

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal Non-Municipal Facility Type Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0031470 Application No. APS ID 1055903 Authorization ID 1383617

Applicant and Facility Information

Applicant Name	Penns M	anor Area School District	Facility Name	Penns Manor Area School District	
Applicant Address	6003 Rou	ite 553 Highway	Facility Address	6003 Route 553 Highway	
	Clymer, F	PA 15728-8318		Clymer, PA 15728-8318	
Applicant Contact		ton, Building and Grounds or (<u>daltonma@pennsmanor.org</u>)	Facility Contact	Andrew Meloy, Operator (etsllc17@gmail.com)	
Applicant Phone	(724) 254	-2666, ext. 4730	Facility Phone	(814) 329-8811	
Client ID	63270		Site ID	256266	
Ch 94 Load Status	Not Over	oaded	Municipality	Cherryhill Township	
Connection Status	No Limita	tions	County	Indiana	
Date Application Rece	eived	February 2, 2022	EPA Waived?	Yes	
Date Application Acce	epted	February 3, 2022	If No, Reason	-	

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

- I. OTHER REQUIREMENTS:
 - A. Stormwater into Sewers
 - B. Right of Way
 - C. Solids Handling
 - Effluent Chlorine Optimization and Minimization D.
 - E. Little or No Assimilative Capacity

There are no open violations in efacts associated with the subject Client ID (63270) as of 10/26/2023. 10/27/2023 CWY

Approve	Deny	Signatures	Date	
×		Stephen A. McCauley	40/20/2022	
X		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	10/26/2023	
X		Chad W. Yurisic	40/07/0000	
Х		Chad W. Yurisic, P.E. / Environmental Engineer Manager	10/27/2023	

SPECIAL CONDITIONS:

Solids Management

Π.

Discharge, Receiving Wate	rs and Water Supply Info	rmation	
Outfall No. <u>001</u> Latitude <u>40º 38' 34.0</u> Quad Name <u>-</u> Wastewater Description:)" Sewage Effluent	Design Flow (MGD) Longitude Quad Code	0.03 -78º 56' 58.00" -
Receiving WatersRoseNHD Com ID1237Drainage Area0.35Q7-10 Flow (cfs)0.014Elevation (ft)1520Watershed No.18-D	Run (CWF) 17812	Chapter 93 Class.	44200 3.2 0.04 calculated 0.00710 CWF -
Assessment Status Cause(s) of Impairment Source(s) of Impairment	-		s-Conemaugh
TMDL Status Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:	Final* _	Data Source - -	
Nearest Downstream Publ PWS Waters <u>Conema</u> PWS RMI <u>28.0</u>	ic Water Supply Intake augh River	Westmoreland County Munici Flow at Intake (cfs) Distance from Outfall (mi)	pal Authority 274 53.0

* - There is a TMDL for Aluminum, Iron, Manganese, and pH in the Kiskiminetas-Conemaugh River Watershed. Per the SOP, monitoring for those parameters will be retained with this renewal.

Sludge use and disposal description and location(s):

All sludge is hauled to the AVJSA by CWM, where it is ultimately disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the

NPDES Permit Fact Sheet Penns Manor Area School District

hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.03 of treated sewage from a non-municipal STP in Cherryhill Township, Indiana County.

Treatment permitted under WQM Permits 9141-S consists of the following: Comminution, aeration, clarification, chlorination and dechlorination, and sludge digestion. Soda ash is used for pH adjustment.

1. Streamflow:

Rose

Little Yellow Creek near Strongstown, PA - USGS Gage 03042200 (1962-1988):

Drainage Area: Q ₇₋₁₀ : Yieldrate:	<u>7.36</u> <u>0.3</u> 0.04	sq. mi. cfs cfsm	(USGS StreamStats) (USGS StreamStats) (calculated)
e Run at Outfall 001:			
Yieldrate: Drainage Area:	<u>0.04</u> <u>0.35</u>	cfsm sq. mi.	(calculated above) (USGS StreamStats)
% of stream allocated:	<u>100%</u>	Basis:	No nearby discharges
Q7-10:	<u>0.014</u>	cfs	(calculated)

