

Northwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Non-Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. APS ID Authorization ID PA0033448 1074502 1415544

Applicant and Facility Information

Applicant Name	Pennw	ood Estates MHC LLC	Facility Name	Pennwood Estates MHP
Applicant Address	6810 F	rogtown Road	Facility Address	6810 Frogtown Road
	Hermita	age, PA 16148		Hermitage, PA 16148
Applicant Contact	Christo	pher Triantafelow	Facility Contact	
Applicant Phone	(724) 9	81-5390	Facility Phone	
Applicant E Mail	Admin@	@circlegroup/llc	Facility E Mail	
Client ID	345450		Site ID	452841
Municipality	Lackaw	vanna Township	County	Mercer
Ch 94 Load Status	Not Ov	erloaded	Connection Status	No Limitations
Date Application Recei	ved	October 25, 2022	EPA Waived?	Yes
Date Application Accep	oted	November 8, 2022	If No, Reason	
Purpose of Application		NPDES permit renewal		

Summary of Review

No violations on record.

0.05 dry ton sludge sent to Hermitage WPCP

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
V		William H. Mentzer	
Λ		William H. Mentzer, P.E.	
		Environmental Engineering Specialist	January 24, 2023
X		Chad W. Yurisic, P.E. Environmental Engineer Manager	

Discharge, Receiving W	aters ar	nd Water Supply	Information		
Outfall No.	001			Design Flow (MGD)	0.009
Latitude DP	41º 12	' 54.58"		Longitude DP	-80° 22' 42.96"
Latitudev NHD	<u>41º 12</u>	' 54.14"		Longitude NHD	-80° 22' 42.58"
Quad Name	Sharo	n East		Quad Code	0902
Wastewater Description	n:	Treated sanitary	wastewater		
Receiving Waters	West E	Branch Little Nesh	annock Creek	Stream Code	35547
NHD Com ID	13003	3567		RMI	9.82
Drainage Area	1.59			Yield (cfs/mi ²)	0.03084
Q ₇₋₁₀ Flow (cfs)	0.05			Q7-10 Basis	L Neshannock Creek
Elevation (ft)	1156.	62		Slope (ft/ft)	0.01722
Watershed No.	20-A			Chapter 93 Class.	TSF
Existing Use	statew	vide		Existing Use Qualifier	none
Exceptions to Use	none			Exceptions to Criteria	none
Comments	Node	RMI 1.45; Basin	Data 17.4 Sq Mi	le 877.48 ft elevation	
Assessment Status		Attaining Use(s)			
Cause(s) of Impairmen	-	5 (-)			
Source(s) of Impairmer	nt -				
TMDL Status	-			Name	
	-				
Background/Ambient D	Data		Data S	Source	
pH (SU)	7.5		7.45 (Pine Run	6/28/05) and 7.6 (Yellov	v Creek 8/24/86)
Temperature (°F)			,		· · · · ·
Hardness (mg/L)					
Other:					
Nearest Downstream P	Public W	ater Supply Intake	e Beave	er Falls	
PWS Waters E	<u>Beaver</u> F	River	Flo	w at Intake (cfs)	NA
PWS RMI 5	5.39		Dis	tance from Outfall (mi)	35

Changes Since Last Permit Issuance: none

Other Comments: none

Treatment Facility Summary Treatment Facility Name: Pennwood Estates MHP WQM Permit No. **Issuance Date** 4372415-T2 April 23, 1999 4372415-T1 July 26, 1994 Degree of Avg Annual Waste Type Treatment **Process Type** Disinfection Flow (MGD) Secondary With Ammonia Reduction Sewage Activated Sludge Hypochlorite 0.009 Hydraulic Capacity **Organic Capacity** Biosolids (MGD) (lbs/day) Load Status **Biosolids Treatment Use/Disposal** 25 0.009 Not Overloaded

Changes Since Last Permit Issuance: none

Other Comments:

Treatment is: comminution with bypass screen, 9 000-gallon extended aeration tank, 1 500-gallon settling tank, flow splitter, two 1 500 -gallon dosing tanks, two 400-square foot intermittent open bed sand filters, and tablet chlorination with a 270-gallon contact tank.

