

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.PA0033057APS ID12404Authorization ID1373900

Applicant and Facility Information

Applicant Name	Nolt He	enry W	Facility Name	Crestview Village MHP
Applicant Address	455b M	iddle Creek Road	Facility Address	Colebrook Road
	Lititz, P	A 17543-7303		Middletown, PA 17057
Applicant Contact	Henry N	Volt	Facility Contact	Jamie Weirich
Applicant Phone	(717) 7	33-6802	Facility Phone	(717) 943-0056
Client ID	39340		Site ID	1521
Ch 94 Load Status	Not Ov	erloaded	Municipality	Londonderry Township
Connection Status			County	Dauphin
Date Application Receiv	ved	October 25, 2021	EPA Waived?	Yes
Date Application Accep	pted November 5, 2021		If No, Reason	
Purpose of Application		NPDES Renewal for discharg	ge of treated sewage	

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for the discharge of treated domestic sewage from a wastewater treatment plant that serves an existing mobile home park. Middletown Water Co. has a reservoir located upstream from the discharge that has no required minimum release rate, so it is possible for the stream to be dry during certain drought conditions when the reservoir is being used as a water source. The effluent limits were established to protect downstream users during these times. The facility is a package plant with a design capacity of 0.0145 mgd, and discharge to Iron Run which is classified for warm water fishes. The existing NPDES permit was issued on January 27, 2017 with an expiration date of January 31, 2022. The applicant submitted a renewal application to the Department on October 25, 2021. The permittee is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Sludge is digested in an aerobic digester and hauled out by a licensed hauler periodically.

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is

Approve	Deny	Signatures	Date
х		J. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	October 7, 2022
x		Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	November 1, 2022

Summary of Review

significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

- Monitoring requirement for TKN, nitrate-nitrite, Total Nitrogen and Total Phosphorus has been revised to 2/year.
- Annual monitoring of E. coli has been added.

1.4 Existing Limitations and Monitoring Requirements

			MONITORING REQUIREMENTS					
		Mass Units			Concentratio	ns	Minimum	Required
Discharge Parameter	Total Monthly (Ibs/mo)	Daily Maximum (Ibs/day)	Total Annual (Ibs/year)	Monthly Average (mg/l)	Daily Maximum (mg/l)	Inst. Maximum (mg/l)	Measurement Frequency	Sample Type
Flow (mgd)	Monitor & Report Avg	Monitor & Report	xxx	XXX	xxx	xxx	Continuous	Measured
pH (S.U.)	xxx	XXX	xxx	Fron	n 6.0 to 9.0 inc	clusive	1/day	Grab
D.O.	xxx	XXX	xxx	Minimur	n of 5.0 mg/l a	at all times	1/day	Grab
Total Residual Chlorine	xxx	xxx	xxx	0.5	xxx	1.63	1/day	Grab
Total Suspended Solids	xxx	xxx	xxx	30	xxx	60	2/month	8-hour comp
CBOD₅ (5/1 to 10/31)	xxx	XXX	xxx	10	xxx	20	2/month	8-hour comp
CBOD ₅ (11/1 to 4/30)	xxx	XXX	xxx	20	xxx	40	2/month	8-hour comp
Fecal Coliform (5/1 to 9/30)	xxx	XXX	xxx	200	xxx	1000	2/month	Grab
Fecal Coliform (10/1 to 4/30)	xxx	XXX	xxx	2000	xxx	10000	2/month	Grab
Nitrate-Nitrite	xxx	xxx	xxx	xxx	Report Daily Max	xxx	1/quarter	8-Hr Composite
Total Nitrogen	xxx	xxx	xxx	XXX	Report Daily Max	xxx	1/quarter	8-Hr Composite
TKN	xxx	xxx	xxx	xxx	Report Daily Max	xxx	1/quarter	8-Hr Composite
Total Phosphorus	xxx	xxx	xxx	xxx	Report Daily Max	xxx	1/quarter	8-Hr Composite

