

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0032051

 APS ID
 892210

 Authorization ID
 1391025

Applicant and Facility Information

Applicant Name	Granvi	lle Township Mifflin County	Facility Name	Granville Township Main STP
Applicant Address	100 He	len Street	Facility Address	6310 Ssr 103 N
	Lewisto	own, PA 17044-2437	_	Lewistown, PA 17044
Applicant Contact	Tim Tre	essler	Facility Contact	Earl Weaver
Applicant Phone	(717) 2	42-1838	Facility Phone	(717) 242-1838
Client ID	116575	j	Site ID	445380
Ch 94 Load Status	Not Ov	erloaded	Municipality	Granville Township
Connection Status	No Lim	itations	County	Mifflin
Date Application Receiv	ved	April 4, 2022	EPA Waived?	No
Date Application Accep	plication Accepted April 15, 2022		If No, Reason	Significant CB Discharge
Purpose of Application		NPDES permit renewal for discha	rge of treated sewage	

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated domestic wastewater from Granville Township Main STP. The facility is also known as Granville Township Junction STP. Granville Township owns, operates, and maintains the wastewater treatment plant. The facility is located in Granville Township, Mifflin County and services Granville Township. There is no combined sewers in the collection system and no bypasses or overflows are approved in the collection system. The treatment plant has annual average design capacity of 0.5 MGD and hydraulic design capacity of 0.75 MGD and organic design capacity of 1300 lbs/day-BOD5. The discharge goes to Juniata River which is classified for Warm Water Fishes (WWF) and Migratory Fishes (MF). The existing NPDES permit was issued on September 14, 2017 with an expiration date of September 30, 2022. The permit was amended on May 6, 2020 to reduce monitoring frequency for certain pollutants. The applicant submitted a timely permit renewal application to the Department and is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Sludge from the SBRs is pumped to one of two Aerobic Sludge Digesters. The facility also receives hauled-in waste in digesters. Digested sludge is dewatered through a press and then land applied at Bailor Farm and Viscos under land application permit No. PAG-083606.

Approve	Deny	Signatures	Date
х		<i>J. Pascal Kwedza</i> J. Pascal Kwedza, P.E. / Environmental Engineer	April 13, 2023
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	May 19, 2023
х		Maria D. Bebenek Maria D. Bebenek, P.E./ Program Manager	May 19, 2023

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

Quarterly E. Coli monitoring has been added. Monitoring requirement for TDS, Sulfate, Chloride and Bromide has been discontinued.

1.4 Existing Permit and Monitoring Requirements

			Effluent I	imitations			Monitoring Re	quirements
Parameter	Mass Unit	s (Ibs/day)		Concentrati	ons (mg/L)		Minimum	Required
Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
		Daily						
Flow (MGD)	Report	Max	XXX	XXX	XXX	XXX	Continuous	Measured
				2007	9.0	2007		
pH (S.U.)	XXX	XXX	6.0	XXX	Max	XXX	1/day	Grab
Dissolved Oxygen	ххх	XXX	5.0	XXX	ххх	XXX	1/day	Grab
Carbonaceous								
Biochemical Oxygen								24-Hr
Demand (CBOD5)	100	165	XXX	25.0	40.0	50	1/week	Composite
Biochemical Oxygen		Report						
Demand (BOD5)		Daily	2007					24-Hr
Raw Sewage Influent	Report	Max	XXX	Report	XXX	XXX	1/week	Composite
Total Suspended	405	405		00.0	45.0	00	4 /	24-Hr
Solids	125	185 Deport	XXX	30.0	45.0	60	1/week	Composite
Total Suspended Solids		Report Daily						24-Hr
Raw Sewage Influent	Report	Max	XXX	Report	ХХХ	XXX	1/week	Composite
Raw Gewage Inildent	Кероп	Max		Report			1/WEEK	24-Hr
Total Dissolved Solids	Report	Report	XXX	Report	Report	XXX	1/week	Composite
Fecal Coliform								
(No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform								
(No./100 ml)			2007	200		1000		
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab
Ultraviolet light	xxx	xxx	Poport	XXX	xxx	ххх	1/day	Recorded
intensity (mW/cm ²)			Report	~~~			1/uay	Recorded 24-Hr
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
		7000	,,,,,	Roport	,,,,,	,,,,,,	2,0000	24-Hr
Sulfate, Total	Report	Report	XXX	Report	Report	XXX	1/month	Composite
								24-Hr
Chloride	Report	Report	XXX	Report	Report	XXX	1/month	Composite
	Roport		,,,,,	Roport		,,,,,	1/1101101	24-Hr
Bromide	Report	Report	XXX	Report	Report	XXX	1/month	Composite
Bronnido	Report	Ropon		Ropon	Ropon		1/110/101	Jonposite

Summary of Review

1.4.1 Chesapeake Bay Limitation and Monitoring Requirements

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass U	nits (Ibs)		Concentra	tions (mg/L)		Minimum	
i arameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Required Sample Type
AmmoniaN	Report	Report	xxx	Report	xxx	xxx	2/week	24-Hr Composite
KjeldahlN	Report	XXX	xxx	Report	xxx	ххх	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	xxx	Report	XXX	ххх	2/week	24-Hr Composite
Total Nitrogen	Report	Report	xxx	Report	xxx	xxx	1/month	Calculation
Total Phosphorus	Report	Report	xxx	Report	XXX	ххх	2/week	24-Hr Composite
Net Total Nitrogen	Report	15,196	xxx	xxx	xxx	ххх	1/month	Calculation
Net Total Phosphorus	Report	1,899	xxx	XXX	XXX	ххх	1/month	Calculation

