

Application Type	Renewal
Facility Type	Non-Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0031305

 APS ID
 1049107

 Authorization ID
 1371870

Applicant and Facility Information

Applicant Name	Summit School, Inc.	Facility Name	Summit Academy		
Applicant Address	PO Box 13, 839 Herman Road	Facility Address	839 Herman Road		
	Herman, PA 16039-0013		Herman, PA 16039-0013		
Applicant Contact	Harry Stasik, Executive Director (stasikh@theacademyschools.com)	Facility Contact	Harry Stasik, Executive Director (stasikh@theacademyschools.com)		
Applicant Phone	(724) 282-1995	Facility Phone	(724) 282-1995		
Client ID	37452	Site ID	240983		
Ch 94 Load Status	Not Overloaded	Municipality	Summit Township		
Connection Status	No Limitations	County	Butler		
Date Application Rece	eived October 1, 2021	EPA Waived?	Yes		
Date Application Acce	epted	If No, Reason			

Purpose of Application

Renewal of the NPDES Permit for an existing discharge of treated sanitary wastewater from a nonmunicipal sewer system.

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

- I. OTHER REQUIREMENTS:
 - A. Stormwater into Sewers
 - B. Right of Way
 - C. Solids Handling
 - D. Effluent Chlorine Optimization and Minimization
 - E. Little or No Assimilative Capacity

There are no open violations in efacts associated with the subject Client ID (37452) as of 10/18/2023. 10/27/2023 CWY

Approve	Deny	Signatures	Date	
×		Stephen A. McCauley	40/40/2022	
X		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	10/18/2023	
×		Chad W. Yurisic	40/07/0000	
Х		Chad W. Yurisic, P.E. / Environmental Engineer Manager	10/27/2023	

SPECIAL CONDITIONS:

- II. Solids Management
- III. Requirements for Total Residual Chlorine (TRC)

NPDES Permit Fact Sheet Summit Academy

Discharge, Receiving	g Water	s and Water Supply Info	rmation	
Outfall No. 001			Design Flow (MGD)	0.04
Latitude 40° 4	9' 49.00)"	_ Longitude	-79º 48' 46.00"
Quad Name			Quad Code	-
Wastewater Descri	ption:	Sewage Effluent		
Receiving Waters		med Tributary to the	Stream Code	25150
8		e Brook (WWF)		35159
NHD Com ID		21605	λ ($z + 1 + z + 1 = 12$)	2.3
Drainage Area	0.05			0.047 (default)
Q ₇₋₁₀ Flow (cfs)	0.002			
Elevation (ft) Watershed No.	<u>1274</u> 20-C			0.03813 WWF
	-			
Existing Use			Exceptions to Criteria	-
Exceptions to Use Assessment Status		Attaining Use(s)		
Cause(s) of Impair		Allanning Use(s)		
Source(s) of Impair		-		
TMDL Status	ment	-		
TMDL Status		-		
Background/Ambie	nt Data		Data Source	
pH (SU)		-		
Temperature (°F)		-	-	
Hardness (mg/L)		-	-	
Other:			-	
Nearest Downstrea	m Publi	c Water Supply Intake	Beaver Falls Municipal Author	rity - Eastvale
	Beaver I	,	Flow at Intake (cfs)	3,110
	5.0		Distance from Outfall (mi)	64.0
_				

Sludge use and disposal description and location(s):

All sludge is hauled to the Dalton Facility by the Dalton Service Company, where it is ultimately disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: <u>This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.04 of</u> <u>treated sewage from a non-municipal STP in Summit Township, Butler County.</u>

Treatment permitted under WQM Permits 9194-S and 1015406 A-1 consists of the following: Comminution, a bypass bar screen, an extended aeration tank, Polyaluminum Chloride and Sodium Bicarbonate for phosphorus removal and pH control, a settling tank, liquid chlorine disinfection with a contact tank, tablet dechlorination, and a sludge digestor.

