (% Effluent)			Pimephale			
	NOEC	NOEC		NOEC	NOEC]
Test Date	Survival	Reproduction	LC50	Survival	Growth	LC50	Pass? *
May 2021	100	100		100	100		Yes
August 2021	100	100		100	100		Yes
October 2021	100	100		100	100		Yes
January 2022	100	100		100	100		Yes

^{*} A "passing" result is that which is greater than or equal to the TIWC value.

For Outfall 001, Acute Chronic WET Testing was completed:

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

☐ YES ⊠ NO

Comments: A Whole Effluent Toxicity Analysis Spreadsheet is attached to this fact sheet.

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): **1.0** Chronic Partial Mix Factor (PMFc): **1.0**

1. Determine IWC - Acute (IWCa):

 $(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$

 $[(4.95 \text{ MGD} \times 1.547) / ((3.06 \text{ cfs} \times 1) + (4.95 \text{ MGD} \times 1.547))] \times 100 = 71\%$

Is IWCa < 1%? Tyes No (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

Type of Test for Permit Renewal: Chronic

2b-1. Determine Target IWCc (If Chronic Tests Required) for 4.3 MGD

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

[(4.3 MGD x 1.547) / ((3.06 cfs x 1) + (4.3 MGD x 1.547))] x 100 = **68%**

2b-2. Determine Target IWCc (If Chronic Tests Required) for 4.95 MGD

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

 $[(4.95 \text{ MGD} \times 1.547) / ((3.06 \text{ cfs} \times 1) + (4.95 \text{ MGD} \times 1.547))] \times 100 = 71\%$

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 84%, 68%, 34%, and 17%. (4.30 MGD)

Dilution Series = 100%, 86%, 71%, 36%, and 18%. (4.95 MGD)

WET Limits

Has reasonable potential been determined? ☐ YES ☒ NO
Will WET limits be established in the permit? ☐ YES ☒ NO
If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Comments

Because the construction for the proposed upgrade is still in progress and DEP believes it may be acceptable for Shippensburg to conduct WET testing during the construction, the upcoming permit renewal will contain two (2) separate dilatation series with a target instream waste concentration for interim (4.3 MGD) and final (4.95 MGD).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Upon Completion of Construction.

		Monitoring Requirements						
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	Minimum (2)	Required		
Faranietei	Average	Daily		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Туре
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
		1,434						24-Hr
CBOD5	896	Wkly Avg	XXX	25	40	50	2/week	Composite
Total Suspended Solids								24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
BOD5								24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
		1,613						24-Hr
Total Suspended Solids	1,075	Wkly Avg	XXX	30	45	60	2/week	Composite
Fecal Coliform (No. /100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (No. /100 ml)				2,000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10,000	2/week	Grab
UV Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	78	XXX	XXX	2.2	XXX	4.4	2/week	Composite
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	236	XXX	XXX	6.6	XXX	13.2	2/week	Composite
								24-Hr
Total Phosphorus	17.9	XXX	XXX	0.5	XXX	1.0	2/week	Composite
E. Coli (No./100 mL)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
		Report			Report			24-Hr
Total Aluminum	Report	Daily Max	XXX	Report	Daily Max	XXX	1/month	Composite
		Report			Report			24-Hr
Total Copper	Report	Daily Max	XXX	Report	Daily Max	XXX	1/month	Composite
		Report			Report			24-Hr
Dissolved Iron	Report	Daily Max	XXX	Report	Daily Max	XXX	1/month	Composite
		Report			Report			24-Hr
Total Iron	Report	Daily Max	XXX	Report	Daily Max	XXX	1/month	Composite
		Report			Report			24-Hr
Total Zinc	Report	Daily Max	XXX	Report	Daily Max	XXX	1/month	Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Upon Completion of Construction through Permit Expiration Date.

Outrain 601, Effective Feriod. 6		Monitoring Requirements						
Doromotor	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	1,032	1,651 Wkly Avg	XXX	25	40	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Suspended Solids	1,238	1,857 Wkly Avg	XXX	30	45	60	2/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
UV Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered
Ammonia-Nitrogen May 1 - Oct 31	86	XXX	XXX	2.1	XXX	4.2	2/week	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	260	XXX	XXX	6.3	XXX	12.6	2/week	24-Hr Composite
Total Phosphorus	20.6	XXX	XXX	0.5	XXX	1.0	2/week	24-Hr Composite
E. Coli (No./100 mL)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Total Aluminum	Report	Report Daily Max	XXX	Report	Report Daily Max	XXX	1/month	24-Hr Composite
Total Copper	Report	Report Daily Max	XXX	Report	Report Daily Max	XXX	1/month	24-Hr Composite
Dissolved Iron	Report	Report Daily Max	XXX	Report	Report Daily Max	XXX	1/month	24-Hr Composite
Total Iron	Report	Report Daily Max	XXX	Report	Report Daily Max	XXX	1/month	24-Hr Composite
Total Zinc	Report	Report Daily Max	XXX	Report	Report Daily Max	XXX	1/month	24-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

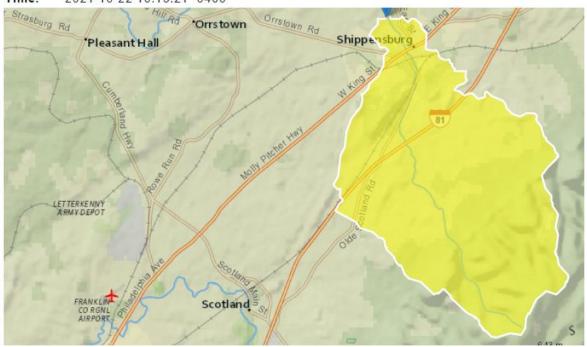
Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

		Effluent Limitations						
Parameter	Mass Unit	s (lbs/day)	Co	oncentrations (mg	Minimum			
	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Required Sample Type	
AmmoniaN	Report	Report	XXX	Report	XXX	2/week	24-Hr Composite	
KjeldahlN	Report	xxx	XXX	Report	XXX	2/week	24-Hr Composite	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/week	24-Hr Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculation	
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	24-Hr Composite	
Net Total Nitrogen	XXX	60,273	XXX	XXX	XXX	1/month	Calculation	
Net Total Phosphorus	XXX	8,036	XXX	XXX	XXX	1/month	Calculation	

	Tools and References Used to Develop Permit
	MOM for Mindows Madel (see Attachment
	WQM for Windows Model (see Attachment Taylor Management Spreadchest (see Attachment
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
-	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
$ \mu$	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Attachments

1. StreamStats


StreamStats Report

Region ID: PA

Workspace ID: PA20211022141501202000

Clicked Point (Latitude, Longitude): 40.05971, -77.53146

Time: 2021-10-22 10:15:21 -0400

Parameter			
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	20.6	square miles
PRECIP	Mean Annual Precipitation	41	inches
STRDEN	Stream Density total length of streams divided by drainage area	1.36	miles per square mile
ROCKDEP	Depth to rock	5.7	feet
CARBON	Percentage of area of carbonate rock	59.73	percent

ttps://streamstats.usgs.gov/ss/

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value Units	Min Limit	Max Limit
DRNAREA	Drainage Area	20.6 square miles	4.93	1280
PRECIP	Mean Annual Precipitation	41 inches	35	50.4
STRDEN	Stream Density	1.36 miles per squ mile	uare 0.51	3.1
ROCKDEP	Depth to Rock	5.7 feet	3.32	5.65
CARBON	Percent Carbonate	59.73 percent	0	99

Low-Flow Statistics Disclaimers [Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	8.78	ft^3/s
30 Day 2 Year Low Flow	9.46	ft^3/s
7 Day 10 Year Low Flow	6.74	ft^3/s
30 Day 10 Year Low Flow	7.01	ft^3/s
90 Day 10 Year Low Flow	7.49	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

nttps://streamstats.usgs.gov/ss/ 2/3

2. WQM 7.0 ver. 1.1 (4.3 MGD)

Input Data WQM 7.0

															_
	SWP Basii			Stream Name			RMI		vation (ft)	Drainag Area (sq mi)		ope V t/ft)	PWS Vithdrawa (mgd)	Apply I FC	
	07B	10602	MIDDL	E SPRIN	G CREEK		5.4	30	620.00	20	.60 0.0	00000	0.0	00	
					St	ream Dat	a								
Design	LFY		eam low	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary	<u>/</u> pH	<u>S</u> Temp	tream pH		
Cond.	(cfsm)	(cfs) (c	cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.149	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	0 2	0.00	7.00	0.0	0.0 0.1	00	
					Di	scharge l	Data								
	Name		ame	Permit Number		Disc	Permitt Disc Flow (mgd	Disc Flo	c Res w Fa		Disc Temp (°C)	Disc pH			
		Shippens	burg	PAC	0030643	4.300	0 4.300	00 4.30	000	0.000	20.00	7	.00		
					Pi	arameter l	Data								
			F	Paramete	r Name			Trib S Conc	Stream Conc	Fate Coef					
				aramete	rvamo	(m	ig/L) (r	mg/L)	(mg/L)	(1/days)				
		СВ	OD5				25.00	2.00	0.00	1.5	0				
		Dis	solved	Oxygen			5.00	8.24	0.00	0.0	0				
		NH	3-N				2.20	0.00	0.00	0.7	0				

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		ation ft)	Drainage Area (sq mi)	Slop (ft/ft	Witho	VS Irawal gd)	Apply FC
	07B	100	602 MIDDL	E SPRIN	IG CREEK		4.2	20	594.00	41.3	0.00	000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pł	4	<u>Strear</u> Temp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.149	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00) 2	0.00	7.00	0.00	0.00	
					Di	scharge l	Data]	
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd)	Disc Flov	Res Fa	erve Te ctor	oisc emp °C)	Disc pH		
						0.000	0.000	0.00	000 (0.000	0.00	7.00		
					Pa	arameter I	Data							
				Paramete	r Name				tream Conc	Fate Coef				
				aramete	rvanic	(m	ıg/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		07B	10	0602			MIDDI	LE SPRI	NG CRE	EK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
5.430	3.07	0.00	3.07	6.6521	0.00407	.707	36.22	51.19	0.38	0.195	20.00	7.00
Q1-1	0 Flow											
5.430	2.73	0.00	2.73	6.6521	0.00407	NA	NA	NA	0.37	0.199	20.00	7.00
Q30-	10 Flow	,										
5.430	3.64	0.00	3.64	6.6521	0.00407	NA	NA	NA	0.39	0.189	20.00	7.00

WQM 7.0 D.O.Simulation

1.438	o <u>th (ft)</u> 7 1/days)) Anal	ysis Temper 20.000 Reach WDF 51.194	ature (°C)	Analysis pH 7.000 Reach Velocity (fps)
4.300 <u>Reach Der</u> 0.707 <u>Reach Kc (</u> 1.438	o <u>th (ft)</u> 7 1/days)		20.000 Reach WDF 51.194		7.000
Reach De 0.707 Reach Kc (1.438	oth (ft) 7 1/days)	R	Reach WDF 51.194	Ratio	
0.707 Reach Kc (1.438	7 1/days)	R	51.194	<u>Ratio</u>	Reach Velocity (fps)
Reach Kc (1.438	1/days)	R			
1.438	•	R			0.379
	0	_	each NH3-N	(mg/L)	Reach Kn (1/days)
Dooob Kr /	_		1.51		0.700
	•		•		Reach DO Goal (mg/L)
14.67	0		Tsivoglo	u	5
	Subreach	Results			
TravTime		NH3-N	D.O.		
(days)	(mg/L)	(mg/L)	(mg/L)		
0.019	17.25	1.48	6.08		
0.039	16.77	1.46	6.15		
0.058	16.31	1.45	6.21		
0.078	15.86	1.43	6.28		
0.097	15.42	1.41	6.35		
0.117	14.99	1.39	6.42		
0.136	14.58	1.37	6.48		
0.156	14.17	1.35	6.55		
0.175	13.78	1.33	6.61		
0.195	13.40	1.31	6.68		
	Reach Kr (14.67 TravTime (days) 0.019 0.039 0.058 0.078 0.097 0.117 0.136 0.156 0.175	1.438 Reach Kr (1/days) 14.670 Subreach CBOD5 (mg/L) 0.019 17.25 0.039 16.77 0.058 16.31 0.078 15.86 0.097 15.42 0.117 14.99 0.136 14.58 0.156 14.17 0.175 13.78	1.438 Reach Kr (1/days) 14.670 Subreach Results CBOD5 NH3-N (mg/L) 0.019 17.25 1.48 0.039 16.77 1.46 0.058 16.31 1.45 0.078 15.86 1.43 0.097 15.42 1.41 0.117 14.99 1.39 0.136 14.58 1.37 0.156 14.17 1.35 0.175 13.78 1.33	1.438	1.438

Monday, August 1, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	•
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.89	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.185	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Monday, August 1, 2022 Version 1.1 Page 1 of 1

5.43 Shippensburg

5

0

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
07B	10602	MIDDLE SPRING CREEK

25

25

2.2

2.2

5

	RMI Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
IH3-N Chronic Allocations Baseline Baseline Multiple Multiple Critical Percent	5.430 Shippensburg	16.76	4.4	16.76	4.4	0	0
		Baseline Criterion				Critical Reach	Percent Reduction
5.430 Shippensburg 1.89 2.2 1.89 2.2 0 0	5.430 Shippensburg	1.89	2.2	1.89	2.2	0	0

WQM 7.0 Effluent Limits

	SWP Basin Si 07B	tream Code 10602	<u>Stream Name</u> MIDDLE SPRING CREEK						
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)		
5.430	Shippensburg	PA0030643	4.300	CBOD5	25				
				NH3-N	2.2	4.4			
				Dissolved Oxygen			5		

3. WQM 7.0 ver. 1.1 (4.95 MGD)

Input Data WQM 7.0

						ut Dutt								
	SWP Basin			Stre	eam Name		RMI		ration ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Appl FC
	07B	106	02 MIDDI	E SPRIN	IG CREEK		5.43	30	620.00	20.60	0.0000	0	0.00	•
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH	Te	Strear emp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.149	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00) 2	0.00 7.	00	0.00	0.00	
					Di	ischarge l	Data]	
			Name	Per	rmit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res v Fa	Dis erve Ter ctor (°0	np	Disc pH		
		Shipp	ensburg	PA	0030643	4.950	0 4.950	00 4.95	500	0.000	20.00	7.00		
					Pa	arameter l	Data							
			1	Paramete	r Name	С	onc C	Conc	Stream Conc	Fate Coef				
	_					(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				2.10	0.00	0.00	0.70				

31

Input Data WQM 7.0

Basin Code Stream Name (ft) Area (ft) Withdrawal F0						шр	input Butu Waiii 7.0								
Design Cond. LFY Trib Stream Rch Rch WD Ratio Width Depth Temp pH Temp pH Temp pH					Stre	eam Name		RMI			Area		Witho	Irawal	Appl FC
LFY		07B	106	02 MIDDI	E SPRIN	IG CREEK		4.22	20	594.00	41.30	0.000	00	0.00	•
Design Cond. Flow Flow Trav						St	ream Dat	ta							
Ccfsm Ccfs Ccfs Cdqs Cfgs Cdqs Cfgs Cdqs Cfgs	Design	LFY			Trav							Т			
10.00	Cond.	(cfsm)	(cfs)	(cfs)		(fps)		(ft)	(ft)	(°C)		(°C)		
Name Permit Number Existing Permitted Design Disc D	Q7-10 Q1-10 Q30-10	0.149	0.00	0.00	0.000	0.000	0.0	0.00	0.00) 2	0.00 7	.00	0.00	0.00	
Name Permit Number Disc Disc Disc Reserve Temp pH						Di	ischarge	Data]	
Parameter Data				Name	Per	rmit Numbe	Disc r Flow	Disc Flow	Disc Flow	Res v Fa	erve Te	mp			
Parameter Name							0.000	0.000	0.00	000	0.000	0.00	7.00		
Conc Conc Conc Coef						Pa	arameter	Data							
(mg/L) (mg/L) (mg/L) (1/days) CBOD5 25.00 2.00 0.00 1.50 Dissolved Oxygen 3.00 8.24 0.00 0.00					Paramete	r Namo									
Dissolved Oxygen 3.00 8.24 0.00 0.00				'	alamete	i ivallic	(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
		-		CBOD5				25.00	2.00	0.00	1.50				
NH3-N 25.00 0.00 0.00 0.70				Dissolved	Oxygen			3.00	8.24	0.00	0.00				
				NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	ım Code				Stream	<u>Name</u>			
		07B	1	0602			MIDD	LE SPRI	NG CREE	EK		
RMI	Stream Flow	PWS With		Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Trav	Analysis Temp	Analysis pH
	(cfs)	(cfs)	Flow (cfs)	Flow (cfs)	(ft/ft)	(ft)	(ft)		(fps)	Time (days)	(°C)	
Q7-1	0 Flow											
5.430	3.07	0.00	3.07	7.6576	0.00407	.716	37.39	52.24	0.40	0.184	20.00	7.00
Q1-1	0 Flow											
5.430	2.73	0.00	2.73	7.6576	0.00407	NA	NA	NA	0.39	0.188	20.00	7.00
Q30-	10 Flow	1										
5.430	3.64	0.00	3.64	7.6576	0.00407	NA	NA	NA	0.41	0.179	20.00	7.00