Design is for 50 spaces (units), 25 PPD based on 0.5 lb per space per day and 2.6 people per space at 75 gpcd or180-gallons per space per day.

]	Influent			Influent	-		Efflue			
	Month	Year	MGD	PPD	mg/L	mg/L	#	mg/L	mg/L	mg/L	#
			Ave	Ave	Mean	Max		Min	Mean	Max	
Annual Average Design			0.009	25.0							
Annual Average		2019	0.007								
		2020	0.007								
		2021	0.007								
Highest Monthly Average	January	2018	0.007								
pH								6.5		7.8	387
TRC									04	0.6	383
Fecal Coliform									210	2420	48
CVOD5									7.4	46.7	47
TSS									6.7	29	47
Ammonia-N									1.7	11.1	47
Nitrogen									8.1	17.8	5
Phosphorus									1.1	1.9	5

Compliance History

DMR Data for Outfall 001 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD)												
Average Monthly	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
pH (S.U.)												
Daily Minimum	7.0	7.0	7.0	6.9	6.9	6.8	6.7	6.6	6.5	6.6	6.7	6.5
pH (S.U.)												
Daily Maximum	7.1	7.1	7.2	7.2	7.3	7.2	7.1	7.0	6.9	6.8	6.8	6.9
DO (mg/L)												
Daily Minimum	4.4	4.4	4.5	4.8	4.8	4.8	4.7	4.3	4.3	4.2	4.4	4.2
TRC (mg/L)												
Average Monthly	0.5	0.5	0.5	0.4	0.45	0.5	0.5	0.4	0.4	0.4	0.4	0.4
TRC (mg/L)												
Instant Maximum	0.5	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.6	0.5	0.5	0.5
CBOD5 (mg/L)												
Average Monthly	< 12.1	< 4.0	< 2.0	< 7.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.15	< 2.0	5.8	< 12.0
CBOD5 (mg/L)												
Instant Maximum	18.2	< 6.0	< 2.0	< 12.0	< 2.0	< 2.0	< 2.0	< 2.0	2.29	< 2.0	6.05	12.0
ISS (mg/L)				7.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Average Monthly	9.0	< 6.0	5.5	7.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
TSS (mg/L)	10.0	<u> </u>	<u> </u>					5.0		5.0		
	13.0	6.0	6.0	8.0	< 5.0	< 5.0	< 5.0	5.0	< 5.0	5.0	< 5.0	< 5.0
F Collform (#100 ml)	. 1	. 11	. 5.0	. 5.0	. 05	. 2.0	. 2.0	. 11	. 5.0	62		1.0
Geometric Mean	< 1	< 11	< 5.0	< 5.0	< 25	< 2.0	< 3.0	< 11	< 5.0	63	< 2.0	1.0
F Colliofin (#/100 ml)	- 1	115	- 5 0	5.0	627	5.0	5.0	52	< 5.0	106	2.0	1.0
Total Nitrogon (mg/L)	< 1	115	< 5.0	5.0	037	5.0	5.0	- 55	< 5.0	190	3.0	1.0
Average Quarterly	22.8			11 1			1 1 8			7 1		
Total Nitrogen (mg/L)	22.0			11.1			1.10			7.1		
Daily Maximum	22.8			11 1			1 18			7 1		
Ammonia (mg/L)	22.0						1.10			7.1		
Average Monthly	45	< 1.93	1.08	< 29	< 0.8	< 0.8	< 0.8	< 0.8	< 0.55	0.8	< 0.8	< 0.8
Ammonia (mg/L)	1.0	< 1.00	1.00	< <u>2.0</u>	0.0	× 0.0	0.0	0.0	< 0.00	0.0	0.0	× 0.0
Instant Maximum	6.8	3.05	1.4	7.0	< 0.8	< 0.8	< 0.8	< 0.8	< 1.01	0.8	< 0.8	< 0.8
Total Phosphorus	0.0	0.00								0.0		
(mg/L) Ave Quarterly	2.5			1.9			0.38			1.6		
Total Phosphorus										-		
(mg/L) Daily Maximum	2.5			1.9			0.38			1.6		

Summer pH median 7.1 annual pH median 7.0

Compliance History

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.009			
Latitude	41º 12' 54.58	11	Longitude	-80° 22' 42.96"			
Wastewater De	escription:	Sewage Effluent					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E Coli	report			
DO	4.0	Daily Minimum		BPJ

Comments: E Coli is a new parameter with reporting requirements

Water Quality-Based Limitations

A Sewerage program "Reasonable Potential Analysis" determined the following parameters were candidates for limitations: CBOD5, TSS, ammonia, DO and pH.