1. Streamflow:

Unnamed Tributary to the Bonnie Brook at Outfall 001:

Yieldrate: Drainage Area:	<u>0.047</u> <u>0.05</u>	cfsm sq. mi.	(Used for streams in the Conn. Creek Watershed) (USGS StreamStats)
% of stream allocated:	<u>100%</u>	Basis:	No nearby discharges
Q7-10:	<u>0.002</u>	cfs	(Calculated)

2. Wasteflow:

Maximum discharge: 0.04 MGD = 0.06 cfs Runoff flow period: 24 hours Basis: Runoff flow for this STP

The calculated stream flow (Q7-10) is much less than 3 times the permitted discharge flow. In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, were evaluated with this renewal. Based on eDMR data, the treatment requirements are not attainable with the treatment technology in place so the requirements will not be implemented in this NPDES Permit renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency will be retained as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30:	<u>200/100ml</u>	(monthly average geometric mean)
	<u>1,000/100ml</u>	(instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean) <u>10,000/100ml</u> (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. <u>E. Coli</u>

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.002 MGD and less than 0.05 MGD.

e. Phosphorus

The previous limits for Total Phosphorus of 2.0 mg/l for discharges to the Connoquenessing Creek Watershed will be retained in accordance with the SOP, based on Chapter 96.5 and Chapter 92a.61.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used:	<u>7.1</u>	Standard Units (S.U.)
	В	asis: eDMR data from previous 12 months
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: Default value used in the absence of data
Stream Temperature:	<u>25°C</u>	(default value used for WWF modeling)
Background NH ₃ -N concentration:	<u>0.0</u>	mg/l
	В	asis: <u>Default value</u>
Calculated NH ₃ -N Summer limits:	<u>3.2</u>	mg/l (monthly average)
	<u>6.4</u>	mg/l (instantaneous maximum)
Calculated NH ₃ -N Winter limits:	<u>9.6</u>	mg/l (monthly average)
	<u>19.2</u>	mg/I (instantaneous maximum)
		mer NH3-N limits above (see Attachment 1). The winter limits are mer limits. The calculated limits are less restrictive than the

previous permit. Based on eDMR data, the previous limits are attainable, so they will be retained.

h. <u>CBOD</u>₅

Median discharge pH to be used:	<u>7.1</u>	Standard Units (S.U.)
	В	asis: eDMR data from previous 12 months
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)

Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: Default value used in the absence of data
Stream Temperature:	<u>25°C</u>	(default value used for WWF modeling)
Background CBOD5 concentration:	<u>2.0</u>	mg/l
	В	asis: <u>Default value</u>
Calculated CBOD ₅ limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated CBOD5 limits above (see Attachment 1). The calculated limits are less restrictive than the previous permit. Based on eDMR data, the previous limits are attainable, so they will be retained. Based on the SOP, the seasonal limits for CBOD5 were converted to year round at the previous 10 mg/l monthly average value.

i. <u>Dissolved Oxygen (DO)</u>

The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. This limit is the same as the previous permit and will be retained.

The measurement frequency will be retained as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

j. <u>Disinfection</u>

- Ultraviolet (UV) light monitoring
- Total Residual Chlorine (TRC) limits:

0.29 mg/l (monthly average)

0.96 mg/l (instantaneous maximum)

Basis: <u>The TRC limits above were calculated at the first point of use using the Department's TRC</u> <u>Calculation Spreadsheet (see Attachment 2)</u>. The limits are more restrictive than the previous NPDES Permit. Based on eDMR data, the more restrictive limits might not be attainable, so a three year compliance schedule will be added with this renewal.

The measurement frequency will be retained as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate).

Nearest Downstream potable water supply (PWS):	Beaver	er Falls Municipal Authority - Eastvale			
Distance downstream from the point of discharge:	<u>64.0</u>	miles (approximate)			

Result: <u>No limits or monitoring are necessary as significant dilution is available.</u>

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, antibacksliding is not applicable.

