

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal

Facility Type Non-Municipal

Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0032468

 APS ID
 1038026

 Authorization ID
 1353328

Applicant Name	PA DCNR	Facility Name	Cook Forest State Park
Applicant Address	PO Box 120 113 River Road	Facility Address	Park Road
	Cooksburg, PA 16217-0120	_	Cooksburg, PA 16217-0120
Applicant Contact	Ryan Borcz, Park Manager	Facility Contact	Ryan Borcz, Park Manager
Applicant Phone	(814) 744-8407	Facility Phone	(814) 744-8407
Applicant E Mail	cookforestsp@pa.gov	Facility E Mail	cookforestsp@pa.gov
Client ID	52524	Site ID	264209
Municipality	Barnett Township	County	Forest
Ch 94 Load Status	Not Overloaded	Connection Status	No Limitations
SIC Code	4952	_	9512
SIC Description	Trans. & Utilities - Sewerage Systems	-	Pub Admin-Land, Mineral, Wildlife Cons
Application Received	April 8, 2021	_ EPA Waived?	No
Application Accepted	June 9, 2021	If No, Reason	DEP Discretion

Summary of Review

This is an activated sludge treatment facility without dedicated sludge holding or treatment facilities. Except for the new parameter, E Coli, the permit requirements are from the existing permit and allow reduced winter monitoring as proposed by DCNR. Low DO and pH reported.

The discharge is to the upper reach of the Lower Clarion River TMDL. TMDL background data was taken downstream at the Route 36 bridge. As the Clarion River above the Route 36 bridge is attaining all uses no water-quality based requirements to achieve the TMDL requirements should be necessary. The TMDL incorporation is necessary to accurately assess background conditions.

Sludge use and disposal description and location(s): 35.9 dry tons hauled of site by Buerk's Septic.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		William H. Mentzer William H. Mentzer, P.E. Environmental Engineering Specialist	January 4, 2022
X		Justin C. Dickey Justin C. Dickey, P.E. Environmental Engineer Manager	January 6, 2021