1.	3 Discharge, Receiving V	Vaters and Water Supply Inform	nation
Outfall No. 001		_ Design Flow (MGD)	0.0145
Latitude 40° 12' 13.9	6"	_ Longitude	76° 41' 38.62"
Quad Name Middletow	'n	_ Quad Code	1732
Wastewater Description:	Sewage		
Dessiving Waters Iron I		Streem Code	00266
	Run (WWF)	Stream Code	09366
	4191	RMI	1.40
Drainage Area <u>6.49</u>		Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs) 0.65		Q7-10 Basis	
Elevation (ft) 74.56	54 m	Slope (ft/ft)	
Watershed No. 7-D		Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	Siltation		
Source(s) of Impairment	Agriculture		
TMDL Status	Pending	Name	
Background/Ambient Data pH (SU)		Data Source	
Temperature (°F)			
Hardness (mg/L)			
Other:			
Nearest Downstream Publ	ic Water Supply Intake	Middletown Water Company	
PWS Waters Swatara	a Creek	Flow at Intake (cfs)	
PWS RMI		Distance from Outfall (mi)	2

Changes Since Last Permit Issuance:

1.3.1 Public Water Supply Intake

The nearest water supply intake is about 2 miles downstream at Columbia Borough, Lancaster County on the Susquehanna River by the Columbia Water Authority. No impact is expected from this discharge.

	2.0	Treatment Facility Summ	ary	
Treatment Facility Na	me: Crestview Village M	HP		
WQM Permit No.	Issuance Date			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Hypochlorite	0.0145
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.0145		Not Overloaded	Aerobic digestion	Other WWTP

Changes Since Last Permit Issuance: None

2.1 The Existing Treatment System

The treatment plant consists of 2 flow Equalization tanks, a comminutor, 2 Aeration tanks, 3 clarifiers, (one not online), 2 sand filters (used alternatively), 1 dosing tank, 1 chlorine contact tank, and 1 sludge holding tank. Sodium hypochlorite is used for disinfection.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from August 1, 2021 to July 31, 2022)

Parameter	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21
Flow (MGD)												
Average Monthly	0.01474	0.01485	0.01954	0.02166	0.01696	0.0207	0.01759	0.01128	0.01140	0.01293	0.01918	0.01264
Flow (MGD)												
Daily Maximum	0.03322	0.0325	0.05616	0.05854	0.0235	0.05091	0.03283	0.01367	0.01589	0.02779	0.06078	0.02819
pH (S.U.)												
Minimum	7.1	7.1	6.8	7.0	7.0	6.8	6.8	6.9	7.1	7.0	6.9	6.9
pH (S.U.)												
Maximum	7.8	7.6	7.7	7.6	7.8	7.6	7.6	7.9	7.6	7.9	7.4	7.5
DO (mg/L)												
Minimum	6.0	6.0	6.9	6.7	6.8	7.0	7.2	7.0	7.0	7.0	6.0	6.1
TRC (mg/L)												
Average Monthly	0.23	0.15	0.49	0.22	0.23	0.23	0.21	0.21	0.2	0.19	0.13	0.2
TRC (mg/L)												
Instantaneous												
Maximum	0.68	0.39	0.49	0.65	0.87	0.51	0.49	0.45	0.49	0.51	0.35	0.49
CBOD5 (mg/L)												
Average Monthly	< 2	2.7	2.9	< 2	< 2.1	2.9	< 2	2.3	< 2	4.9	< 2	< 3.2
TSS (mg/L)												
Average Monthly	< 5	< 6	7	< 6	< 5	< 6	< 6	6.0	< 7	5	< 6	< 6
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 1	1	20	< 1	1	1	< 1	0.7	0.09	0.09	0.2	< 1
Fecal Coliform												
(CFU/100 ml)		1	000				1					4
Instant. Maximum	< 1	1	206	< 1	1	1	1	9.0	< 1	1	1	< 1
Nitrate-Nitrite (mg/L)		7.05			11.0						0.00	
Average Quarterly		7.95			11.3			17.5			9.38	
Total Nitrogen (mg/L)		4 9 05			112.2			1 1 9 E			10.4	
Average Quarterly		< 8.95			< 12.3			< 18.5			10.4	
Ammonia (mg/L)	< 0.1	0.428	1.46	0.605	0.184	< 0.15	< 0.50	0.0987	0.111	0.059	0.1	0.133
Average Monthly TKN (mg/L)	< 0.1	0.428	1.40	0.005	0.184	< 0.15	< 0.50	0.0987	0.111	0.059	0.1	0.133
Average Quarterly		< 1			< 1			< 1			< 1.0	
Y		<u> </u>			<u> </u>			<u> </u>			< 1.0	
Total Phosphorus (mg/L) Ave. Quarterly		2.2			1.9			2.9			8	
(ing/L) Ave. Quarterly		Z.Z			1.9			2.9			Ö	