1.5 Discharge, Receiving Waters and Water Supply Information							
		_					
Outfall No. 001	_ 5,, _	.5					
Latitude <u>40° 35' 21"</u>		-77º 34' 31"					
Quad Name	Quad Code						
Wastewater Description: Sewage Effluent							
		44444					
Receiving Waters Juniata River	Stream Code	11414					
NHD Com ID 66205685 During Annual 0.710 million	RMI	46.3					
Drainage Area 2,710 mi ²		0.204					
Q ₇₋₁₀ Flow (cfs) <u>552.84</u>							
Elevation (ft) 448							
Watershed No. <u>12-A</u>		WWF, MF					
Existing Use							
Exceptions to Use							
Assessment Status Attaining Use(s)							
Cause(s) of Impairment							
Source(s) of Impairment							
TMDL Status	Name						
Background/Ambient Data	Data Source						
pH (SU)							
Temperature (°F)							
Hardness (mg/L)							
Other:							
Na ana t Daving the are Dublic Weter Oversky Intelle	Mifflingtown Materia Oriotowno Iwa						
Nearest Downstream Public Water Supply Intake	Mifflintown Water Systems Juniata County						
PWS Waters Juniata River	Flow at Intake (cfs)						
PWS RMI	Distance from Outfall (mi)	9					

Changes Since Last Permit Issuance:

Other Comments:

1.5.1 Water Supply:

The nearest downstream water supply intake is approximately 9 miles downstream by Mifflintown Water Systems Juniata County on Juniata River. The discharge will not impact the intake because of the distance and dilution.

	2.0 T	reatment Facility Sumn	nary	
Treatment Facility N	ame: Junction WWTP			
WQM Permit No.	Issuance Date			
4400401 A-2	October 14, 2014			
4400401 08-1	January 9, 2009			
4400401	November 17, 2000			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
		Sequencing Batch		•
Sewage	Secondary	Reactor	Ultraviolet	0.5
				D's solida
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.75	1300	Not Overloaded	Dewatering	Landfill

Changes Since Last Permit Issuance: None

2.1 Treatment System.

Raw influent sewage flows into a wet well before being pumped to the headworks of the plant where rags and grit are moved via a screening unit. Screened influent then flows into two (2) Sequential Batch Reactors (SBRs). Each SBR unit goes through a cycle Mixed Fill, React Fill, React, Settle, Decant, and Sludge Wasting. Decant flows into the Ultraviolet Disinfection channel for disinfection prior to discharge to Outfall 001 on Juniata River. Delta Floc is used as coagulant for Phosphorus removal.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from March 1, 2022 to February 28, 2023)

Parameter	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22
Flow (MGD)												
Average Monthly	0.218	0.351	0.318	0.229	0.335	0.237	0.215	0.172	0.216	0.357	0.308	0.295
Flow (MGD)												
Daily Maximum	0.326	1.08	1.01	0.473	0.271	0.825	0.691	0.245	0.454	1.493	0.705	0.517
pH (S.U.)												
Instant. Minimum	6.7	6.8	6.7	6.7	6.6	6.6	6.7	6.8	6.9	6.9	6.9	6.8
pH (S.U.)												
Instant. Maximum	7.1	7.2	7.4	7.2	7.3	7.3	7.1	7.2	7.9	7.2	7.3	7.3
DO (mg/L)												
Daily Minimum	8.8	8.5	8.7	8.0	7.7	7.7	7.3	7.5	7.7	8.2	8.2	8.9
CBOD5 (lbs/day)												
Average Monthly	12.0	45	23.0	17.2	8.6	< 11.2	19.6	9.9	21.7	17.9	< 22.5	18.3
CBOD5 (lbs/day)												
Weekly Average	13.4	106	30.0	15.4	12	15.8	42.2	15.7	48.7	31.4	30.2	24.2
CBOD5 (mg/L)												
Average Monthly	7.0	16.0	12.0	9.9	6.2	< 6.3	11.9	5.6	10.9	7.2	8.7	8.3
CBOD5 (mg/L)												
Weekly Average	9.0	25.8	15.2	14.7	8.01	12.2	13.0	7.7	21.1	10.6	11.7	10.5
BOD5 (lbs/day)												
Raw Sewage Influent												
 http://www.com/second	453	623	463	305	295	355	436	422	602	271	582	526
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	506	629	561	422	345	468	470	509	753	484	891	703
BOD5 (mg/L)												
Raw Sewage Influent				100								.
 Ave. Monthly	261	266	233	190	218	175	275	252	328	124	213	249
TSS (lbs/day)	5.0		0.4	04	10	11.0	0.4		5.0	7.0	445	44.0
Average Monthly	5.0	38	9.4	21	13	< 11.0	< 6.1	< 4.4	5.9	7.9	14.5	11.8
TSS (lbs/day)												
Raw Sewage Influent	460	267	416	336	270	272	420	570	602	496	550	526
 Ave. Monthly TSS (lba/day)	469	267	416	330	270	373	430	570	693	486	552	536
TSS (lbs/day)												
Raw Sewage Influent	894	386	484	487	353	509	552	661	804	716	828	691
TSS (lbs/day)	094	300	404	407	303	509	552	001	004	/10	020	091
Weekly Average	7.4	106	24.0	12.5	20.3	23.3	13.0	7.3	8.1	11.0	21.2	14.7
weekiy Average	1.4	100	24.0	12.5	20.3	23.3	13.0	1.3	0.1	11.0	21.2	14.7