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	2	
07B	10602		MIDI	OLE SPRING O	REEK	
<u>RMI</u>	Total Discharge	Flow (mgd	<u>)</u> Ana	ysis Temperati	ure (°C)	Analysis pH
5.430	4.950	0		20.000		7.000
Reach Width (ft)	Reach De	oth (ft)		Reach WDRa	<u>tio</u>	Reach Velocity (fps)
37.388	0.71	6		52.238		0.401
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (n	ng/L)	Reach Kn (1/days)
18.42	1.44			1.50		0.700
Reach DO (mg/L)	Reach Kr (Kr Equation		Reach DO Goal (mg/L)
5.928	11.13	3		Tsivoglou		5
Reach Travel Time (days)		Subreach	Results			
0.184	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.018	17.93	1.48	5.79		
	0.037	17.46	1.46	5.70		
	0.055	17.00	1.44	5.64		
	0.074	16.55	1.42	5.61		
	0.092	16.12	1.41	5.60		
	0.111	15.69	1.39	5.61		
	0.129	15.28	1.37	5.64		
	0.148	14.88	1.35	5.67		
	0.166	14.49	1.33	5.72		
	0.184	14.11	1.32	5.77		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	•
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.89	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.185	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Monday, August 1, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

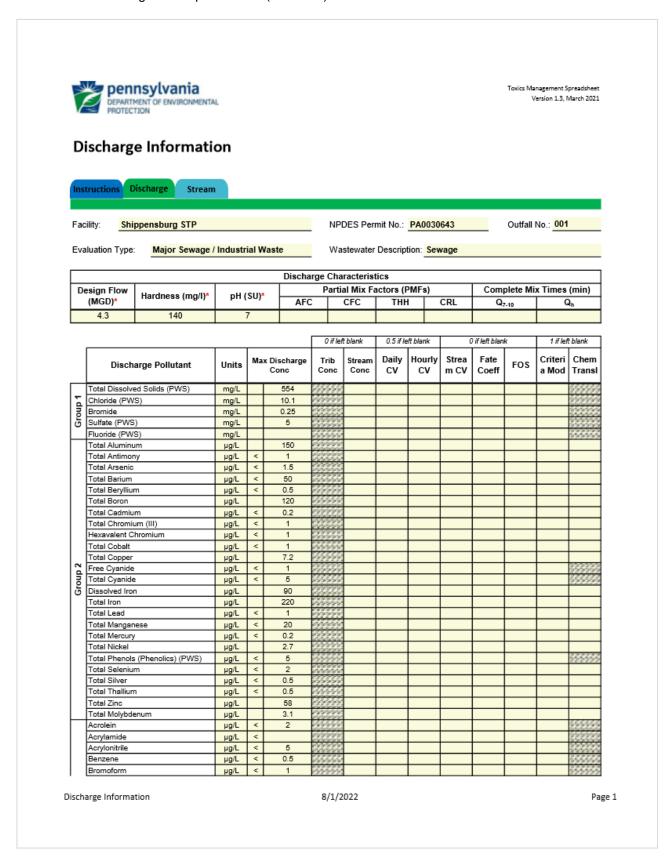
SWP Basin	Stream Code	Stream Name
07B	10602	MIDDLE SPRING CREEK

25

5.43 Shippensburg

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
5.430	0 Shippensburg	16.76	4.2	16.76	4.2	0	0
IH3-N C	Chronic Allocati	ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
5.430	O Shippensburg	1.89	2.1	1.89	2.1	0	0
issolve	d Oxygen Alloc	ations					

25


2.1 2.1 5 5

0

WQM 7.0 Effluent Limits

		<u>ım Code</u> 0602		Stream Name MIDDLE SPRING C	-		
RMI	Name	Permit	Disc Flow	Parameter	Effl. Limit 30-day Ave.	Effl. Limit	Effl. Limit Minimum
5.430	Shippensburg	Number PA0030643	(mgd)	CBOD5	(mg/L)	(mg/L)	(mg/L)
5.430	Snippensburg	PA0030643	4.950	NH3-N	2.1	4.2	
				Dissolved Oxygen			5

4. Toxics Management Spreadsheet (4.3 MGD)

					LICE CALLED	_		_	_	_	_	CCCCCC
	Carbon Tetrachloride	μg/L	<	0.5	00000	-	-	_	_	-	_	
	Chlorobenzene	μg/L	—	1	255555	+	_			_		222222
	Chlorodibromomethane	μg/L	<	0.5	VSSSSSS	_	_	_	_	_		55555
	Chloroethane	μg/L	<	11	000000	+				_		777777
	2-Chloroethyl Vinyl Ether	μg/L	<	2	9999999							22277
	Chloroform	μg/L	<	1	VVVVVVVV							333333
	Dichlorobromomethane	μg/L	<	0.5	000000							2000
	1,1-Dichloroethane	μg/L	<	1	8787878787							222233
3	1,2-Dichloroethane	μg/L	<	1	6040404040							955555
Group	1,1-Dichloroethylene	μg/L	<	1	35555							99999
2	1,2-Dichloropropane	μg/L	<	0.5	299999							999999
O	1,3-Dichloropropylene	μg/L	<	0.5	000000							999999
	1,4-Dioxane	μg/L	<	1	0000000							22222
	Ethylbenzene	μg/L	<	1	0000000							777777
	Methyl Bromide	μg/L	<	1	VVVVVVV							2222
	Methyl Chloride	μg/L	<	1	1000000							****
	Methylene Chloride	µg/L	<	1	/05/5/5/5							22222
	1,1,2,2-Tetrachloroethane	µg/L	<	0.5	2000000	+						222222
	Tetrachloroethylene		7	1	VVVVVVVV	+	_	_	_	_		222222
		μg/L	-		******							1777
	Toluene	μg/L	<	1	22222							111111
	1,2-trans-Dichloroethylene	μg/L	_	1	P322222	+						777777
	1,1,1-Trichloroethane	μg/L	<	1	00000	+	-			-	_	999999
	1,1,2-Trichloroethane	μg/L	<	0.5	9000							mm
	Trichloroethylene	μg/L	<	0.5	2222							www
	Vinyl Chloride	μg/L	<	0.5	VYYYYY							20000
	2-Chlorophenol	μg/L	<	2.8	91934343439							999999
	2,4-Dichlorophenol	μg/L	<	2.8	vvvvv							20000000
	2,4-Dimethylphenol	μg/L	<	2.8	9555555							777777
	4.6-Dinitro-o-Cresol	μg/L	<	2.8	1999999							222222
4	2,4-Dinitrophenol	μg/L	<	5.6	000000							333333
Group	2-Nitrophenol	µg/L	<	2.8	633333	_						0.545450
ĕ	4-Nitrophenol	µg/L	<	2.8	000000	+-	_	_	_	_		9999999
0	p-Chloro-m-Cresol		~	2.8	CONTRACTOR OF THE PARTY OF THE	+	_	_	_	_		*****
	<u>'</u>	μg/L	~	5.6	00000	+	_	_	_	_		22222
	Pentachlorophenol	μg/L	-	7.4	DCCCCCC	+	_	_	_	_		333333
	Phenol	μg/L	<		9555551 955555	+	-	_	_	-		100000
_	2,4,6-Trichlorophenol	μg/L	<	2.8	1999999	+	_	_	_	-		*****
	Acenaphthene	μg/L	<	1.4	00000	_						*****
	Acenaphthylene	μg/L	<	1.4	VVVVVV	+	-			-		122122
	Anthracene	μg/L	<	1.4	010101010101 010101010101							22222
	Benzidine	μg/L	<	7.4	V93/3/3/3/3							14466
	Benzo(a)Anthracene	μg/L	<	1.4	V0000000							77777
	Benzo(a)Pyrene	μg/L	<	1.4	8888							9/9/9/9/9/9
	3,4-Benzofluoranthene	μg/L	<	1.4	000000							m
	Benzo(ghi)Perylene	μg/L	<	1.4	00000							22222
	Benzo(k)Fluoranthene	μg/L	<	1.4	VVVVVVV							111111
	Bis(2-Chloroethoxy)Methane	μg/L	<	2.8	010000000 01000000							10000
	Bis(2-Chloroethyl)Ether	μg/L	<	2.8	N. N							200000
	Bis(2-Chloroisopropyl)Ether	μg/L	<	2.8	22222							1,1,1,17
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	3	22222							22222
	4-Bromophenyl Phenyl Ether	µg/L	<	2.8	255559							555555
	Butyl Benzyl Phthalate	µg/L	<	2.8	122222							www
	2-Chloronaphthalene	µg/L	~	2.8	22222							333333
			~	2.8	200000							77777
	4-Chlorophenyl Phenyl Ether	μg/L	<		777777							77777
	Chrysene	μg/L	_	1.4	CCCCCC	-						777777
	Dibenzo(a,h)Anthrancene	μg/L	<	1.4		-						(11111)
	1,2-Dichlorobenzene	μg/L	<	1.4	000000							
	1,3-Dichlorobenzene	μg/L	<	1.4	VVVVVV	-						
	1,4-Dichlorobenzene	μg/L	<	2.8	VVVVVV							177700
2		μg/L	<	2.8	1100000							
q dn	3,3-Dichlorobenzidine	P0										0.000000
roup 5	3,3-Dichlorobenzidine Diethyl Phthalate	μg/L	<	2.8	0000000							33333
Group 5			<	2.8 2.8	(55555) (55555)							3333333 333333
Group 5	Diethyl Phthalate	μg/L	-		0000000 0000000 0000000							

Discharge Information

2,6-Dinitrotoluene	μg/L	<	2.8	11/2/21/21/21/21		\neg		T			9999
Di-n-Octyl Phthalate	µg/L	~	2.8	VV3V3V3V3		+	+	+	 		9999
1,2-Diphenylhydrazine	µg/L	<	2.8	777777		+	+-	+	_	-	777
Fluoranthene	µg/L	~	1.4	AAAAAA	_	+	+-	_	_		222
Fluorene		~	1.4	000000	_	+	+	-	_		1000
Hexachlorobenzene	μg/L	<	2.8	22222		+	+	+	_		125
	μg/L	_		000000	_	_	+	-	-		255
Hexachlorobutadiene	µg/L	<	0.5	500000	_	+	+	-	-		200
Hexachlorocyclopentadiene	µg/L	<	2.8	272727272		_	-	-	-	\vdash	335
Hexachloroethane	µg/L	<	2.8	13/3/3/3/3/		_	-	-	-		
Indeno(1,2,3-cd)Pyrene	µg/L	<	1.4	222222		_	+	-	-		222
Isophorone	μg/L	<	2.8	25555555 25555555						\perp	777
Naphthalene	μg/L	٧	1.4	000000				_			9 9 9
Nitrobenzene	μg/L	<	2.8	2777777							722
n-Nitrosodimethylamine	μg/L	<	2.8	VVVVV							111
n-Nitrosodi-n-Propylamine	μg/L	<	2.8	*****							100
n-Nitrosodiphenylamine	μg/L	٧	2.8	17/2/2/2/2/2							177
Phenanthrene	μg/L	<	1.4	000000							999
Pyrene	μg/L	٧	1.4	2555555 2555555							222
1,2,4-Trichlorobenzene	µg/L	<	0.5	2222							255
Aldrin	µg/L	<		22222							1,00
alpha-BHC	µg/L	<		1999999							155
beta-BHC	µg/L	<		22222							122
gamma-BHC	µg/L	~		00000							100
delta BHC	µg/L	~		00000							222
Chlordane	µg/L	~		227777							777
4.4-DDT	µg/L	~		******		+	+	_	_		222
4.4-DDE	µg/L	~		0000000	_	+	+	+	_		300
4.4-DDD				5666666	_	+	+	+	_	\vdash	222
Dieldrin	μg/L	~		000000		+	-	+	_	-	222
	μg/L	_		200200000 200200000	_	+	+	-	-		777
alpha-Endosulfan	µg/L	<		VVVVVV	_	+	-	-	-	\vdash	144
beta-Endosulfan	µg/L	<		(3)33333			+	-	-		955
Endosulfan Sulfate	μg/L	<		22222			-	-	-		455
Endrin	μg/L	<		22222							155
Endrin Aldehyde	μg/L	٧		22222							11111
Heptachlor	μg/L	<		225552							11/1
Heptachlor Epoxide	μg/L	<		(3/2/2/2/2)							555
PCB-1016	μg/L	٧		111111							0.00
PCB-1221	μg/L	٧		21220202020							222
PCB-1232	μg/L	<		61636363636							9555 9559
PCB-1242	μg/L	<		222222							777
PCB-1248	μg/L	٧		2000000							100
PCB-1254	µg/L	<		33333							10 10 10
PCB-1260	µg/L	<		00000							177
PCBs, Total	µg/L	<		00000							555
Toxaphene	µg/L	<		299999							177
2,3,7,8-TCDD	ng/L	<		2000000							222
Gross Alpha	pCi/L			177777							1777
Total Beta	pCi/L	<		V939393	_	+	+-	 	_	-	999
Radium 226/228	pCi/L	~		0.000							100
Total Strontium	µg/L	~		227777		_					222
Total Uranium	µg/L µg/L	<		000000		+	_				111
		_		2000000		_	+	+	_		222
Osmotic Pressure	mOs/kg			1000000		_	_				956
				000000		-	_				
				00000							
				VVVVVV		-	-				
				00000							
				VYYYYYY							
				676767676767 676767676767							
				1111111							
				NANANA.							
				200000							

				of the late of the late				_	_		

Page 3

8/1/2022

Toxics Management Spreadsheet Version 1.3, March 2021

Shippensburg STP, NPDES Permit No. PA0030643, Outfall 001 Analysis Analysis Hardness Hardness μď 펀 Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria Stream Stream Hardness* Hardness 100 핂 핍 Tributary Tributary Hardness Hardness Apply Fish Criteria*

Haven Time

Velocit

Depth

Width (ft)

W/D Ratio

Tributary

Stream

(cfs/mi²)*

RM

Location

0.149 0.149

5.43

Point of Discharge

End of Reach '

4.22

Flow (cfs)

y (fps)

€

Yes Yes

No. Reaches to Model:

PWS Withdrawal

(MGD)

Slope (ft/ft)

DA (mi²)* 20.6 41.3

Elevation

₽M

Stream Code

Location

Receiving Surface Water Name: Middle Spring Creek

Stream

Discharge

nstructions

620 594 ŧ

> 5.43 4.22

> > 010602

010602

Point of Discharge

End of Reach 1

H

Η

Time

Velocit y (fps)

Depth

€

Width (ft)

W/D Ratio

Tributary

Stream

(cfs/mi²)

RM

Location

4.22

5.43

Point of Discharge

End of Reach 1

F

Flow (cfs)

DEPARTMENT OF ENVIRONMENTAL PROTECTION pennsylvania

Stream / Surface Water Information

8/1/2022

Page 4

Stream / Surface Water Information

Page 5 Complete Mix Time Complete Mix Time 4.722 13.707 (min) (min) Toxics Management Spreadsheet Version 1.3, March 2021 Shippensburg STP, NPDES Permit No. PA0030643, Outfall 001 Chem Translator of 0.316 applied Chem Translator of 0.934 applied Chem Translator of 0.982 applied Chem Translator of 0.96 applied Chem Translator of 1 applied Limits 7.00 0.195 0.111 Time Time 0 Analysis pH: Results Velocity Velocity 0.665 0.379 (fps) (fps) 0 W/D Ratio W/D Ratio O Inputs 51.194 32.956 127.37 Width (ft) Width (ft) 36.219 ₹ 36.219 WLA (µg/L) • 1,096 1,608 497 11,837 3,212 30,690 Analysis Hardness (mg/l): § § 23.8 139 25.7 32.2 Depth (ft) Depth (ft) 1.099 0.707 PRINT 21,000 750 8,100 2,73 95.0 17.6 22.0 16.3 N N N 8/1/2022 Slope (ft/ft) Slope (ft/ft) 0.004 0.004 8,100 2.548 694,619 340 95 16.880 750 (hg/L) A Z Z 16 22 SAVE AS PDF Discharge Analysis Flow (cfs) Discharge Analysis Flow (cfs) Coef 6.652 6.652 rib Conc PMF: RETURN TO INPUTS Net Stream Net Stream Flow (cfs) Flow (cfs) 6.1537 19.80 36.37 3.07 ટ 0 0 0 0 CCT (min): 4.722 Conc PWS Withdrawal PWS Withdrawal DEPARTMENT OF ENVIRONMENTAL PROTECTION (cfs) (cfs) pennsylvania
DEPARTMENT OF ENVIRONMER Total Dissolved Solids (PWS) Hexavalent Chromium Wasteload Allocations otal Chromium (III) **Model Results** Total Aluminum Total Cobalt Total Copper Sulfate (PWS) Total Antimony Total Arsenic Total Cadmium Total Barium Free Cyanide Total Boron Results Flow (cfs) Flow (cfs) Stream 19.80 36.366 6.15 3.07 AFC Model Results 5.43 5.43 4.22 4.22 M M Q 7.10 7 3