3.2 Summary of DMRs:

Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation presented on the table above indicate permit limits have been met consistently. No effluent violation occurred during the past 12 months

3.3 Summary of Inspections:

The facility has been inspected a couple of times during the past permit cycle. Inspection reports review for the facility during the period indicate permit limits have been met consistently. The following operation and maintenance recommendations were made during the most recent inspection on 3/12/22. Repair comminutor and put back into service, clean EQ tanks as normally scheduled, remove rag accumulations from air lines in aeration tanks, clean dosing tank and monitor for future cleanings to prevent solids carryover to sand filters. Maintain up-to-date repair/maintenance log. Follow, at minimum, the guidance provided in the SOPs for frequency of process control testing, such as settleability tests so that sludge can be wasted from the clarifiers at an appropriate frequency and volume to allow the plant to properly operate and continue to meet permit limits. Document process control results. Document sludge wasting from the clarifier by depth or time that can be calculated to gallons.

4.0 Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	.0145
Latitude	40º 12' 13.96"	Longitude	-76º 41' 38.62"
Wastewater De	escription: Sewage Effluent		

4.2 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Weekly averages are not applicable to this discharge

4.3 Water Quality-Based Limitations

4.3.1 Receiving Stream

The receiving stream is Iron Run. According to 25 PA § 93.90, this stream is protected for Warm Water Fishes (WWF) and Migratory fish. It is located in Drainage List O and State Watershed 7-D. A stream code of 09366 has been assigned to Iron Run. The secondary receiving stream is Swatara Creek which is also protected for WWF. According to the Department's *Pennsylvania Integrated Water Quality Monitoring and Assessment Report*, this stream is impaired and not supporting all of its assessed uses.

4.3.2 Streamflows

The Technical Support Document for Water Quality-Based Toxics Control (TSD) (EPA, 1991) and the Pennsylvania Water Quality Standards PA WQS) recommend the flow conditions for use in calculating water quality-based effluent limits (WQBELs) using steady-state modeling. The TSD and the PA WQS state that WQBELs intended to protect aquatic life uses should be based on the lowest seven-day average flow rate expected to occur once every ten years (Q₇₋₁₀) for chronic criteria and the lowest one-day average flow rate expected to occur once every ten years (Q₁₋₁₀) for acute criteria. However, because the chronic criterion for ammonia is a 30-day average concentration not to be exceeded more than once every three years, EPA has used the Q₃₀₋₁₀ for the chronic ammonia criterion instead of the Q₇₋₁₀. The Q₃₀₋₁₀ is a biologically based design flow intended to ensure an excursion frequency of once every three years for a 30-day average flow rate. These flows were determined by correlating by correlating with the yield of USGS gauging station No. 01573560 on Swatara Creek near Hershey. The Q₇₋₁₀ and drainage area at the gage is 67.7ft3/s and 483mi² respectively. The resulting yields are as

follows:

