

Application Type Renewal Non-Municipal Facility Type Major / Minor Minor

NPDES PERMIT FACT SHEET **INDIVIDUAL SEWAGE**

Application No. PA0033120 APS ID 1036866 Authorization ID 1350714

Applicant and Facility Information

Applicant Name	Warren County School District		Facility Name	Eisenhower Jr Sr High School
Applicant Address	6820 Market Street		Facility Address	101 School Street
	Russel	II, PA 16345		Sugar Grove, PA 16350
Applicant Contact	David	Undercoffer	Facility Contact	Dennis O'Toole
Applicant Phone	(814) 7	23-6903	Facility Phone	(814) 730-8328
Client ID	85819		Site ID	450883
Ch 94 Load Status	Not Ov	verloaded	Municipality	Farmington Township
Connection Status	No Lim	nitations	County	Warren County
Date Application Recei	ived	March 24, 2021	EPA Waived?	Yes
Date Application Accept	oted	April 23, 2021	If No, Reason	
Purpose of Application		Renewal of an NPDES Permit for serving a school.	or an existing discharge of	treated sanitary wastewater from an STP

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

- I. OTHER REQUIREMENTS:
 - Stormwater into sewers Α.
 - В. Right of way
 - C. Solids handling
 - D. Effluent Chlorine Optimization and Minimization

There are no open violations in efacts associated with the subject Client ID (85819) as of 2/2/2022.

Approve	Deny	Signatures	Date	
v		Stephen A. McCauley	2/2/2022	
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	2/2/2022	
V		Justin C. Dickey	2/2/2022	
^		Justin C. Dickey, P.E. / Environmental Engineer Manager	2/3/2022	

Solids Management Π.

SPECIAL CONDITIONS:

ischarge, Receivin	g Wate	rs and Water Supply Info	ormation	
Outfall No. 001			Design Flow (MGD)	0.013
Latitude 41° :	57' 52.0	O"	Longitude	-79º 12' 15.00"
Quad Name -			Quad Code	-
Wastewater Descr	iption:	Sewage Effluent	_	
Receiving Waters	Fairb	anks Run (CWF)	Stream Code	56396
NHD Com ID	1294	46830	RMI	1.9
Drainage Area	1.47		Yield (cfs/mi²)	0.069
Q ₇₋₁₀ Flow (cfs)	0.10		Q7-10 Basis	calculated
Elevation (ft)	1460		Slope (ft/ft)	0.01196
Watershed No.	16-B		Chapter 93 Class.	CWF
Existing Use	_		Existing Use Qualifier	
Exceptions to Use	-		Exceptions to Criteria	-
Assessment Status	5	Attaining Use(s)		
Cause(s) of Impair	ment	-		
Source(s) of Impai	rment	-		
TMDL Status		-	Name	
Background/Ambie	ent Data		Data Source	
pH (SU)		-		
Temperature (°F)		-	-	
Hardness (mg/L)		-	-	
Other:			-	
Nearest Downstrea	am Publ	ic Water Supply Intake	Pennsylvania - New York Stat	e border
PWS Waters	<u>Kianto</u> n	e Creek	Flow at Intake (cfs)	-
	-		Distance from Outfall (mi)	3.1

Sludge use and disposal description and location(s):

<u>Sludge is sent to an approved STP where it is land applied at the</u> <u>BPU Jamestown site in Chautauqua County or it is disposed of at an</u> <u>approved landfill.</u>

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.013 MGD of treated sewage from an existing non-municipal STP in Farmington Township, Warren County.

NPDES Permit Fact Sheet Eisenhower Jr Sr High School

Treatment permitted under Sewerage Permit 367S020 consisted of the following: A bar screen and comminutor, a 22,500 gallon diffused aeration tank with froth control sprayers, a 6,950 gallon final settling tank, tablet chlorine disinfection with a 2,430 gallon contact tank, and a 33,300 gallon concrete secondary pond prior to discharge.

Improvements permitted under WQM Permit 6212404 consist of the following: A new mechanical surface aeration/mixing system replaced the previous diffused air system, a grinder with bypass screen replaced the previous comminutor, and a 5,500 gallon aerated sludge digester tank was constructed inside the 33,300 gallon concrete secondary pond, reducing its volume to approximately 27,000 gallons.