scharge. Receiving	Waters and Water Supply In	formation	
	001	Design Flow (MGD)	0.079
_	· 	,	
_	41° 19' 54.50"	Longitude DP	-79º 12' 27.10"
_	41º 19' 53.23"	Longitude NHD	-79º 12' 28.23"
	Cooksburg	Quad Code	0812
Wastewater: _	Treated campground domestic	wastes	
Receiving Waters _	Clarion River	Stream Code	49224
NHD Com ID	102668457	RMI	49.28
Drainage Area	806.6	Yield (cfs/mi ²)	0.119
Q7-10 Flow (cfs) _	87.1	Q7-10 Basis	Clarion River
Elevation (ft)	1145.49	Slope (ft/ft)	0.0009
Watershed No.	17-B	Chapter 93 Class.	CWF
Existing Use _	statewide	Existing Use Qualifier	none
	none	Exceptions to Criteria	none
•	The NHD outfall is 1.02 miles a	above an unnamed Clarion River	tributary
Low Flow	Clarion River USGS St	<u>03029500</u>	48.33
	Low Flow (cfs) _ <u>96</u>	Drainage (sq mi) <u>806.644</u>	Yield (cfs/sq mi) 0.119
	Low Flow (cfs) _ <u>96</u> Period _ <u>1940-96</u>		<u> </u>
Comments	Period <u>1940-96</u>	• , , ,	Slope (ft/ft) 0.0011
Comments	Period <u>1940-96</u>	Elevation (ft) <u>1141.15</u>	Slope (ft/ft) 0.0011
	Period <u>1940-96</u> The Clarion River is regulate mill water use.	Elevation (ft) <u>1141.15</u>	Slope (ft/ft) 0.0011
Assessment Status	Period1940-96 The Clarion River is regulate mill water use. Attaining Use(s)	Elevation (ft) <u>1141.15</u>	Slope (ft/ft) 0.0011
	Period <u>1940-96</u> The Clarion River is regulate mill water use.	Elevation (ft) <u>1141.15</u>	Slope (ft/ft) 0.0011
Assessment Status Impairment Cause Impairment Source	Period1940-96 The Clarion River is regulate mill water use. Attaining Use(s)	Elevation (ft) 1141.15 d through the East Branch Dam a	Slope (ft/ft) 0.00112
Assessment Status Impairment Cause	Period	Elevation (ft) <u>1141.15</u>	Slope (ft/ft) 0.00112
Assessment Status Impairment Cause Impairment Source	Period	Elevation (ft) 1141.15 d through the East Branch Dam a	Slope (ft/ft) 0.00112 as of 1952 and upstream paper ver Watershed
Assessment Status Impairment Cause Impairment Source TMDL Status	Period	Elevation (ft) 1141.15 d through the East Branch Dam a Name Lower Clarion Richard	Slope (ft/ft) 0.00112 as of 1952 and upstream paper ver Watershed
Assessment Status Impairment Cause Impairment Source TMDL Status	Period	Elevation (ft) 1141.15 d through the East Branch Dam a Name Lower Clarion Richard	Slope (ft/ft) 0.0011
Assessment Status Impairment Cause Impairment Source TMDL Status Comments	Period	Elevation (ft) 1141.15 d through the East Branch Dam a Name Lower Clarion River TMDL is attaining its agreement to the point. Retention (d)	Slope (ft/ft) 0.00112 as of 1952 and upstream paper ver Watershed uses and serves as the
Assessment Status Impairment Cause Impairment Source TMDL Status Comments Impoundment Background/Ambier	Period	Elevation (ft) 1141.15 d through the East Branch Dam a Name Lower Clarion River TMDL is attaining its agreement. Retention (d) Data Source	Slope (ft/ft) 0.00112 as of 1952 and upstream paper ver Watershed uses and serves as the
Assessment Status Impairment Cause Impairment Source TMDL Status Comments Impoundment Background/Ambier pH (SU)	Period	Elevation (ft) 1141.15 d through the East Branch Dam a Name Lower Clarion River TMDL is attaining its agreement to the point. Retention (d)	Slope (ft/ft) 0.00112 as of 1952 and upstream paper ver Watershed uses and serves as the
Assessment Status Impairment Cause Impairment Source TMDL Status Comments Impoundment Background/Ambier pH (SU) Temperature (°F)	Period	Elevation (ft) 1141.15 d through the East Branch Dam a Name Lower Clarion River TMDL is attaining its agreement. Retention (d) Data Source	Slope (ft/ft) 0.00112 as of 1952 and upstream paper ver Watershed uses and serves as the
Assessment Status Impairment Cause Impairment Source TMDL Status Comments Impoundment Background/Ambier pH (SU)	Period	Elevation (ft) 1141.15 d through the East Branch Dam a Name Lower Clarion River TMDL is attaining its agreement. Retention (d) Data Source	Slope (ft/ft) 0.00112 as of 1952 and upstream paper ver Watershed uses and serves as the
Assessment Status Impairment Cause Impairment Source TMDL Status Comments Impoundment Background/Ambier pH (SU) Temperature (°F) Hardness (mg/L) Other:	Period	Elevation (ft) 1141.15 d through the East Branch Dam a Name Lower Clarion River TMDL is attaining its agreement. Retention (d) Data Source	Slope (ft/ft) 0.00117 as of 1952 and upstream paper ver Watershed uses and serves as the 8.57 RMI 26.15
Assessment Status Impairment Cause Impairment Source TMDL Status Comments Impoundment Background/Ambier pH (SU) Temperature (°F) Hardness (mg/L) Other:	Period	Elevation (ft) 1141.15 d through the East Branch Dam a Name Lower Clarion River TMDL is attaining its agreement and point. Retention (d) Data Source TMDL	Slope (ft/ft) 0.00111 as of 1952 and upstream paper ver Watershed uses and serves as the 8.57 RMI 26.15

Changes Since Last Permit Issuance: none Other Comments: none

Other WWTP

	Tro	eatment Facility Summa	ry	
Treatment Facility Na	me: Cook Forest State Par	k		
WQM Permit No.	Issuance Date			
2769401	January 1, 1970			
2769401 A-1	Nov 2016			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Activated Sludge	Sodium Hypochlorite	0.079
			•	
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal

Not Overloaded

Changes Since Permit Issuance: Amendment A1 is for influent control and disinfection replacement.

83

Other Comments:

0.079

The original treatment: comminution, extended aeration, and disinfection without a sludge production estimate or any sludge treatment and liquid sodium hypochlorite disinfection. The original permit was issued to the Bureau of State Parks which was then part of the Department of Forests and Waters. In 1975 the permit was transferred to DER.

The application is dated September 30, 1969, notarized on October 2, 1969, and received on October 6, 1969. The permit was issued to Forest and Waters on January 1, 1970 and transferred to DEP on September 18, 1974. Any further transfer is optional as the owner operator is the Commonwealth of Pennsylvania.