- $Q_{7-10} = (67.7 \text{ft}^3/\text{s})/483 \text{ mi}^2 = 0.1 \text{ft}^3/\text{s}/\text{mi}^2$
- $Q_{30-10} / Q_{7-10} = 0.89$
- $Q_{1-10} / Q_{7-10} = 1.23$

The drainage area at discharge calculated by streamStats = 6.49 mi²

The Q_{7-10} at discharge = 6.49 mi² x 0.1 ft³/s/mi² = 0.65 ft³/s.

4.3.3 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the WQM model of the stream:

= 6.9 (DMR median July - Sept)

- Discharge pH
- Discharge Temperature
- = 25 ° C (default)

Stream pH •

- = 7.0 (default)
- = 20 ° C (default)
- Stream Temperature Background NH₃-N
- = 0.0 (default)

4.3.4 CBOD₅

The attached result of WQM 7.0 stream model (attachment B) indicates that secondary treatment is adequate to protect the water quality of the stream, but the proximity of the downstream water intake dictated the imposition of a seasonal summer CBOD₅ limit of 10 mg/l and winter limit of 20 mg/l in the existing permit. Due to anti-backsliding restrictions and since the facility has consistently met this limit in the past it would be continued in this renewal.

<u>4.3.5 NH₃-N</u>

The attached result of the WQM 7.0 stream model also indicates that no limitation on NH₃-N as a monthly average is necessary to protect the aquatic life from toxicity effects. However, to check treatment efficiency 1/month monitoring of NH₃-N required in the existing permit will remain in the permit for the current permit renewal.

4.3.6 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l as well, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.3.7 Total Suspended Solids:

There are no water quality criteria for TSS. A limit of 30 mg/l is the required minimum level of effluent quality attainable by secondary treatment as defined in EPA's 40 CFR Chapter 1, Part 133, Section 133.102(b) in the permit remain.

4.3.8 Fecal Coliform and E. coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E. coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD and 1/year for design flows of 0.002 - 0.05 MGD. Your discharge of 0.0145 MGD requires 1/year monitoring as included in the permit.

4.3.9 Chesapeake Bay Strategy

The Department formulated a strategy to comply with the Chesapeake Bay nutrient TMDL requirements for PA. Sewage discharges have been prioritized based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal. Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. This facility is classified as a phase 5 and has been monitoring Total Phosphorus, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen quarterly. A reduced monitoring frequency of twice per year will be required during this permit cycle for Total Phosphorus, Total Nitrogen, Nitrate-Nitrite as N, and Total Kjeldahl Nitrogen to support a reduced enough data for Total Phosphorus, Total Nitrogen, Nitrate-Nitrite as N, and Total Kjeldahl Nitrogen to support a reduced monitoring frequency.

4.3.10 Total Residual Chlorine:

The attached TRC results utilize the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached results presented in attachment C indicates that, a technology limit of 0.5 mg/l as a monthly average and 1.63 mg/l IMAX would be needed to prevent toxicity concerns. This limit is consistent with the existing permit and the facility is meeting this limit.

4.3.11 Toxics

A reasonable potential (RP) analysis was done for pollutants in the discharge. The discharge consists entirely of domestic wastewater with no pollutants of concern that needs further analysis.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

No storm water outfall is associated with this facility

5.3 Special Permit Conditions

The permit contains the following special conditions:

Stormwater Prohibition, Approval Contingencies, Management of collected screenings, slurries, sludges and other solids and Chlorine minimization.

5.4 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.5 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.6 303d Listed Streams:

The discharge is located on a 303d listed stream segment as impaired for aquatic life due siltation from agriculture. No further action is warranted at this time.