Model Been

																																				Analysis pH: 7.00	Comments		Lone
121	N/A	438	A/N	N/A	N/A	43,843	N/A	305	205	N/A	N/A	N/A	1,198	511	1,067	N/A 5 846	3.654	161	2,338	1,447	21.9	292	A/A	N/A	7.31	87.7	N/A	14,614	205	5,846	24,844 M/A	438	7.31	A/A	190	s (mg/l): 127.37	WLA (µg/L)	N/A	
83.0	N/A	300	S.N	NA	N/A	30,000	NA POOL	4,300	140	NA NA	N/A	N/A	820	350	730	A DOO	2.500	110	1,600	066	15.0	500	A/N	X C	5.0	0.09	N/A	10,000	140	4,000	000'/L	300	5.0	N/A	130	Analysis Hardness (mg/l):		N/A	
83	N/A	300	S/N	N/A	N/A	30,000	WA EOO	070	140	N/A	N/A	N/A	820	350	730	A/N A DOO	2,500	110	1,600	066	15	500	AN .	Z C	2 5	09	N/A	10,000	140	4,000	17,000	300	2	A/N	130	Anal	WQC (µg/L)	A/A	0,000
0	0	0	0	0	0	0			0		0	0	0	0	0	0				0	0	0	•		0	0	0	0	0	0	0		0	0	0	-	Fate	0	
																																				PMF:	Trib Conc (µg/L)		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	722	Stream	0	
0	0	٥	0	0	0	0		0	0		0	0	0	0	0	0	,	0	0	0	0	0	٥		0	0	0	0	0	0	0	0	0	0	0	CCT (min): 4.722	Conc	0	
Acenaphthene	Anthracene	Benzidine	Benzo(a)Pvrene	3,4-Benzofluoranthene	Benzo(k)Fluoranthene	Bis(2-Chloroethyl)Ether	Dis/2 Ethylhoxyl/Dhtholoto	A-Bromonhonyl Dhonyl Ether	Rutyl Benzyl Phthalate	2-Chloronaphthalene	Chrysene	Dibenzo(a,h)Anthrancene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	3,3-Dichlorobenzidine	Dimethyl Phthalate	Di-n-Butyl Phthalate	2,4-Dinitrotoluene	2,6-Dinitrotoluene	1,2-Diphenylhydrazine	Fluoranthene	Fluorene	nexachlorobenzene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)Pyrene	Isophorone	Naphthalene	Nitrobenzene	n-Nitrosodimethylamine	n-Nitrosodiohenvlamine	Phenanthrene	Pyrene	1,2,4-Trichlorobenzene	CFC CCT	Pollutants	Total Dissolved Solids (PWS)	Made Deculte

				Chem Translator of 1 applied			Chem Translator of 0.899 applied	Chem Translator of 0.86 applied	Chem Translator of 0.962 applied		Chem Translator of 0.96 applied			WQC = 30 day average; PMF = 1	Chem Translator of 0.756 applied		Chem Translator of 0.85 applied	Chem Translator of 0.997 applied		Chem Translator of 0.922 applied	Chem Translator of 1 applied		Chem Translator of 0.986 applied																					
N/A	A/A	N/A	322	219	5,992	2,338	0.47	154	15.2	27.8	16.8	7.6	N/A	2,192	6.33	N/A	1.32	93.5	A/A	7.29	N/A	19.0	215	4.38	190	190	541	818	351	A/A	5,115	570	N/A	4,530	2,192	3,215	89.1	848	161	8,038	3,507	307	205	482
N/A	N/A	N/A	220	150	4,100	1,600	0.32	105	10.4	19.0	11.5	5.2	N/A	1,500	4.33	N/A	0.91	64.0	ΑN	4.99	N/A	13.0	147	3.0	130	130	370	260	240	N/A	3,500	390	N/A	3,100	1,500	2,200	61.0	580	110	5,500	2,400	210	140	330
A/N	A/N	N/A	220	150	4,100	1,600	0.291	90.356	10	19	11.012	5.2	N/A	1,500	3.272	N/A	0.770	63.819	A/A	4.600	N/A	13	145.017	3	130	130	370	560	240	N/A	3,500	390	N/A	3,100	1,500	2,200	61	580	110	5,500	2,400	210	140	330
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
THE STATE OF																		18000							1201000			131111515				19111151					0000000				120000			150 B B B B B B B B B B B B B B B B B B B
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
Chloride (PWS)	Sulfate (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barium	Total Boron	Total Cadmium	Total Chromium (III)	Hexavalent Chromium	Total Cobalt	Total Copper	Free Cyanide	Dissolved Iron	Total Iron	Total Lead	Total Manganese	Total Mercury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Thallium	Total Zinc	Acrolein	Acrylonitrile	Benzene	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chlorodibromomethane	2-Chloroethyl Vinyl Ether	Chloroform	Dichlorobromomethane	1,2-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloropropane	1,3-Dichloropropylene	Ethylbenzene	Methyl Bromide	Methyl Chloride	Methylene Chloride	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene

2,046	891	994	658	N/A	161	497	190	23.4	190	2,338	687	731	9.78	N/A	133	24.8	N/A	86.2	0.15	N/A	N/A	N/A	8,769	N/A	1,330	78.9	51.1	N/A	N/A	N/A	234	101	219	N/A	1,169	731	30.7	468	292	4.38	58.5	N/A	N/A	2:92
1,400	610	680	450	N/A	110	340	130	16.0	130	1,600	470	200	69.9	N/A	91.0	17.0	N/A	59.0	0.1	N/A	N/A	N/A	6,000	N/A	910	54.0	35.0	N/A	N/A	N/A	160	0.69	150	N/A	800	200	21.0	320	200	3.0	40.0	N/A	N/A	2.0
1,400	610	680	450	N/A	110	340	130	16	130	1,600	470	200	6.693	N/A	91	17	A/A	59	1.0	A/A	N/A	N/A	6,000	N/A	910	54	35	N/A	N/A	N/A	160	69	150	N/A	800	500	21	320	200	e	40	A/A	A/A	2
0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1311111111	1311181																																				120000					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,2-trans-Dichloroethylene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Vinyl Chloride	2-Chlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	4,6-Dinitro-o-Cresol	2,4-Dinitrophenol	2-Nitrophenol	4-Nitrophenol	p-Chloro-m-Cresol	Pentachlorophenol	Phenol	2,4,6-Trichlorophenol	Acenaphthene	Anthracene	Benzidine	Benzo(a)Anthracene	Benzo(a)Pyrene	3,4-Benzofluoranthene	Benzo(k)Fluoranthene	Bis(2-Chloroethyl)Ether	Bis(2-Chloroisopropyl)Ether	Bis(2-Ethylhexyl)Phthalate	4-Bromophenyl Phenyl Ether	Butyl Benzyl Phthalate	2-Chloronaphthalene	Chrysene	Dibenzo(a,h)Anthrancene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	3,3-Dichlorobenzidine	Diethyl Phthalate	Dimethyl Phthalate	Di-n-Butyl Phthalate	2,4-Dinitrotoluene	2,6-Dinitrotoluene	1,2-Diphenylhydrazine	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene

Model Decult

	N/A 2 100	N/A	N/A	
	2 100	2 100	2080	
00				
0	43	43.0	62.8	
	810	810	1,184	
0	3,400	3,400	4,969	
0	A/A	N/A	A/A	
0	59	59.0	86.2	
0	-	1.0	1.46	
0	N/A	N/A	A/A	
0	26	26.0	38.0	
PMF: 1	Ana	Analysis Hardness (mg/l):	Ш	N/A Analysis pH: N/A
Trib Conc Fate	Wac	Wa Obj	WLA (µg/L)	Comments
8	500,000	500,000	A/N	
0	250,000	250,000	A/N	
0	250,000	250,000	A/A	
0	A/N	N/A	A/A	
0	5.6	5.6	8.18	
0	10	10.0	14.6	
0	2,400	2,400	3,507	
0	3,100	3,100	4,530	
0	N/A	N/A	N/A	
0	N/A	N/A	N/A	
0	A/A	N/A	A/A	
0	A/N	N/A	A/A	
0	N/A	N/A	N/A	
0	4	4.0	5.85	
0	300	300	438	
0	N/A	N/A	N/A	
0	N/A	N/A	N/A	
0	1,000	1,000	1,461	
0	0.050	0.05	0.073	
0	610	610	891	
0	5	5.0	N/A	
0	N/A	N/A	N/A	
0	N/A	N/A	A/N	
0	0.24	0.24	0.35	
0	N/A	N/A	A/A	
0	3	3.0	4.38	
0	A/A	N/A	A/A	
0	A/N	N/A	A/N	
			Coef (µg/L) Coef (µg/L) 0 5500,000 0 250,000 0 250,000 0 0 3,100 0 0 3,100 0 0 0,000 0 0 0,000 0 0,000	Coef (µg/L) (µg/

,	•	•	California of the Company of the Com		*****			
Bromotorm Codes Tetrachical		9		9	V/A	NA S	K/Z	
alboil renaciiolide	0	٠		9	W.N.	VA.	V/N	
Chlorobenzene	0	0		0	100	100.0	146	
Chlorodibromomethane	0	0		0	N/A	N/A	A/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	100000	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	A/N	N/A	A/A	
1,1-Dichloroethylene	0	0		0	33	33.0	48.2	
1,2-Dichloropropane		0		0	A/N	A/A	Α×	
1,3-Dichloropropylene		0		0	A/N	A/A	∀,N	
Ethylbenzene	0	0		0	88	68.0	99.4	
Methyl Bromide	0	0		0	100	100.0	146	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	A/A	
1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	A/N	
Tetrachloroethylene	0	0		0	N/A	N/A	A/A	
Toluene	0	0		0	57	57.0	83.3	
1,2-trans-Dichloroethylene	0	0		0	100	100.0	146	
1,1,1-Trichloroethane		0		0	10,000	10,000	14,614	14
1,1,2-Trichloroethane	0	0		0	N/A	N/A	A/A	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	43.8	
2,4-Dichlorophenol	0	0		0	10	10.0	14.6	
2,4-Dimethylphenol	0	0		0	100	100.0	146	
4,6-Dinitro-o-Cresol	0	0	113111111111111111111111111111111111111	0	2	2.0	2.92	
2,4-Dinitrophenol	0	0		0	10	10.0	14.6	3
2-Nitrophenol	0	0	000000	0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0	1301130	0	4,000	4,000	5,846	9
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	70	70.0	102	
Anthracene	0	0		0	300	300	438	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	130000	0	A/N	N/A	A/N	
Benzo(a)Pyrene	0	0	131111111	0	N/A	N/A	A/N	
3,4-Benzofluoranthene	0	0	0.000000	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	A/A	A/N	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	292	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
A December of Dheart Cthes	ľ	ľ	W.	ŀ				

				\top	T	T	T	Τ	Γ			$ \top $		T	T	Τ	Γ	Γ				T	T	Τ					Γ			T	T	Τ				Page 12
																											Analysis pH: N/A	Comments										
																											N/A	û										
0.15	1,169	N/A	N/A	1,461	10.2	438	N/A	2,923	29.2	V/N	N/A	A/N	29.2	73.1	Y X	5.85	Ϋ́χ	√N V	49.7	N/A	14.6	¥ ×	¥/Z	₹ Ž	29.2	0.1	ss (mg/l):	WLA (µg/L)	ĕ/Z	N/A	A/A	ĕ ź	X X	Z X	A/A	A/A	A/N	
0.1	800	N/A	N/A	1,000	7.0	300	WA 600	2,000	20.0	N/A	N/A	N/A	20.0	50.0	W/A	4.0	N/A	N/A	34.0	N/A	10.0	N/A	N/A	N/A	20.0	0.07	Analysis Hardness (mg/l):	WQ Obj	N/A	N/A	N/A	N/A	K/N	N/A	N/A	N/A	N/A	8/1/2022
0.1	800	N/A	N/A	1,000	_	300	N/A 600	2.000	50	A/A	N/A	A/A	20	20	Z A	4	A/N	A/A	34	N/A	10	W/W	A/A	Y A	20	0.07	Anal	WQC (µg/L)	N/A	N/A	A/A	N/A	K/N	N/A	N/A	N/A	N/A	8/1//
0	0	0	0	0		0			0	0	0	0	•	0				0	0	0	0	1	0	, .	0	0	-	Fate	0	0	0	0		0	0	0	0	
																											PMF:	Trib Conc (µg/L)										
0	0	0	0	0	0	٥	٥	0	0	0	0	0	۰	0	•		0	0	0	0	0	٥	9 0	0	0	0	707.	Stream	0	0	0	0		0	0	0	0	
0	0	0	0	0	0	٥	0		0	0	0	0	0	0	,		0	0	0	0	0	9	9	,	0	0	CCT (min): 13.707	Conc	0	0	0	0		0	0	0	0	
Butyl Benzyl Phthalate	2-Chloronaphthalene	Chrysene	Dibenzo(a,h)Anthrancene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	5,3-Dichlorobenziaine	Dimethyl Phthalate	Di-n-Butyl Phthalate	2,4-Dinitrotoluene	2,6-Dinitrotoluene	1,2-Diphenylhydrazine	Fluoranthene	Fluorene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)Pyrene	Isophorone	Naphthalene	Nitrobenzene	n-Nitrosodimetnylamine	n-Nitrosodinh-propylamine	Phenanthrene	Pyrene	1,2,4-Trichlorobenzene	<i>כ</i> כד ככד	Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Total Aluminum	Total Antimony	Total Barium	Total Boron	Total Cadmium	Total Chromium (III)	Model Results

A/N	A/N	N/A	A/N	N/A	A/N	A/N	A/N	A/N	A/N	A/N	A/A	N/A	N/A	N/A	N/A	0.24	2.31	27.8	1.59	A/A	3.18	N/A	22.7	3.78	39.4	N/A	3.58	1.07	A/A	N/A	N/A	79.5	9.0	39.8	N/A	N/A	A/A	2.19	2.39	90.0	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	90.0	0.58	7.0	0.4	N/A	8.0	N/A	5.7	0.95	6.6	N/A	6.0	0.27	N/A	N/A	N/A	20.0	0.2	10.0	N/A	N/A	N/A	0.55	9.0	0.02	N/A	N/A	N/A	N/A
A/N	A/N	N/A	A/A	A/A	A/A	A/A	A/A	A/A	A/N	A/A	A/A	A/A	N/A	N/A	N/A	90.0	0.58	7	0.4	N/A	0.8	N/A	5.7	0.95	6.6	N/A	6.0	0.27	N/A	N/A	N/A	20	0.2	10	N/A	N/A	A/A	0.55	9.0	0.02	N/A	N/A	N/A	A/A
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16161616																																19101181												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexavalent Chromium	Total Cobalt	Total Copper	Free Cyanide	Dissolved Iron	Total Iron	Total Lead	Total Manganese	Total Mercury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Thallium	Total Zinc	Acrolein	Acrylonitrile	Benzene	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chlorodibromomethane	2-Chloroethyl Vinyl Ether	Chloroform	Dichlorobromomethane	1,2-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloropropane	1,3-Dichloropropylene	Ethylbenzene	Methyl Bromide	Methyl Chloride	Methylene Chloride	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene	1,2-trans-Dichloroethylene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Vinyl Chloride	2-Chlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	4,6-Dinitro-o-Cresol