The application addresses two flow based 0.0745 and 0.079-MGD designs. The modules generally support the 0.0745-MGD design, but the chemical data tabulation supports a 0.079-MGD design. Also there is two campground populations at 1000 and 1100 people. The design organic load is 255-ppd with a 1100 campground population. During the application review a peak holiday weekend basis was proposed but never required. Aeration design has changed significantly since this facility was designed and built but the facility still should perform adequately.

Design is for an activated sludge facility using extended aeration. Treatment is comminution including a bar screen bypass, wet well/dry well pump station with two 140-gpm pumps (0.2016-MGD pumps), parallel aeration tanks followed by dedicated clarifiers and common liquid sodium hypochlorite disinfection.

The design inorganic load is 83-PPD based 6900 people at 0.012-ppcd. The waste description used a 150-mg/L concentration with a 0.079-MGD design flow. Similarly, the organic load is 255-PPD based 6900 people at 0.037-ppcd. The waste description does not specify a concentration and refers to the design report.

The applicant is the Ryan Borcz. Cook Forest park manager

 Telephone
 814-744-8407

 Fax
 814-744-8253

 E Mail
 cookforest@pa.gov

The application is Daniel A. Kauffman, Senior Civil EngineerWestern Engineering Office

Bureau of Facility Design and Construction 195

Park Road

Prospect, Pa 16052-9387

Telephone 724 865-2131 ext 851 Fax 724-865-9075

E Mail daakauffma@pa.gov

NPDES Permit Fact Sheet Cook Forest State Park

Compliance History

DMR Data for Outfall 001 (from May 1, 2020 to April 30, 2021)

Parameter	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20
Flow (MGD) Average Monthly	0.019	0.027	0.010	0.018	13714	11300	0.010	0.0125	0.0153	0.0173	0.0188	0.0232
Flow (MGD) Daily Maximum	0.077	0.047	0.013	0.032	48800	58000	0.015	0.0218	0.0203	0.0257	0.0287	0.053
pH (S.U.) Minimum	7.13	6.99	6.75	6.70	7.0	7.39	5.7	5.5	5.5	5.8	6.0	6.5
pH (S.U.) Instant Maximum	7.60	7.48	8.80	7.40	8.8	7.5	7.03	6.9	6.7	6.9	6.9	7.0
DO (mg/L) Minimum	5.24	9.20	11.57	10.14	9.27	8.2	3.42	3.65	3.02	3.63	3.38	2.7
TRC (mg/L) Average Monthly	0.36	0.37	0.44	0.37	0.4	0.4	0.20	0.1	0.1	0.1	0.2	0.2
CBOD5 (mg/L) Average Monthly	2.30	0.30	0.75	1.65	1.7	0.14	1.8	2	3.0	2	3.0	21
TSS (mg/L) Average Monthly	6.5	4	6	4.0	6	0.63	11.5	8	9	6	5.0	9
F Coliform (#/100 ml) Geometric Mean	9	9	< 10	9	4.5	209.76	104	60	58	122	13	245
Total Nitrogen (mg/L) Average Monthly	3.32	1.31	1.75	1.43	2.6	0.48	40.08	50.22	52.56	51.24	28.42	17.51
Ammonia (mg/L) Average Monthly	1.85	0.09	0.16	0.22	0.05	0.16	15.35	0.24	0.2	0.15	4.02	14.72
Total Phosphorus (mg/L) Ave Monthly	0.158	0.122	0.17	0.065	0.37	0.033	9.97	2.192	4.062	2.941	0.948	0.524

Compliance History

Effluent Violations for Outfall 001, from: June 1, 2020 To: April 30, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
DO	06/30/20	Min	3.38	mg/L	4.0	mg/L
pH	07/31/20	Min	5.8	S.U.	6.0	S.U.
DO	07/31/20	Min	3.63	mg/L	4.0	mg/L
DO	08/31/20	Min	3.02	mg/L	4.0	mg/L
pH	08/31/20	Min	5.5	S.U.	6.0	S.U.
DO	09/30/20	Min	3.65	mg/L	4.0	mg/L
рН	09/30/20	Min	5.5	S.U.	6.0	S.U.
DO	10/31/20	Min	3.42	mg/L	4.0	mg/L
pH	10/31/20	Min	5.7	S.U.	6.0	S.U.