1. Streamflow:

The yieldrate for the Fairbanks Run at the Outfall was calculated from the drainage area and the Q₇₋₁₀ low flow of the nearest stream with a gage station:

<u>Jackson Run near North Warren, PA</u> : (USGS Gage 03015280)	Drainage Area: Q ₇₋₁₀ : Yieldrate:	<u>12.8</u> <u>0.88</u> <u>0.069</u>	sq. mi. cfs cfsm	from StreamStats from StreamStats calculated
Fairbanks Run @ Outfall 001:	Yieldrate: Drainage Area:	<u>0.069</u> <u>1.47</u>	cfsm sq. mi.	from above from StreamStats
% of	stream allocated:	<u>100%</u>	Basis:	no nearby discharges
	Q7-10:	<u>0.10</u>	cfs	calculated

2. Wasteflow: Outfall 001

Permitted discharge:	<u>0.013</u>	MGD	=	<u>0.020</u>	cfs						
Runoff flow period:	<u>8.0</u>	hours			Basi	s: <u>F</u>	Runoff	flow fo	or a	<u>school</u>	
24 hour flow:	<u>0.013</u>	MGD	х	24/8	=	<u>0.03</u>	<u>39</u> N	MGD	=	<u>0.060</u>	cfs

There is greater than 3 parts stream flow (Q7-10) to 1 part effluent (design flow). Therefore, the standards in DEP guidance (391-2000-014) will not be applied.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, Phosphorus, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine. NH₃-N, CBOD₅, and Dissolved Oxygen were evaluated using WQM 7.0 at the discharge point.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

b. <u>Total Suspended Solids</u>

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits

c. <u>Fecal Coliform</u>

05/01 - 09/30:	<u>200/100ml</u>	(monthly average geometric mean)				
	<u>1,000/100ml</u>	(instantaneous maximum)				
10/01 - 04/30:	<u>2,000/100ml</u> <u>10,000/100ml</u>	(monthly average geometric mean) (instantaneous maximum)				
Basis:	Application of	Chapter 92a47 technology-based limits.				

d. <u>E. Coli</u>

Monitoring was added for E. Coli at a frequency of 1/month.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.05 MGD but less than 1.0 MGD.

e. Total Phosphorus

- Limit necessary due to:
 - Discharge to lake, pond, or impoundment
 - Discharge to stream
- Limit not necessary
 - Basis: <u>Chapter 96.5 does not apply. However, monitoring for Total Phosphorus was added</u> in the previous renewal and will be retained in accordance with the SOP, based on <u>Chapter 92a.61.</u>

f. Total Nitrogen

Monitoring for Total Nitrogen was added in the previous renewal and will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used:	<u>6.9</u>	Standard Units (S.U.)
	В	asis: Average pH value from DMR summary
Discharge temperature:	<u>25°C</u>	(assumptive value used for modeling purposes)
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: (Assumed in the absence of background data)
Stream Temperature:	<u>20°C</u>	(assumptive value used for CWF modeling purposes)
Background NH ₃ -N concentration:	<u>0.1</u>	mg/l
	В	asis: Default value.
Calculated NH ₃ -N Summer limits:	<u>5.6</u> 11.2	mg/l (monthly average) mg/l (instantaneous maximum)
Calculated NH ₃ -N Winter limits:	<u>16.8</u> <u>33.6</u>	mg/l (monthly average) mg/l (instantaneous maximum)

- WQ modeling resulted in the calculated summer limits above (see Attachment 1), which are Result: slightly less stringent than what was calculated during the previous renewal. The winter limits are calculated as 3 times the summer limits per the SOP. However, since the Permittee has not had any trouble meeting the more stringent limits of 3.5 mg/l average monthly and 10.5 mg/l instantaneous maximum, they will be retained in this renewal. h. CBOD₅ Median discharge pH to be used: Standard Units (S.U.) 6.9 Basis: Average pH value from DMR summary Discharge temperature: 25°C (assumptive value used for modeling purposes) Median stream pH to be used: 7.0 Standard Units (S.U.) Basis: (Assumed in the absence of background data) (assumptive value used for CWF modeling) Stream Temperature: 20°C Background CBOD₅ concentration: 2.0 mg/l Basis: Default value Calculated CBOD₅ Summer limits: 25.0 mg/l (monthly average) 50.0 mg/l (instantaneous maximum) Calculated CBOD₅ Winter limits: 25.0 mg/l (monthly average)
 - Result: <u>WQ modeling resulted in the above summer limits (see Attachment 1), which are the</u> <u>same as the previous NPDES Permit. Since the summer limits are technology-based, the</u> <u>winter limits will also be technology-based. Per the SOP, since both the summer and</u> <u>winter limits are technology-based, the year-round limits set in the previous permit will be</u> retained.

i. <u>Dissolved Oxygen (DO)</u>

- $\boxed{3.0}$ mg/l minimum required due to discharge going to a drainage swale or ditch.
- \boxtimes <u>4.0</u> mg/l minimum desired in effluent to protect all aquatic life.