Andol Doculto

1.2.4.Tichiotosenzene	Phenanthrene	0	0		0/A	N/A	Н			
Pollutants without Limits or Monitoring Requirements Figure 1 Ann. Mol.	Pyrene 2,4-Trichlorobenzene	0 0	00		+	+	+	+		
Mass Limits	ommended WQBELs & M	fonitoring Req	uirements							
Pollutants										
Poblutants Report		Mass	Limits		Concentra	tion Limits				
Total Aluminum Report Re	Pollutants	AML (lbs/day)	(lbs/day)		MDL	IMAX	Units	Governing WQBEL	WQBEL	Comments
Total Copper	Total Aluminum	Report	Report	H	Report	Report	ng/L	750	AFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved from Report Re	Total Copper	Report	Report	Report	Report	Report	hg/L	16.8	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Iron Report Report Report Report Report Report Report Report Performance	Dissolved Iron	Report	Report	H	Report	Report	hg/L	438	Ŧ	Discharge Conc > 10% WQBEL (no RP)
Total Zinc Report	Total Iron	Report	Report	Н	Report	Report	hg/L	2,192	CFC	Discharge Conc > 10% WQBEL (no RP)
Pollutants without Limits or Monitoring Pollutants without Limits or Monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discha contraction was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g. <= Target QL).	Total Zinc	Report	Report	Report	Report	Report	hg/L	147	AFC	Discharge Conc > 10% WQBEL (no RP)
rout Limits or Monitoring s do not require effluent limits or monitoring bathan thresholds for monitoring, or the pollutant WQBEL WQBEL WQBEL N/A										
ar Pollutants without Limits or Monitoring Pollutants without Limits or Monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL). Pollutants W/OBEL Dissolved Solids (PWS) N/A N/A N/A N/A N/A N/A N/A N/										
Prollutants without Limits or Monitoring Pollutants without Limits or Monitoring controlled by the cause reasonable potential to exceed water quality criteria was not determined and the dischicularity controlled control										
Prollutants without Limits or Monitoring Pollutants without Limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the dischass than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target CAL). Pollutants WOBEL Comments Comments Comments Comments Comments NA PWS Not Applicable Chloride (PWS) NA PWS Not Applicable Studiate (PWS) Sulfate (PWS) NA PWS Not Applicable Studiate (PWS) Sulfate (PWS) NA NA Discharge Conc < TQL										
Prollutants without Limits or Monitoring Comments										
or Pollutants without Limits or Monitoring Pollutants without Limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharation was less than thresholds for monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharation was less than thresholds for monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharation was less than thresholds for monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharation was less than thresholds for monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharation was less than thresholds for monitoring to monitoring the pollutant was not determined and a sufficiently sensitive analytical method was used (e.g., <= Target QL). Comments Comments Comments NVA NVS Not Applicable Chical Edwis NVA NVA NVA NVA NVA Applicable Sulfate (PWS) NVA NVA NVA NVA Applicable Total Antimony NVA NVA NVA NVA Applicable Total Antimony										
Pollutants without Limits or Monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge form conitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target Cl.).										
Pollutants without Limits or Monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge fellulating pollutants do not require effluent limits or monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL). Pollutants WQBEL Chloride (PWS) N/A N/A PW/S Not Applicable Chloride (PWS) N/A PW/S Not Applicable Chloride (PWS) N/A PW/S Not Applicable Bromide Sunids (PWS) N/A N/A PW/S Not Applicable Tennide N/A N/A PW/S										
Pollutants without Limits or Monitoring Individual pollutants or Monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the dischassolution as less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL). Pollutants Governing Governing Units Comments Dissolved Solids (PWS) N/A PWS Not Applicable Chloride (PWS) N/A N/A PWS Not Applicable Bromide Bromide Bromide (PWS) N/A N/A PWS Not Applicable Sulfate (PWS) N/A N/A Discharge Conc < TQL										
Pollutants without Limits or Monitoring Pollutants without Limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the dischasion was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL). Pollutants WOBEL Units Comments WOBEL WIS Not Applicable Chloride (PWS) NIA PWS Not Applicable Bromide NIA PWS Not Applicable Bromide NIA PWS Not Applicable Bromide NIA NIA PWS Not Applicable Bromide NIA NIA PWS Not Applicable Bromide NIA NIA PWS Not Applicable Discharge Conc < TQL Total Antimony NIA NIA Discharge Conc < TQL Disc										
Pollutants without Limits or Monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the dischargent centration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL). Pollutants										
Pollutants without Limits or Monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the dischargent pollutants or monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL). Pollutants Governing WOBEL Comments Dissolved Solids (PWS) N/A N/A PWS Not Applicable Bromide (PWS) N/A N/A PWS Not Applicable Bromide N/A N/A PWS Not Applicable Soulfate (PWS) N/A N/A Discharge Conc < TQL										
Pollutants without Limits or Monitoring entration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL). Pollutants WQBEL Onits Comments WQBEL Units Comments WQBEL Units Pollutants WQBEL Units Comments Dissolved Solids (PWS) N/A N/A N/A N/A N/A N/A N/A N/										
Pollutants without Limits or Monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge on the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL.). Pollutants without Limits or monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL.). Pollutants worder Comments Dissolved Solids (PWS) N/A N/A N/A N/A N/A N/A N/A N/										
Proliteants without Limits or monitoring pased on water quality because reasonable potential to exceed water quality criteria was not determined and the dischasing pollutants or monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL). Pollutants WQBEL WQBEL Units Comments WQBEL Units Comments WQBEL Units PWS Not Applicable Chloride (PWS) N/A N/A N/A N/A N/A N/A N/A N/	The state of the s	land on Manufacture								
Pollutants Governing Purish Units Comments	lowing pollutants do not a	acquire offluent li	mite or mon	doring based	en water or slight	an assessment	too elle not	gove of leiton	leno reter he	th oritans was not dataminad and the dischar
Governing Units WQBEL N/A	entration was less than thre	equire emocriting	oring, or the	pollutant was	not detected	y pecause re and a sufficie	ntly sensitive	analytical me	thod was use	ity cheria was not determined and the discharged (e.g., <= Target QL).
N/A	Pollutants	Governing	Units		Comments					
N/A	Dissolved Solids (PWS)	N/A	N/A	ΡV	/S Not Applica	aple				
N/A N/A N/A N/A N/A	Chloride (PWS)	A/A	N/A	ΡV	/S Not Applica	able				
N/A N/A	Bromide	V/V	N/A		No WOS					
A/A A/A	Surrate (PWS)	A/A	N/A	ž	VS Not Applic	aple				
	Total Antimony	N/A	N/A	Disc	harge Conc <	Tal	_			

age 1

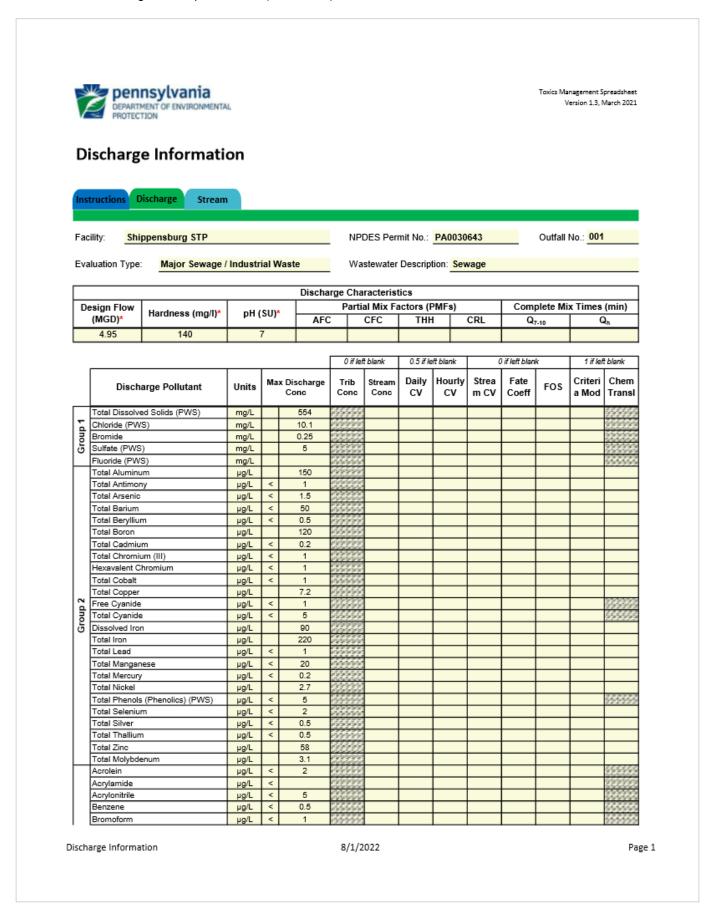
	A/N	A/N	C > CUC' GUIRUUSI
Total Barium	3.507	na/l	Discharde Conc s 10% WOBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	2,338	hg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	0.47	hg/L	Discharge Conc < TQL
Total Chromium (III)	154	hg/L	Discharge Conc < TQL
Hexavalent Chromium	15.2	hg/L	Discharge Conc < TQL
Total Cobalt	27.8	hg/L	Discharge Conc < TQL
Free Cyanide	5.85	hg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Total Lead	6.33	hg/L	Discharge Conc < TQL
Total Manganese	1,461	hg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.073	T/6rl	Discharge Conc < TQL
Total Nickel	93.5	hg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		hg/L	Discharge Conc < TQL
Total Selenium	7.29	hg/L	Discharge Conc < TQL
Total Silver	5.74	hg/L	Discharge Conc < 10% WQBEL
Total Thallium	0.35	hg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	3.0	hg/L	Discharge Conc < TQL
Acrylonitrile	0.24	hg/L	Discharge Conc < TQL
Benzene	2.31	T/6rl	Discharge Conc < TQL
Bromoform	27.8	T/Brl	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	1.59	T/6rl	Discharge Conc < TQL
Chlorobenzene	146	hg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	3.18	hg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	SOW oN
2-Chloroethyl Vinyl Ether	5,115	hg/L	Discharge Conc < TQL
Chloroform	22.7	hg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	3.78	hg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	SOW oN
1,2-Dichloroethane	39.4	T/6rl	Discharge Conc≤25% WQBEL
1,1-Dichloroethylene	48.2	T/Brl	Discharge Conc≤25% WQBEL
1,2-Dichloropropane	3.58	T/Brl	Discharge Conc < TQL
1,3-Dichloropropylene	1.07	T/Brl	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	SOW on
Ethylbenzene	99.4	hg/L	Discharge Conc ≤ 25% WQBEL
Methyl Bromide	146	hg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	8,038	hg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	79.5	T/6rl	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	0.8	hg/L	Discharge Conc < TQL
Tetrachloroethylene	39.8	T/6rl	Discharge Conc≤25% WQBEL
Toluene	83.3	T/Brl	Discharge Conc < 25% WQBEL
1,2-trans-Dichloroethylene	146	T/6rl	Discharge Conc≤25% WQBEL
1.1.1-Trichloroethane	891	hg/L	Discharge Conc ≤ 25% WQBEL

Andel Results

age 1

2.39 µg/L 0.08 µg/L 43.8 µg/L 14.6 µg/L 14.6 µg/L 14.6 µg/L 14.6 µg/L 14.6 µg/L 14.6 µg/L 16.0 µg/L	Z.19 Ud/L Discharde C	Discharge Conc < TOL
0.08 pg/L 43.8 pg/L 14.6 pg/L 2.92 pg/L 14.6 pg/L 2.338 pg/L 687 pg/L 687 pg/L 160 pg/L 0.004 pg/L 0.012 pg/L 1.27 pg/L 1.27 pg/L 1.27 pg/L 1.27 pg/L 0.15 pg/L 0.15 pg/L 1.27 pg/L 0.15 pg/L 0.0004 pg/L 0.15 pg/L 0.15 pg/L 0.15 pg/L 0.0007 pg/L 0.16 pg/L 0.17 pg/L	hg/L	onc < TQL
43.8 µg/L 14.6 µg/L 2.92 µg/L 14.6 µg/L 687 µg/L 687 µg/L 687 µg/L 687 µg/L 6.004 µg/L 6.004 µg/L 6.004 µg/L 6.004 µg/L 6.004 µg/L 7.29 µg/L	hg/L	onc < TQL
14.6 µg/L 2.92 µg/L 2.92 µg/L 14.6 µg/L 6.338 µg/L 6.87 µg/L 160 µg/L 160 µg/L 0.012 µg/L 0.004 µg/L 0.012 µg/L 1.27 µg/L 1.27 µg/L 1.29 µg/L 1.29 µg/L 1.27 µg/L 0.15 µg/L 1.27 µg/L 1.29 µg/L 1.27 µg/L 0.15 µg/L 0.0004 µg/L 0.15 µg/L 0.0007 µg/L 0.16 µg/L 0.17 µg/L 0.234 µg/L 0.219 µg/L 0.219 µg/L 0.219 µg/L 0.219 µg/L 0.219 µg/L	hg/L	onc < TQL
146 μg/L 2.92 μg/L 14.6 μg/L 2.338 μg/L 687 μg/L 687 μg/L 6.01.2 μg/L 5.96 μg/L 5.96 μg/L 7.96 μg/L 0.0004 μg/L 0.0004 μg/L 0.004 μg/L 0.004 μg/L 0.004 μg/L 0.004 μg/L 0.05 μg/L 1.27 μg/L 1.27 μg/L 1.27 μg/L 1.27 μg/L 1.27 μg/L 1.27 μg/L 292 μg/L 1.27 μg/L 292 μg/L 1.27 μg/L 292 μg/L 1.27 μg/L 292 μg/L 292 μg/L 1.27 μg/L 292 μg/L 1.27 μg/L 293 μg/L 1.27 μg/L 294 μg/L 295 μg/L 1.169 μg/L 296 μg/L 1.169 μg/L 297 μg/L 298 μg/L 1.169 μg/L 298 μg/L 299 μg/L 1.169 μg/L 297 μg/L 298 μg/L 298 μg/L 299 μg/L		onc < TQL
2.92 µg/L 14.6 µg/L 2.338 µg/L 687 µg/L 160 µg/L 6.846 µg/L 5.96 µg/L 7.96 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.05 µg/L 0.05 µg/L 0.05 µg/L 0.06 µg/L 0.07 µg/L 0.004 µg/L 0.12 µg/L 0.12 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 0.15 µg/L 0.16 µg/L 0.17 µg/L 0.18 µg/L 0.19 µg/L 0.004 µg/L 0.19 µg/L 0.19 µg/L 0.007 µg/L 0.19 µg/L 0.19 µg/L 0.19 µg/L 0.219 µg/L 0.219 µg/L 0.219 µg/L		onc < TQL
14.6 µg/L 2,338 µg/L 687 µg/L 160 µg/L 5,846 µg/L 5,86 µg/L 7,86 µg/L 0,004 µg/L 0,004 µg/L 0,004 µg/L 0,004 µg/L 0,004 µg/L 1,27 µg/L 1,27 µg/L 1,169 µg/		onc < TQL
2,338 µg/L 687 µg/L 160 µg/L 5,846 µg/L 5,86 µg/L 1,248 µg/L 0,0004 µg/L 0,004 µg/L 0,004 µg/L 0,004 µg/L 0,004 µg/L 1,27 µg/L 1,27 µg/L 1,169		onc < TQL
687 µg/L 160 µg/L 5.846 µg/L 5.846 µg/L 24.8 µg/L N/A N/A 0.0004 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.04 µg/L 0.12 µg/L 0.12 µg/L 1.27 µg/L 1.27 µg/L 0.15 µg/L 1.27 µg/L 0.15 µg/L 0.004 µg/L 0.19 µg/L 0.19 µg/L 0.0004 µg/L 0.0004 µg/L 0.19 µg/L 0.0007 µg/L 0.0007 µg/L 0.0007 µg/L 0.0007 µg/L 0.0007 µg/L 0.0000 µg/L 0.0007 µg/L 0.0007 µg/L 0.000 µg/L 0.000 µg/L 0.000 µg/L	hg/L	onc < TQL
160 μg/L 0.12 μg/L 5.846 μg/L 5.96 μg/L 438 μg/L 0.0004 μg/L 0.004 μg/L 0.004 μg/L 0.004 μg/L 0.004 μg/L 0.004 μg/L 0.004 μg/L 0.04 μg/L 0.04 μg/L 0.05 μg/L 0.12 μg/L 1.27 μg/L 1.27 μg/L 0.15 μg/L 1.27 μg/L 0.15 μg/L 0.16 μg/L 0.17 μg/L 0.18 μg/L 0.0004 μg/L 0.19 μg/L 0.19 μg/L 0.0007 μg/L 0.19 μg/L 0.19 μg/L 0.0007 μg/L 0.19 μg/L 0.10 μg/L 0.10 μg/L 0.10 μg/L 0.10 μg/L 0.10 μg/L 0.10 μg/L 0.21 μg/L 0.21 μg/L 0.21 μg/L		onc < TQL
0.12 µg/L 5,846 µg/L 5,846 µg/L 24.8 µg/L 0.0004 µg/L 0.0004 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.004 µg/L 0.04 µg/L 0.04 µg/L 0.05 µg/L 1.27 µg/L 1.169 µg/L 1.27 µg/L 1.169 µg/L 0.15 µg/L 1.27 µg/L 1.169 µg/L 0.15 µg/L 0.15 µg/L 1.27 µg/L 0.15 µg/L 0.15 µg/L 0.15 µg/L 0.15 µg/L 0.15 µg/L 0.15 µg/L 0.16 µg/L 0.0004 µg/L 0.0004 µg/L 0.0007 µg/L	hg/L	onc < TQL
5,846 µg/L 5,96 µg/L 24.8 µg/L 438 µg/L 0.0004 µg/L 0.0004 µg/L 0.004 µg/L 0.004 µg/L 0.04 µg/L 1.27 µg/L 1.27 µg/L 1.292 µg/L 1.27 µg/L 1.27 µg/L 1.29 µg/L 1.27 µg/L 292 µg/L 1.27 µg/L 292 µg/L 292 µg/L 292 µg/L 293 µg/L 294 µg/L 1.169 µg/L 294 µg/L 295 µg/L 296 µg/L 219 µg/L	hg/L	onc < TQL
5.96 µg/L 24.8 µg/L N/A N/A 0.0004 µg/L 0.0004 µg/L 0.0004 µg/L 0.004 µg/L N/A N/A 0.04 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.169 µg/L 1.27 µg/L 292 µg/L 1.27 µg/L 292 µg/L 78.9 µg/L 1.169 µg/L 0.15 µg/L 0.15 µg/L 0.15 µg/L 0.15 µg/L 234 µg/L 234 µg/L 219 µg/L		onc < TQL
24.8 µg/L N/A N/A A38 µg/L 0.0004 µg/L 0.0004 µg/L 0.004 µg/L 0.004 µg/L N/A N/A 0.04 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 292 µg/L 1.27 µg/L 292 µg/L 292 µg/L 292 µg/L 294 µg/L 1.27 µg/L 0.15 µg/L 0.15 µg/L 0.15 µg/L 0.16 µg/L 0.16 µg/L 1.169 µg/L 0.15 µg/L 0.16 µg/L 1.169 µg/L 1.169 µg/L 0.15 µg/L 0.0004 µg/L 234 µg/L 234 µg/L 234 µg/L 239 µg/L 239 µg/L 239 µg/L 239 µg/L 219 µg/L	_	onc < TQL
N/A N/A 438 μg/L 0.0004 μg/L 0.0004 μg/L 0.0004 μg/L 0.004 μg/L 0.004 μg/L 0.04 μg/L 1.27 μg/L 1.169 μg/L 1.169 μg/L 1.169 μg/L 0.15 μg/L 0.15 μg/L 0.16 μg/L 1.169 μg/L 1.169 μg/L 0.15 μg/L 0.16 μg/L 1.169 μg/L 1.169 μg/L 0.15 μg/L 1.169 μg/L	µg/L Discha	onc < TQL
438 µg/L 0.0004 µg/L 0.0004 µg/L 0.0004 µg/L 0.004 µg/L 0.04 µg/L 0.04 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 292 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.169 µg/L 1.169 µg/L 1.169 µg/L 0.15 µg/L 0.15 µg/L 1.169 µg/L		as
0.0004 µg/L 0.0004 µg/L 0.0004 µg/L 0.0004 µg/L 0.004 µg/L 0.004 µg/L 0.012 µg/L 292 µg/L 1.27 µg/L 78.9 µg/L 1.169 µg/L 0.15 µg/L 1.169 µg/L 1.27 µg/L 1.169 µg/L 0.15 µg/L 0.15 µg/L 1.169 µg/L 0.15 µg/L 0.15 µg/L 1.169 µg/L 0.0004 µg/L 0.0007 µg/L 1.169 µg/L 0.0007 µg/L		onc < TQL
0.004 µg/L 0.0004 µg/L 0.0004 µg/L 0.004 µg/L 0.04 µg/L 0.12 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.69 µg/L 0.15 µg/L 1.169 µg/L 0.15 µg/L 1.169 µg/L 0.15 µg/L 1.169 µg/L 0.15 µg/L 1.169 µg/L 0.15 µg/L 0.0004 µg/L 0.0007 µg/L 10.2 µg/L	hg/L	onc < TQL
0.0004 µg/L 0.004 µg/L 0.004 µg/L 0.04 µg/L 0.12 µg/L 1.27 µg/L 1.27 µg/L 1.27 µg/L 1.169 µg/L 0.15 µg/L 1.169 µg/L 1.169 µg/L 1.169 µg/L 1.169 µg/L 0.15 µg/L 1.169 µg/L 0.15 µg/L 1.169 µg/L 1.169 µg/L 0.0004 µg/L 234 µg/L 219 µg/L	L	onc < TQL
0.004 µg/L N/A N/A 0.04 µg/L N/A N/A 0.12 µg/L 292 µg/L 1.27 µg/L 78.9 µg/L 1.169 µg/L 1.169 µg/L 0.048 µg/L 0.048 µg/L 10.2 µg/L 234 µg/L 10.2 µg/L 234 µg/L 237 µg/L 237 µg/L 237 µg/L	hg/L	onc < TQL
N/A N/A 0.04 µg/L N/A N/A 0.12 µg/L 292 µg/L 1.27 µg/L 78.9 µg/L 1.169 µg/L 1.169 µg/L 0.0004 µg/L 234 µg/L 10.2 µg/L 234 µg/L 731 µg/L 731 µg/L	hg/L	onc < TQL
0.04 µg/L N/A N/A 0.12 µg/L 292 µg/L 1.27 µg/L 78.9 µg/L 1,169 µg/L 1,169 µg/L 0.0004 µg/L 234 µg/L 10.2 µg/L 219 µg/L 219 µg/L 219 µg/L 731 µg/L	N/A	as
N/A N/A 0.12 µg/L 292 µg/L 1.27 µg/L 78.9 µg/L 1,169 µg/L N/A N/A 0.0004 µg/L 234 µg/L 10.2 µg/L 219 µg/L 219 µg/L 731 µg/L 731 µg/L	µg/L Discha	onc < TQL
0.12 µg/L 292 µg/L 1.27 µg/L 78.9 µg/L 1,169 µg/L 1,169 µg/L 0.0004 µg/L 0.0004 µg/L 234 µg/L 10.2 µg/L 219 µg/L 219 µg/L 731 µg/L	N/A	as
292 µg/L 1.27 µg/L 78.9 µg/L 0.15 µg/L 1,169 µg/L N/A N/A 0.0004 µg/L 234 µg/L 10.2 µg/L 219 µg/L 219 µg/L 731 µg/L		onc < TQL
1.27 µg/L 78.9 µg/L 0.15 µg/L 1,169 µg/L N/A N/A 0.0004 µg/L 234 µg/L 10.2 µg/L 219 µg/L 60.2 µg/L 731 µg/L	hg/L	onc < TQL
78.9 µg/L 0.15 µg/L 1,169 µg/L N/A N/A 0.0004 µg/L 234 µg/L 10.2 µg/L 219 µg/L 219 µg/L 731 µg/L	hg/L	onc < TQL
0.15 µg/L 1,169 µg/L N/A N/A 0.48 µg/L 0.0004 µg/L 234 µg/L 10.2 µg/L 219 µg/L 0.2 µg/L 731 µg/L		onc < TQL
1,169 µg/L N/A N/A N/A N/A 0.48 µg/L 234 µg/L 10.2 µg/L 219 µg/L 0.2 µg/L 731 µg/L	hg/L	onc < TQL
N/A N/A 0.48 µg/L 0.0004 µg/L 234 µg/L 10.2 µg/L 0.2 µg/L 877 µg/L	µg/L Discha	onc < TQL
0.48 µg/L 0.0004 µg/L 234 µg/L 10.2 µg/L 219 µg/L 0.2 µg/L 877 µg/L	N/A	as
0.0004 µg/L 234 µg/L 10.2 µg/L 219 µg/L 0.2 µg/L 877 µg/L		onc < TQL
234 µg/L 10.2 µg/L 219 µg/L 0.2 µg/L 877 µg/L	hg/L	onc < TQL
10.2 µg/L 219 µg/L 0.2 µg/L 877 µg/L	hg/L	25% WQBEL
219 µg/L 0.2 µg/L 877 µg/L	hg/L	25% WQBEL
0.2 µg/L 877 µg/L 731 µg/L		5 25% WQBEL
877 µg/L 731 µg/L	hg/L	onc < TQL
731 µg/L	hg/L	onc < TQL
0.00	hg/L	onc < TQL
hg/L	29.2 µg/L Discharge Conc < TQI	onc < TQL
0.2 µg/L	hg/L	onc < TQL
0.2 µg/L	µg/L Discha	onc < TQL
	N/A	QS
zine 0.12 µg/L	hg/L	onc < TQL
Fluoranthene 29.2 µg/L Disch		onc < TQL