5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.8 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

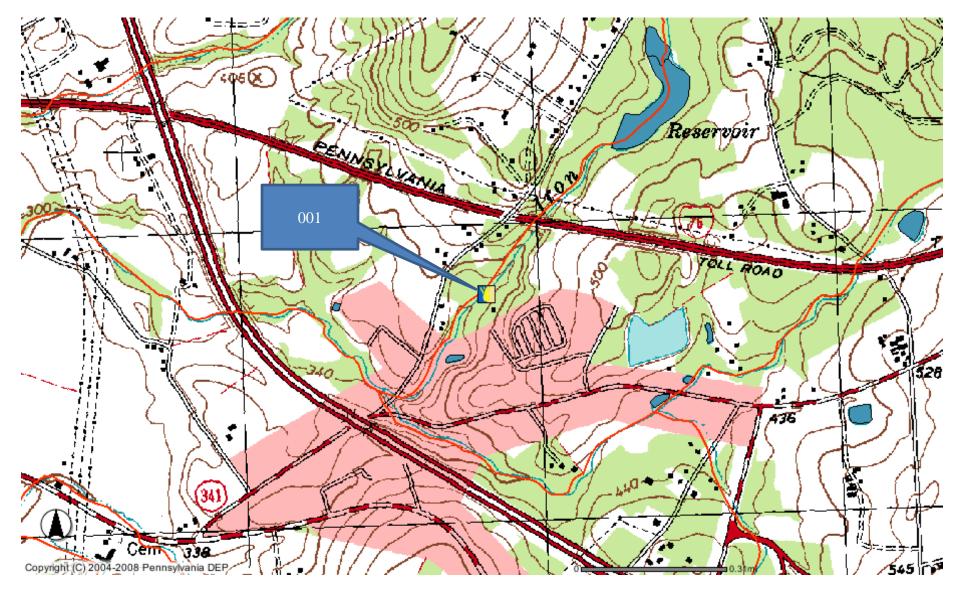
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	ХХХ	xxx	5.0 Daily Min	xxx	xxx	XXX	1/day	Grab
TRC	xxx	xxx	xxx	0.5	xxx	1.63	1/day	Grab
CBOD5 Nov 1 - Apr 30	ХХХ	xxx	xxx	20	xxx	40	2/month	8-Hr Composite
CBOD5 May 1 - Oct 31	XXX	xxx	XXX	10	xxx	20	2/month	8-Hr Composite
TSS	ххх	xxx	xxx	30	xxx	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	ххх	xxx	xxx	xxx	XXX	Report	1/year	Grab
Nitrate-Nitrite	XXX	xxx	xxx	xxx	Report Daily Max	XXX	1/6 months	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	Calculation
Ammonia	XXX	xxx	xxx	Report	xxx	XXX	1/month	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
					Report			8-Hr
TKN	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite
					Report			8-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite


Compliance Sampling Location: At Outfall 001

	6.0 Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
\square	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing effluent limitation for individual sewage permit
	Other: WIP2 and Supplement

NPDES Permit Fact Sheet Crestview Village MHP

7. Attachments

A. Topographical Map

B. WQM Model Results

		<u>WQM :</u>	7.0 Eff	luent Limits	5		
	<u>SWP Basin</u>	Stream Code		<u>Stream Name</u>	l		
	07D	9366		IRON RUN			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.400	Cresview MH	P PA0033057	0.014	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5

Friday, September 23, 2022

Version 1.1

Page 1 of 1

Input	Data	WQM	7.0
-------	------	-----	-----

	SWP Basir			Stre	am Name		RMI	EI	evation (ft)	Draina Area (sq m	a	Slope (ft/ft)	PWS Withdrawa (mgd)	Apply FC
	07D	9:	366 IRON	RUN			1.40	00	380.00)	6.49	0.00000	0.0	0
					S	tream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dept	h Tei	<u>Tributa</u> np	<u>ry</u> pH	Tem	<u>Stream</u> ip pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°(C)		0°))	
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0	.00	20.00	7.0	0	0.00 0.	00
Q1-10 Q30-10		0.00 0.00		0.000 0.000	0.000 0.000									