NPDES Permit Fact Sheet Cook Forest State Park

Summary of Inspections by Clint Stonesifer dated February 15, 2018 no problems noted.

Other Comments: Nov and Dec 2020 flow apparently entered as gpd not mgd Short summer flow averaging 0.0150-MGD is 19.0% of design Short summer maximum flow is 0.0257-MGD and 32.5% of design Short summer effluent BOD5 averages 3.3 with a 21-mg/L maximum Short summer effluent TSS averages 7.7 with a 11.5-mg/L maximum Short summer TSS/BOD5 ratio 3.3

Low DO and pH correlate to with a high TSS/CBOD5 ratio implying a low CBOD5 load and excessive aeration which led to the NPDES permit DO and pH goals not being achieved. The permit requirements should be achievable without additional treatment.

Design Hydraulic Design Organic Design		Influent Mean MGD 0.079 0.079	Mean PPD	Max PPD	Min mg/l	Mean mg/l	Max mg/l		iffluent Mean mg/l	Max mg/l
Annual average	2018	0.031								
3.5	2019	0.027								
	2020	0.019								
Peak Monthly Ave										
pH					6.7		7.0	6.7		7.0
TRC								0.05	0.22	0.47
BOD5			1	1	7.4		7.4	4.2	5.0	6.5
TSS			1	1	8		8	8	10	12
P			0	0	0.30	09	0.309	0.592	0.755	0.952
Ammonia			0	0	3.09	9	0.309	0.09	4.38	12.96
Coliform					9		9	10	10	2100
NO2NOS					0.61	l	0.61	0.49	0.49	0.49
DO								4	4	4

	Develop	oment of Effluent Limitations	
Outfall No.	001	Design Flow (MGD) 0.079	
Latitude	41° 19' 54.68"	Longitude -79° 12' 28.60"	
Wastewater I	Description: Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO	4.0	Daily Minimum		BPJ
E Coli	126	Geo Mean		92a.47(a)

Comments: secondary treatment is the minimum treatment required. E coli is a new parameter for which monitoring is proposed.

Water Quality-Based Limitations

A Sewerage Program based "Reasonable Potential Analysis" determined the following parameters were candidates for limitations: Flow, BOD5 or CBOD5, TSS, nitrogen (N), phosphorus (P), ammonia-nitrogen, total residual chlorine (TRC), dissolved oxygen (DO), fecal coliform, e coli and pH.

TRC is spreadsheet evaluated. BOD5, CBOD5 and DO are evaluated with WQM 7.1.

The following limitations were determined through water quality modeling (output files attached):

Paran	neter		Limit (mg/l)	Limit (mg/l)		Model		
Parameter	Period	Minimum	Average	Maximum		Minimum	Average	Maximum
CBOD5			25	50	NAS		25	50
Ammonia	summer		25	50	NA		25	50
DO		4.0			NA	4.0		

Comments: Secondary treatment requirements are controlling. No ammonia requirements are necessary.

Best Professional Judgment (BPJ) Limitations

Comments: is the DO limitation basis.

Anti-Backsliding

Backsliding is not appropriate for violation corrections

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent	Limitations			Monitoring F	Requirements
Parameter	Mass Units	(lbs/day) (1)		Concentra	tions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.) Oct 1 - Apr 30	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	3/week	Grab
pH (S.U.) May 1 - Sep 30	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO Oct 1 - Apr 30	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	3/week	Grab
DO May 1 - Sep 30	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC Oct 1 - Apr 30	XXX	XXX	XXX	0.5	XXX	1.6	3/week	Grab
TRC May 1 - Sep 30	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50.0	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60.0	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/quarter	8-Hr Composite
Ammonia	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite

Compliance Sampling Location: Outfall 001 after disinfection

,	charger	Cook Forest	0.70						ay, May 14, 2016	
	Site	Cook Forest					Revised	Tuesday	y, January 4, 2022	
	nicipality County	Barnett Town Forest	nsnip							
	ES Permit	PA0034268								
	0.5									
					TRC EVA	LUATION				
	priate values in E									
	95.9998	= Q stream (c				= CV Daily				
(0.0790	= Q discharge				= CV Hourly	F			
	30 0.3	= no. samples	s emand of Strea	m		= AFC_Partial M = CFC_Partial M				
	0.3		emand of Disch			= AFC_Criteria		ne (min)		
		= BAT/BPJ Va		3		= CFC_Criteria (
	0		Safety (FOS)			=Decay Coeffici	ent (K)	` '		
	Source	Reference	AFC Calculation	ons		Refere	ence		CFC Calculations	
	TRC	1.3.2.iii		WLA afc =		1.3.2			WLA cfc = 244.305	
PENTOXSD TENTOXSD		5.1a 5.1b		LTAMULT afc = LTA_afc=		5.1 5.1		LT	AMULT cfc = 0.581 LTA_cfc = 142.028	
PENIONSD	IRG	5.10		LTA_alc=	: 93.379	5.10	u		LTA_CIC = 142.026	
Source						Effluer	t Limit Calcula	tions		
PENTOXSD T	TRG	5.1f			AML MULT =	: 1.231				
PENTOXSD '	TRG	5.1g			LIMIT (mg/l) =	0.500	E	BAT/BPJ		
					X LIMIT (mg/l) =	1.635				
WLA afc		(.019/e(-k*AFC	C_tc)) + [(AFC	Yc*Qs*.019/Qd*e	(-k*AFC_tc))					
			Yc*Qs*Xs/Qd							
LTAMULT afc				6*LN(cvh^2+1)^0.5	5)					
LTA_afc		wla_afc*LTAM	IULT_afc							
WIA of		(011/0/-6*05	C tc) - I/CEC '	Vc*Oe* 011/0-1*	(-k*CEC +-))					
WLA_cfc				Yc*Qs*.011/Qd*e(i)]*(1-FOS/100)	(-n uru_(C))					
LTAMULT_cfc				les+1))-2.326*LN(cvd^2/no_sampl	es+1)^0.5)				
LTA_cfc		wla_cfc*LTAM			- '	. ,				
AML MULT				mples+1)^0.5)-0.5*		amples+1))				
AVG MON LIM			J,MIN(LTA_afc,l	LTA_cfc)*AML_MU	JLT)					
			limit/AMI MI							
	-K*CFC_tc/1440))	+(((CFC_Yc*Qs	*0.011)/(1.547* ⁽	JLT)/LTAMULT_a						
(0.011/EXP(- *EXP(-K*C	-K*CFC_tc/1440)) CFC_tc/1440)))+X Chlorine Requi	+(((CFC_Yc*Qs d+(CFC_Yc*Qs	*0.011)/(1.547*(*Xs/1.547*Qd)) [;] =	ULT)/LTAMULT_ar Qd) *(1-FOS/100) perennial	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(- *EXP(-K*C Stream	-K*CFC_tc/1440)) CFC_tc/1440)))+X	+(((CFC_Yc*Qs d+(CFC_Yc*Qs	*0.011)/(1.547*(*Xs/1.547*Qd))	JLT)/LTAMULT_a Qd) *(1-FOS/100)	fc)	Demand	+ (Chlorine Residua	le	
(0.011/EXP(-I *EXP(-K*C Stream Stream	-K*CFC_tc/1440)) CFC_tc/1440)))+X Chlorine Requi Reach/Node Flow Code	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red	*0.011)/(1.547*(*Xs/1.547*Qd)) [;] =	JLT)/LTAMULT_ar Qd) *(1-FOS/100) perennial 1	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(- *EXP(-K*C Stream Stream Stream	-K*CFC_tc/1440)) CFC_tc/1440)))+X Chlorine Requil Reach/Node Flow	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red	*0.011)/(1.547*(*Xs/1.547*Qd)) [;] =	Qd) *(1-FOS/100) perennial 1 perennial 49224	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples	-K*CFC_tc/1440)))+X CFC_tc/1440)))+X Chlorine Requii Reach/Node Flow Code Function	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red	*0.011)/(1.547* *Xs/1.547*Qd)) = 1	Qd) *(1-FOS/100) perennial 1 perennial 49224 30	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples	-K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red	*0.011)/(1.547* *Xs/1.547*Qd)) = 1	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Samples reach	-K*CFC_tc/1440)))+X CFC_tc/1440)))+X Chlorine Requii Reach/Node Flow Code Function	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red	*0.011)/(1.547* *Xs/1.547*Qd)) = 1	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples reach	-K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red	*0.011)/(1.547* *Xs/1.547*Qd)) = 1 1	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Samples reach treach drainage	-K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions	RMI RMI RMI sq niles mg/L	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500	fc)	P Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Samples reach reach drainage TRC	-K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum	*0.011)/(1.547* *Xs/1.547*Od)) = 1 RMI RMI RMI feet sq miles mg/L mg/L	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600	fc)	P Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Streach reach drainage TRC elevation	-K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled	*0.011)/(1.547** *Xs/1.547*Qd)) = 1 RMI RMI RMI feet sq miles mg/L mg/L feet	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1145.49	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Samples reach drainage TRC elevation elevation	-K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End	+(((CFC_Yc*Qs d+(CFC_Yc*Qs ed Conditions average maximum modelled modelled	*0.011)/(1.547** *Xs/1.547*Qd)) = 1 RMI RMI RMI feet sq miles mg/L mg/L feet feet feet	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1145.49 1142.61	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-Image) (0.011/EXP(-K*C) (0.011/EXP(-K*C) (0.011/EXP(-K*C) (0.011/EXP(-Image)	-K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled	RMI RMI RMI feet set mg/L mg/L feet feet foot/foot	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1145.49	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Streach reach drainage TRC elevation elevation elevation slope low flow discharge	-K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End	+(((CFC_Yc*Qs d+(CFC_Yc*Qs ed Conditions average maximum modelled modelled	RMI RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mg/d	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge Runoff	K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled	RMI RMI RMI feet sq miles mg/L mg/L feet foot/foot cfs/sq mi mgd hours	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1145.49 1142.61 0.000 0.119	fc)	P Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge Runoff	-K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled	RMI RMI RMI feet sq miles mg/L mg/L feet foot/foot cfs/sq mi mgd hours	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge Runoff	K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled	RMI RMI RMI feet sq miles mg/L mg/L feet foot/foot cfs/sq mi mgd hours	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge Runoff	K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled	RMI RMI RMI feet sq miles mg/L mg/L feet foot/foot cfs/sq mi mgd hours	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-Immediate)	