Andel Results


3	^
۳	_
٠	•
	9
,	a
١	π

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc ≤ 25% WQBEL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL			
hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L
73.1	0.0003	0.04	1.46	0.4	0.004	49.7	62.8	14.6	0.003	0.02	13.1	1.46	29.2	0.1
Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)Pyrene	Isophorone	Naphthalene	Nitrobenzene	n-Nitrosodimethylamine	n-Nitrosodi-n-Propylamine	n-Nitrosodiphenylamine	Phenanthrene	Pyrene	1,2,4-Trichlorobenzene

/1/2022

lodel Results

5. Toxics Management Spreadsheet (4.95 MGD)

	0-1			0.5	ortertartieter	_	_				555555
	Carbon Tetrachloride	μg/L	<	0.5	000000	-					555555
	Chlorobenzene	μg/L	\vdash	1	VVVVVV	-					222222
	Chlorodibromomethane	μg/L	<	0.5	V555555	-					55555
	Chloroethane	μg/L	<	1	(9)2222	-					777777
	2-Chloroethyl Vinyl Ether	μg/L	<	2	9555555 1105555	-					333333
	Chloroform	μg/L	<	1	VVVVVVVV	_					333333
	Dichlorobromomethane	μg/L	<	0.5							Percent.
	1,1-Dichloroethane	μg/L	<	1	KANANAN						3333333
3	1,2-Dichloroethane	μg/L	<	1	V3V3V3V3V3V						999999
Group	1,1-Dichloroethylene	μg/L	<	1	111111						9555
5	1,2-Dichloropropane	μg/L	<	0.5	VV9/9/9/9/9						WWW.
O	1,3-Dichloropropylene	μg/L	<	0.5	000000						9797999
	1,4-Dioxane	μg/L	<	1	0000000 0000000						22222
	Ethylbenzene	μg/L	<	1	VVVVVV						777777
	Methyl Bromide	μg/L	<	1	10000000000000000000000000000000000000						20000
	Methyl Chloride	μg/L	<	1	1000000	_					*****
	Methylene Chloride	µg/L	<	1	7000000	_					
	1,1,2,2-Tetrachloroethane	µg/L	<	0.5	222222	_					222222
	Tetrachloroethylene		~	1	VVVVVVVV	+					222222
	· · · · · · · · · · · · · · · · · · ·	μg/L	-		00000	-		_	_	_	77777
	Toluene	μg/L	<	1	VVVVVV	-	_	_	_		17777
	1,2-trans-Dichloroethylene	μg/L	<	1	P333333	-					777777
	1,1,1-Trichloroethane	μg/L	<	1	3333						****
	1,1,2-Trichloroethane	μg/L	<	0.5	555555						TTTTT
	Trichloroethylene	μg/L	<	0.5	2222						999999
	Vinyl Chloride	μg/L	<	0.5	144444	_					mmm
	2-Chlorophenol	μg/L	<	2.8	MATERIAL TO						27272700
	2,4-Dichlorophenol	μg/L	<	2.8	VVVVVV						
	2,4-Dimethylphenol	μg/L	<	2.8	9555555 9555555						22222
	4,6-Dinitro-o-Cresol	μg/L	<	2.8	V335555						
4	2,4-Dinitrophenol	μg/L	<	5.6	0000						mm
Group	2-Nitrophenol	μg/L	<	2.8	VVVVVVV						17777
5	4-Nitrophenol	μg/L	<	2.8	20000						222222
_	p-Chloro-m-Cresol	μg/L	<	2.8	2000000						*****
	Pentachlorophenol	μg/L	<	5.6	V99999	_					77777
	Phenol	μg/L	<	7.4	222222	_					000000
	2,4,6-Trichlorophenol	µg/L	<	2.8	EXXXXXX	_					77777
	Acenaphthene	µg/L	<	1.4	000000	_					
	Acenaphthylene	µg/L	<	1.4	000000	+					355555
	Anthracene	µg/L	<	1.4	555555	+	_	_	-	_	******
			<		00000	_		_	_		222700
	Benzidine Benzidine	μg/L	-	7.4	0000000	-	_	_		_	****
	Benzo(a)Anthracene	μg/L	<	1.4	V999999	-					77777
	Benzo(a)Pyrene	μg/L	<	1.4	00000	-					3333333
	3,4-Benzofluoranthene	μg/L	<	1.4	VSSSSSS	_					2000
	Benzo(ghi)Perylene	μg/L	<	1.4	000000						0000000 000000
	Benzo(k)Fluoranthene	μg/L	<	1.4	VVVVVVVV						77777
	Bis(2-Chloroethoxy)Methane	μg/L	<	2.8	00000000000000000000000000000000000000						33535
	Bis(2-Chloroethyl)Ether	μg/L	<	2.8	61,619,19136.1913 61,619,19136.1913						
	Bis(2-Chloroisopropyl)Ether	μg/L	<	2.8	V/V/V/V/V/V/						9999
	Bis(2-Ethylhexyl)Phthalate	μg/L	<	3	0000						000000
	4-Bromophenyl Phenyl Ether	μg/L	<	2.8	555555						(atatatatata
	Butyl Benzyl Phthalate	μg/L	<	2.8	000000						more
	2-Chloronaphthalene	μg/L	<	2.8	22222						200000
	4-Chlorophenyl Phenyl Ether	µg/L	<	2.8	1000000 1000000						122177
	Chrysene	µg/L	<	1.4	22222						12000
	Dibenzo(a,h)Anthrancene	µg/L	<	1.4	200000						955555
	1,2-Dichlorobenzene	µg/L	<	1.4	000000						rerer
	1,3-Dichlorobenzene		<	1.4	200000						\$55555 \$5555
		μg/L	_	2.8	VVVVVV						22222
5 0	1,4-Dichlorobenzene	μg/L	<		VVVVVV						12500
ā	3,3-Dichlorobenzidine	μg/L	<	2.8	*****						111100
Group	Diethyl Phthalate	μg/L	<	2.8	22222						****
_	Dimethyl Phthalate	μg/L	<	2.8	000000	_					22222
	Di-n-Butyl Phthalate	μg/L	<	2.8	CEEEEE		1				NAME AND A
	2,4-Dinitrotoluene	μg/L	<	2.8	000000	_	_			_	77777

	2,6-Dinitrotoluene	μg/L	<	2.8	000000							22222
	Di-n-Octyl Phthalate	μg/L	<	2.8	VVVVVV		\neg					97979797 97979797
	1,2-Diphenylhydrazine	μg/L	<	2.8	00000							44440
	Fluoranthene	μg/L	<	1.4	mm							minn
	Fluorene	μg/L	<	1.4	111111							15574
	Hexachlorobenzene	μg/L	<	2.8	VVVVVV							99999
	Hexachlorobutadiene	μg/L	<	0.5	00000							200000
	Hexachlorocyclopentadiene	μg/L	<	2.8	*****							
	Hexachloroethane	μg/L	<	2.8	2000000	-	-					2000
	Indeno(1,2,3-cd)Pyrene	μg/L	<	1.4	33333	$\overline{}$	$\overline{}$					35550
	Isophorone	μg/L	<	2.8	199999	$\overline{}$	$\overline{}$	$\overline{}$				99999
	Naphthalene	μg/L	<	1.4	00000	-	-	-				
	Nitrobenzene	μg/L	<	2.8	222222	$\overline{}$						55555
	n-Nitrosodimethylamine	µg/L	<	2.8	333333							111111
	n-Nitrosodi-n-Propylamine	µg/L	<	2.8	000000	_						111111
	n-Nitrosodiphenylamine	µg/L	<	2.8	200000	_						****
	Phenanthrene	µg/L	<	1.4	2000000	-	-	$\overline{}$				2000
	Pyrene	µg/L	<	1.4	255555	_	_	-				33333
	1,2,4-Trichlorobenzene	µg/L	<	0.5	VYYYYY	-	_	-				000000
_	Aldrin		~	0.0	******							11111
	alpha-BHC	μg/L μg/L	<		******							11111
	beta-BHC		<		222222	-+	\rightarrow					11111
		µg/L	<		0000000							*****
	gamma-BHC delta BHC	μg/L	<		2000000							
		μg/L	-		100000	_		-				77777
	Chlordane 4.4-DDT	μg/L	<		VVVVVV	\rightarrow	-	$\overline{}$		_	_	11111
	11.221	μg/L	<		VVVVVVV	_	_	_				
	4.4-DDE	μg/L	<		22222	_		-				35555
	4,4-DDD	μg/L	<		0000000							33333
	Dieldrin	μg/L	<		0000000	\rightarrow		$\overline{}$				Transfer
	alpha-Endosulfan	μg/L	<		222222	\rightarrow						999999
	beta-Endosulfan	μg/L	<		(3)33333	\rightarrow		\longrightarrow				22222
9 d	Endosulfan Sulfate	μg/L	<		correct							22.22
Group	Endrin	μg/L	<		277777							55555
ō	Endrin Aldehyde	μg/L	<		*****							999999
	Heptachlor	μg/L	<		00000							111111
	Heptachlor Epoxide	μg/L	<		(377777)							22222
	PCB-1016	μg/L	<		arren.							999999
	PCB-1221	μg/L	<		******							77777
	PCB-1232	μg/L	<									Salar Salar Salar Salar Salar Salar
	PCB-1242	μg/L	<									
	PCB-1248	μg/L	<									1777
	PCB-1254	μg/L	<									999999
	PCB-1260	μg/L	<		15555							2222
	PCBs, Total	μg/L	<		111111							55555
	Toxaphene	μg/L	<		cerre							2000
	2,3,7,8-TCDD	ng/L	<		000000							and the
	Gross Alpha	pCi/L			everer.							2000
7	Total Beta	pCi/L	<		(27,27,27)							22222
٩	Radium 226/228	pCi/L	<		000000							44440
Group	Total Strontium	μg/L	<		Siring.							11111
Ö	Total Uranium	µg/L	<		555555							55555
	Osmotic Pressure	mOs/kg			6362626363	-	-	\neg				99999
					000000							2227
					111111							
					277777							
					00000							
					222222							
					2000000		_					
					222222		_					
					222222		_					
					CXXXXXX							
					77777		_					
							_					
					100000							