		Dis	charge D	ata						
	Name	Permit Number	Existing Disc Flow (mgd)	Permi Dis Flo [,] (mg	c w	Design Disc Flow (mgd)	Res Fa	erve ⁻ ctor	Disc Temp (°C)	Disc pH
	Cresview MHP	PA0033057	0.0145	0,0	145	0.0145	(0.000	25.00	6.90
		Pa	ameter D	ata						
	Do	rameter Name	Dis Col		Trib Conc	Stre Co		Fate Coef		
	Fa		(mg	/L)	(mg/L)	.) (mg	g/L)	(1/days))	
	CBOD5	**********	2	5.00	2.0	00	0.00	1.5	0	
	Dissolved O	kygen	;	5.00	8.2	24	0.00	0.0	0	
	NH3-N		2	5.00	0.0	00	0.00	0.7	0	

	SWF Basi			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	93	366 IRON	RUN			0.10)0	370.00	7.32	0.00000	2.00	\checkmark
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> ıp pH	Terr	<u>Stream</u> p pH	
oonu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
27-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.0	00	0.00 0.00)
ຊ1-10		0.00	0.00	0.000	0.000								
ຊ 30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge D					<u>.</u> .	
		Existing Disc	Disc	Di	isc R	eserve	Disc Temp	Disc pH
Name	Permit Number	Flow (mgd)	Flow (mgd		ow l igd)	factor -	(°C)	
	· ·	0.0000	0.000	0 0.	0000	0.000	25.00	7.00
	Pa	rameter D	ata					
D	arameter Name	Dis Co		Trib Conc	Strean Conc			
	anneter Name	(mg	/L) (r	ng/L)	(mg/L) (1/day	s)	
CBOD5		2	5.00	2.00	0.0	00 1.	50	
Dissolved O	xygen		5.00	8.24	0.0	00 0.	00	
NH3-N		2	5.00	0.00	0.0	0. 0.	70	

	-	<u>P Basin</u> 07D		<u>im Code</u>)366				Stream IRON I				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1(0 Flow											
1.400	0.65	0.00	0.65	.0224	0.00146	.496	13.45	27.09	0.10	0.790	20.17	7.00
Q1-1(0 Flow											
1.400	0.58	0.00	0.58	.0224	0.00146	NA	NA	NA	0.09	0.841	20.19	7.00
Q30-′	10 Flow	r										
1.400	0.80	0.00	0.80	.0224	0.00146	NA	NA	NA	0.11	0.706	20.14	7.00

Version 1.1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0033057

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.89	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.23	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Version 1.1

Page 1 of 1

		<u>WQM 7</u>	U Wast	eload		catio	ns		
	SWP Basin Str	eam Code			Stream	<u>Name</u>			
	07D	9366			IRON I	RUN			
NH3-N	Acute Allocatio	ns							
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	n V	ltiple VLA ng/L)	Critical Reach	Percent Reductior	1
1.4	00 Cresview MHP	16.56	50	16.5	56	50	0	0	-
NH3-N	Chronic Alloca	tions Baseline	Baseline	Multiple	Multi	ple	Critical	Percent	
RMI	Discharge Name	Criterion (mg/L)	WLA (mg/L)	Criterion (mg/L)	WL (mg	A	Reach	Reduction	
1.4	00 Cresview MHP	1.87	25	1.8	37	25	0	0	-
Dissolv	ed Oxygen Allo		CBOD5	NH3	_N]	Discolu	ed Oxygen		_
	Discharge N	-	ne Multiple	Baseline			e Multiple	Critical	Percent Reductio
RMI		(118)							