The following limitations were determined through water quality modeling (output files attached):

Parameter			Limit (mg/l)		SBC	Model				
Name	Period	Minimum	Average	Maximum		Minimum	Average	Maximum		
CBOD5			25,0	50.0			25.0	50.0		
TSS			30.0	60.0			30.0	6010		
Ammonia	summer		4.5	9.0			4.79	9.58		
	winter		13.0	26.0			14.33	28.66		
Nitrogen	report									
Dissolved Oxygen		4.0				4.0				
Fecal Coliform	summer		200#/100ml				200#/100ml			
	winter		2000#/100ml				2000#/100ml			
E. Coli	report									
pH		6.0		9.0		6.0		9.0		
TRC			0.5	1,6			0.5	1.6		

Comments: DO is technology based with monitoring recommended for nitrogen and e. coli modelling used a 25% safety factor and a 16-hour runoff period to verify the existing requirements

Best Professional Judgment (BPJ) Limitations

Comments: Applies to the DO requirements

Anti-Backsliding

Back sliding is not needed for compliance

1A	B Disc S Muni Cc NPDE	C harger Site cipality ounty S Permit 0.5	D Pennwood E Pennwood E Lackawanna Mercer PA0033448	E states MHP states MHP ST Township	F	G	н	l Revised	J Wednes Tuesda	K day, October 12, : y, November 8, 2	L 2022 022	M
2						TRC EV	ALUATION					
3 4 5 6 7 8 9	Input appropr 0. 0.	iate values in E 0490 4 0.3 0	84:88 and E4:1 = Q stream (q = Q discharg = no. sam plet = Chlorine De = BAT/BPJ V: = % Factor o	E7 fs) e (MGD) s mand of Stream emand of Discha alue f Safety (FOS)	rge	0.4 0.4 14 720	= CV Daily = CV Hourly = AFC_Partial I = AFC_Criteria = AFC_Criteria = Decay Coeffic	Mix Factor Mix Factor Compliance Ti Compliance Ti ient (K)	me (min) me (min)			
10	Sc	urce	Reference	VEC Calculation	IS		-Decay Coeffic	rence		CEC Calcula	tions	
11 12 13	T PENTOXSD T PENTOXSD T	RC RG RG	1.3.2.iii 5.1a 5.1b		WLA afc = LTAMULT afc = (LTA_afc= (1.142 1.373 1.426	1.3. 5. 5.	2.iii 1c 1d	L	WLA cfc = 1.1 TAMULT cfc = 0.5 LTA_cfc = 0.6	06 81 43	
15	Source						Efflue	nt Limit Calcul	ations			
16 17 18	PENTOXSD T PENTOXSD T	RG RG	5.1f 5.1g		1 (AML MULT : LIMIT (mg/l) : LIMIT (mg/l) :	= 1.720 = 0.500 = 1.170		BAT/BPJ			
WLA arc (019/e(+*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(+*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd))*(1-FOS/100) LTAMULT arc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)*0.5) LTA_arc WLA_cfc + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(+*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd))*(1-FOS/100) LTAMULT_cfc LTAMULT_cfc												
	AME MULT AVG MON LIMIT INST MAX LIMIT (0.011/EXP (-K	(*CFC_tc/1440))	EXP(2.326*LI MIN(BAT_BP, 1.5*((av_mon +(((CFC_Yc*Qs	ULI_CC I((cvd ^x 2/no_sam I,MIN(LTA_afc,L` _ limit/AML_MUL *0.011)/(1.547*C	ples+1)*0.5)-0.5*L FA_cfc)*AML_MUI T)/LTAMULT_afc Rd)	N(cvd^2/no_s .T))	amples+1))					
	Stream Stream Stream	Chlorine Requi Reach/Node Flow Code	Conditions	= 1	perennial 1 perennial 35547	Chlorin	e Demand	ť	Chlorine Resid	lal		
	Samples reach drainage TRC elevation elevation slope low flow discharge Runoff BAT should s	Function outfall Reach End limitation Period juffice	average maximum modelled modelled modelled	RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours	4 9.82 0 51849.6 1.59 0.148 0.484 1156.26 877.48 0.005 0.031 0.0090 24.000							
	stream stream stream stream discharge stream	flow flow flow chlorine discharge Total Stream	total demand demand Waste	cfs MGD MGD mg/L mg/L ratio	0.04903 0.031689 0.040689 0.3 4.5							
	BAT BAT	TRC TRC	mean maximum Municipality	BAT BAT	0.5 1.6							
	В	C	D	E	F	G	н	1	J	К	L.	М