DEPARTMENT OF ENVIRONMENTAL PROTECTION pennsylvania

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Shippensburg STP, NPDES Permit No. PA0030643, Outfall 001

Stream

Discharge

nstructions

Receiving Surface Water Name: Middle Spring Creek

No. Reaches to Model:

Apply Fish Criteria* Yes Yes

PWS Withdrawal

(MGD)

Slope (ft/ft)

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

DA (mi²)* 20.6 41.3 Elevation 620 594 ŧ 5.43 4.22 ₽M Stream Code 010602 010602 Point of Discharge End of Reach 1 Location

Tributary Hardness Haven Time Velocit y (fps) Depth € Width (ft) W/D Ratio Tributary Flow (cfs)

Stream

(cfs/mi²)* 0.149 0.149

RM

Location

5.43 4.22

Point of Discharge

End of Reach 1

H

Ħ

펍

Analysis Hardness

Stream Hardness 9

တ်

sis	ЬН		
Analysis	Hardness		
r	Ηd		
Stream	Hardness		
Ŋ	ЬH		
Tributan	Hardness		
Time	(dave)		
Velocit	y (fps)		
Depth	(tr)		
Width	(ft)		
M/D	Ratio		
low (cfs)	Tributary		
Flow	Stream		
LFY	(cfs/mi²)		
IMG		5.43	4.22
Location	Focation	Point of Discharge	End of Reach 1

Page 4

8/1/2022

Page 5 Complete Mix Time Complete Mix Time 13.871 (min) (min) 4.061 Toxics Management Spreadsheet Version 1.3, March 2021 Shippensburg STP, NPDES Permit No. PA0030643, Outfall 001 Chem Translator of 0.933 applied Chem Translator of 0.316 applied Chem Translator of 0.982 applied Chem Translator of 0.96 applied Chem Translator of 1 applied Limits 7.00 0.184 0.109 Comments Time Time 0 Analysis pH: Results Velocity Velocity 0.679 (fps) (fps) 0.401 0 W/D Ratio W/D Ratio O Inputs 34.545 52.238 128.55 Width (ft) Width (ft) 37.388 ₹ 37.388 WLA (µg/L) • 11,347 3,86 1,051 1,541 476 29,417 133 24.8 30.8 22.8 Analysis Hardness (mg/l): § § Depth (ft) Depth (ft) 0.716 1.082 PRINT 21,000 2,75 N/A N/A N/A 750 8,100 95.0 17.7 22.0 16.3 340 8/1/2022 Slope (ft/ft) Slope (ft/ft) 0.004 0.004 699.902 340 8,100 95 17.028 750 (hg/L) A Z Z 16 22 SAVE AS PDF Discharge Analysis Flow (cfs) Discharge Analysis Flow (cfs) Coef 7.658 7.658 rib Conc PMF: RETURN TO INPUTS Net Stream Net Stream Flow (cfs) Flow (cfs) 6.1537 19.80 36.37 3.07 ટ 0 0 0 0 CCT (min): 4.061 Conc PWS Withdrawal PWS Withdrawal DEPARTMENT OF ENVIRONMENTAL PROTECTION (cfs) (cfs) pennsylvania
DEPARTMENT OF ENVIRONMER Total Dissolved Solids (PWS) Hexavalent Chromium Wasteload Allocations otal Chromium (III) **Model Results** Total Aluminum Total Cobalt Total Copper Sulfate (PWS) Total Antimony Total Arsenic Total Cadmium Total Barium Free Cyanide Total Boron Results Flow (cfs) Flow (cfs) Stream 19.80 36.366 6.15 3.07 AFC Model Results 5.43 5.43 4.22 4.22 M M Q 7.10 7 3

		Chem Translator of 0.754 applied		Chem Translator of 0.85 applied	Chem Translator of 0.998 applied		Chem Translator of 0.922 applied	Chem Translator of 0.85 applied		Chem Translator of 0.978 applied																																					
A/N	A/N	157	A/A	2.31	813	N/A	N/A	8.17	91.1	208	4.2	911	897	2,521	3,922	1,681	N/A	25,215	2,662	N/A	21,012	10,506	15,409	434	4,062	770	39,223	16,810	1,401	981	2,381	9,526	4,202	4,763	3,222	A/A	784	2,381	925	112	925	11,207	3,222	224	12.2	A/A	644
N/A	N/A	112	N/A	1.65	580	N/A	N/A	5.83	65.0	148	3.0	650	640	1,800	2,800	1,200	N/A	18,000	1,900	N/A	15,000	7,500	11,000	310	2,900	550	28,000	12,000	1,000	200	1,700	6,800	3,000	3,400	2,300	N/A	260	1,700	099	80.0	099	8,000	2,300	160	8.72	N/A	460
N/A	A/A	84.801	A/A	1.400	6579.099	N/A	N/A	4.955	65	144.972	e	650	640	1,800	2,800	1,200	N/A	18,000	1,900	N/A	15,000	7,500	11,000	310	2,900	550	28,000	12,000	1,000	700	1,700	6,800	3,000	3,400	2,300	A/A	560	1,700	099	80	099	8,000	2,300	160	8.723	A/A	460
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																									19191111																		Color Color				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dissolved Iron	Total Iron	Total Lead	Total Manganese	Total Mercury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Thallium	Total Zinc	Acrolein	Acrylonitrile	Benzene	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chlorodibromomethane	2-Chloroethyl Vinyl Ether	Chloroform	Dichlorobromomethane	1,2-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloropropane	1,3-Dichloropropylene	Ethylbenzene	Methyl Bromide	Methyl Chloride	Methylene Chloride	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene	1,2-trans-Dichloroethylene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Vinyl Chloride	2-Chlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	4,6-Dinitro-o-Cresol	2,4-Dinitrophenol	2-Nitrophenol	4-Nitrophenol	p-Chloro-m-Cresol	Pentachlorophenol	Phenol	2,4,6-Trichlorophenol

Model Decults

																																						Analysis pH: 7.00	Comments		Page 7
																																						128.55 An			
116	A/N	420	0.7	A/A	N/A	N/A	42,025	A/A	6,304	378	981	ΨŽ.	Y/A	1 149	490	1,023	A/N	5,603	3,502	154	2,241	1,387	21.0	280	K/Z	14.0	7.0	84.0	N/A	14,008	196	23.814	N/A	420	7.0	A/A	182	ss (mg/l):	WLA (µg/L)	A/A	
83.0	N/A	300	0.5	N/A	N/A	N/A	30,000	N/A	4,500	270	140	N/A	N/A	820	350	730	N/A	4,000	2,500	110	1,600	066	15.0	200	A/N	10.0	5.0	60.0	N/A	10,000	140	4,000	N/A	300	5.0	N/A	130	Analysis Hardness (mg/l):	WQ Obj (µg/L)	N/A	2022
83	A/N	300	0.5	A/A	N/A	N/A	30,000	N/A	4,500	270	040	Ψ.	N/A	820	350	730	N/A	4,000	2,500	110	1,600	066	15	500	A/N	10	9	09	N/A	10,000	140	17 000	N/A	300	2	N/A	130	Anal	WQC (µg/L)	N/A	8/1/2022
0	0	, 0	,	0	0	0	0	0	0	0	9	0			, 0	0	0	0	0	0	0	0	0	0	9	, -	0	0	0	0	1	0		0	0	0	0	-	Fate	0	
	10000000																																					PMF.	Trib Conc (µg/L)		
0	0	0	0	0	0	0	0	0	0	0	0 0	0	9	0	, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	[10]	Stream	0	
0	0	0	, .	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	5 0	, .	0	0	0	0	0	0 0		0	0	0	0	CCT (min): 4.061		o	
Acenaphthene	Anthracene	Benzidine	Benzo(a)Anthracene	Benzo(a)Pyrene	3,4-Benzofluoranthene	Benzo(k)Fluoranthene	Bis(2-Chloroethyl)Ether	Bis(2-Chloroisopropyl)Ether	Bis(2-Ethylhexyl)Phthalate	4-Bromophenyl Phenyl Ether	butyl benzyl Phinalate	2-Chloronaphthalene	Discussion	1 2-Dichlorobenzene	1.3-Dichlorobenzene	1,4-Dichlorobenzene	3,3-Dichlorobenzidine	Diethyl Phthalate	Dimethyl Phthalate	Di-n-Butyl Phthalate	2,4-Dinitrotoluene	2,6-Dinitrotoluene	1,2-Diphenylhydrazine	Fluoranthene	Hevachlorohanzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)Pyrene	Isophorone	Naphthalene	n-Nitrosodimethylamine	n-Nitrosodi-n-Propylamine	n-Nitrosodiphenylamine	Phenanthrene	Pyrene	1,2,4-Trichlorobenzene	☑ CFC CCT	Pollutants	Total Dissolved Solids (PWS)	Model Results

				Chem Translator of 1 applied			Chem Translator of 0.898 applied	Chem Translator of 0.86 applied	Chem Translator of 0.962 applied		Chem Translator of 0.96 applied			WQC = 30 day average; PMF = 1	Chem Translator of 0.754 applied		Chem Translator of 0.85 applied	Chem Translator of 0.997 applied		Chem Translator of 0.922 applied	Chem Translator of 1 applied		Chem Translator of 0.986 applied																					
A/A	A/A	A/A	308	210	5,743	2,241	0.46	148	14.6	26.6	16.2	7.28	A/A	2,101	6.14	A/A	1.27	90.4	A/A	66.9	A/A	18.2	208	4.2	182	182	518	784	336	A/A	4,903	546	N/A	4,343	2,101	3,082	85.5	812	154	7,705	3,362	294	196	462
ΑΝ	N/A	N/A	220	150	4,100	1,600	0.33	106	10.4	19.0	11.6	5.2	N/A	1,500	4.38	N/A	0.91	64.5	N/A	4.99	N/A	13.0	148	3.0	130	130	370	260	240	N/A	3,500	390	N/A	3,100	1,500	2,200	61.0	580	110	5,500	2,400	210	140	330
A/A	A/A	A/A	220	150	4,100	1,600	0.293	91.043	9	19	11.100	5.2	A/A	1,500	3.305	N/A	0.770	64.320	A/N	4.600	N/A	13	146.158	8	130	130	370	560	240	A/A	3,500	390	N/A	3,100	1,500	2,200	61	580	110	5,500	2,400	210	140	330
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
120000																1000000		100000	120000							1300000											030000				1000000			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chloride (PWS)	Sulfate (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barium	Total Boron	Total Cadmium	Total Chromium (III)	Hexavalent Chromium	Total Cobalt	Total Copper	Free Cyanide	Dissolved Iron	Total Iron	Total Lead	Total Manganese	Total Mercury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Thallium	Total Zinc	Acrolein	Acrylonitrile	Benzene	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chlorodibromomethane	2-Chloroethyl Vinyl Ether	Chloroform	Dichlorobromomethane	1,2-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloropropane	1,3-Dichloropropylene	Ethylbenzene	Methyl Bromide	Methyl Chloride	Methylene Chloride	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene

1,961	855	953	630	N/A	154	476	182	22.4	182	2,241	658	700	9.38	N/A	127	23.8	N/A	82.6	0.14	N/A	N/A	N/A	8,405	N/A	1,275	75.6	49.0	N/A	N/A	N/A	224	296.7	210	N/A	1,121	700	29.4	448	280	4.2	56.0	N/A	N/A	2.8
1,400	610	680	450	N/A	110	340	130	16.0	130	1,600	470	200	69.9	N/A	91.0	17.0	N/A	59.0	0.1	N/A	N/A	N/A	000'9	N/A	910	54.0	35.0	N/A	N/A	N/A	160	0.69	150	N/A	800	200	21.0	320	200	3.0	40.0	N/A	N/A	2.0
1,400	610	680	450	A/A	110	340	130	16	130	1,600	470	200	6.693	N/A	91	17	A/A	59	0.1	A/A	N/A	N/A	6,000	N/A	910	54	35	N/A	N/A	N/A	160	69	150	N/A	800	200	21	320	200	e	40	N/A	N/A	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12111111															120000																	030000	1701010101010				136161616							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,2-trans-Dichloroethylene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Vinyl Chloride	2-Chlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	4,6-Dinitro-o-Cresol	2,4-Dinitrophenol	2-Nitrophenol	4-Nitrophenol	p-Chloro-m-Cresol	Pentachlorophenol	Phenol	2,4,6-Trichlorophenol	Acenaphthene	Anthracene	Benzidine	Benzo(a)Anthracene	Benzo(a)Pyrene	3,4-Benzofluoranthene	Benzo(k)Fluoranthene	Bis(2-Chloroethyl)Ether	Bis(2-Chloroisopropyl)Ether	Bis(2-Ethylhexyl)Phthalate	4-Bromophenyl Phenyl Ether	Butyl Benzyl Phthalate	2-Chloronaphthalene	Chrysene	Dibenzo(a,h)Anthrancene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	3,3-Dichlorobenzidine	Diethyl Phthalate	Dimethyl Phthalate	Di-n-Butyl Phthalate	2,4-Dinitrotoluene	2,6-Dinitrotoluene	1,2-Diphenylhydrazine	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene

Model Decult

0		000	12	12.0	0	
_	THE STATE	0	N/A	N/A	A/A	
		0	2,100	2,100	2,942	
+		0	43	43.0	60.2	
		0	810	810	1,135	
		0	3,400	3,400	4,763	
0 0		0	A/N	N/A	A/A	
0 0		0	59	59.0	82.6	
0		0	-	1.0	1.4	
0		0	A/A	N/A	A/A	
0 0		0	26	26.0	36.4	
CCT (min): 4.061	PMI			nalysis Hardr	iess (mg/l):	N/A Analysis pH: N/A
E	_	—	wac (µg/L)	WQ Obj	WLA (µg/L)	Comments
ŀ	11111111	8	500,000	Н	L	
+		0	250,000	₩	L	
0		0	250,000	⊢	L	
0		0	A/N	A/A	A/N	
0		0	9.6	5.6	7.84	
0		0	10	10.0	14.0	
0 0		0	2,400	2,400	3,362	
0 0		0	3,100	3,100	4,343	
0 0		0	N/A	N/A	N/A	
0 0	111111	0	N/A	N/A	N/A	
		0	N/A	N/A	A/A	
0 0		0	N/A	N/A	N/A	
0 0		0	N/A	N/A	N/A	
0 0		0	4	4.0	5.6	
0		0	300	300	420	
		0	N/A	N/A	N/A	
0 0		0	N/A	N/A	N/A	
0 0		0	1,000	1,000	1,401	
0		0	0.050	0.05	0.07	
0		0	610	610	855	
+		0	2	5.0	A/N	
+		0	A/N	ΝΑ	A/A	
0		0	A/N	N/A	A/A	
0 0		0	0.24	0.24	0.34	
0	(HHH)	0	A/N	N/A	A/A	
0		0	3	3.0	4.2	
0		0	Y/N	N/A	A/N	
0		0	Y/N	N/A	A/N	
	Tin): [4.061] 1in):		D PMF:	NiA NiA	NiA NiA	Side Side

			California and a second		*****	****		
Bromotorm Carbon Tetrachlorida					K/N	K K	¥ ×	
Calbon Tenacillonide	>	•	College College	,	V/N	Z/AI	V/N	
Chlorobenzene	0	0		0	100	100.0	140	
Chlorodibromomethane	0	0		0	N/A	N/A	A/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	A/N	
Dichlorobromomethane	0	0	100000	0	N/A	N/A	A/N	
1,2-Dichloroethane	0	0	12/1/2/	0	A/A	N/A	A/N	
1,1-Dichloroethylene	0	0		0	33	33.0	46.2	
1,2-Dichloropropane	0	٥		0	A/N	A/A	Κ/N	
1,3-Dichloropropylene	0	0		0	A/N	N/A	Α/N	
Ethylbenzene	0	0		0	89	68.0	95.3	
Methyl Bromide	0	0		0	100	100.0	140	
Methyl Chloride	0	0		0	N/A	N/A	A/N	
Methylene Chloride	0	0		0	N/A	N/A	A/N	
,1,2,2-Tetrachloroethane	0	0	130000	0	N/A	N/A	A/N	
Tetrachloroethylene	0	0		0	N/A	N/A	Κ/N	
Toluene	0	0		0	57	57.0	79.8	
1,2-trans-Dichloroethylene	0	0		0	100	100.0	140	
1,1,1-Trichloroethane	0	0	120000	0	10,000	10,000	14,008	
1,1,2-Trichloroethane	0	0		0	A/A	N/A	Υ/N	
Trichloroethylene	0	0	10000	0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	42.0	
2,4-Dichlorophenol	0	0		0	10	10.0	14.0	
2,4-Dimethylphenol	0	0	1301086	0	100	100.0	140	
4,6-Dinitro-o-Cresol	0	0		0	2	2.0	2.8	
2,4-Dinitrophenol	0	0		0	10	10.0	14.0	
2-Nitrophenol	0	0	130000	0	N/A	N/A	A/N	
4-Nitrophenol	0	0		0	N/A	N/A	A/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0		0	4,000	4,000	5,603	
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	20	70.0	98.1	
Anthracene	0	0		0	300	300	420	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	17010101010	0	A/N	N/A	A/N	
Benzo(a)Pyrene	0	0		0	N/A	N/A	A/N	
3,4-Benzofluoranthene	0	0		0	A/N	N/A	A/N	
Benzo(k)Fluoranthene	0	0		0	A/A	N/A	Α/N	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	280	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
A Dromonhound Dhound Ethor		c	J. 20 12 12 12 12 12 12 12 12 12 12 12 12 12	,	A11/A	4714		