<u>SWP Basin</u> <u>Str</u> 07D	eam Code 9366			Stream Name IRON RUN	
<u>RMI</u>	Total Discharge	Flow (mgd) <u>Ana</u> l	<u>ysis Temperature (°C)</u>	Analysis pH
1.400	0.015	i		20.167	6,996
Reach Width (ft)	<u>Reach Der</u>	oth (ft)		Reach WDRatio	Reach Velocity (fps)
13.449	0.496	\$		27.089	0.101
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	l/days)	<u>R</u>	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u>
2.77	0.297			0.84	0.709
Reach DO (mg/L)	<u>Reach Kr (1</u>			Kr Equation	<u>Reach DO Goal (mg/L)</u>
8,135	17.07	4		Owens	5
<u>Reach Travel Time (days)</u> 0.790	TravTime (days) 0.079 0.158 0.237 0.316 0.395 0.474 0.553 0.632 0.711	Subreach CBOD5 (mg/L) 2.70 2.64 2.58 2.52 2.46 2.40 2.35 2.29 2.24	Results NH3-N (mg/L) 0.79 0.75 0.71 0.67 0.63 0.60 0.56 0.53 0.50	D.O. (mg/L) 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.2	

WQM 7.0 D.O.Simulation

C. TRC Calculation Results

		A3:A9 and D3:D9			
0.6	5 = Q stream	ı (cfs)	0.5	= CV Daily	
0.014	5 = Q discha	rge (MGD)	0.5	= CV Hourly	
3	0 = no. samp	les	1	= AFC_Partia	nl Mix Factor
0.	3 = Chlorine	Demand of Stream	1	= CFC_Partia	nl Mix Factor
	0 = Chlorine	Demand of Discharge	15	= AFC_Crite	ia Compliance Time (min
0.	<mark>5</mark> = BAT/BPJ	Value	720	= CFC_Crite	ia Compliance Time (min
	0 = % Facto	r of Safety (FOS)	0	=Decay Coef	ficient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	9.263	1.3.2.iii	WLA cfc = 9.023
PENTOXSD TR		LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TR	G 5.1b	LTA_afc=	3.452	5.1d	LTA_cfc = 5.245
Source		Effluer	nt Limit Calcu	lations	
PENTOXSD TR	G 5.1f		AML MULT =	1.231	
PENTOXSD TR	G 5.1g	AVG MON L	.IMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX L	.IMIT (mg/l) =	1.635	
1411 A - E-	(040/-/ 14	AFO 1-11 - MAFO X-10	-* 040/04*	-/	
WLA afc		AFC_tc)) + [(AFC_Yc*Q \FC_Yc*0e*Ye/Od)]*(1-)		e(-k*AFC_tc))	
WLA afc	+ Xd + (/	AFC_Yc*Qs*Xs/Qd)]*(1-	FOS/100)	e(-k*AFC_tc))	
LTAMULT afc	+ Xd + (/ EXP((0.5*LN	AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2	FOS/100)	e(-k*AFC_tc))	
WLA afc LTAMULT afc LTA_afc	+ Xd + (/	AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2	FOS/100)	e(-k*AFC_tc))	
LTAMULT afc	+ Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k*	AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs	FOS/100) 2+1)^0.5) s *.011/Qd* e		
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0	AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-	FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100)	(-k*CFC_tc))	
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0 EXP((0.5*LN	AFC_Yc*Qs*Xs/Qd)]*(1-I (cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-I (cvd^2/no_samples+1))-2.3	FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100)	(-k*CFC_tc))	
LTAMULT afc LTA_afc	+ Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0	AFC_Yc*Qs*Xs/Qd)]*(1-I (cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-I (cvd^2/no_samples+1))-2.3	FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100)	(-k*CFC_tc))	
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0 EXP((0.5*LN wla_cfc*LTA	AFC_Yc*Qs*Xs/Qd)]*(1-I (cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-I (cvd^2/no_samples+1))-2.3	FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	(-k*CFC_tc)) 2/no_samples+1	 I)^0.5)