50.0

- <u>5.0</u> mg/l desired in effluent for Warm Water / Trout-Stocked Fisheries.
- 6.0 mg/l desired in effluent for Cold Water Fisheries.
- 7.0 mg/l required due to discharge going to a High Quality / Exceptional Value stream
- Discussion: A Dissolved Oxygen technology-based minimum of 4.0 mg/l is recommended by the WQ <u>Model (see Attachment 1), and the SOP, based on Chapter 93.7, under the authority of</u> <u>Chapter 92a.61. However, since the previous limit of 5.0 mg/l is being met, it will be retained</u> <u>with this renewal.</u>

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

mg/l (instantaneous maximum)

- j. <u>Total Residual Chlorine (TRC)</u>
 - No limit necessary

☑ TRC limits: ______ mg/l (monthly average)

0.82 mg/l (instantaneous maximum)

Basis: <u>The water quality-based TRC limits above were calculated using the Department's TRC</u> <u>Calculation Spreadsheet (see Attachment 2)</u>. <u>The calculated limits are the same as the</u> <u>previous permits Based on the eDMR data, the Permittee should be able to meet the new</u> <u>reduced TRC limits so no interim compliance period will be added.</u>

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

4. Reasonable Potential Analysis:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 by using the Department's Toxics Management Spreadsheet since no data was provided other than sewage related.

Result: No Reasonable potential was calculated for this renewal.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Reasonable Potential Analysis performed above does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no non-sewage sample data was provided, no calculations were performed.

Nearest Downstream potable water supply (PWS):	Penns	sylvania - New York State border
Distance downstream from the point of discharge:	<u>3.1</u>	miles (approximate)

- No limits necessary
- Limits needed

Basis: Significant dilution available.

6. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from January 1, 2021 to December 31, 2021)

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
Flow (MGD)												
Average Monthly	0.0095	0.0092	0.0094	0.0093	0.0091	0.0155	0.0076	0.0094	0.0098	0.0219	0.008	0.009
Flow (MGD)												
Daily Maximum				0.0219	0.064	0.333	0.0165	0.0293	0.0188	0.333	0.0146	0.0231
pH (S.U.)												
Minimum	6.71	6.49	6.33	6.66	7.12	6.87	6.56	6.59	6.53	6.89	6.93	7.2
pH (S.U.)												
Maximum	7.77	7.02	6.96	7.6	7.67	7.55	7.14	7.13	7.06	7.24	7.46	7.82
DO (mg/L)												
Minimum	10.4	9.51	8.58	8.2	7.12	7.95	8.11	8.85	9.34	10.21	11.47	11.56
TRC (mg/L)												
Average Monthly	0.1	0.08	0.07	0.08	0.093	0.08	0.08	0.07	0.08	0.10	0.15	0.14
TRC (mg/L)												
Instantaneous Maximum	0.29	0.18	0.18	0.24	0.33	0.22	0.20	0.17	0.22	0.19	0.44	0.29
CBOD5 (mg/L)												
Average Monthly	3.2	< 3	4.3	< 3	< 4.5	< 3.1	< 3	< 3	< 3	< 3	< 3	< 3
TSS (mg/L)												
Average Monthly	< 3	< 5	< 3	< 3	< 4	< 3	6	< 3	< 3	< 3	< 6	< 3
Fecal Coliform (CFU/100 ml)												
Geometric Mean	< 2	< 1	13	18	81	11	< 1	< 3	< 2	< 1	< 1	< 1
Fecal Coliform (CFU/100 ml)												
Instantaneous Maximum				22	132	21	< 1	11	5	< 1	1	< 1
Total Nitrogen (mg/L)												
Average Monthly				29.4	20.1	60	73.9	68.5	69.2	50.4	33.8	15
Ammonia (mg/L)												
Average Monthly	0.17	0.19	0.23	0.21	0.24	0.18	0.24	0.12	0.16	0.3	2.44	< 0.13
Total Phosphorus (mg/L)												
Average Monthly				3.19	3.27	7.68	7.46	5.57	5.22	3.96	2.29	2.15