NPDES Permit Fact Sheet Granville Township Main STP

TSS (mg/L)												
Average Monthly	< 2.7	12.0	5.0	25.4	9.8	< 8.1	< 4.1	< 2.5	3.2	3.4	5.6	5.2
TSS (mg/L)												
Raw Sewage Influent												
 http://www.worthly	250	130	213	216	200	190	273	332	377	218	217	236
TSS (mg/L)												
Weekly Average	4.4	26.0	12.0	26.8	14.0	18.0	10.0	4.0	3.5	4.0	8.5	6.6
Total Dissolved Solids												
(lbs/day)												
Average Monthly	1120	1043	514	410	808	457	600	526	293	609	708	964
Total Dissolved Solids												
(mg/L)												
Average Monthly	428	392	308	308	380	338	356	358	204	284	348	436
Fecal Coliform												
(No./100 ml)	. –											
Geometric Mean	< 4.7	6.6	< 4.0	< 2.3	3.5	< 1	< 6.5	< 1	< 2.3	< 1.1	< 1.4	< 5.0
Fecal Coliform												
(No./100 ml)												
Instant. Maximum	8.0	16.4	4.0	< 4.1	25	1	70	< 1	9.7	2.0	< 4.0	12.4
UV Intensity (mW/cm ²)					1.0							
Daily Minimum	6.8	6.3	60	0.3	4.2	4.8	5.8	3.5	6.8	7.3	6.2	6.0
Nitrate-Nitrite (mg/L)		1 0 0 0				40.0						
Average Monthly	4.15	< 4.229	8.5	9.796	8.1	< 10.0	< 4.0	< 4.2	< 4.5	< 5.3	< 4.5	< 3.0
Nitrate-Nitrite (lbs)	004	000	4.40	540	000	500	010	007	000	000	004	100
Total Monthly	221	< 363	146	516	398	< 526	< 216	< 207	< 229	< 388	< 324	< 190
Total Nitrogen (mg/L)	40.4	40.050	44.0	40.407	40.7	44.0		0.1		10	10.5	
Average Monthly	13.4	< 13.056	11.0	16.407	12.7	< 14.9	< 6.6	< 6.1	< 6.8	< 12	< 10.5	< 11
Total Nitrogen (lbs)												
Effluent Net 	738	. 1154	< 686	905	20	< 753	< 416	< 298	. 250	< 895	. 765	. 740
Total Monthly	738	< 1154	< 080	905	20	< 753	< 410	< 298	< 350	< 895	< 765	< 749
Total Nitrogen (lbs) Total Monthly	738	< 1154	< 686	905	625	< 753	< 416	< 298	< 350	< 895	< 765	< 749
	738	< 1154	< 080	905	625	< 753	< 410	< 298	< 350	< 895	< 705	< 749
Total Nitrogen (lbs) Effluent Net 												
Total Annual						< 6456						
Total Nitrogen (lbs)						< 0400						
Total Annual						< 6456						
Ammonia (lbs/day)						< 0400						
Average Monthly	8	< 19	2.72	< 4	< 104	< 5.0	2	< 0.4	< 0.9	< 3	9	14
Ammonia (mg/L)	U	< 13	2.12	~ 4	< 10 4	< 5.0	۷	< 0.4	< 0.5	< 5	3	14
Average Monthly	4.15	< 6.556	0.56	< 2.046	< 1.9576	< 3.4	0.7	< 0.2	< 0.5	< 0.9	3.6	6.1
Ammonia (lbs)	4.15	< 0.550	0.00	< 2.040	< 1.3070	< 0. 1	0.7	< 0.2	< 0.5	< 0.3	5.0	0.1
Total Monthly	221	< 595	< 38	< 133	< 104	< 153	65	< 11	< 28	< 87	266	433
rotal wontilly	221	< J9J	< JU	× 155	< 10 4	× 155	00		<u> </u>	< 01	200	400

NPDES Permit Fact Sheet Granville Township Main STP

Ammonia (lbs)												
Total Annual						< 1729						
TKN (mg/L)												
Average Monthly	6.6	8.827	2.31	6.61	4.5	< 4.8	< 2.6	1.9	2.4	6.6	6.0	7.9
TKN (lbs)												
Total Monthly	353	791	< 153	389	227	< 227	< 200	91	122	507	441	559
Total Phosphorus												
(mg/L)												
Average Monthly	1.9	1.036	2.3	2.644	3.37	3.2	2.2	2.3	< 0.8	0.9	0.7	0.8
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	104	93	146	132	5.3	161	156	120	< 43	59	53	54
Total Phosphorus (lbs)												
Total Monthly	104	93	146	132	166	161	156	120	< 43	59	53	54
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual						< 841						
Total Phosphorus (lbs)												
Total Annual						< 841						
Sulfate (lbs/day)												
Average Monthly	78	78	51	48.04	66	46.0	59	54	45	71	59	71
Sulfate (mg/L)												
Average Monthly	30.0	29.4	30.7	36.0	31	34.0	35	37	31	33	29	32
Chloride (lbs/day)												
Average Monthly	427	298	175	169.47	207	114	212	191	175	294	193	248
Chloride (mg/L)												
Average Monthly	163	112	105	127.00	97.2	84	126	130	122	137	95	112
Bromide (lbs/day)												
Average Monthly	0.52	5.3	0.33	0.27	0.42	< 0.3	< 0.3	0.3	< 0.3	< 0.04	< 0.4	< 0.4
Bromide (mg/L)												
Average Monthly	< 2.00	< 2.00	< 0.200	0.2	< 0.200	< 0.2	< 0.2	< 0.2	0.20	< 0.02	< 0.2	< 0.2

3.2 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicates permit limits have been met consistently. No effluent violations were noted on DMRs for the period reviewed.

3.3 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations were found during plant inspections. The facility is operated and maintained well.

		4.0 Dev	relopment of Effluent Limitations		
Outfall No.	001		Design Flow (MGD)	5	
Latitude	40º 35' 21.17	7"	Longitude	-77º 34' 31.05"	
Wastewater	Description:	Sewage Effluent			

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC limitation is not applicable, the facility uses UV for disinfection.

4.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) \times design flow (mgd) \times 8.34

4.3.1 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for CBOD₅, NH₃-N and DO in permits. The model simulates mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria and also simulates mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits.

4.4 Water Quality-Based Limitations

4.4.1 Receiving Stream

The receiving stream is the Juniata River. According to 25 PA § 93.9n, this stream is protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). It is located in Drainage List n and State Watershed 12-A. It has been assigned stream code 11414. According to eMapPA, this segment of Juniata River is attaining its designated uses.