Andol Bossilte

																											T	T								T	T	T	Τ		Page 12
																														Analysis pH: N/A	Comments										
																														N/A											
0.14	1,121	N/A	A/A	1,401	9.81	420	N/A	840	2,802	28.0	N/A	N/A	N/A	28.0	70.0	N/A	A/A	5.6	A/A	A/A	47.6	N/A	14.0	A/A	N/A	A/A	W/A	28.0	0.098	ss (mg/l):	WLA (µg/L)	N/A	N/A	A/A	Α/N	Ψ/N	N/A	N/A	X ×	A/A	
0.1	800	N/A	N/A	1,000	7.0	300	N/A	900	2,000	20.0	N/A	N/A	N/A	20.0	50.0	N/A	N/A	4.0	Α/N	N/A	34.0	N/A	10.0	N/A	N/A	A/N	W S	20.0	0.07	Analysis Hardness (mg/l):	WQ Obj (µg/L)	N/A	N/A	N/A	ΑΝ	A/N	N/A	N/A	N/A	N/A	2022
0.1	800	N/A	N/A	1,000	7	300	N/A	900	2,000	20	N/A	N/A	N/A	20	90	N/A	A/A	4	A/N	N/A	34	N/A	10	A/A	N/A	A/A	W S	02	0.07	Anal	WQC (µg/L)	N/A	N/A	A/A	ΑN	Α/N	N/A	A/A	Y.V	A/A	8/1/2022
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	٥	0	٥	٠,	0	-	Fate	0	0	0	٥	0	0	0		0	
							11/11/11/11																							PMF:	Trib Conc (µg/L)										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	٥	٥	0	171	Stream	0	0	0	0	0	0	0 0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	CCT (min): 13.871	Conc	0	0	0	0	0	0	0		0	
Butyl Benzyl Phthalate	2-Chloronaphthalene	Chrysene	Dibenzo(a,h)Anthrancene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	3,3-Dichlorobenzidine	Diethyl Phthalate	Dimethyl Phthalate	Di-n-Butyl Phthalate	2,4-Dinitrotoluene	2,6-Dinitrotoluene	1,2-Diphenylhydrazine	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)Pyrene	Isophorone	Naphthalene	Nitrobenzene	n-Nitrosodimethylamine	n-Nitrosodi-n-Propylamine	n-Nitrosodiphenylamine	Phenanthrene	Pyrene	1,2,4-Trichlorobenzene	☑ CRL CCT	Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barrum	Total Cadmium	Total Chromium (III)	Model Results

A/N	A/N	N/A	A/A	A/N	A/N	A/A	A/N	A/N	A/N	A/N	A/N	N/A	N/A	N/A	N/A	0.22	2.08	25.1	1.43	N/A	2.87	N/A	20.4	3.41	35.5	N/A	3.23	0.97	A/N	N/A	N/A	71.7	0.72	35.9	N/A	A/A	N/A	1.97	2.15	0.072	N/A	N/A	N/A	N/A
A/N	N/A	N/A	N/A	N/A	N/A	A/A	A/A	A/A	A/A	ΑΝ	N/A	N/A	N/A	N/A	N/A	90.0	0.58	7.0	0.4	N/A	0.8	N/A	5.7	0.95	6.6	N/A	6.0	0.27	N/A	N/A	N/A	20.0	0.2	10.0	N/A	N/A	A/A	0.55	9.0	0.02	N/A	N/A	N/A	N/A
A/N	A/A	N/A	N/A	A/A	N/A	A/A	A/A	A/A	A/A	A/A	N/A	N/A	N/A	N/A	N/A	90.0	0.58	7	0.4	N/A	9.0	N/A	5.7	0.95	6.6	N/A	6.0	0.27	N/A	N/A	N/A	20	0.2	10	N/A	N/A	A/A	0.55	9.0	0.02	N/A	N/A	N/A	N/A
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
100000																		130000			151111111	12111111			9801080			151111515	130000			191111111												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexavalent Chromium	Total Cobalt	Total Copper	Free Cyanide	Dissolved Iron	Total Iron	Total Lead	Total Manganese	Total Mercury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Thallium	Total Zinc	Acrolein	Acrylonitrile	Benzene	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chlorodibromomethane	2-Chloroethyl Vinyl Ether	Chloroform	Dichlorobromomethane	1,2-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloropropane	1,3-Dichloropropylene	Ethylbenzene	Methyl Bromide	Methyl Chloride	Methylene Chloride	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene	1,2-trans-Dichloroethylene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Vinyl Chloride	2-Chlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	4,6-Dinitro-o-Cresol

			THE RESERVE					
2,4-Dinitrophenol	0	9		0	ď.	N/A	Ψ/Z	
2-Nitrophenol	0	0	100000	0	N/A	ΝA	A/A	
4-Nitrophenol	0	0		0	A/N	N/A	A/A	
p-Chloro-m-Cresol	0	0		0	A/A	N/A	A/A	
Pentachlorophenol	0	0		0	0.030	0.03	0.11	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	1.5	1.5	5.38	
Acenaphthene	0	0		0	A/A	N/A	A/A	
Anthracene	0	0		0	A/A	N/A	A/A	
Benzidine	0	0		0	0.0001	0.0001	0.0004	
Benzo(a)Anthracene	0	0		0	0.001	0.001	0.004	
Benzo(a)Pyrene	0	0	100000	0	0.0001	0.0001	0.0004	
3,4-Benzofluoranthene	0	0		0	0.001	0.001	0.004	
Benzo(k)Fluoranthene	0	0		0	0.01	0.01	0.036	
Bis(2-Chloroethyl)Ether	0	0		0	0.03	0.03	0.11	
Bis(2-Chloroisopropyl)Ether	0	0		0	A/N	N/A	A/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	0.32	0.32	1.15	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	A/A	
Butyl Benzyl Phthalate	0	0		0	A/A	N/A	A/A	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	0.12	0.12	0.43	
Dibenzo(a,h)Anthrancene	0	0		0	0.0001	0.0001	0.0004	
1,2-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0		0	N/A	N/A	W/A	
1,4-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0		0	90.0	0.05	0.18	
Diethyl Phthalate	0	0		0	N/A	N/A	A/A	
Dimethyl Phthalate	0	0		0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0		0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0		0	0.05	0.05	0.18	
2,6-Dinitrotoluene	0	0		0	0.05	0.05	0.18	
,2-Diphenylhydrazine	0	0		0	0.03	0.03	0.11	
Fluoranthene	0	0	HELEKKIK.	0	N/A	N/A	W/A	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	0.00008	0.00008	0.0003	
Hexachlorobutadiene	0	0		0	0.01	0.01	0.036	
Hexachlorocyclopentadiene	0	0	130000	0	A/A	N/A	A/A	
Hexachloroethane	0	0	130000	0	0.1	0.1	0.36	
Indeno(1,2,3-cd)Pyrene	0	0	13111151	0	0.001	0.001	0.004	
Isophorone	0	0		0	N/A	N/A	N/A	
Naphthalene	0	0	199911111	0	A/A	N/A	A/A	
Nitrobenzene	0	0		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.003	
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	0.018	
a Miles and all the sections		ļ	15 35 35 35 35 35	,		ç		

lodel Results

Pyrene 1,2,4-Trichlorobenzene	5	0		Н					
	0 0	00		0 0	A N N A	N/N			
✓ Recommended WQBELs & Monitoring Requirements	nitoring Req	uirements							
No. Samples/Month:	_								
	Mass Limits	Limits		Concenti	Concentration Limits				
Pollutants	AML (lbs/day)	(lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL	Comments
Total Aluminum	Report	Report	Report	Report	Report	ng/L	750	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	hg/L	16.2	CFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved Iron	Report	Report	Report	Report	Report	hg/L	420	ТНН	Discharge Conc > 10% WQBEL (no RP)
Total Iron	Report	Report	Report	Report	Report	hg/L	2,101	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	hg/L	148	AFC	Discharge Conc > 10% WQBEL (no RP)
Other Pollutants without Limits or Monitoring	s or Monitorii	bi							
		,							
The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL), concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL),	uire effluent lir Iolds for monit	nits or monit oring, or the	oring based o	on water qua not detected	lity because re f and a sufficie	easonable por	tential to exce analytical me	sed water qual ethod was use	The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).
Pollutants	Governing WQBEL	Units		Comments					
Total Dissolved Solids (PWS)	N/A	N/A	ΔA	PWS Not Applicable	cable	_			
Chloride (PWS)	N/A	N/A	Μd	PWS Not Applicable	cable				
Bromide	N/A	N/A		No WQS		_			
Sulfate (PWS)	N/A	N/A	ΡW	PWS Not Applicable	cable	_			
Total Antimony	N/A	N/A	Disc	Discharge Conc < TQL	< TQL	_			