K*CFC_tc/1440))+X CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled	RMI RMI RMI feet sq miles mg/L mg/L feet foot/foot cfs/sq mi mgd hours	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790	fc)	P Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Streach reach drainage TRC elevation elevation elevation elevation flow discharge Runoff No chlorine	-K*CFC_tc/1440))+X Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled	RMI RMI feet sq miles mg/L feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790 24.000	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Streach drainage TRC elevation elevation elevation elevation slope low flow discharge Runoff No chlorine stream stream stream	-K*CFC_tc/1440))+X -Chlorine Require Reach/Node Flow Code Function outfall Reach End limitation Period requirements income flow flow flow flow	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled dicated for the	RMI RMI RMI feet sq miles mg/L feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-Immediate)	-K*CFC_tc/1440))+X*CFC_tc/1440))+X*CFC_tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled dicated for the total demand	RMI RMI RMI feet sq miles mg/L mg/L feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790 24.000	fc)	P Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C Stream Stream Stream Stream Streach drainage TRC elevation elevation slope low flow discharge Runoff No chlorine stream stream stream stream discharge	K*CFC_tc/1440))+X*CFC_tc/1440))+X*CC-tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation Period requirements incoming flow flow chlorine discharge	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled dicated for the total demand demand	RMI RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278 0.3	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C Stream Stream Stream Stream Streach drainage TRC elevation elevation slope low flow discharge Runoff No chlorine stream stream stream stream discharge	-K*CFC_tc/1440))+X*CFC_tc/1440))+X*CFC_tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled dicated for the total demand demand	RMI RMI RMI feet sq miles mg/L mg/L feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge Runoff No chlorine stream stream stream stream discharge	K*CFC_tc/1440))+X*CFC_tc/1440))+X*CC-tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation Period requirements incoming flow flow chlorine discharge	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled dicated for the total demand demand	RMI RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278 0.3	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge Runoff No chlorine stream stream stream stream discharge stream	-K*CFC_tc/1440))+X*CFC_tc/1440))+X*CFC_tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled dicated for the total demand demand demand Waste	RMI RMI RMI feet sq miles mg/L mg/L feet feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278 0.3 786.4	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Streach reach drainage TRC elevation elevation elevation slope low flow discharge Runoff No chlorine stream stream stream stream stream stream gtream permitted	-K*CFC_tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled dicated for the total demand demand demand Waste	RMI RMI RMI feet sq miles mg/L feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278 0.3 786.4	fc)	P Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge Runoff	-K*CFC_tc/1440))+X*CFC_tc/1440))+X*CFC_tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled dicated for the total demand demand demand Waste	RMI RMI RMI feet sq miles mg/L mg/L feet feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278 0.3 786.4	fc)	P Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Streach reach drainage TRC elevation elevation elevation slope low flow discharge Runoff No chlorine stream stream stream stream stream stream gtream permitted	-K*CFC_tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled dicated for the total demand demand demand Waste	RMI RMI RMI feet sq miles mg/L feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278 0.3 786.4	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Streach reach drainage TRC elevation elevation elevation slope low flow discharge Runoff No chlorine stream stream stream stream stream stream gtream gtream permitted	-K*CFC_tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled dicated for the total demand demand demand Waste	RMI RMI RMI feet sq miles mg/L feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278 0.3 786.4	fc)	PDemand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Streach reach drainage TRC elevation elevation elevation slope low flow discharge Runoff No chlorine stream stream stream stream stream stream gtream gtream permitted	-K*CFC_tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled dicated for the total demand demand demand Waste	RMI RMI RMI feet sq miles mg/L feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278 0.3 786.4	fc)	PDemand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Streach reach drainage TRC elevation elevation elevation slope low flow discharge Runoff No chlorine stream stream stream stream stream stream gtream gtream permitted	-K*CFC_tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled dicated for the total demand demand demand Waste	RMI RMI RMI feet sq miles mg/L feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278 0.3 786.4	fc)	Demand	+ (Chlorine Residua	al	
(0.011/EXP(-I*EXP(-K*C) Stream Stream Stream Stream Streach reach drainage TRC elevation elevation elevation slope low flow discharge Runoff No chlorine stream stream stream stream stream stream gtream permitted	-K*CFC_tc/1440))+X*Chlorine Requii Reach/Node Flow Code Function outfall Reach End limitation	+(((CFC_Yc*Qs d+(CFC_Yc*Qs red Conditions average maximum modelled modelled modelled dicated for the total demand demand demand Waste	RMI RMI RMI feet sq miles mg/L feet foot/foot cfs/sq mi mgd hours Clarion River	Qd) *(1-FOS/100) perennial 1 perennial 49224 30 49.29 47.75 8131.2 806.642 0.500 1.600 1.145.49 1142.61 0.000 0.119 0.0790 24.000 95.99976 62.046278 62.125278 0.3 786.4	fc)	Demand	+ (Chlorine Residua	al	