4.4.2 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No 01563500 on Juniata River at Mapleton Depot. The Q_{7-10} , Q_{1-10} and Q_{30-10} flows at the gage are 415 ft³/s, 384 ft³/s and 440ft³/s respectively. The drainage area at the gage is 2030 mi². The resulting yields are as follows:

- $Q_{7-10} = (415 \text{ft}^3/\text{s})/2030 \text{ mi}^2 = 0.204 \text{ft}^3/\text{s}/\text{mi}^2$
- Q₃₀₋₁₀ / Q₇₋₁₀ = 1.06
- Q₁₋₁₀ / Q₇₋₁₀ = 0.925

The drainage area at discharge taken from the previous protection report = 2710 mi²

The Q_{7-10} at discharge = 2710 mi² x 0.204 ft³/s/mi² = 552.84 ft³/s.

4.4.3 NH₃N Calculations

 NH_3N calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH_3N criteria used in the WQM 7.0 model:

Discharge pH	= 6.8 (July -Sept DMR median)
Discharge Temperature	= 25 ° C (Default)
Stream pH	= 7.6 (WQN#215, median July-Sep)
Stream Temp	= 22°C (WQN#215, median July-Sep)
Background Hardness	= 114 (WQN#215, median July-Sep
Background NH ₃ -N	= 0.0 (default)

4.4.4 CBOD₅

Due to the proximity of Borough of Lewistown and Twin Borough discharges, they were modelled together with Grantville Township's discharge. The attached results of the WQM 7.0 stream model (attachment B) indicates that, for the Granville Township's discharge of 0.5MGD, an average monthly limit (AML) of 25mg/l for CBOD₅ is required to protect the water quality of the stream. This limit is consistent with the existing permit and the STP has been consistently achieving below this limitation. Therefore, a limit of 25mg/l AML, 40mg/l average weekly limit (AWL) and 50 mg/l IMAX is recommended for this permit cycle. Mass limits are calculated as follows:

Mass based AML (lb/day) = $25 \text{ (mg/L)} \times 0.5 \text{(mgd)} \times 8.34 = 100 \text{ (rounded)}$

Mass based AWL (lb/day) = $40(mg/L) \times 0.5(mgd) \times 8.34 = 165$ (rounded)

<u>4.4.5 NH₃-N</u>

The attached results of the WQM 7.0 stream model (attachment B) also indicates that no limitation on NH_3 as a monthly average is necessary to protect the aquatic life from toxicity effects. However, ammonia monitoring required in the existing permit will continue to ensure treatment efficiency.

4.4.6 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O.

NPDES Permit Fact Sheet Granville Township Main STP

criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was ran using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.4.7 Total Suspended Solids (TSS):

There is no water quality criteria for TSS. The existing limit of 30 mg/I AML based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/I per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) will remain in the permit. Mass limit are calculated as follows:

Mass based AML (lb/day) = $30 (mg/L) \times 0.5(mgd) \times 8.34 = 125$

Mass based AWL (lb/day) = $45(mg/L) \times 0.5(mgd) \times 8.34 = 185$ (rounded)

4.4.8 Total Residual Chlorine (TRC) and Ultraviolet (UV)

The discharge does not have a reasonable potential to cause or contribute to a water quality standards violation for TRC since the permittee no longer utilizes chlorine for disinfection. Therefore, TRC limitation is not necessary. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. UV is used for disinfection. Daily UV intensity monitoring is required in the permit to ensure efficiency of the UV unit.

4.4.9 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) to calculate WQBELs. The results of the TMS are presented in attachment C. The results of the TMS indicate discharge levels for all pollutants are well below DEP's target quantitation limits and the calculated WQBELs, therefore, no monitoring or limitation was recommended.

4.4.10 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E.coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows \geq 1 MGD, 1/quarter for design flows \geq 0.05 and < 1 MGD and 1/year for design flows of 0.002 – 0.05 MGD. Your discharge of 0.5MGD requires 1/quarter monitoring as included in the permit.

4.4.11 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by DEP based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

Phase 3 WIP and the supplement to the WIP, indicates renewing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals. This facility falls in phase 2 of the strategy and is required to meet a total maximum annual Total Nitrogen Cap load of 15,196lbs/year based on their 2010 projected flow of 0.624 MGD and 8 mg/l Total Nitrogen and a TP cap load of 1,899lbs/year based on their 2010 projected flow of 0.624 MGD and 1 mg/l Total Phosphorus. The facility is in compliance with the bay cap load requirements.

The Department also approved a total nitrogen offset of 600lbs of nitrogen based on 24EDUs at 25lbs/EDU for Granville Township. The offsets are for 24 EDUs on-lot disposal systems that have been connected to the sewer conveyance system. These on-lot systems were put into use prior to January 1, 2003 and retired after January 1, 2003. The approved offsets are only for compliance purposes and are not available for trading or selling. The permit will show the base cap load on the effluent page and show the offsets as a foot note as follows: "The permittee is authorized to use 600lbs/year as Total Nitrogen (TN) offsets toward compliance with the Annual Net TN mass load limitations (Cap Loads), in accordance with Part C of this permit. These Offsets may be applied throughout the Compliance Year or during the Truing Period. The application of offsets must be reported to DEP as described in Part C. The Offsets are authorized for the following pollutant load reduction activities: Connection of equivalent of 25 on-lot sewage disposal systems to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per connection". A complete list of addresses of the dwellings that were served by the retired on-lot systems that are now connected to the sewage conveyance system is on file.

Additional Offsets are approved for the acceptance of hauled-in septage at the permittee's facility from residential sources within the municipal Act 537 planning area. Three pounds (3 lbs) of TN Offsets per year is approved per 1,000 gallons of septage accepted and processed at the facility. The Offsets approved are applicable to the acceptance of residential septage only. For the purpose of these Offsets, septage is defined as material removed from a septic tank by pumping. No other hauled-in wastes, including but not limited to holding tank wastes, solids and sludge generated at other facilities, may be approved. Such approved Offsets may only be applied in the Compliance Year in which the septage was accepted and are not cumulative.