	SWF Basir	9 Strea n Coo	am Je	Stre	am Nam	e	RMI	E	levation (ft)	Drair Ar (sq	nage ea mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	20A	355	547 WEST	BRANCH	LITTLE	NESHANNO	0.00	00	877.48	5	17.40	0.00000	0.00	
						Stream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dep	n th Te	<u>Tribu</u> mp	<u>tary</u> pH	Tem	<u>Stream</u> np pH	
Conta.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°)	C)		(°C)	
27-10	0.031	0.00	0.00	0.000	0.000	0.0	0.00	C	0.00	20.00	7.5	i0 ii	0.00 0.0	0
21-10		0.00	0.00	0.000	0.000									
		0.00		0 000	0 000	C								

Input Data WQM 7.0

	Dis	scharge D	ata						
Name	Permit Number	Existing Disc Flow (mgd)	Perm Di Flo (mg	ermitted Design Disc Disc Flow Flow (mgd) (mgd)		Reserve Factor		Disc Temp (ºC)	Disc pH
		0.0000	0.0	0000	0.000	0 0	0.000	25.00	7.00
	Pa	rameter D	ata						
Do	remeter Nome	Dis Co	c nc	Trib Con	o Str ic C	eam onc	Fate Coef		
Γa	ameter Mame	(mg	I/L)	(mg/	′L) (n	ng/L)	(1/days)	
CBOD5		2	5.00	2	2.00	0.00	1.5	0	
Dissolved O	kygen		3.00	8	8.24	0.00	0.0	0	
NH3-N		2	5.00	С	0.00	0.00	0.7	0	

Input Data WQM 7.0

	SWP Basir	Strea Coc	Stream Code Stream Name		e	RMI	Elevat (ft)	ion Dra	ainage Area sq mi)	Slope (ft/ft)	PWS Withdra (mgd) wal	Apply FC	
	20A	355	547 WEST	BRANCI	LITTLE	NESHANNO	9.82	2 0 11:	56.62	1.59	0.00000		0.00	\checkmark
					5	Stream Dat	a							
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	<u>Trit</u> Temp (°C)	butary pH	Tem (°C	<u>Stream</u> ip)	рН	
Q7-10 Q1-10 Q30-10	0.024	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.00	0 7.5	0)	0.00	0.00	
			Name	Per	mit Numb	Discharge I Existing Disc ver Flow (mgd)	Data Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserve Factor	Disc e Tem r (°C)	p p	sc H		
		Penn	wood Estat	Estate PA0033448 0.00 Parameter Parameter Name			4 0.013 Data sc 1 onc C a/L) (n	35 0.0135 0.000 25.0 Trib Stream Fate Conc Conc Coef		5.00	7.10			
	CBOD5 Dissolved Oxygen					(25.00 4.00	2.00 8.24	0.00	1.50				

25.00

0.10

0.00

0.70

NH3-N

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	Uniform Treatme	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	95.00%	Use Balanced Technology	✓
D.O. Goal	5		