Input Data WQM 7.0

		Strea		Stre	eam Name		RMI	Eleva		Drainage Area (sq mi)		With	WS drawal ngd)	Apply FC
		492	224 CLARI	ON RIVEI	₹		49.29	0 11	45.49	806.6	64 0.0	0000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	<u>Strea</u> Temp	<u>m</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.077	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00	7.20	0.00	0.00	
					Di	scharge [Data							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitted Disconstruction Permitted Disconst	Disc Flow	Res	erve T ctor	Disc emp (°C)	Disc pH		
		Cook	Forest SP	PA	0034268	0.0790	0.079	0 0.079	0 (0.000	25.00	6.60	-	
					Pa	rameter I	Data							
			ļ	Paramete	r Name	Co	onc C	conc C	ream Conc	Fate Coef				
	-					(m	g/L) (m	ng/L) (n	ng/L)	(1/days)				
			CBOD5			;	25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			4.00	8.24	0.00	0.00)			
			NH3-N			:	25.00	0.10	0.00	0.70)			

Input Data WQM 7.0

		Strea Cod		Stre	eam Name		RMI	Eleva		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
		492	224 CLARI	ON RIVER	₹		47.76	0 11	42.61	806.64	0.00000		0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary pH	Tem	Stream np	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	()		
Q7-10	0.077	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20	.00 7.2	:C	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
230-10		0.00	0.00	0.000	0.000									
					Di	scharge [Data							
			Name	Per	mit Number		d Disc Flow	Disc Flow	Rese Fac		р р	sc H		
						(mgd)	(mgd)	(mgd)						
						0.0000		0.000	0 0	.000 2	5.00	7.00		
					Pa	rameter [Data							
			,	Doromoto	r Nama	Di Ce			ream Conc	Fate Coef				
		Parameter Name				(m	g/L) (m	g/L) (n	ng/L)	(1/days)				
	_		CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				