4.4.12 Influent BOD and TSS Monitoring

The permit include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.13 TDS, Chloride, Sulfate, Bromide

The existing monitoring requirement for TDS, Chloride, Sulfate, and Bromide has been discontinued in the permit. Analysis the data collected for the facility during the past permit cycle indicates these pollutants are not pollutant of concern that needed further analysis and the rational for monitoring TDS, Chloride, Sulfate, and Bromide presented below has been discontinued.

Total Dissolved Solids (TDS) and its major constituents including sulfate, chloride, and bromide have emerged as pollutants of concern in several major watersheds in the Commonwealth. The conservative nature of these solids allows them to accumulate in surface waters and they may remain a concern even if the immediate downstream public water supply is not directly impacted. Bromide has been linked to formation of disinfection byproducts at increased levels in public water systems. In addition, as a consequence of actions associated with Triennial Review 13, the Environmental Quality Board has directed DEP to collect additional data related to sulfate, chloride, and 1,4-dioxane. Furthermore, in an August 2013 letter from Jon Capacasa of the Region III Water Protection Program to DEP, EPA has expressed concern related to bromide and the importance of monitoring all point sources for bromide when it may be present.

Based on these concerns and under the authority of §92a.61, DEP has determined it should implement increased monitoring in NPDES permits for these parameters: TDS, sulfate, chloride, bromide, and 1,4-dioxane.

This monitoring initiative applies to all programs within DEP that have been delegated the responsibilities of implementing the NPDES program. The increased monitoring applies to all point source discharges, except that DEP may determine that certain sources are too small to warrant routine monitoring. All other permit actions related to these pollutants, including any water quality-based effluent limits (WQBELs) or treatment requirements, are unaffected by this initiative.

Analytical costs for TDS, sulfate, chloride, and bromide are nominal. Higher analytical costs may apply for 1,4-dioxane, but relatively few point source discharges will be affected. NPDES permit application forms have been or will be revised to ensure that TDS, sulfate, chloride, bromide, and 1,4-dioxane are sampled and reported to DEP as part of the permit application process where appropriate.

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/L.

4.4.14 Stormwater

There is no stormwater outfall associated with this facility.

4.4.15 Industrial Users

Granville Township wastewater treatment plant does not receive wastewater from any significant industrial users.

4.4.16 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.5 MGD and the facility receives no flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 Anti-backsliding

The existing monitoring requirement for TDS, Chloride, Sulfate, and Bromide has been discontinued in the permit. This is consistent with provisions for permit relaxation under CWA section 303(d)(4)(B). The discharge is in a stream segment of Juniata River that is attaining its designated uses. Eliminating the monitoring requirement for TDS, Chlorite Sulfate, and Bromide is not expected to degrade receiving waters and is consistent with PA's antidegradation policy.

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected per Chapter 93.4a(b) of the Department's rules and regulations. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is not located on a 303d listed stream segment.

5.5 Special Permit Conditions

The permit contains the following special conditions:

NPDES Permit Fact Sheet Granville Township Main STP

• Stormwater Prohibition, Approval Contingencies, Solids Management, Restrictions on receipt of hauled in waste under certain conditions, chlorine minimization requirement, notification of designation of responsible operator and batch discharge requirement.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required	
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	xxx	XXX	XXX	ххх	Continuous	Measured	
рН (S.U.)	ххх	xxx	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab	
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab	
CBOD5	100	165	XXX	25.0	40.0	50	1/week	24-Hr Composite	
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	1/week	24-Hr Composite	
TSS	125	185	xxx	30.0	45.0	60	1/week	24-Hr Composite	
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	XXX	1/week	24-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab	
E. Coli (No./100 ml)	ххх	XXX	XXX	XXX	XXX	Report	1/quarter	Grab	
UV Intensity (mW/cm ²)	ххх	xxx	Report	xxx	XXX	xxx	1/day	Recorded	
Nitrate-Nitrite	ххх	XXX	xxx	Report	XXX	ххх	2/week	24-Hr Composite	
Nitrate-Nitrite (lbs)	Report Total Mo	XXX	xxx	XXX	XXX	ххх	1/month	Calculation	

NPDES Permit Fact Sheet Granville Township Main STP

Outfall 001, Continued	from Permit Effective	e Date through Permi	it Expiration Date)
outiun 001, 001111404 (bato tin ought onin	

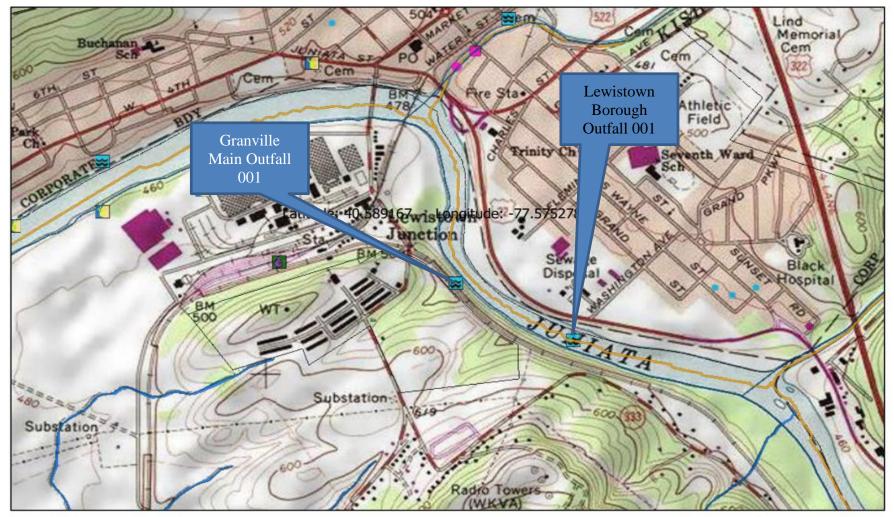
			Effluent L	imitations			Monitoring Requirement		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Total Nitrogen	xxx	XXX	XXX	Report	XXX	XXX	1/month	Calculation	
Total Nitrogen (lbs)	Report Total Mo	XXX	xxx	XXX	ххх	ххх	1/month	Calculation	
Ammonia	Report	XXX	xxx	Report	ххх	ххх	2/week	24-Hr Composite	
Ammonia (Ibs)	Report Total Mo	XXX	xxx	xxx	xxx	XXX	1/month	Calculation	
TKN	XXX	XXX	XXX	Report	ххх	XXX	2/week	24-Hr Composite	
TKN (lbs)	Report Total Mo	XXX	xxx	XXX	XXX	XXX	1/month	Calculation	
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite	
Total Phosphorus (lbs)	Report Total Mo	XXX	xxx	XXX	ххх	XXX	1/month	Calculation	