2. Wasteflow:

Maximum discharge:	<u>0.03</u>	MGD =	<u>0.046</u>	cfs	
--------------------	-------------	-------	--------------	-----	--

Runoff flow period: <u>24</u> hours Basis: <u>Runoff flow used previously</u>

The calculated stream flow (Q7-10) is much less than 3 times the permitted discharge flow. In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, were evaluated with this renewal. Based on eDMR data, the treatment requirements are not attainable with the treatment technology in place so the requirements will not be implemented in this NPDES Permit renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

<u>The measurement frequency will be changed from 1/weekday to 1/day as recommended in</u> the SOP, based on Table 6-3 in the "Technical Guidance for the Development and <u>Specification of Effluent Limitations" (362-0400-001).</u> The Department advised the permittee during the last permit cycle that daily monitoring would likely be required as a condition of the next renewal and to plan accordingly. 10/27/2023 CWY

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30:	<u>200/100ml</u> <u>1,000/100ml</u>	(monthly average geometric mean) (instantaneous maximum)
10/01 - 04/30:	<u>2,000/100ml</u> <u>10,000/100ml</u>	(monthly average geometric mean) (instantaneous maximum)
Basis:	Application of C	hapter 92a47 technology-based limits

d. <u>E. Coli</u>

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.002 MGD and less than 0.05 MGD.

e. Phosphorus

Chapter 96.5 does not apply. Therefore, the previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: eDMR data from previous 12 months
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: Default value used in the absence of data
Stream Temperature:	<u>20°C</u>	(default value used for CWF modeling)
Background NH ₃ -N concentration:	<u>0.0</u>	mg/l
	В	asis: <u>Default value</u>
Calculated NH ₃ -N Summer limits:	<u>2.1</u>	mg/l (monthly average)
	<u>4.2</u>	mg/l (instantaneous maximum)
Calculated NH ₃ -N Winter limits:	<u>6.3</u>	mg/I (monthly average)

<u>12.6</u> mg/l (instantaneous maximum)

- Result: WQ modeling resulted in the summer NH3-N limits above (see Attachment 1). The winter limits are calculated as three times the summer limits. The calculated summer limits are more restrictive than the previous permit. Based on eDMR data, the new summer limits are attainable, so they will be set in this renewal without a compliance schedule. The calculated winter limits are less restrictive than the previous limits. Based on eDMR data, the previous winter limits are attainable, so they will be retained.
- h. <u>CBOD</u>₅

Median discharge pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: eDMR data from previous 12 months
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: Default value used in the absence of data
Stream Temperature:	<u>20°C</u>	(default value used for CWF modeling)
Background CBOD5 concentration:	<u>2.0</u>	mg/l
	В	asis: <u>Default value</u>
Calculated CBOD ₅ limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)

- Result: <u>WQ modeling resulted in the calculated CBOD5 limits above (see Attachment 1). The calculated limits are the same as the previous permit and will be retained.</u>
- i. <u>Dissolved Oxygen (DO)</u>

The technology-based minimum of 6.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. This limit is the same as the previous permit and will be retained.

The measurement frequency will be changed from 1/weekday to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001). The Department advised the permittee during the last permit cycle that daily monitoring would likely be required as a condition of the next renewal and to plan accordingly. 10/27/2023 CWY

- j. <u>Disinfection</u>
 - Ultraviolet (UV) light monitoring
 - Total Residual Chlorine (TRC) limits:
- 0.05 mg/l (monthly average)
- 0.17 mg/l (instantaneous maximum)
- Basis: The TRC limits above were calculated using the Department's TRC Calculation Spreadsheet (see Attachment 2). The monthly average limits are the same as the previous permit and will be retained. The calculated instantaneous maximum limits are less restrictive than the previous limits. Based on eDMR data, the previous instantaneous maximum limits are attainable, so they will be retained.

The measurement frequency will be changed from 1/weekday to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001). The Department advised the permittee during the last permit cycle that daily monitoring would likely be required as a condition of the next renewal and to plan accordingly. 10/27/2023 CWY

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate).

Nearest Downstream potable water supply (PWS):Westmoreland County Municipal AuthorityDistance downstream from the point of discharge:53.0miles (approximate)

Result: No limits or monitoring are necessary as significant dilution is available.