25.00

0.00

0.00

0.70

NH3-N

Input Data WQM 7.0

		Strea Cod		Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
		492	224 CLARI	ON RIVE	₹		37.77	0 10	98.17	851.00	0.00000)	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ter	<u>Stream</u> np	<u>n</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C	C)		
Q7-10 Q1-10 Q30-10	0.077	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00 7.2	2C	0.00	0.00	
					Di	scharge [Data							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte d Disc Flow (mgd)	e Design Disc Flow (mgd)	Res	Dis- erve Tem ctor (°C	ip į	isc oH		
						0.0000	0.0000	0.000	0 (0.000 2	5.00	7.00		
					Pa	rameter [Data							
			ı	Paramete	r Name	Di: Co			ream Conc	Fate Coef				
			·	a. a. 110101		(m	g/L) (m	ıg/L) (n	ng/L)	(1/days)				
	-		CBOD5			2	25.00	2.00	0.00	1.50		-		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				

25.00

0.00

0.70

0.00

NH3-N

WQM 7.0 Hydrodynamic Outputs

	SWP Basin St 17B			Stream Code 49224			Stream Name CLARION RIVER					
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
49.290	62.03	0.00	62.03	.1222	0.00036	1.108	146.05	131.82	0.38	0.243	20.01	7.20
47.760	62.03	0.00	62.03	.1222	0.00084	1.089	141.72	130.12	0.40	1.516	20.01	7.20
Q1-1	0 Flow											
49.290	39.70	0.00	39.70	.1222	0.00036	NA	NA	NA	0.30	0.312	20.02	7.20
47.760	39.70	0.00	39.70	.1222	0.00084	NA	NA	NA	0.31	1.945	20.02	7.20
Q30-	10 Flow	,										
49.290	84.36	0.00	84.36	.1222	0.00036	NA	NA	NA	0.46	0.205	20.01	7.20
47.760	84.36	0.00	84.36	.1222	0.00084	NA	NA	NA	0.48	1.277	20.01	7.20

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	95.00%	Use Balanced Technology	~
D.O. Goal	5		

Tuesday, January 4, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP BasinStream CodeStream Name17B49224CLARION RIVER

NH3-N	NH3-N Acute Allocations											
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
49.29	00 Cook Forest SP	13.76	50	13.76	50	0	0					
47.76	60	NA	NA	13.76	NA	NA	NA					
NH3-N	Chronic Allocati	ons										
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
49.29	0 Cook Forest SP	1.72	25	1.72	25	0	0					
47.76	60	NA	NA	1.72	NA	NA	NA					

Dissolved Oxygen Allocations

		CBC	<u>DD5</u>	NH:	<u>3-N</u>	Dissolved	<u>d Oxygen</u>	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
49.29	Cook Forest SP	25	25	25	25	4	4	0	0	
47.76		NA	NA	NA	NA	NA	NA	NA	NA	

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
17B	49224		(CLARION RIVER	
RMI 49.290 Reach Width (ft) 146.055 Reach CBOD5 (mg/L) 2.05 Reach DO (mg/L) 8.235	Total Discharge 0.079 Reach De 1.100 Reach Kc (0.030 Reach Kr (0.630	9 pth (ft) 8 1/days) 0 1/days)		lysis Temperature (%) 20.010 Reach WDRatio 131.820 each NH3-N (mg/L) 0.15 Kr Equation Tsivoglou	C) Analysis pH 7.197 Reach Velocity (fps) 0.384 Reach Kn (1/days) 0.701 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 0.243	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.024 0.049 0.073 0.097 0.122 0.146 0.170 0.195 0.219	2.04 2.04 2.04 2.04 2.04 2.03 2.03 2.03 2.03	0.15 0.14 0.14 0.14 0.13 0.13 0.13 0.13	8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	
RMI 47.760 Reach Width (ft) 141.717 Reach CBOD5 (mg/L) 2.03 Reach DO (mg/L) 8.243	Total Discharge 0.079 Reach De 1.089 Reach Kc (0.010 Reach Kr (1.580	9 pth (ft) 9 1/days) 0 1/days)		lysis Temperature (%) 20.010 Reach WDRatio 130.117 each NH3-N (mg/L) 0.03 Kr Equation Tsivoglou	C) Analysis pH 7.197 Reach Velocity (fps) 0.403 Reach Kn (1/days) 0.701 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 1.516	TravTime (days) 0.152 0.303 0.455 0.606 0.758 0.910 1.061 1.213 1.365 1.516	2.03 2.02 2.02 2.02 2.02 2.01 2.01 2.01 2.00 2.00	0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.2	

WQM 7.0 Effluent Limits

	SWP Basin Stream 17B 492			Stream Name CLARION RIVE	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
49.290	Cook Forest SP	PA0034268	0.079	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4