Compliance Sampling Location: At Outfall 001

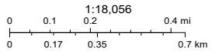
6.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen (lbs)		15196						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Nitrogen (lbs)	XXX	Report Total Annual	XXX	xxx	XXX	XXX	1/year	Calculation
Ammonia (lbs)	XXX	Report Total Annual	XXX	xxx	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs) Effluent Net	XXX	1899 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs)	XXX	Report Total Annual	XXX	XXX	xxx	XXX	1/year	Calculation

Compliance Sampling Location: At Outfall 001


	7.0 Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\square	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing effluent limitation for individual sewage permit.
\square	Other: WIP 3 and Supplement

8. Attachments

A. Topographical Map

B. WQM Model Results

			1.0 EI				
		Stream Code		Stream Name	-		
	12B	11414		JUNIATA RIVE	R		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
46.300	Granville STF	P PA0032051	0.500	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
46.010	Lewistown ST	P PA0026280	2.818	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
33.940	Twin Borough	PA0023264	0.900	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Input Data WQM 7.0

	SWF Basir			Stream Name		RMI		/ation (ft)	Drainage Area (sq mi)	Slo (ft/	ope /ft)	PW Withdr (mg	awal	Apply FC	
	12B	114	414 JUNIA	TA RIVE	R		46.30	0	448.00	2710.0	0 0.0	0000		0.00	⊻
					S	tream Dat	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> 1p pH	ł	Tem	<u>Stream</u> p	рН	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C))		
Q7-10 Q1-10 Q30-10	0.204	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	0 2	2.00 7	7.60	C).00	0.00	
	Discharge Data														
			Name	Per	rmit Numbe	Disc) Permitto Disc Flow (mgd)	Disc	c Res w Fa	serve Te ictor	isc emp °C)	Dis pl			
		Gran	ville STP	PA	0032051	0.500	0 0.500	0 0.50	000	0.000	25.00)	6.80		
					P		isc T	rib S	Stream Conc	Fate Coef					
			I	Paramete	r Name				(mg/L)	(1/days)					
			CBOD5				25.00	2.00	0.00	1.50					
			Dissolved	Oxygen			5.00	8.24	0.00	0.00					
			NH3-N				25.00	0.00	0.00	0.70					

	SWP Basir			Stream Name			RMI	Elev: (f	ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdraw (mgd)	al	Apply FC
	12B	114	414 JUNIA		२		46.01	10	419.00	2710.01	0.00000	0	.00	V
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem		Temp		Н	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C		(°C)			
Q7-10 Q1-10 Q30-10	0.204	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	2.00 7.0	60 0	.00 (). 00	
					D	ischarge	Data							
						Disc	Permitte Disc	_		Dis erve Ten				

Input Data WQM 7.0

Name	Dis Permit Number	Existing F Disc Flow (mod)	Permitted Disc Flow	Disc Flow	Reser Fact	ve T or	Disc emp (°C)	Disc pH
Lewistown STP	PA0026280	(mgd) 2.8180	(mgd) 2.8180	(mgd)	0 0.0	000	25.00	7.80
	Par	rameter Da	ta					
Pa	rameter Name	Disc Con			eam onc	Fate Coef		
i a	ameter Name	(mg/l	_) (mg/	'L) (m	ig/L) ((1/days)		
CBOD5		25	.00 2	2.00	0.00	1.50		
Dissolved O	kygen	5	.00 8	8.24	0.00	0.00		
NH3-N		25	.00 0	0.00	0.00	0.70		

	SWP Basin	Strea Coo		Stream Name		RMI		vation (ft)	Drainage Area (sq mi)	Slop (ft/ft	Withd	/S Irawal gd)	Apply FC	
	12B	114	414 JUNIA	TARIVE	ર		33.94	40	412.00	2840.0	0.000	000	0.00	☑
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH		<u>Strear</u> Temp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°°)		
Q7-10 Q1-10 Q30-10	0.159	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	4.00 8	3.30	0.00	0.00	
					Di	ischarge	Data						1	
			Name	Per	mit Numbe	Existing Disc	Permitto Disc Flow (mgd)	Dis	c Res w Fa	erve Te ctor	isc emp PC)	Disc pH		
		Twin	Borough	PA	023264	0.900	0 0.900	0.0	000	0.000	25.00	7.50		
					Pa	ar am eter	Data							
				Paramete	Name	_		Frib Conc	Stream Conc	Fate Coef				
						(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH 3-N				25.00	0.00	0.00	0.70				

	SWP Basi			Stre	eam Name		RMI		Elevation I (ft)			Slope (ft/ft)	PWS Withdraw (mgd)	al	Apply FC
	12B	114	414 JUNIA	TARIVER	ર		33.50	00	411.00	2840	10 0	00000.	0	.00	☑
					s	tream Da	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary	/ pH	Tem	<u>Stream</u> p p	н	
Conta	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C))		
Q7-10	0.159	0.00	113.00	0.000	0.000	0.0	0.00	0.00) 2	4.00	8.30	C).00 (0.00	
Q1-10		0.00	0.00	0.000	0.000										
Q30-10		0.00	0.00	0.000	0.000										
					D	ischarge	Data								