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, antibacksliding is not applicable.

7. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from September 1, 2022 to August 31, 2023)

Parameter	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD)												
Average Monthly	0.00878	0.00856	0.00872	0.0084	0.00850	0.0084	0.00831	0.00794	0.00818	0.00805	0.00791	0.00778
pH (S.U.)												
Minimum	7.11	7.01	6.24	6.26	6.76	6.83	6.68	6.95	6.79	6.84	7.90	6.67
pH (S.U.)												
Maximum	7.79	7.71	7.14	7.09	7.18	7.62	7.02	7.1	7.71	7.39	7.96	7.79
DO (mg/L)												
Minimum	6.56	6.42	6.01	5.28	6.51	9.1	8.33	7.21	8.75	6.55	7.29	6.1
TRC (mg/L)												
Average Monthly	< 0.02	0.02	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	< 0.02	0.03	< 0.02
TRC (mg/L)												
Instantaneous Maximum	0.05	0.04	0.04	0.04	0.04	0.04	0.05	0.03	0.1	0.03	0.07	0.04
CBOD5 (mg/L)												
Average Monthly	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
CBOD5 (mg/L)												
Instantaneous Maximum	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
TSS (mg/L)	4.0						4.00					1.0
Average Monthly	< 1.6	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 1.60	< 2.0	< 2.0	< 2.0	< 2.0	< 1.6
TSS (mg/L) Instantaneous Maximum	< 1.6	2.4	3.0	< 1.6	< 1.6	< 1.60	< 1.60	1.6	3.2	3.2	2.8	< 1.6
Fecal Coliform (No./100 ml)	< 1.0	2.4	5.0	< 1.0	< 1.0	< 1.00	< 1.00	1.0	5.2	5.2	2.0	< 1.0
Geometric Mean	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Total Nitrogen (mg/L)												
Daily Maximum									< 17.07			
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ammonia (mg/L)												
Instantaneous Maximum	< 0.1	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Phosphorus (mg/L)												
Daily Maximum									0.156			
Total Aluminum (mg/L)												
Daily Maximum									< 0.1			
Total Iron (mg/L)												
Daily Maximum									E			
Total Manganese (mg/L)												
Daily Maximum									E			

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Effluent Limitations								
Parameter	Mass Units	(lbs/day) (1)		Concentrat		Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	Report	XXX	XXX	XXX	XXX	ххх	2/month	Measured		
рН (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab		
DO	xxx	xxx	6.0 Daily Min	xxx	XXX	xxx	1/day	Grab		
TRC	XXX	xxx	xxx	0.05	xxx	0.1	1/day	Grab		
CBOD5	ХХХ	XXX	XXX	25.0	xxx	50.0	2/month	Grab		
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab		
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2000 Geo Mean	xxx	10000	2/month	Grab		
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab		
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab		
Total Nitrogen	xxx	xxx	xxx	Report Daily Max	xxx	xxx	1/year	Grab		
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	5.0	xxx	10.0	2/month	Grab		
Ammonia May 1 - Oct 31	XXX	XXX	xxx	2.1	XXX	4.2	2/month	Grab		
Total Phosphorus	XXX	xxx	xxx	Report Daily Max	xxx	xxx	1/year	Grab		
Total Aluminum	ххх	XXX	xxx	Report Daily Max	XXX	xxx	1/year	Grab		

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Falanielei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
				Report				
Total Iron	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab
				Report				
Total Manganese	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for E. Coli, Total Nitrogen, Total Phosphorus, Total Aluminum, Total Iron, and Total Manganese is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7.

Attachment 1

		VVG(IVI			2		
	<u>SWP Basin</u> St	tream Code		Stream Name			
	18D	44200		ROSE RUN			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
3.200	Penns Manor	PA0031470	0.030	CBOD5	25		
				NH3-N	2.12	4.24	
				Dissolved Oxygen			6