7. Attachment List:

- Attachment 1 WQ Modeling Printouts
- Attachment 2 TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from September 1, 2022 to August 31, 2023)

Parameter	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD)												
Average Monthly	0.0144	0.0058	0.0112	0.0199	0.0099	0.0136	0.0114	0.0085	0.0058	0.0099	0.0099	0.0099
pH (S.U.)												
Minimum	6.70	7.0	6.00	6.6	6.70	7.1	7.4	6.8	7.0	7.06	7.0	7.1
pH (S.U.)												
Maximum	7.98	8.2	7.96	7.6	8.00	8.2	8.3	7.9	7.8	7.92	7.8	7.8
DO (mg/L)												
Minimum	6.0	5.7	5.5	6.0	6.6	7.4	7.2	8.1	7.8	7.11	7.5	6.5
TRC (mg/L)												
Average Monthly	< 0.20	0.50	0.35	0.5	0.50	0.50	0.50	0.5	0.50	0.50	0.4	0.25
TRC (mg/L)												
Instantaneous Maximum	0.8	1.00	0.80	1.0	1.00	1.00	1.5	1.0	1.0	1.00	0.9	0.30
CBOD5 (mg/L)												
Average Monthly	< 2.00	< 2.00	< 2.00	2.00	3.85	3.91	< 2.00	< 2.00	< 2.00	5.41	< 2.00	< 2.00
TSS (mg/L)												
Average Monthly	22	12	23	10	11.5	7	9	8	11	27	8	14
Fecal Coliform (No./100 ml)												
Geometric Mean	1	< 1	554	11	10.954	< 1	25	7.348	10	260	6.234	2400
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	1.0	1.0	2420	126	120	1	613	54	50	2420	20	2400
Total Nitrogen (mg/L)												
Average Monthly	39	52	50	45	36	54.8	50	26.4	18	20.0	19	16.6
Ammonia (mg/L)												
Average Monthly	< 0.400	< 0.400	< 0.400	< 0.400	< 0.400	< 0.800	< 0.800	7.5	< 0.800	< 0.800	< 0.800	< 0.800
Total Phosphorus (mg/L)												
Average Monthly	0.28	0.38	0.44	0.27	0.38	0.23	0.61	0.24	0.46	0.96	0.41	0.73

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through January 30, 2027.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Estimate
pH (S.U.)	XXX	XXX	6.0 Daily Min	xxx	9.0 Daily Max	XXX	1/day	Grab
DO	ххх	xxx	4.0 Daily Min	xxx	xxx	xxx	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	10.0	XXX	20	2/month	8-Hr Composite
TSS	XXX	XXX	xxx	30.0	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	ХХХ	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	xxx	Report	xxx	xxx	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	xxx	7.5	XXX	15	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	xxx	2.5	xxx	5	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	2.0	xxx	4	2/month	8-Hr Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

NPDES Permit Fact Sheet Summit Academy

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 92a.47. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for E. Coli and Total Nitrogen is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. The limits for Total Phosphorus limits are based on Chapter 96.5.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: January 31, 2027 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Estimate
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	ххх	xxx	4.0 Daily Min	xxx	xxx	xxx	1/day	Grab
TRC	XXX	XXX	XXX	0.29	XXX	0.96	1/day	Grab
CBOD5	XXX	XXX	xxx	10.0	xxx	20	2/month	8-Hr Composite
TSS	XXX	XXX	xxx	30.0	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	ХХХ	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report	xxx	XXX	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	xxx	7.5	XXX	15	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	ХХХ	XXX	xxx	2.5	XXX	5	2/month	8-Hr Composite
Total Phosphorus	ХХХ	XXX	XXX	2.0	xxx	4	2/month	8-Hr Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

NPDES Permit Fact Sheet Summit Academy

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for E. Coli and Total Nitrogen is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. The limits for Total Phosphorus limits are based on Chapter 96.5.

Attachment 1

	<u>SWP Basin</u> SI 20C	ream Code 35159	<u>Stream Name</u> Trib 35159 of Bonnie Brook							
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)			
1.570	Summit Academ	y PA0031305c	0.040	CBOD5	10.66					
				NH3-N	2.16	4.32				
				Dissolved Oxygen			4			

WQM 7.0 Effluent Limits (Perennial Reach)

Since the calculated CBOD5 limits are the same as the Dry Reach inputs, they are protective of the receiving stream.

The calculated DO limits are 4.0 mg/l and will be set in the permit.