Input Data WQM 7.0

	Dis	charge D	ata				
Name	Permit Number	Disc	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor		Disc pH
Empire Kosher P	PA0007552	2.2000	0.0000	0.000	0.00	0 25.0	0 7.30
	Pa	ram eter D	ata				
Barr	ameter Name	Dis Cor				ate coef	
Faid	inicici Nanic	(mg	/L) (mg	/L) (m	ig/L) (1/	days)	
CBOD5		2	5.00 2	2.00	0.00	1.50	
Dissolved Oxy	/gen	:	5.00 8	3.24	0.00	0.00	
NH 3-N		2	5.00 (0.00	0.00	0.70	

		<u>am Code</u> 1414	de <u>Stream Name</u> JUNIATA RIVER							
NH3-N	Acute Allocation	s								
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction			
46.3	300 Granville STP	6.74	50	6.74	50	0	0			
46.0	010 Lewistown STP	6.67	50	6.71	50	0	0			
33.9	940 Twin Borough	6.53	50	6.53	50	0	0			

WQM 7.0 Wasteload Allocations

NH3-N Chronic Allocations

RMI Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
46.300 Granville STP	1.12	25	1.12	25	0	0
46.010 Lewistown STP	1.11	25	1.12	25	0	0
33.940 Twin Borough	1.1	25	1.1	25	0	0

Dissolved Oxygen Allocations

			<u>DD5</u>	NH	<u>3-N</u>	Dissolve	d Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
46.30	Granville STP	25	25	25	25	5	5	0	0	
46.01	Lewistown STP	25	25	25	25	5	5	0	0	
33.94	Twin Borough	25	25	25	25	5	5	0	0	

<u>SWP Basin</u> St 12B	ream Code 11414			<u>Stream Name</u> JUNIATA RIVER	
RMI 46.300 Reach Width (ft) 249.894 Reach CBO D5 (mq/L) 2.03 Reach DO (mg/L) 8.238	<u>Total Discharge</u> 0.50 <u>Reach De</u> 1.63 <u>Reach Kc (</u> 0.02 <u>Reach Kr (</u> 125.6	0 p <u>th (ft)</u> 4 (<u>1/days)</u> 6 1/days)		<u>vsis Temperature (°C</u> 22.004 <u>Reach WDRatio</u> 152.940 <u>each NH3-N (mg/L)</u> 0.03 <u>Kr Equation</u> Tsivoglou	<u>Analysis pH</u> 7.597 <u>Reach Velocity (fps)</u> 1.356 <u>Reach Kn (1/days)</u> 0.817 <u>Reach DO Goal (mq/L)</u> 5
<u>Reach Travel Time (days)</u> 0.013	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.001 0.003 0.004 0.005 0.007 0.008 0.009 0.010 0.012 0.013	2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	7.95 7.95 7.95 7.95 7.95 7.95 7.95 7.95	
<u>RMI</u> 46.010 <u>Reach Width (ft)</u> 458.350 <u>Reach CBOD5 (mq/L)</u> 2.21 <u>Reach DO (mq/L)</u> 7.922	<u>Total Discharge</u> 3.31 <u>Reach De</u> 1.18 <u>Reach Kc (</u> 0.09 <u>Reach Kr (</u> 0.55	8 p <u>th (ft)</u> 7 (<u>1/days)</u> 5 1/days)		<u>vsis Temperature (°C</u> 22.028 <u>Reach WDRatio</u> 386.269 <u>each NH3-N (mg/L)</u> 0.23 <u>Kr Equation</u> Tsivoglou	2) <u>Analysis pH</u> 7.598 <u>Reach Velocity (fps)</u> 1.026 <u>Reach Kn (1/days)</u> 0.818 <u>Reach DO Goal (mq/L)</u> 5
<u>Reach Travel Time (days)</u> 0.719	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.072 0.144 0.216 0.288 0.359 0.431 0.503 0.575 0.647 0.719	2.19 2.18 2.16 2.15 2.13 2.11 2.10 2.08 2.07 2.05	0.22 0.20 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.13	7.87 7.83 7.79 7.76 7.73 7.71 7.69 7.67 7.66 7.64	

WQM 7.0 D.O.Simulation

4.218) Anal		
Total Discharge Flow (mgd) 4.218 <u>Reach Depth (ft)</u> 1.151 <u>Reach Kc (1/days)</u> 0.089			<u>vsis Temperature</u> 22.105 <u>Reach WDRatio</u> 390.190 <u>each NH3-N (mg/</u> 0.18	7.610 Reach Velocity (fps) 1.122
			Kr Equation Tsivoglou	Reach DO Goal (mq/L) 5
TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
0.002 0.005	2.10 2.10	0.18 0.18	7.66 7.67	
0.007	2.10 2.10 2.10	0.18 0.18	7.67 7.67 7.69	
0.012	2.10 2.10 2.10	0.18 0.18 0.18	7.68 7.69	
0.019 0.022 0.024	2.10 2.10 2.10	0.18 0.18 0.18	7.69 7.69 7.70	
	Reach Der 1.151 Reach Kc (* 0.088 Reach Kr (* 2.369 TravTime (days) 0.002 0.005 0.007 0.010 0.012 0.014 0.017 0.019 0.022	Subreach Depth (ft) 1.151 Reach Kc (1/days) 0.089 Reach Kr (1/days) 2.369 TravTime (days) 0.002 0.005 0.010 0.010 0.012 0.012 0.013 2.10 0.014 2.10 0.017 2.10 0.019 2.10 0.022	Reach Depth (ft) 1.151 Reach Kc (1/days) 0.089 Reach Kr (1/days) 2.369 TravTime (days) 0.002 0.002 0.005 0.005 0.007 0.010 2.10 0.012 2.10 0.18 0.007 2.10 0.18 0.010 2.10 0.18 0.010 2.10 0.18 0.010 2.10 0.18 0.012 2.10 0.18 0.017 2.10 0.18 0.019 2.10 0.18 0.022 2.10	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