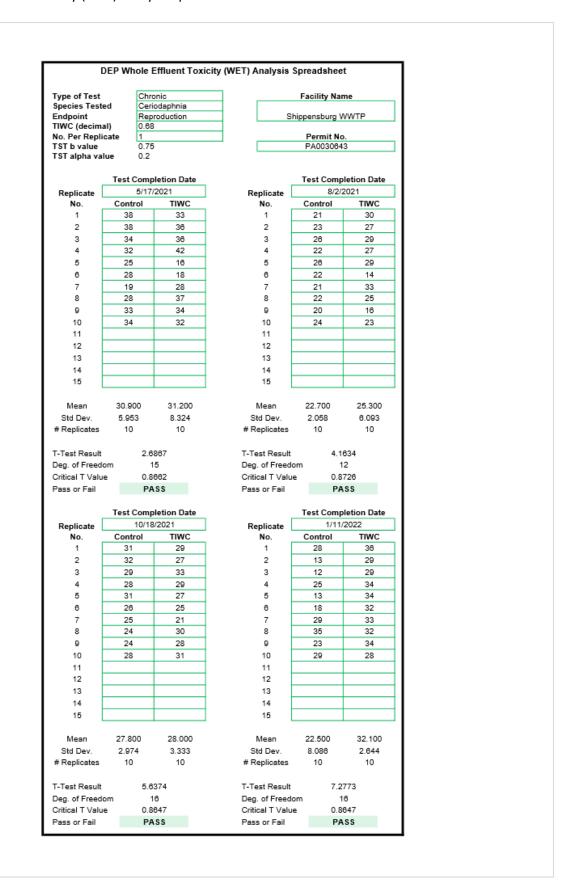
τ	4
0	u
-6	Ď
¢	Ü
۵	L

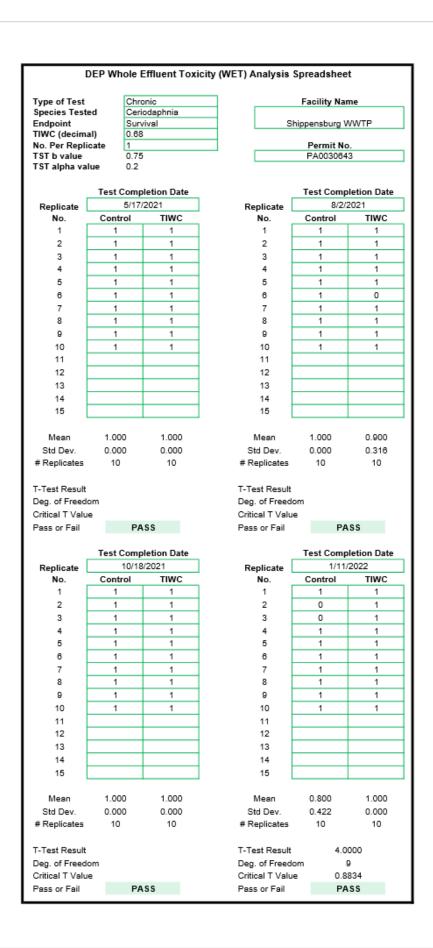
3.362 pg/L N/A N/A N/A N/A 2.241 pg/L 148 pg/L 148 pg/L 146 pg/L 5.6 pg/L 1401 pg/L 0.07 pg/L 0.07 pg/L 0.07 pg/L 0.07 pg/L 140 pg/L	Total Arsenic	A/N	A/A	Discharge Conc < TQL
NI/A NI/A NI/A NI/A 2,241 µg/L 14.6 µg/L 5.6 µg/L 5.6 µg/L 6.14 µg/L 1,401 µg/L	Total Barium	3,362	hg/L	Discharge Conc ≤ 10% WQBEL
2,241 μg/L 0.46 μg/L 148 μg/L 15.6 μg/L 1,401 μg/L	Total Beryllium	N/A	N/A	No WQS
0.46 μg/L 148 μg/L 14.6 μg/L 5.6 μg/L 1.401 μg/L 1.401 μg/L 1.401 μg/L 0.07 μg/L 0.07 μg/L 0.07 μg/L 0.034 μg/L 1.401 μg/L 2.08 μg/L 1.401 μg/L 2.08 μg/L 1.401 μg/L 2.08 μg/L 1.401 μg/L 2.08 μg/L 2.08 μg/L 2.08 μg/L 2.08 μg/L 2.08 μg/L 3.0 μg/L 3.1 μg/L 3.1 μg/L 3.1 μg/L 3.2 μg/L 3.1 μg/L 3.2 μg/L 3.2 μg/L 3.2 μg/L 3.3 μg/L 3.3 μg/L 3.3 μg/L 3.4 μg/L 3.5 μg/L 3.6 μg/L 3.7 μg/L 3.7 μg/L 3.7 μg/L 3.8 μg/L 3.9 μg/L	Total Boron	2,241	hg/L	Discharge Conc ≤ 10% WQBEL
148 μg/L 26.6 μg/L 5.6 μg/L 1401 μg/L 6.14 μg/L 1.401 μg/L 1.401 μg/L 1.007 μg/L 20.34 μg/L 20.34 μg/L 20.32 μg/L 20.3 μg/L 20.4 μg/L 20.4 μg/L 20.7 μg/L 20.8 μg/L 20.9 μg/L 20.9 μg/L 20.1 μg/L 20.1 μg/L 20.2 μg/L 20.1 μg/L 20.2 μg/L 20.2 μg/L 20.3 μg/L 20.4 μg/L 20.7 μg/L 20.7 μg/L 20.7 μg/L 20.7 μg/L 20.4 μg/L 20.7 μg/L 20.9 μg/L	Total Cadmium	0.46	hg/L	Discharge Conc < TQL
14.6 μg/L 5.6 μg/L 6.14 μg/L 1.401 μg/L	Total Chromium (III)	148	hg/L	Discharge Conc < TQL
26.6 μg/L N/A	Hexavalent Chromium	14.6	hg/L	Discharge Conc < TQL
6.6 μg/L N/A N/A N/A N/A N/A N/A 1,401 μg/L 1,401 μg/L 1,401 μg/L 1,699 μg/L 1,699 μg/L 1,403 1,003 1,034 μg/L 1,403 1,03/L	Total Cobalt	26.6	hg/L	Discharge Conc < TQL
N/A	Free Cyanide	9'9	hg/L	Discharge Conc < TQL
6.14 μg/L 1,401 μg/L 1,401 μg/L 0.07 μg/L 0.07 μg/L 1,904 μg/L 1,83 μg/L 1,034 μg/L 1,034 μg/L 1,034 μg/L 1,034 μg/L 1,034 μg/L 1,034 μg/L 1,03 μg	Total Cyanide	N/A	N/A	No WQS
(PWS) 1,401 μg/L 1,401	Total Lead	6.14	hg/L	Discharge Conc < TQL
(PWS) μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Total Manganese	1,401	hg/L	Discharge Conc ≤ 10% WQBEL
(PWS) 6.99 μg/L 6.99 μg/L 6.99 μg/L 6.99 μg/L 6.99 μg/L 6.99 μg/L 6.34 μg/L 6.20 μg/L	Total Mercury	20'0	T/Brl	Discharge Conc < TQL
(PWS) 6.99 90/L 6.83 90/L 6.83 90/L 6.84 90/L 8.00 90/L 90/L 140 90/L	Total Nickel	90.4	hg/L	Discharge Conc ≤ 10% WQBEL
6.99 μg/L 5.83 μg/L 0.34 μg/L N/A N/A 3.0 μg/L 2.08 μg/L 2.08 μg/L 1.43 μg/L 1.43 μg/L 1.43 μg/L 1.43 μg/L 1.40 μg/L 2.87 μg/L N/A N/A N/A 3.21 μg/L 20.4 μg/L 20.5 μg/L 1.45 μg/L 1.40 μg/L 3.21 μg/L 1.40 μg/L	Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
5.83 μg/L 0.34 μg/L N/A N/A 3.0 μg/L 0.22 μg/L 2.08 μg/L 2.08 μg/L 1.43 μg/L 1.43 μg/L 1.43 μg/L 2.87 μg/L 2.87 μg/L 20.4 μg/L 20.4 μg/L 20.5 μg/L 3.21 μg/L 1.43 μg/L 20.7 μg/L 3.21 μg/L 1.40 μg/L 3.23 μg/L 1.7 μg/L	Total Selenium	66'9	hg/L	Discharge Conc < TQL
0.34 μg/L N/A N/A N/A N/A 0.22 μg/L 2.08 μg/L 1.43 μg/L 1.43 μg/L 1.40 μg/L 2.87 μg/L 2.87 μg/L N/A N/A N/A 4.903 μg/L 20.4 μg/L 20.4 μg/L 3.41 μg/L 3.41 μg/L 1.45 μg/L 7.705 μg/L 1.40 μg/L 7.705 μg/L 1.40 μg/L	Total Silver	5.83	hg/L	Discharge Conc ≤ 10% WQBEL
N/A N/A 3.0 μg/L 2.08 μg/L 25.1 μg/L 1.43 μg/L 1.43 μg/L 1.40 μg/L 2.87 μg/L N/A N/A N/A 4,903 μg/L 3.41 μg/L 3.41 μg/L 3.5.5 μg/L 140 μg/L	Total Thallium	0.34	hg/L	Discharge Conc < TQL
3.0 μg/L 0.22 μg/L 2.08 μg/L 1.43 μg/L 1.43 μg/L 1.40 μg/L 2.87 μg/L N/A N/A 1.40 μg/L 3.41 μg/L 3.41 μg/L 3.55 μg/L 3.55 μg/L 3.55 μg/L 1.40 μg/L 1.705 μg/L 1.706 μg/L 1.707 μg/L 1.707 μg/L 1.709 μg/L	Total Molybdenum	N/A	N/A	No WQS
0.22 μg/L 2.08 μg/L 2.08 μg/L 1.43 μg/L 1.40 μg/L 2.87 μg/L N/A N/A 1.40 μg/L 3.41 μg/L 3.41 μg/L 3.55 μg/L 4.6.2 μg/L 3.23 μg/L 0.97 μg/L 1.40 μg/L 7.705 μg/L 1.40 μg/L 7.705 μg/L 1.40 μg/L 7.705 μg/L 1.40 μg/L 7.705 μg/L 1.40 μg/L	Acrolein	3.0	hg/L	Discharge Conc < TQL
2.08 μg/L 25.1 μg/L 1.43 μg/L 1.40 μg/L 2.87 μg/L N/A N/A 4.903 μg/L 20.4 μg/L 3.41 μg/L N/A N/A 35.5 μg/L 46.2 μg/L 3.23 μg/L 46.2 μg/L 7.705 μg/L 140 μg/L 7.705 μg/L 7.705 μg/L 7.705 μg/L 7.705 μg/L 140 μg/L 7.705 μg/L 7.705 μg/L 7.705 μg/L 7.705 μg/L 7.705 μg/L 7.705 μg/L 7.706 μg/L 7.706 μg/L 7.706 μg/L	Acrylonitrile	0.22	hg/L	Discharge Conc < TQL
25.1 μg/L 1.43 μg/L 1.40 μg/L 2.87 μg/L N/A N/A 4,903 μg/L 20.4 μg/L N/A N/A 35.5 μg/L 3.23 μg/L 3.23 μg/L 3.23 μg/L 7.705 μg/L 140 μg/L 7.705 μg/L 7.705 μg/L 140 μg/L 7.705 μg/L 7.705 μg/L 7.705 μg/L 7.705 μg/L 7.706 μg/L	Benzene	2.08	hg/L	Discharge Conc < TQL
1.43 μg/L 140 μg/L 2.87 μg/L N/A N/A 4,903 μg/L 20.4 μg/L N/A N/A 35.5 μg/L 3.23 μg/L 3.23 μg/L 0.97 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L	Bromoform	25.1	hg/L	Discharge Conc ≤ 25% WQBEL
140 μg/L 2.87 μg/L N/A N/A 4,903 μg/L 20.4 μg/L N/A N/A 35.5 μg/L 3.23 μg/L 3.23 μg/L 0.97 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 71.7 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L	Carbon Tetrachloride	1.43	hg/L	Discharge Conc < TQL
2.87 μg/L N/A N/A N/A N/A 4,903 μg/L 20.4 μg/L 3.41 μg/L N/A N/A 3.23 μg/L 3.23 μg/L 0.97 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 85.9 μg/L 7,705 μg/L	Chlorobenzene	140	hg/L	Discharge Conc ≤ 25% WQBEL
N/A N/A 4,903 µg/L 20.4 µg/L 3.41 µg/L 35.5 µg/L 46.2 µg/L 3.23 µg/L 0.97 µg/L N/A N/A N/A N/A 140 µg/L 7,705 µg/L 7,705 µg/L 140 µg/L 7,705 µg/L 140 µg/L 7,705 µg/L 140 µg/L 85.9 µg/L 77.7 µg/L 140 µg/L 85.9 µg/L	Chlorodibromomethane	2.87	hg/L	Discharge Conc < TQL
4,903 μg/L 20.4 μg/L 3.41 μg/L N/A N/A 35.5 μg/L 3.23 μg/L 0.97 μg/L N/A N/A 140 μg/L 7,705 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 140 μg/L 7,705 μg/L 7,705 μg/L 7,705 μg/L 7,705 μg/L 85.9 μg/L 85.9 μg/L	Chloroethane	N/A	N/A	No WQS
20.4 μg/L 3.41 μg/L N/A N/A 35.5 μg/L 46.2 μg/L 0.97 μg/L N/A N/A 140 μg/L 7,705 μg/L 7,705 μg/L 7,105 μg/L 140 μg/L 7,105 μg/L 140 μg/L 7,105 μg/L 7,105 μg/L 140 μg/L 7,105 μg/L 7,105 μg/L 140 μg/L 7,105 μg/L 7,105 μg/L 7,105 μg/L 7,105 μg/L 85.9 μg/L 79.8 μg/L	2-Chloroethyl Vinyl Ether	4,903	hg/L	Discharge Conc < TQL
3.41 μg/L N/A N/A N/A 35.5 μg/L 46.2 μg/L 3.23 μg/L N/A N/A N/A N/A N/A 95.3 μg/L 140 μg/L 7,705 μg/L 77.7 μg/L 79.8	Chloroform	20.4	hg/L	Discharge Conc ≤ 25% WQBEL
N/A N/A 35.5 μg/L 46.2 μg/L 3.23 μg/L 0.97 μg/L 140 μg/L 7,705 μg/L 71.7 μg/L 75.8 μg/L 79.8 μg/L	Dichlorobromomethane	3.41	hg/L	Discharge Conc < TQL
35.5 μg/L 46.2 μg/L 3.23 μg/L 0.97 μg/L N/A N/A 95.3 μg/L 7,705 μg/L 71.7 μg/L 85.9 μg/L 79.8 μg/L	1,1-Dichloroethane	N/A	N/A	No WQS
46.2 µg/L 3.23 µg/L 0.97 µg/L N/A N/A 95.3 µg/L 140 µg/L 7,705 µg/L 71.7 µg/L 0.72 µg/L 79.8 µg/L 140 µg/L 140 µg/L 855 µg/L	1,2-Dichloroethane	35.5	T/Brl	Discharge Conc ≤ 25% WQBEL
3.23 µg/L 0.97 µg/L N/A N/A 95.3 µg/L 140 µg/L 7,705 µg/L 71.7 µg/L 0.72 µg/L 35.9 µg/L 79.8 µg/L 140 µg/L 855 µg/L	1,1-Dichloroethylene	46.2	hg/L	Discharge Conc ≤ 25% WQBEL
0.97 μg/L N/A N/A N/A 95.3 μg/L 140 μg/L 7.705 μg/L 71.7 μg/L 0.72 μg/L 35.9 μg/L 79.8 μg/L 140 μg/L 855 μg/L	1,2-Dichloropropane	3.23	hg/L	Discharge Conc < TQL
N/A N/A 95.3 hg/L 140 hg/L 7,705 hg/L 71.7 hg/L 0.72 hg/L 35.9 hg/L 79.8 hg/L 140 hg/L 855 hg/L	1,3-Dichloropropylene	26'0	hg/L	Discharge Conc < TQL
95.3 µg/L 140 µg/L 7,705 µg/L 71.7 µg/L 0.72 µg/L 35.9 µg/L 79.8 µg/L 140 µg/L	1,4-Dioxane	N/A	N/A	No WQS
140 μg/L 7,705 μg/L 71.7 μg/L 0.72 μg/L 35.9 μg/L 79.8 μg/L 140 μg/L	Ethylbenzene	65.3	hg/L	Discharge Conc ≤ 25% WQBEL
7,705 μg/L 71.7 μg/L 0.72 μg/L 35.9 μg/L 79.8 μg/L 140 μg/L	Methyl Bromide	140	hg/L	Discharge Conc ≤ 25% WQBEL
71.7 μg/L 0.72 μg/L 35.9 μg/L 79.8 μg/L 140 μg/L 855 μg/L	Methyl Chloride	7,705	hg/L	Discharge Conc ≤ 25% WQBEL
0.72 µg/L 35.9 µg/L 79.8 µg/L 140 µg/L 855 µg/L	Methylene Chloride	7.1.7	hg/L	Discharge Conc ≤ 25% WQBEL
35.9 µg/L 79.8 µg/L 140 µg/L 855 µg/L	1,1,2,2-Tetrachloroethane	0.72	hg/L	Discharge Conc < TQL
79.8 µg/L 140 µg/L 855 µg/L	Tetrachloroethylene	35.9	hg/L	Discharge Conc ≤ 25% WQBEL
140 µg/L 855 µg/L	Toluene	79.8	hg/L	Discharge Conc ≤ 25% WQBEL
855 µg/L	1,2-trans-Dichloroethylene	140	hg/L	Discharge Conc ≤ 25% WQBEL
	1,1,1-Trichloroethane	855	hg/L	Discharge Conc≤25% WQBEL

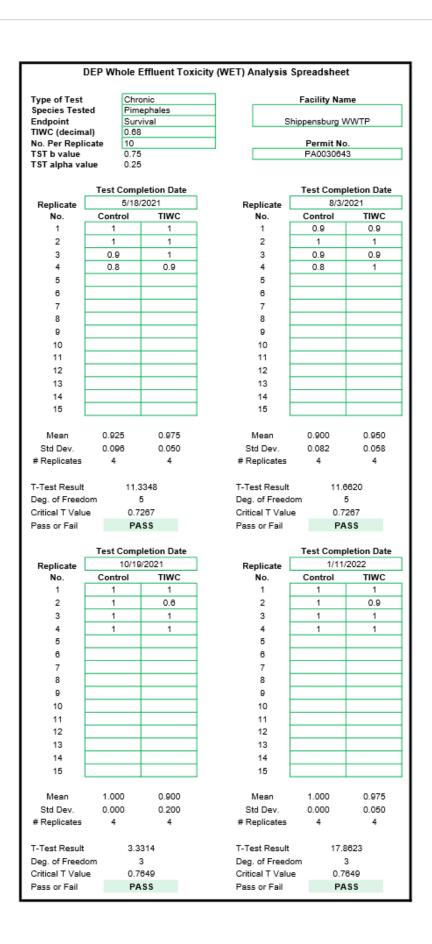
age 1

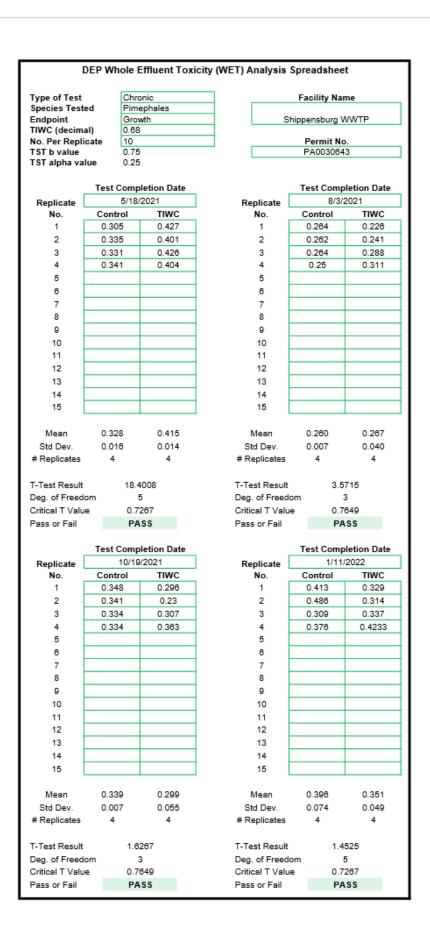
	3	/61	
Trichlorothylana	2 15	1/61	Discharge Conc < TOI
Vinyl Chloride	0.072	1/01	Discharge Conc. TOI
o Ottorice	2,0,0	hg/L	Discharge Colic > 1 Ch
Z-Chlorophenol	42.0	hg/L	Discharge Conc < TQL
2,4-Dichlorophenol	14.0	hg/L	Discharge Conc < TQL
2,4-Dimethylphenol	140	hg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	2.8	T/Brl	Discharge Conc < TQL
2,4-Dinitrophenol	14.0	hg/L	Discharge Conc < TQL
2-Nitrophenol	2,241	hg/L	Discharge Conc < TQL
4-Nitrophenol	658	hg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	160	hg/L	Discharge Conc < TQL
Pentachlorophenol	0.11	hg/L	Discharge Conc < TQL
Phenol	5,603	T/6rl	Discharge Conc < TQL
2,4,6-Trichlorophenol	5.38	T/6rl	Discharge Conc < TQL
Acenaphthene	23.8	hg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	420	T/Brl	Discharge Conc < TQL
Benzidine	0.0004	hg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.004	hg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.0004	hg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.004	hg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.036	T/6rl	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	0.11	hg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	280	hg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	1.15	T/Brl	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	75.6	hg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.14	hg/L	Discharge Conc < TQL
2-Chloronaphthalene	1,121	T/6rl	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	0.43	T/Brl	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.0004	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	224	T/Brl	Discharge Conc ≤ 25% WQBEL
1,3-Dichlorobenzene	9.81	T/Brl	Discharge Conc ≤ 25% WQBEL
1,4-Dichlorobenzene	210	hg/L	Discharge Conc < 25% WQBEL
3,3-Dichlorobenzidine	0.18	hg/L	Discharge Conc < TQL
Diethyl Phthalate	840	hg/L	Discharge Conc < TQL
Dimethyl Phthalate	700	hg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	28.0	hg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	0.18	hg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	0.18	hg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.11	T/Brl	Discharge Conc < TQL
Fluoranthene	28.0	T/6rl	Discharge Conc < TQL

Model Results


3	^
۳	_
٠	•
	9
,	a
١	σ


Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc ≤ 25% WQBEL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL	Discharge Conc < TQL			
hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L
70.0	0.0003	0.036	1.4	0.36	0.004	47.6	60.2	14.0	0.003	0.018	11.8	1.4	28.0	0.098
Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)Pyrene	Isophorone	Naphthalene	Nitrobenzene	n-Nitrosodimethylamine	n-Nitrosodi-n-Propylamine	n-Nitrosodiphenylamine	Phenanthrene	Pyrene	1,2,4-Trichlorobenzene


/1/2022


lodel Results

6. Whole Effluent Toxicity (WET) Analysis Spreadsheet

WET Summary and Evaluation

Facility Name Ship Permit No. PAC Design Flow (MGD) 4.3

Shippensburg WWTP PA0030643

Q₇₋₁₀ Flow (cfs)

3.06

PMF_a

1

			Test Results	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	5/17/21	8/2/21	10/18/21	1/11/22
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	Endpoint	5/17/21	8/2/21	10/18/21	1/11/22	
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	Endpoint	5/18/21	8/3/21	10/19/21	1/11/22	
Pimephales	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	Endpoint	5/18/21	8/3/21	10/19/21	1/11/22	
Pimephales	Growth	PASS	PASS	PASS	PASS	

Reasonable Potential? NO

Permit Recommendations

Test Type Chronic

TIWC 68 % Effluent

Dilution Series 17, 34, 68, 84, 100 % Effluent

Permit Limit None

Permit Limit Species

WET Summary and Evaluation

Facility Name Permit No. Design Flow (MGD)

Shippensburg WWTP PA0030643 4.95 3.06 1 1

Q₇₋₁₀ Flow (cfs) PMF_a PMF_c

		Test Results (Pass/Fail)				
	[Test Date	Test Date	Test Date	Test Date	
Species	Endpoint	5/17/21	8/2/21	10/18/21	1/11/22	
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	Endpoint	5/17/21	8/2/21	10/18/21	1/11/22	
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	Endpoint	5/18/21	8/3/21	10/19/21	1/11/22	
Pimephales	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	Endpoint	5/18/21	8/3/21	10/19/21	1/11/22	
Pimephales	Growth	PASS	PASS	PASS	PASS	

Reasonable Potential? NO

Permit Recommendations

Chronic

Test Type TIWC % Effluent

Dilution Series 18, 36, 71, 86, 100 % Effluent

Permit Limit None

Permit Limit Species