WQM 7.0 Effluent Limits

Thursday, October 26, 2023

Version 1.1

SWP Basin	Stream Code			Stream Name	
18D	44200			ROSE RUN	
RMI	Total Discharge	e Flow (mgd	<u>) Anal</u>	ysis Temperature (°C)	<u>Analysis pH</u>
3.200	0.03	0		23.841	7.000
Reach Width (ft)	<u>Reach De</u>	epth (ft)		Reach WDRatio	Reach Velocity (fps)
3.201	0.32	9		9.725	0.057
Reach CBOD5 (mg/L)	Reach Kc	<u>(1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
19.67	0.56	and the second second		1.63	0.941
Reach DO (mg/L)	Reach Kr			Kr Equation	<u>Reach DO Goal (mg/L)</u>
6.520	27.3	45		Owens	6
Reach Travel Time (days	<u>s)</u>	Subreach	Results		
3.411	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.341	15.65	1.18	7.69	
	0.682	12.45	0.86	7.69	
	1.023	9.91	0.62	7.69	
	1.365	7.88	0.45	7.69	
	1.706	6.27	0.33	7.69	
	2.047	4.99	0.24	7.69	
	2.388	3.97	0.17	7.69	
	2,729	3.16	0.12	7.69	
	3.070	1 10 10 10 10 10 10 10 10 10 10 10 10 10	0.09	7.69	
	3.411		0.07	7.69	