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Baramatar	Mass Units	(lbs/day) ⁽¹⁾		Concentrat		Minimum ⁽²⁾	Required	
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	1/week	Measured
pH (S.U.)	xxx	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	xxx	xxx	5.0 Inst Min	xxx	xxx	xxx	1/day	Grab
TRC	XXX	xxx	xxx	0.25	xxx	0.82	1/day	Grab
CBOD5	xxx	xxx	xxx	25.0	xxx	50	2/month	8-Hr Composite
TSS	xxx	xxx	xxx	30.0	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	xxx	xxx	xxx	xxx	xxx	Report	1/quarter	Grab
Total Nitrogen	xxx	xxx	xxx	Report	xxx	xxx	2/month	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	xxx	xxx	xxx	10.5	XXX	21	2/month	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	xxx	xxx	xxx	3.5	xxx	7	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for E. Coli is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for Total Nitrogen and Total Phosphorus is based on Chapter 92a.61.

Attachment 1

	<u>SWP Basin</u> 16B	<u>Stream Code</u> 56396		<u>Stream Nam</u> FAIRBANKS R	<u>e</u> UN		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.900	Eisenhower	PA0033120	0.039	CBOD5	25		
				NH3-N	5.69	11.38	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Tuesday, February 1, 2022

Version 1.1

SWP Basin	<u>Stream Code</u>			Stream Name	
16B	56396		F	AIRBANKS RUN	
RMI	Total Discharge	e Flow (mad) Ana	lysis Temperature (°C)	Analysis nH
1 900	0.03	9	<u>7 7 4104</u>	21.865	6 960
Reach Width (ft)	Reach De	enth (ft)		Reach WDRatio	Reach Velocity (fns)
5 747	0.37	6		15 277	0.075
Reach CBOD5 (mg/L)	Reach Kc	(1/davs)	R	each NH3-N (mg/L)	Reach Kn (1/days)
10.58	0.98	5		2.12	0.808
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
6.660	24.36	54		Owens	6
Reach Travel Time (day	5)	Subreach	Reculte		
1.552	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.155	8.96	1.87	7.91	
	0.310	7.58	1.65	7.97	
	0.466	6.42	1.46	7.97	
	0.621	5.43	1.29	7.97	
	0.776	4.60	1.13	7.97	
	0.931	3.89	1.00	7.97	
	1.086	3.30	0.88	7.97	
	1.241	2.79	0.78	7.97	
	1.397	2.36	0.69	7.97	
	1.552	2.00	0.61	7.97	

WQM 7.0 D.O.Simulation

Tuesday, February 1, 2022

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Tuesday, February 1, 2022

Version 1.1

Input Data WQM 7.0

	SWF Basi	o Strea n Cod	m le	Stre	eam Name		RMI	Eleva (ft)	tion	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	16B	563	96 FAIRE	BANKS RU	JN		1.90	00 140	50.00	1.47	0.00000	0.00	✓
-					Sti	ream Dat	a						
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Temj (°C)	<u>Tributary</u> o pH	Tem (°C	<u>Stream</u> p pH)	
Q7-10 Q1-10 Q30-10	0.069	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00 7.	00 20	0.00 7.00)
			Nome	Der	Di	scharge I Existing Disc	Data Permitte Disc	ed Design Disc	Rese	Dis erve Ter	sc Di np p	sc H	
			Name	Fei	The Number	TIOW	1-104A	TOW	Fac				

Name	e Permit Number	Flow (mgd)	Flow (mgd)	Fl (m	ow F gd)	Factor	(°C)	
Eisenhower	PA0033120	0.0390	0.000	0 0.	0000	0.000	25.00	6.90
	Pai	ameter Da	ita					
	Decemptor Nome	Disc Con	: Т с С	rib onc	Stream Conc	n Fate Coef		
	Parameter Name	(mg/	'L) (m	ng/L)	(mg/L)) (1/days)		
CBODS	5	25	.00	2.00	0.0	0 1.50)	
Dissolv	red Oxygen	4	.00	8.24	0.0	0.00)	
NH3-N		25	.00	0.00	0.0	0 0.70)	

Input Data WQM 7.0

	SWF Basi	o Strea n Coc	im le	Stre	am Name		RMI	Eleva (ft)	tion	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	16B	563	396 FAIRE	ANKS RU	JN		0.00)0 134	40.00	6.11	0.00000	0.00)
а. -					St	ream Dat	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.069	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20	0.00 7.0	0 20	0.00 7.0	0
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					Di	ischarge	Data						
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Res Fac	Dis erve Tem ctor (°C	c Dia np p)	sc H	

Parameter Data Disc

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

25.00

3.00

25.00

0.0000 0.0000 0.0000

Trib

Conc

(mg/L)