For NH3-N, the limit can be back-calculated using the equation: Ct = (Co)e-(kt), where

 $\begin{array}{l} Ct = 2.16 \mbox{ mg/l} \\ k = 0.7 \mbox{ days-1} = \mbox{constant for NH3-N} \\ t = 0.432 \mbox{ days} = \mbox{Dry Reach Model travel time} \end{array}$

Therefore, 2.16 mg/l = (Ct)e-(0.7 days-1)(0.432 days)

Ct = 2.922

NH3-N = 2.9 mg/l

Monday, October 16, 2023

Version 1.1

SWP Basin St	ream Code			Stream Name	
20C	35159		Trib 3	5159 of Bonnie Brook	
RMI	Total Discharge	Flow (mgd) <u>Ana</u> l	lysis Temperature (°C)	<u>Analysis pH</u>
1.570	0.040	C		25.000	7.066
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
4.053	0.346	5		11.724	0.064
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	<u>each NH3-N (mg/L)</u>	Reach Kn (1/days)
7.95	0.73	Charles and		1.49	1.029
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)
5.108	27.72	1		Owens	5
<u>Reach Travel Time (days)</u>		Subreach	Results		
1.492	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.149	6.92	1.27	7.54	
	0.298	6.03	1.09	7.54	
	0.448	5.25	0.94	7.54	
	0.597	4.58	0.80	7.54	
	0.746	3.99	0.69	7.54	
	0.895	3.47	0.59	7.54	
	1.045	3.03	0.51	7.54	
	1.194	2.64	0.44	7.54	
	1.343	2.30	0.37	7.54	
	1.492	2.00	0.32	7.54	

WQM 7.0 D.O.Simulation

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Monday, October 16, 2023

Version 1.1

Page 1 of 1

					2								
	SWF Basir			Stre	am Name		RMI	Elev (1	ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	20C	35	159 Trib 3	5159 of Bo	onnie Brool	k	1.57	70 1	127.00	0.60	0.00000	0.0	0
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Tem	<u>Stream</u> np pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C	;)	
Q7-10	0.047	0.00	0.00	0.000	0.000	0.0	0.00	0.00	2	5.00 7.0	00	0.00 0.0	00
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

		Dis	charge Da	ata					
	Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	d Des Dis Flo (mg	sc Re pw F	eserve actor	Disc Temp (°C)	Disc pH
Sumr	nit Academy	PA0031305c	0.0400	0.000	0 0.0	0000	0.000	25.00	7.10
		Pa	ameter Da	ata					
	Doro	meter Name	Disc Cor		rib on c	Stream Conc	Fate Coef		
	Faid		(mg	′L) (m	ig/L)	(mg/L)	(1/days)	
	CBOD5		1(0.66	2.00	0.0	0 1.5	0	
	Dissolved Oxy	gen	2	2.00	7.54	0.0	0 0.0	0	
	NH3-N		15	5.45	0.00	0.0	0 0.7	0	

(From Dry Reach Model)

	SWP Basir			Stre	am Name		RMI	El	evation (ft)	Draina Area (sq m		Slope (ft/ft)	PWS Withdrav (mgd)	val	Apply FC
	20C	351	159 Trib 35	5159 of Bo	onnie Brool	<	0.00	00	1050.00		2.58	0.00000	1	0.00	✓
					S	tream Da	ta								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tei	<u>Tributaı</u> mp	<u>ту</u> pH	Tem	<u>Stream</u> p p	н	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°(C)		(°C)		
Q7-10	0.047	0.00	0.00	0.000	0.000	0.0	0.00	0.	00	25.00	7.0	0 0	0.00	0.00	
ຊ1-10		0.00	0.00	0.000	0.000										
Q30-10		0.00	0.00	0.000	0.000										

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	l Design Disc Flow (mgd)	Rese Fac		Disc Temp (°C)	Disc pH
-		0.0000	0.0000	0.000	0 0	0.000	0.00	7.00
	Pa	rameter D	ata					
E	arameter Name	Dis Co			ream Conc	Fate Coef		
	arameter Name	(mg	ı/L) (mg	ŋ/L) (n	ng/L)	(1/days)	
CBOD5		2	5.00	2.00	0.00	1.5	0	
Dissolved (Dxygen		3.00	8.24	0.00	0.0	0	
NH3-N		2	5.00	0.00	0.00	0.7	0	