Tuesday, November 8, 2022

Version 1.1

Page 1 of 1

		VV		0 1143	leivau	Allo	callo	115		
	SWP Basin S	tream	Code			Stream	Name			
	20A	3554	47	WEST	BRANCH	LITTLE	NESHAN	INOCK CR	EEK	
NH3-N	Acute Allocat	ons								
RMI	Discharge Na	E me (Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criteric (mg/L	e Mu on \) (r	ultiple NLA ng/L)	Critical Reach	Percent Reductic	n
9.8	20 Pennwood Esta	te	NA	50	10	.43	22.63	1	55	
NH3-N RMI	Chronic Alloc Discharge Nam	ation Ba e Cr (r	I S iseline iterion mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Mult W (mg	iple LA g/L)	Critical Reach	Percent Reduction	-
9.8	20 Pennwood Esta	te	NA	25	1	.44	4.79	1	81	
Dissolv	ed Oxygen All	ocati	ions							
			<u>C</u>	BOD5	<u>NH:</u>	<u>3-N</u>	Dissol	/ed Oxygen	Critical	Perc
RMI	Discharge	Vame	Baselin (mg/L)	e Multiple) (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baselin (mg/L	e Multiple (mg/L)	Reach	Redu

25

25

4.79

4.79 4

4

0

0

WQM 7.0 Wasteload Allocations

9.82 Pennwood Estate

SWP Basin S	tream Code		Stream Name							
20A	35547	35547 WEST BRANCH LITTLE NESHANNOCK CREEK								
RMI	Total Discharge	Flow (mgd	l) <u>Ana</u>	lysis Tempera	ture (°C)	Analysis pH				
9.820	0.01	4		21.758		7.315				
Reach Width (ft)	<u>Reach De</u>	<u>pth (ft)</u>		Reach WDR	<u>atio</u>	Reach Velocity (fps)				
4.666	0.32	4		14.394		0.039				
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)				
10.09	0.09	8		1.75		0.801				
Reach DO (mg/L)	<u>Reach Kr (</u>	<u>1/days)</u>		<u>Kr Equatio</u>	<u>n</u>	<u>Reach DO Goal (mg/L)</u>				
6.751	20.78	4		Owens		5				
Reach Travel Time (days)		Subreach	Results							
15.279	TravTime	CBOD5	NH3-N	D.O.						
	(days)	(mg/L)	(mg/L)	(mg/L)						
	1.528	8.58	0.51	8.24						
	3.056	7.30	0.15	8.24						
	4.584	6.21	0.10	8.24						
	6.112	5.28	0.10	8.24						
	7.640	4.49	0.10	8.24						
	9.167	3.82	0.10	8.24						
	10.695	3.25	0.10	8.24						
	12.223	2.76	0.10	8.24						
	13.751	2.35	0.10	8.24						
	15.279	2.00	0.10	8.24						

WQM 7.0 D.O.Simulation

Version 1.1

Page 1 of 1

	SWP Basin	Stream Code			Stream Name	2		
	20A	35547		WEST BR	ANCH LITTLE NESH	ANNOCK CREI	EK	
RMI	Name	Per Nur	rmit nber	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
9.820	Pennwood Est	ate PA00	33448	0.001	CBOD5	25		
					NH3-N	4.79	9.58	
					Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Tuesday, November 8, 2022

Version 1.1

Page 1 of 1

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Average			Average			Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Estimate
pH (S.U.)	xxx	XXX	6.0 Inst Min	XXX	xxx	9.0	1/day	Grab
			4.0					
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
00000								8-Hr
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Composite
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	8-Hr Composite
						Report		. .
E Coli	XXX	XXX	XXX	XXX	XXX	Annual	1/year	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
				Report	Report			8-Hr
Total Nitrogen	XXX	XXX	XXX	Avg Qrtly	Daily Max	XXX	1/quarter	Composite
Ammonia								8-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	13.0	XXX	26.0	2/month	Composite
Ammonia								8-Hr
May 1 - Oct 31	XXX	XXX	XXX	4.5	XXX	9.0	2/month	Composite
				Report	Report			8-Hr
Total Phosphorus	XX	XXX	XXX	Avg Qrtly	Daily Max	XXX	1/quarter	Composite

Compliance Sampling Location: Outfall 001 after disinfection