WQM 7.0 D.O.Simulation

Thursday, October 26, 2023

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Thursday, October 26, 2023

Version 1.1

Basin Code Stream Name Area (ft) Area (sq mi) Withdrawal (ft/ft) Area (sq mi) Withdrawal (st/ft) Area (mgd) 18D 44200 ROSE RUN 3,200 1520.00 0.35 0.00000 0.00 Stream Data Stream Data Stream (cfsm) Rch Rch WD Rch Rch Design (ft) Tributary (cfsm) Stream (cfs) Stream (cfs) Output Stream Trav Velocity Velocity Ratio Width Depth Tributary Temp Stream pH Temp PH 27.10 0.040 0.00 0.000 0.000 0.00														
Stream Data Design Cond. LFY Flow Trib Flow Rch Trav Flow Rch Trav (dsys) Rch (fps) Rch WD (ffs) Rch Width Rch Depth Tibutary Temp Stream pH Stream Temp Stream pH 27-10 (cfs) 0.040 0.00 0.000 0.000 0.00					Stre	eam Name		RMI		ł	Area		Withdrawal	Appl FC
Design Cond. LFY (cfs) Trib Flow (cfs) Stream Flow (cfs) Rch (rfs) Rch (rfs) WD Ratio Rch Width Rch Depth Tributary Temp Stream pH Stream Temp Stream pH 27-10 24-10 230-10 0.040 0.00 0.000 0.000 0.000 0.00 </td <td></td> <td>18D</td> <td>44:</td> <td>200 ROSE</td> <td>RUN</td> <td></td> <td></td> <td>3.2</td> <td>00 15</td> <td>520.00</td> <td>0.35</td> <td>0.00000</td> <td>0.0</td> <td>0</td>		18D	44:	200 ROSE	RUN			3.2	00 15	520.00	0.35	0.00000	0.0	0
Design Cond. Flow Flow Trav Time Velocity (fps) Ratio Width Depth Temp pH Temp pH Q7-10 Q1-10 Q30-10 0.040 0.00 0.00 0.000 0.000 0.00 0.00 20.00 7.00 0.00 0.00 Q30-10 0.040 0.00 0.000 0.000 0.000 0.0						St	ream Dat	a						
(cfsm) (cfs) (cfs) (days) (fps) (ft)		LFY			Trav									
Q1-10 0.00 0.00 0.000 0.000 0.000 Q30-10 0.00 0.000 0.000 0.000 0.000 0.000 Discharge DataNamePermit NumberDiscDiscDiscDiscDiscDiscDiscDiscDiscDiscDiscDiscPenns ManorPA0031470 0.0300 0.0000 0.0000 0.000 25.00 7.00 Parameter DataDiscTribStreamFate Conc <td>Conta.</td> <td>(cfsm)</td> <td>(cfs)</td> <td>(cfs)</td> <td></td> <td>(fps)</td> <td></td> <td>(ft)</td> <td>(ft)</td> <td>(°C)</td> <td></td> <td>(°C)</td> <td></td> <td></td>	Conta.	(cfsm)	(cfs)	(cfs)		(fps)		(ft)	(ft)	(°C)		(°C)		
Q30-10 0.00 0.00 0.00 0.00 0.00 0.00 Q30-10 0.00 0.00 0.00 0.00 0.00 0.00 Name Permit Number Disc Flow (mgd) Permited Design Disc Flow (mgd) Disc Disc Flow (mgd) Disc Disc Flow (mgd) Disc Permited Design Flow (mgd) Disc Permited Design (mgd) Disc Permited D	Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0 0	.00 0.0)0
Discharge DataNamePermit NumberExisting Disc FlowPermitted Disc FlowDesign Disc Flow FlowDisc Temp Flow FlowDisc Temp PHDisc PHDisc Temp PHPenns ManorPA00314700.03000.00000.00000.00000.000025.007.00Parameter DataDisc Parameter NameTrib (mg/L)Stream ConcFate ConcConc Conc	Q1-10		0.00	0.00	0.000									
NamePermit NumberExisting Disc FlowPermitted Disc FlowDesign Disc FlowDisc Temp PenneDisc pHDisc pHPenns ManorPA00314700.03000.00000.00000.00000.000025.007.00Parameter DataDisc Parameter NameCBOD525.002.000.0001.50	Q30-10		0.00	0.00	0.000	0.000								
NamePermit NumberDisc Flow (mgd)Disc Flow (mgd)Reserve Flow (mgd)Temp Factor (°C)pH (°C)Penns ManorPA00314700.03000.00000.00000.000025.007.00Parameter DataDisc Parameter NameTrib ConcStream ConcFate ConcCoef Coef (mg/L)CBOD525.002.000.0001.50						Di	ischarge I	Data						
Penns Manor PA0031470 0.0300 0.0000 0.0000 0.000 25.00 7.00 Parameter Data Parameter Name Disc Conc Trib Conc Stream Conc Fate Conc Coef CBOD5 25.00 2.00 0.00 1.50				Name	Per	rmit Number	Disc r Flow	Disc Flow	Disc Flow	Reserve Factor	Temp	o pH		
Parameter Data Disc Conc Trib Conc Stream Conc Fate Coef Parameter Name (mg/L) (mg/L) (1/days) CBOD5 25.00 2.00 0.00 1.50			-				(mga)	(mga) (mga)	(で)			
Disc ConcTrib ConcStream ConcFate Coef(mg/L)(mg/L)(mg/L)(1/days)CBOD525.002.000.001.50			Penn	is Manor	PA	0031470	0.0300	0.000	0.00	00.00	0 25	5.00 7	7.00	
Parameter Name Conc Conc Conc Conc (mg/L) (mg/L) (mg/L) (1/days) CBOD5 25.00 2.00 0.00 1.50						Pa	arameter l	Data						
(mg/L) (mg/L) (mg/L) (1/days) CBOD5 25.00 2.00 0.00 1.50					Doromoto	r Nomo								
		_		9000	raiamete	i ivallie	(m	ıg/L) (r	ng/L) (I	mg/L) (1/	days)			
				CBOD5				25.00	2.00	0.00	1.50			
Dissolved Oxygen 4.00 8.24 0.00 0.00				Dissolved	Oxygen			4.00	8.24	0.00	0.00			

25.00

0.00

0.00

0.70

Input Data WQM 7.0

NH3-N

	SWP Basir			Stre	am Name		RMI	Elevati (ft)	Ar	nage rea mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Appl FC
	18D	442	200 ROSE	RUN			0.00	0 138	0.00	3.17	0.00000	0.0	
					St	ream Data	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	<u>tary</u> pH	Tem	<u>Stream</u> p pH	
Conta.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00) (0.0 0.0	0
21-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000								
					Di	scharge [Data						
			Name	Per	mit Number	Disc	Permitte Disc Flow	d Design Disc Flow	Reserve Factor	Disc Temp			
				0.440 900	unu aeturret — valiteirikinidektetjund	(mgd)	(mgd)	(mgd)	on exception of the second s	(°C)			
						0.0000	0.000	0.0000	0.000	25	5.00	7.00	
					Da	rameter I	Data						

Conc

(mg/L)

25.00

3.00

25.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

2.00

8.24

0.00

Conc

Coef

1.50

0.00

0.70

(mg/L) (1/days)