Input Data WQM 7.0

-

]	WQM 7	.0 Wast	eload /	41100	catio	<u>ns</u>				
	SWP Basin Stre	am Code		Stream Name							
	20C 3	35159		Trib 351	59 of B	ionnie B	rook				
NH3-N	Acute Allocation	IS									
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	V	ltiple √LA ng/L)	Critical Reach	Percent Reductio	n		
1.57	70 Summit Academy	10.33	13.34	10.33	3	13.34	0	0	_		
NH3-N	Chronic Allocati	ons									
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multi WL (mg	A	Critical Reach	Percent Reduction			
1.57	70 Summit Academy	1.33	2.16	1.33	3	2.16	0	0	_		
)issolv	ed Oxygen Alloc	ations									
RMI	Discharge Nar		Same State and State and		<u>V</u> lultiple mg/L)	<u>Dissolv</u> Baselin (mg/L)	<u>ed Oxygen</u> e Multiple (mg/L)	Critical Reach	Percent Reduction		
1.5	57 Summit Academy	10.6	6 10.66	2.16	2.16	4	4	0	0		

Version 1.1

			VVQI	VI 7.U	nyur	ouyn	annu	Out	Juis			
	SW	P Basin	Strea	am Code				Stream	Name			
		20C	3	5159		Trib 35159 of Bonnie Brook						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.570	0.03	0.00	0.03	.0619	0.00929	.346	4.05	11.72	0.06	1.492	25.00	7.07
Q1-1	0 Flow											
1.570	0.02	0.00	0.02	.0619	0.00929	NA	NA	NA	0.06	1.596	25.00	7.08
Q30-	10 Flow	(
1.570	0.04	0.00	0.04	.0619	0.00929	NA	NA	NA	0.07	1.406	25.00	7.06

WQM 7.0 Hydrodynamic Outputs

<u>SWP Basin</u> 20C	<u>Stream Code</u> 35159		Trib 3	<u>Stream Name</u> 5159 of Bonnie Brook	(
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	Analysis pH
2.300	0.04	0		25.000	7.096
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
1.640	0.37	9		4.327	0.103
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
24.09	1.50	0		24.09	1.029
Reach DO (mg/L)	<u>Reach Kr (</u>	1/days)		Kr Equation	Reach DO Goal (mg/L)
3.927	32.13	35		Owens	NA
<u>Reach Travel Time (days</u> 0.432	TravTime (days) 		NH3-N (mg/L) 23.04	D.O. (mg/L) 2.00	
	0.086	20.46	22.04	2.00	
	0.130	18.86	21.08	2.00	
	0.173	17.39	20.17	2.00	
	0.216	16.03	19.29	2.00	
	0.259	14.77	18.45	2.00	
	0.302	13.62	17.65	2.00	
	0.345	12.55	16.88	2.00	
	0.389	11.57	16.15	2.00	
	0.432	10.66	15.45	2.00	

WQM 7.0 D.O.Simulation (Dry Reach Model)

(Enter into Perennial Reach Model)

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	2		

Monday, October 16, 2023

Version 1.1

Page 1 of 1

	SWP Basin	Strea Coc		Stre	am Name		RMI	E	levation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	20C	351	159 Trib 35	5159 of Bo	onnie Brool	ĸ	2.30	00	1274.00	0.0	5 0.00000	0.00	
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dept		<u>Tributary</u> mp pH	Ten	<u>Stream</u> np pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°	C)	(°C	:)	
27-10	0.047	0.00	0.00	0.000	0.000	0.0	0.00	0	.00	25.00 7	.00	0.00 0.00	E.
21-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	charge D	ata				
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Summit Academy	PA0031305b	0.0400	0.0000	0.0000	0.000	25.00	7.10
	Pa	rameter D	ata				
Derer	neter Name	Dis Co			am Fat onc Co		
Parai	neter Name	(mg	/L) (mg/	′L) (m	g/L) (1/da	ays)	
CBOD5		2	5.00 0).00	0.00	1.50	
Dissolved Oxyg	ien		4.00 2	2.00	0.00	0.00	
NH3-N		2	5.00 0	0.00	0.00	0.70	

		SWP Stream Basin Code Stream Name		RMI		/ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC			
	20C	35	159 Trib 3:	5159 of Bo	onnie Brool	ĸ	1.57	70 1	127.00	0.60	0.00000	0.00	✓
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Tem	<u>Stream</u> np pH	
Cond.	(cfsm)	(cfs)	(cfs)	Time (days)	(fps)		(ft)	(ft)	(°C	;)	(°C)	
Q7-10	0.047	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	5.00 7.0	00	0.00 0.0)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	charge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	l Design Disc Flow (mgd)	Rese Fac		Disc Temp (°C)	Disc pH
A		0.0000	0.0000	0.000	0 0	.000	25.00	7.00
	Pa	rameter D	ata					
		Dis Co			ream Conc	Fate Coef		
Pa	rameter Name	(mg	g/L) (mg	ı/L) (n	ng/L)	(1/days)	
CBOD5		2	5.00	2.00	0.00	1.5	0	
Dissolved O	xygen		3.00	8.24	0.00	0.0	0	
NH3-N		2	5.00	0.00	0.00	0.7	0	

			VVQI	VI 7.U	nyur	ouyn	annu	Out	Juis						
	<u>SW</u>	SWP Basin		Basin <u>Stream Code</u>			Stream Name								
	20C		20C 35159		Trib 35159 of Bonnie Brook										
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH			
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)				
Q7-1	0 Flow														
2.300	0.00	0.00	0.00	NA	0.03814	.379	1.64	4.33	0.10	0.432	25.00	7.10			
Q1-1	0 Flow														
2.300	0.00	0.00	0.00	NA	0.03814	NA	NA	NA	0.00	0.000	0.00	0.00			
Q30-	10 Flow	(
2.300	0.00	0.00	0.00	NA	0.03814	NA	NA	NA	0.00	0.000	0.00	0.00			

Version 1.1

Attachment 2

TRC EVALU										
Input appropria	ate values in A	A3:A9 and D3:D9								
	a = Q stream (0.5	= CV Daily						
0.04	l = Q discharg	e (MGD)	0.5	= CV Hourly						
30	= no. sample	8	1	1 = AFC_Partial Mix Factor 1 = CFC_Partial Mix Factor						
0.3	B = Chlorine D	emand of Stream	1							
() = Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)					
0.5	5 = BAT/BPJ V	alue	720 = CFC_Criteria Compliance Time (min)							
() = % Factor o	of Safety (FOS)	0	=Decay Coeffic	ient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	states in the second second	1.3.2.iii	WLA cfc = 0.620					
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.240	5.1d	LTA_cfc = 0.361					
Source		Efflue	nt Limit Calcul	lations						
PENTOXSD TRG	5.1f AML MULT = 1.231									
PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) = 0.295 AFC INST MAX LIMIT (mg/l) = 0.966								
				0.000						
WLA afc	a reaction and a second state of the	⁻ C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10	secondate terreteristice appear sup-	;_tc))						
LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2-								
LTA afc	wla afc*LTA		1, 0.0,							
Enri_uio	ma_are Erra									
NLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)										
			041 414 1404		2 <u>22</u>					
LTAMULT_cfc	EXP((0.5*LN((cvd^2/no_samples+1))-2.32	6^LN(cvd^2/n	o_samples+1)^(0.5)					
LTAMULT_cfc LTA_cfc	EXP((0.5*LN(wla_cfc*LTA	en person approved approximation and approximate and a second and a second approximation of the second approximation and a second approximation approxim	6^LN(cvd*2/n	o_samples+1)^0).5)					
	wla_cfc*LTA	en person approved approximation and approximate and a second and a second approximation of the second approximation and a second approximation approxim								
LTA_cfc	wla_cfc*LTA	MULT_cfc	5)-0.5*LN(cvd							