2.00

8.24

0.00

0.000

(mg/L) (1/days)

0.00

0.00

0.00

Fate

Coef

1.50

0.00

0.70

Stream

Conc

0.00

7.00

	SWP Basin Str	eam Code		<u>St</u>	ream Name			
	108	20290		FAIr	KDANKS KUN			
NH3-N	Acute Allocatio	ons						
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
1.9	00 Eisenhower	14.33	29.75	14.33	29.75	0	0	
NH3-N	Chronic Alloca	tions						
NH3-N RMI	Chronic Alloca Discharge Name	tions Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
NH3-N RMI 1.9	Chronic Alloca Discharge Name 00 Eisenhower	tions Baseline Criterion (mg/L) 1.73	Baseline WLA (mg/L) 5.69	Multiple Criterion (mg/L) 1.73	Multiple WLA (mg/L) 5.69	Critical Reach 0	Percent Reduction	
NH3-N RMI 1.9 Dissolv	Chronic Alloca Discharge Name 00 Eisenhower red Oxygen Allo	tions Baseline Criterion (mg/L) 1.73 cations	Baseline WLA (mg/L) 5.69	Multiple Criterion (mg/L) 1.73	Multiple WLA (mg/L) 5.69	Critical Reach 0	Percent Reduction	
NH3-N RMI 1.9 Dissolv	Chronic Alloca Discharge Name 00 Eisenhower red Oxygen Allo	tions Baseline Criterion (mg/L) 1.73 cations	Baseline WLA (mg/L) 5.69	Multiple Criterion (mg/L) 1.73 <u>NH3-N</u>	Multiple WLA (mg/L) 5.69 <u>Dissol</u>	Critical Reach 0 ved Oxyger	Percent Reduction 0	Dero

25

25

5.69

4

5.69

4

0

0

WQM 7.0 Wasteload Allocations

Tuesday, February 1, 2022

1.90 Eisenhower

Version 1.1

	<u>.sv</u>	<u>/P Basin</u> 16B	sin <u>Stream Code</u> 56396			<u>Stream Name</u> FAIRBANKS RUN						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.900	0.10	0.00	0.10	.0603	0.01196	.376	5.75	15.28	0.07	1.552	21.86	6.96
Q1-1	0 Flow											
1.900	0.06	0.00	0.06	.0603	0.01196	NA	NA	NA	0.06	1.791	22.41	6.95
Q30-	10 Flov	v										
1.900	0.14	0.00	0.14	.0603	0.01196	NA	NA	NA	0.08	1.385	21.52	6.97

WQM 7.0 Hydrodynamic Outputs

Tuesday, February 1, 2022

Version 1.1

Attachment 2

TRC EVALUA	TION							
Input appropria	te values in .	A3:A9 and D3:D9						
0.1	= Q stream (cfs)	0.5	= CV Daily				
0.039	= Q discharg	je (MGD)	= CV Hourly					
30	= no. sample	S	1	= AFC_Partial	Mix Factor			
0.3	= Chlorine D	emand of Stream	= CFC_Partial	Mix Factor				
0	= Chlorine D	emand of Discharge	= AFC_Criteria	Compliance Time (min)				
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)			
0	= % Factor o	of Safety (FOS)	0	=Decay Coeffic	cient (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	0.548	1.3.2.iii	WLA cfc = 0.526			
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	0.204	5.1d	LTA_cfc = 0.306			
-								
Source	- A6	Effluer	nt Limit Calcul	lations				
PENTOXSD TRG	5.11		AML MULT =	1.231				
PENTOXSD TRG	5.1g	AVG MON I	_IMIT (mg/l) =	• 0.251 AFC				
		INSTWAT	_11VIII (mg/i) =	0.822				
WLA afc	(.019/e(-k*Al	FC tc)) + [(AFC Yc*Qs*.019	/Qd*e(-k*AFC	tc))				
	+ Xd + (AF	C Yc*Qs*Xs/Qd)]*(1-FOS/10	0)	//				
LTAMULT afc	EXP((0.5*LN)		1)^0.5)					
LTA_afc	wla_afc*LTA	MULT_afc	and a second sec					
100-111								
WLA_cfc	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC_	_tc))				
	+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)					
LTAMULT_cfc	EXP((0.5*LN)	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^(0.5)			
LTA_cfc	wla_cfc*LTA	MULT_cfc						
	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	^2/no_samples	+1))			
	MIN(BAI_BP	J,MIN(LIA_atc,LIA_ctc)*AN						
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								