0.00

0.00

0.00

Input Data WQM 7.0

Version 1.1

			WW	<u>vi 7.u</u>	пyur	oayn	amic	Out	Juis			
	SW	'P Basin	Strea	m Code				Stream	<u>Name</u>			
		18D	4	4200				ROSE	RUN			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
3.200	0.01	0.00	0.01	.0464	0.00829	.329	3.2	9.73	0.06	3.411	23.84	7.00
Q1-1	0 Flow											
3.200	0.01	0.00	0.01	.0464	0.00829	NA	NA	NA	0.05	3.582	24.19	7.00
Q30-	10 Flow	<i>i</i>										
3.200	0.02	0.00	0.02	.0464	0.00829	NA	NA	NA	0.06	3.262	23.55	7.00

WQM 7.0 Hydrodynamic Outputs

Thursday, October 26, 2023

Version 1.1

0

		e <u>am Code</u> 44200			ream Name OSE RUN			
NH3-N	Acute Allocatio	ns						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
3.20	00 Penns Manor	11.84	14.13	11.84	14.13	0	0	
NH3-N	Chronic Allocat	ions						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
	Discharge Name	Criterion	WLA (mg/L)	Criterion	WLA			
3.20		Criterion (mg/L) 1.5	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L)	Reach	Reduction	
3.20	00 Penns Manor	Criterion (mg/L) 1.5 cations	WLA (mg/L) 2.12 CBOD5	Criterion (mg/L) 1.5 <u>NH3-N</u>	WLA (mg/L) 2.12	Reach 0 ved Oxygen	Reduction 0 Critical	Percent

	(3)	(3.=)	((3.=)	(3. =)	(
3.20 Penns Manor	25	25	2.12	2.12	6	6	0	0	

Thursday, October 26, 2023

Version 1.1

Attachment 2

Input appropria	ATION te values in A	3:A9 and D3:D9					
	= Q stream (cf		0.5	= CV Daily			
10000000000000000000000000000000000000	= Q discharge		Notice Inc.	= CV Hourly			
	= no. samples	(1100)		= AFC_Partial M	Aix Factor		
serviced do	A NEW YORK DOTTING TO BE	emand of Stream		= CFC Partial M			
		mand of Discharge			Compliance Time (min)		
274	= BAT/BPJ Va			JEAN DED. TRANSPORTED DOVELAND STRATE	Compliance Time (min)		
	= % Factor of			=Decay Coeffic			
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	0.115	1.3.2.iii	WLA cfc = 0.105		
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	0.043	5.1d	LTA_cfc = 0.061		
Source		Efflue	nt Limit Calcul	ations			
PENTOXSD TRG	5.1f		AML MULT =	1.231			
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.053	AFC		
			LIMIT (mg/l) =	0.175			
WLA afc	property includence and is and it	C_tc)) + [(AFC_Yc*Qs*.019	secondaria constantation destre alla	_tc))			
		_Yc*Qs*Xs/Qd)]*(1-FOS/10					
	and a second	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)					
	wla_afc*LTAMULT_afc						
LTAMULT afc LTA_afc	wla_afc*LTAM	ULT_afc					
LTA_afc	_ (.011/e(-k*CF(1.5	_tc))			
LTA_afc WLA_cfc	(.011/e(-k*CF(+ Xd + (CFC_	-	00)		0.5)		
	(.011/e(-k*CF(+ Xd + (CFC_		00)		9.5)		
LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	(.011/e(-k*CFC +Xd+(CFC EXP((0.5*LN(c wla_cfc*LTAM		00) 6*LN(cvd^2/n	o_samples+1)^(
LTA_afc WLA_cfc LTAMULT_cfc	- (.011/e(-k*CFC +Xd + (CFC EXP((0.5*LN(c wla_cfc*LTAM EXP(2.326*LN MIN(BAT_BPJ	C_tc) + [(CFC_Yc*Qs*.011/ _Yc*Qs*Xs/Qd)]*(1-FOS/10 vd^2/no_samples+1))-2.32 ULT_cfc	90) 6*LN(cvd^2/n 5)-0.5*LN(cvd /IL_MULT)	o_samples+1)^(