WQM 7.0 D.O.Simulation

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.925	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.06	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

	<u>SWP Basin</u> 12B			i <u>m Code</u> 1414	<u>Stream Name</u> JUNIATA RIVER							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
46.300	552.84	0.00	552.84	.7735	0.01894	1.634	249.89	152.94	1.36	0.013	22.00	7.60
46.010	552.84	0.00	552.84	5.1329	0.00011	1.187	458.35	386.27	1.03	0.719	22.03	7.60
33.940	573.51	0.00	573.51	6.5252	0.00043	1.151	449.07	390.19	1.12	0.024	22.11	7.61
Q1-1(0 Flow											
46.300	511.38	0.00	511.38	.7735	0.01894	NA	NA	NA	1.30	0.014	22.00	7.60
46.010	511.38	0.00	511.38	5.1329	0.00011	NA	NA	NA	0.98	0.751	22.03	7.60
33.940	530.50	0.00	530.50	6.5252	0.00043	NA	NA	NA	1.07	0.025	22.11	7.61
Q30-	10 Flow											
46.300	586.01	0.00	586.01	.7735	0.01894	NA	NA	NA	1.40	0.013	22.00	7.60
46.010	586.01	0.00	586.01	5.1329	0.00011	NA	NA	NA	1.06	0.696	22.03	7.60
33.940	607.92	0.00	607.92	6.5252	0.00043	NA	NA	NA	1.16	0.023	22.10	7.61

WQM 7.0 Hydrodynamic Outputs

C. Toxics Management Spreadsheet (TMS) Results

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Disc	harge Stream		
Facility: Grany	ille Township	NPDES Permit No.: PA0032051	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Sewage	

	Discharge Characteristics									
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	Complete Mix Times (min)					
(MGD)*	naruness (ingn)	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h		
0.5										

					0 if lef	t blank	0.5 if le	ft blank	0) if left blan	k	1 if left	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		644									
5	Chloride (PWS)	mg/L		243									
Group	Bromide	mg/L		0.2									
5	Sulfate (PWS)	mg/L		48.7									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µg/L		5.61									
3	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L											
5	Dissolved Iron	µg/L											
-	Total Iron	µg/L											
	Total Lead	µg/L		0.411									
	Total Manganese	µg/L											
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	µg/L		109									
	Total Molybdenum	µg/L											

Stream / Surface Water Information

Granville Township, NPDES Permit No. PA0032051, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Juniarta River

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	011414	46.3	448	2710			Yes
End of Reach 1	011414	46.01	419	2710.01			Yes

Statewide Criteria

O Great Lakes Criteria

ORSANCO Criteria

7-10		
	LEY	

Q 7-10																
Location RMI		LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributary		Stream	m	Analys	Analysis	
Location	TXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	рН	
Point of Discharge	46.3	0.204										100	7.6			
End of Reach 1	46.01	0.204														

 Q_h

Location	RMI	LFY Flow (cfs)		W/D	Width		Velocit	Time	Tributary		Stream		Analysis		
Location	T XIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	рH	Hardness	pН	Hardness	pН
Point of Discharge	46.3														
End of Reach 1	46.01														

NPDES Permit No. PA0032051

Model Results	esuits Granville Township, NPDES Permit No. PA0032051, Outfall 001											
Instructions Results	RETURN	TO INPU	TS	SAVE AS	PDF	PRINT All Inputs Results Limits						
Hydrodynamics												
✓ Wasteload Allocations												
✓ AFC CC	T (min): 1	15	PMF:	0.225	Ana	lysis Hardnes	ss (mg/l):	100 Analysis pH: 7.59				
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments				
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A					
Chloride (PWS)	0	0		0	N/A	N/A	N/A					
Sulfate (PWS)	0	0		0	N/A	N/A	N/A					
Total Copper	0	0		0	13.439	14.0	2,263	Chem Translator of 0.96 applied				
Total Lead	0	0		0	64.581	81.6	13,197	Chem Translator of 0.791 applied				
Total Zinc	0	0		0	117.180	120	19,367	Chem Translator of 0.978 applied				
CFC CC	T (min): ###	####	PMF:	1	Ana	Ilysis Hardne	ss (mg/l):	100 Analysis pH: 7.60				
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments				
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A					
Chloride (PWS)	0	0		0	N/A	N/A	N/A					
Sulfate (PWS)	0	0		0	N/A	N/A	N/A					
Total Copper	0	0		0	8.956	9.33	6,677	Chem Translator of 0.96 applied				
Total Lead	0	0		0	2.517	3.18	2,277	Chem Translator of 0.791 applied				
Total Zinc	0	0		0	118.139	120	85,756	Chem Translator of 0.986 applied				
THH CC	T (min): ###	####	PMF:	1	Ana	Ilysis Hardne	ss (mg/l):	N/A Analysis pH: N/A				
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments				
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A					
Chloride (PWS)	0	0		0	250,000	250,000	N/A					
Sulfate (PWS)	0	0		0	250,000	250,000	N/A					

				-					
Total Copper	0	0		0	N/A	N/A	N/A		
Total Lead	0	0		0	N/A	N/A	N/A		
Total Zinc	0	0		0	N/A	N/A	N/A		
CRL CCT (min): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A									
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A		
Chloride (PWS)	0	0		0	N/A	N/A	N/A		

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Total Zinc	0	0	0

0

0

0

0

0

0

0

0

0

N/A

N/A

N/A

N/A

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Sulfate (PWS)

Total Copper

Total Lead

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring