

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
	Non-
Facility Type	Municipal

Minor

Major / Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0033766
APS ID	1087673
Authorization ID	1438283

Applicant and Facility Information									
Applicant Name	Aqua Pennsylvania Wastewater Inc.	Facility Name	North Heidelberg Sewer Co. STP						
Applicant Address	762 W Lancaster Avenue	Facility Address	255 Koenig Road						
	Bryn Mawr, PA 19010-3402	_	Bernville, PA 19506						
Applicant Contact Applicant Phone	Todd Duerr, VP of Production * (610) 792-2112/ TMDuerr@aquaamerica.com	_ Facility Contact Facility Phone	Kyle Roberts, Area Supervisor (610) 520-6384/ KWRoberts@aquaamerica.com						
Client ID	62614	Site ID	451889 (PF # 478972)						
Ch 94 Load Status		Municipality	Jefferson Township						
Connection Status		County	Berks						
Date Application Rece	May 1, 2023 (transfer) ived May 3, 2023 (renewal)	EPA Waived?	Yes						
Date Application Acce	pted May 4, 2023	If No, Reason							
Purpose of Application	Renew NPDES permit in new own	ner's name							

Summary of Review

The previous NPDES permit for this facility was effective May 1, 2009, with an expiration date of April 30, 2014. A renewal application was received December 3, 2013 from the previous owner, North Heidelberg Sewer Company, allowing the permit to be administratively extended past the stated expiration date of April 30, 2014. After that time, the Pennsylvania Public Utility Commission (PUC) assigned operations of the sewage treatment plant to Aqua PA. At the end of March 2023, Aqua PA became the owner of the Sewage Treatment Plant (STP) and associated conveyance system.

On May 1, 2023, Aqua PA submitted to DEP a transfer permit application via DEP's online upload system (OnBase Reference ID#106523) for the NPDES permit and five WQM permits: 0602411, 0669403, 0601405, 0603401, and 0694411. Transfer fees of \$1450 were submitted. On May 3, 2023, Aqua PA submitted to DEP, as requested, a renewal application for the NPDES permit via DEP's online upload system (OnBase Reference ID#106531).

According to the 2023 renewal application, the STP serves a population of 816 with 100% of flow from within Jefferson Township. However, the map of the sewer service area attached to the application indicates that the service area also extends into North Heidelberg Township. (See attached maps.) The DEP 2009 Fact Sheet (FS) associated with the previous permit similarly stated: "The plant currently serves the country club and several subdivisions in Jefferson and North Heidelberg Townships." To ensure compliance with Pennsylvania's Administrative Code, a copy of the draft renewal permit is being sent by DEP to North Heidelberg Township.

* While Todd Duerr was the client contact provided on the NPDES renewal application and the signatory on the transfer application, the following client contact information was provided on the NPDES and WQM transfer applications:

Kyle McCullough, Area Supervisor III Agua Pennsylvania Wastewater, Inc.

529 King Road

Royersford, PA 19468

610-792-2112, KRMcCullough@aguaamerica.com

Approve	Deny	Signatures	Date
х		Bonnie Boylan Bonnie Boylan / Environmental Engineering Specialist	August 25, 2023
х		María D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	August 28, 2023
х		María D. Bebenek Maria D. Bebenek, P.E. / Environmental Program Manager	August 28, 2023

Design flow:

The previous permit's limits were based on a design flow of 0.1 MGD. The 2023 NPDES permit renewal application also showed 0.1 MGD as the annual average design flow and 0.1 MGD as the Hydraulic Design Capacity. The past two years of Discharge Monitoring Reports (DMRs) were reviewed (see attached): the average flow has been consistently below 0.1 MGD. Therefore, there is no need to change the effluent flow on which the permit limits are developed.

Industrial Users:

None per 2023 application

Hauled-in Wastes:

None per 2023 application

Combined Sewer Overflows:

Not applicable

Sludge use and/or disposal:

Hauled off-site, to a Publicly Owned Treatment Works (POTW)

Unresolved Violations

There are no outstanding Clean Water Program violations for this facility according to DEP's eFacts database and DEP's WMS 'Open Violations per Client' Report'.

Delaware River Basin Commission (DRBC):

The facility discharges to a stream within the Delaware River watershed and is thus subject to the Delaware River Basin Commission's (DRBC) requirements. A copy of the draft permit and Fact Sheet will therefore be sent to the DRBC for their review in accordance with State regulations and an interagency agreement. Any comments from DRBC will be considered.

DRBC's Interactive Map does not show a wastewater discharge docket for this facility because the map only includes dockets that were issued since 2005. According to DRBC's interactive map, docket D-1992-027-3 was issued March 16, 2016 to Bernville Corporation-Heidelberg Country Club for the renewal of a surface water withdrawal from the Tulpehocken Creek. The surface water withdrawal docket states: "Wastewater is conveyed to the North Heidelberg Sewer Company sewage treatment facility most recently approved by DRBC **Docket D-1994-001 on April 26, 1995**."

History:

According to DEP's eFacts database (which came into use in the mid 1980's), a 'new' NPDES permit was issued to this facility October 31,1993 and renewed multiple times since then.

The Internal Review and Recommendations (IRR) for the WQM permit 0602411, which was issued by DEP June 20, 2003, stated: "The outfall location is being moved from the unnamed tributary, which flows adjacent to the plant, to the Northkill Creek." The WQM permit approved a plant upgrade to 0.10 MGD Annual Average Flow (AAF), 0.10 MGD Design Hydraulic Capacity and 200 lbs. BOD/day Design Organic Capacity.

The renewal NPDES permit issued June 20, 2003 and the NPDES permit amendment issued February 24, 2004 stated that the facility was authorized to discharge to an Unnamed Tributary (UNT) to Northkill Creek and to Northkill Creek. Both permits gave the same latitude / longitude for the discharge at outfall 001: 40° 25' 51" / -76° 06' 58".

The renewal NPDES permit issued April 10, 2009 stated that the facility was authorized to discharge to Northkill Creek and gave the same latitude/longitude as the previous permits. According to the 2009 Fact Sheet (FS) associated with the April 2009 NPDES permit, the discharge is to Northkill Creek at River Mile Index (RMI) 0.43, stream code 1902. The 2009 FS states: "In 2004 the plant was expanded from 0 .05 MGD to 0.10 MGD. The plant currently serves the country club and several subdivisions in Jefferson and North Heidelberg Townships. As a result of the plant serving these subdivisions, the owner has been required to submit Chapter 94 reports and the permit was amended to include mass loadings for TSS, CBOD5, phosphorus and ammonia."

The previous owner of North Heidelberg Sewer Company is deceased. Aqua PA was operating the STP as "Receiver" for North Heidelberg Sewer Company. The Pennsylvania PUC terminated Aqua PA Wastewater's status as receiver, approved them to purchase the wastewater system and provide wastewater service in portions of North Heidelberg and Jefferson Townships, and issued certificate of public convenience, as adopted on October 27, 2022. The closing between North Heidelberg Sewer Company and Aqua PA did not occur until March 31, 2023.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

	Discharge, Receiving Water	rs and Water Supply Informat	tion
Outfall No. <u>001</u>		Design Flow (MGD)	0.10
Latitude 40° 2	25' 51"	Longitude	
Quad Name		Quad Code	
Wastewater Descri	ption: Sewage Effluent		
Receiving Waters	Northkill Creek	Stream Code	1902
NHD Com ID	25962306/Reach 02040203009149	9 RMI	0.43
Drainage Area	41.6 sq.mi. (per PA Stream Stats online)	LFY (cfs/mi²)	0.20 cfs/sq.mi.
Q ₇₋₁₀ Flow (cfs)	8.3 cfs (equiv. of 5.36 MGD)	Q ₇₋₁₀ Basis	Gage correlation
Elevation (ft)	Approx. 300'	Slope (ft/ft)	
Watershed No.	3-C	Chapter 93 Class.	CWF, MF
Existing Use	None	Existing Use Qualifier	-
Exceptions to Use	-	Exceptions to Criteria	-
Assessment Status	Impaired for Recreational U	 Jses – Assessment ID # 18843	and 4963
Cause(s) of Impairr	ment Pathogens		
Source(s) of Impair	ment unknown		
TMDL Status	None	Name -	
fl p fc T w	lorthkill Creek empties into Tulpehoclows into Blue Marsh Lake (WWF), be athogens. According to the 2022 Interpretation aquatic life due to nutrients/organic Tulpehocken Creek, after Blue Marsh which empties into the Delaware River TMDLs for PCBs.	oth of which are also impaired to be a separated Water Quality Report, Experied to the sentence of the sentenc	for Recreational Uses due to Blue Marsh Lake is also impaired assessment ID #3033 & 3034). kill River at 75.5 RMI
Background/Ambie pH (SU) Temperature (°F) Hardness (mg/L)	nt Data	Data Source – none – no near	by monitoring stations
Other: Nearest Downstrea	m Public Water Supply Intake	Western Berks Water Authorit	у
PWS Waters	Tulpehocken Creek	Flow at Intake (cfs)	
PWS RMI	Approx. 6	Distance from Outfall (mi)	More than 9

⁻Qs:Qd ratio = 5.36 MGD: 0.10 MGD = 53:1

⁻Bernville Borough STP is downstream, at approximately 0.2 RMI on Northkill Creek, PA0024023.

⁻There is an active DEP Water Quality Network (WQN) network station located downstream on Tulpehocken Creek (WQN 117) but it is nearly 13 miles from North Heidelberg's outfall 001 such that its historic data has not been used for estimating stream background values (for example, pH, Temperature, Hardness).

⁻Whereas DEP's eMapPA shows this segment of Northkill Creek as having a **designated use** of WWF, the designated use provided in **25 Pa Code §93.9f is 'CWF, MF'** (Cold Water Fishes, Migratory Fishes) for Northkill Creek south of the I78 bridge. (North of the I78 bridge, Northkill Creek is 'EV, MF' (Exceptional Value, Migratory Fishes)

according to 25 Pa Code §93.9f.) Further, Northkill Creek, Tulpehocken Creek, and Blue Marsh Lake are not on a) DEP's Ongoing Stream Redesignation Evaluations Report (last updated 8/11/2023), or b) DEP's Completed Stream Redesignation Evaluations (last updated 7/25/2022) --including the Statewide Class A streams, or c) DEP's Existing Use list (last revised 8/18/2023), or d) DEP's online search for TMDLs.

-the Q7-10 for Northkill Creek at the outfall 001 location was estimated using USGS data for the downstream gage 01470960 (see attached):

31.8 cfs at gage / 175 sq.mi. gage Drainage Area = LFY gage = 0.2 cfs/sq.mi; 0.2 cfs/sq.mi. x 41.6 sq. mi. Drainage Area of Northkill Creek at the outfall 001 location = 8.3 cfs.

PA Stream Stats online tool was also reviewed but it's estimated Q7-10 for Northkill Creek at the outfall 001 location included a large percent error and appeared too low: 2.25 cfs. Northkill Creek empties into the larger Tulpehocken Creek slightly south of the facility's outfall 001 such that limits based on a stream flow of 2.25 cfs would be unnecessarily stringent.

Changes from last permit:

- -The 2009 FS used a gage on the Tulpehocken Creek, 01470779, approx. 5 miles before the confluence of Tulpehocken Creek with Northkill Creek to arrive at a larger estimated Q7-10 (18.7 cfs) and LFY (0.451 cfs/sq.mi.) which were used in the models.
- -The February 2009 FS did not include Bernville Borough STP's discharge in the modeling.

Treatment Facility Summary

Treatment Facility Name: North Heidelberg STP

WQM Permit No.	Issuance Date
0602411 - STP	6/20/2003
0603401 - PS#3	6/17/2003
0601405 - PS#2	6/18/2001
0694411 - PS#1	8/21/1994
	and amended
	5/31/2001
0669403**	6/26/1969

^{**}for construction of sanitary sewers and original pump station to serve a recreational complex in Jefferson and N. Heidelberg Townships with an initial population of 332 and a design population of 770, terminating at the Bernville Sewage TP; permit issued by PA Dept. of Health 6/26/1969 and reviewed by Sanitary Water Board during its sessions on 7/16/1969 and 7/17/1969.

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Secondary With Ammonia And			
Sewage	Phosphorus Reduction	Extended Aeration	Ultraviolet	0.1

Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.1	200		Aerobic Digestion	Other WWTP

Attached to this Fact Sheet is a flow diagram that was included with the 2023 NPDES permit renewal application.

PREVIOUS PERMIT LIMITS:

			Monitoring Re	quirements					
Parameter	Mass Unit	ts (lbs/day)		Concentrat	Minimum	Required			
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
Influent BOD and Influent TSS	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab	
Dissolved Oxygen (DO)	XXX	XXX	5.0	xxx	XXX	XXX	1/day	Grab	
Total Suspended Solids (TSS)	25	40	XXX	30	45	60	1/week	24-Hr Composite	
CBOD5	21	33	XXX	25	40	50	1/week	24-Hr Composite	
NH3-N Ammonia	16	XXX	XXX	20	XXX	40	1/week	24-Hr Composite	
Total Phosphorus	0.83	XXX	XXX	1.0	XXX	2	1/week	24-Hr Composite	
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	XXX	1/week	Grab	
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	XXX	1/week	Grab	

Compliance History

DMR Data for Outfall 001 (from July 1, 2022 to June 30, 2023)

Parameter	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22
Flow (MGD)												
Average Monthly	0.049	0.045	0.044	0.066	0.052	0.088	0.09	0.0509	0.041	0.0388	0.046	0.046
Flow (MGD)	0.445	0.407	0.000	0.404	0.404	0.400	0.054	0.0057	0.00	0.0750	0.070	
Daily Maximum	0.115	0.107	0.092	0.191	0.121	0.189	0.251	0.0857	0.09	0.0756	0.072	0.096
pH (S.U.) Minimum	6.2	6.6	6.8	6.8	6.8	6.6	6.8	6.6	7.0	6.8	6.6	6.8
pH (S.U.)	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	0.0	0.0
Instantaneous												
Maximum	7.5	7.5	7.8	7.5	7.8	7.5	7.7	7.4	8.6	8.1	7.7	8.9
DO (mg/L)	1.3	1.3	1.0	1.3	1.0	1.3	1.1	7.4	0.0	0.1	1.1	0.9
Minimum	7.5	7.8	8.8	8.7	6.3	8.2	7.2	6.4	7.2	8.0	7.2	6.71
CBOD5 (lbs/day)	7.0	7.0	0.0	0.7	0.0	0.2	7.2	0.4	7.2	0.0	7.2	0.71
Average Monthly	< 0.9	< 0.8	1	2	2	< 2	< 2	< 1	< 0.6	2	< 1	<1
CBOD5 (lbs/day)												
Weekly Average	1	< 1	1	3	2	2	3	2	0.7	2	1	2
CBOD5 (mg/L)												
Average Monthly	< 3	< 2	3	4	4	< 2	< 3	< 3	< 2	4	< 3	< 3
CBOD5 (mg/L)												
Weekly Average	4	2	3	5	5	3	4	4	3	5	5	5
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average		45			455	70	-00	454		440		
Monthly	57	45	66	94	155	79	98	151	66	148	92	98
BOD5 (lbs/day)												
Raw Sewage Influent or/> Daily Maximum	85	54	90	156	290	108	171	216	88	280	127	155
BOD5 (mg/L)	03	34	90	130	290	100	1/1	210	00	200	121	155
Raw Sewage Influent												
 br/> Average												
Monthly	166	133	194	200	324	127	169	379	270	402	297	291
TSS (lbs/day)												
Average Monthly	< 3	2	2	5	6	4	8	< 4	0.9	< 1	< 2	2
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	71	44	72	78	178	52	60	83	68	85	50	88

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	143	86	130	140	371	67	95	121	111	123	81	164
TSS (lbs/day)												
Weekly Average	9	4	3	8	13	10	21	9	1	2	3	2
TSS (mg/L)	_		_			_			_	_	_	_
Average Monthly	< 8	4	6	10	14	6	13	< 10	3	< 3	< 6	5
TSS (mg/L) Raw Sewage Influent												
 br/> Average												
Monthly	215	121	216	185	360	90	107	195	275	236	153	255
TSS (mg/L)												
Weekly Average	23	6	9	14	25	11	30	23	5	6	14	9
Fecal Coliform												
(CFU/100 ml) Geometric Mean	7	< 3	< 3	< 2	< 29	< 5	< 4	4	< 4	< 2	< 3	< 2
Ammonia (lbs/day)	'	_ ` `		~~	120				- ` T	``_		``_
Average Monthly	< 0.007	< 0.04	< 0.06	< 0.6	< 0.05	< 0.2	< 0.3	< 4	< 0.005	< 2	< 0.02	< 0.01
Ammonia (mg/L)												
Average Monthly	< 0.02	< 0.12	< 0.17	< 0.93	< 0.09	< 0.22	< 0.65	< 0.08	< 0.02	< 4.73	< 0.07	< 0.04
Total Phosphorus												
(lbs/day)	0.20	0.40	0.00	0.40	0.40	0.20	0.20	0.40	0.05	0.40	0.40	0.05
Average Monthly	0.20	0.10	0.08	0.10	0.10	0.20	0.20	0.10	0.05	0.10	0.10	0.05
Total Phosphorus (mg/L)												
Average Monthly	0.45	0.29	0.26	0.26	0.34	0.26	0.32	0.3	0.18	0.26	0.41	0.17

Effluent Non-Compliance since 2019:

Event Start Date														
05/01/2021	05/31/2021	Total Phosphorus	Average Monthly	1.2	>	1	mg/L	Final Effluent (001)	1/week	24-Hr Composite	Other	Other	Replaced chemical pump with a big size pump.	View/Edit
01/01/2020	01/31/2020	Fecal Coliform	Geometric Mean	2317	>	2000	CFU/100 ml	Final Effluent (001)	1/week	Grab	Equipment malfunctio n/failure	Equipment repaired	High flows, issue with UV.	View/Edit

Notice of Violations (NOV) since 2019:

6/16/2022 - NOV for TSS and Total Phosphorus exceedances of NPDES permit's Instantaneous Maximum limits

Most Recent DEP Inspections:

- 7/28/2022 a power outage occurred on 7/21/2022 and pump station at Golf Circle was non-operational resulting in a Sanitary Sewer Overflow (SSO). A portable 75 kW generator was placed on site but the power was restored before the generator was used. "None of the pump stations connected to North Heidelberg STP currently have back up power."
- 5/12/2022 DEP effluent grab samples resulted in exceedances of permit limits for TSS (124 mg/l) and Total Phosphorus (3.7 mg/l).
- 4/14/2022 DEP effluent grab samples resulted in exceedances of permit limits for TSS (237 mg/l) and Total Phosphorus (6.2 mg/l).
- 9/21/2021 follow-up from 9/8/2021 inspection. Following equipment has been replaced: blower motors, generator, Ultraviolet (UV) unit. Aeration tank blowers are operational.
- 9/8/2021 extensive damage to treatment plant from flooding related to Hurricane Ida. Aqua installed frac tanks on site and was pumping untreated sewage from Equalization Tank to frac tanks with alarms for temporary disposal at other STP's. New blower motors will be needed. Control building was damaged and a culvert collapsed. Plant generator was damaged. Also installing new UV unit (which is oversized for plant) and coordinating with DEP.
- 9/2/2021 STP is flooded and not accessible, due to Hurricane Ida. All treatment units are offline.

Development of Effluent Limitations										
Outfall No.	001		Design Flow (MGD)	0.10						
Latitude	40° 25' 51"		Longitude	-76º 6' 58"						
Wastewater D	escription:	Sewage Effluent	_							

As applicable, Technology-Based Effluent Limitations, Best Professional Judgment Limitations, and Water-Quality Based Effluent Limitations are developed independently and compared. The more stringent limitation is generally imposed while also considering the prohibition on backsliding of permit limits [Title 40 of the Code of Federal Regulations (C.F.R) § 122.44(I) and 25 Pa. Code § 92a.44].

Technology-Based Effluent Limitations (TBELs)

The following technology-based limitations were considered:

Pollutant	Limit (mg/l)	Statistical	Federal	State	DRBC
		Base Code	Regulation	Regulation	Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)	
02025	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2) ^a	
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)	
Solids (TSS)	45	Average Weekly	133.102(b)(2)	92a.47(a)(2) a	
				92a.47(a)(7)	18 CFR Part 410
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	and 95.2(1)	
Fecal Coliform					
(5/1 – 9/30)	200 / 100 ml	Geometric Mean	-	92a.47(a)(4)	18 CFR Part 410
Fecal Coliform					
(5/1 - 9/30)	1,000 / 100 ml	Instant. Maximum	-	92a.47(a)(4)	
Fecal Coliform					
(10/1 - 4/30)	2,000 / 100 ml	Geometric Mean	-	92a.47(a)(5)	
Fecal Coliform					
(10/1 - 4/30)	10,000 / 100 ml	Instant. Maximum	-	92a.47(a)(5)	
	Secondary				
	Treatment as a				18 CFR Part 410
BOD₅	minimum	-			3.10.4 A.
Ammonia	20	Average Monthly	-	-	18 CFR Part 410
Total Dissolved Solids	1000 b	Average Monthly	-	-	18 CFR Part 410
Total Dissolved Solids	2000 °	Average Monthly		95.10	
Total Phosphorus	2.0 ^d	Average Monthly		96.5	

^a the TBELs stipulated in Chapter 92a.47(a)(2) and (a)(3) for Publicly Owned Treatment Works (POTWs) can be applied to non-POTWs as performance standards/best professional judgment limitations.

Except for BOD₅, TDS and Total Phosphorus, the TBELs in the above table match the previous permit limits and have been carried forward into the draft renewal permit.

^b 1000 mg/l as a monthly average unless the permittee submits a Total Dissolved Solids (TDS) Determination to DRBC and DRBC approves a different effluent limit for TDS, such as after a demonstration that the discharge will not cause an in-stream TDS concentration of 133% over background concentration.

c 2000 mg/l as a monthly average for new dischargers or for expanding discharge loadings of TDS greater than 5,000 lbs/day, measured as an average daily discharge over the course of a calendar year, since August 21, 2010—unless a variance from DEP is granted

d applicable if the receiving water is impaired for nutrients

BOD₅:

Whereas DRBC's effluent limits are for the parameter BOD₅, DEP's effluent limits for sewage discharges are generally imposed for CBOD₅ instead: the model that DEP uses includes CBOD₅ (not BOD₅). The previous permit also imposed limits on CBOD₅ and not on BOD₅ in accordance with Pa Code § 92a.47(a):

§ 92a.47. Sewage permit.

- (a) Sewage, except that discharged from a CSO that is in compliance with subsection (b), or as provided for in subsections (f)—(i), shall be given a minimum of secondary treatment. Secondary treatment for sewage is that treatment that includes significant biological treatment and accomplishes the following:
- (1) Monthly average discharge limitation for BOD₅ and TSS may not exceed 30 milligrams per liter. If CBOD₅ is specified instead of BOD₅ the limitation may not exceed 25 milligrams per liter.

TDS:

Because the facility is not expanding nor has the TDS load from the facility increased by greater than 5000 lbs/day since August 21, 2010, the TBEL of 2000 mg/l—based on State regulations--is not applicable.

Because only two effluent sample results for TDS are available at this time (621 mg/l and 603 mg/l in lab result pages attached to the 2023 application), it cannot be determined if the facility is consistently below the average monthly limit of 1000 mg/l –based on DRBC regulations--or could cause in-stream TDS concentrations of 133% over background. A monitoring requirement for TDS has therefore been added to the permit.

Total Phosphorus (TP):

See the section below, BPJ Limitations.

Best Professional Judgment (BPJ) Limitations

Total Phosphorus (TP):

As a result of a 1987 DEP study of the Blue Marsh Reservoir, it was recommended that a phosphorus limit of 1.0 mg/l be included in sewage permits for facilities which discharge upstream of the reservoir. The limits of 1.0 mg/l as a monthly average and 2.0 mg/l as an instantaneous maximum are considered TBELS-BPJ: technologically achievable limits imposed as Best Professional Judgement. The previous permit included TP limits of 1.0 mg/l as a monthly average, 2.0 mg/l as an Instantaneous Maximum, and 0.83 lbs/day as a monthly average mass load limit. The previous permit's limits will be carried forward to continue to protect the Blue Marsh Reservoir.

Dissolved Oxygen (D.O.):

To achieve the water quality criteria for D.O and avoid backsliding, the minimum limit of 5.0 mg/l for D.O. in the previous permit has been carried forward.

Water Quality-Based Effluent Limitations (WQBELs)

TMDL:

Whereas no TMDL exists for the receiving water at this time, the downstream Blue Marsh Lake is considered impaired for aquatic life due to nutrients and is used as a public water supply. As previously discussed, permit limits have been imposed for Total Phosphorus to reduce nutrients into the Lake.

CBOD₅ and Ammonia:

DEP uses a model called WQM 7.0 to calculate WQBELs for these parameters. Input values for the model simulation were as follows:

NPDES Permit Fact Sheet North Heidelberg Sewer Co. STP

pH of stream = 7.0 s.u., a default value because there is no site-specific data available

Temperature of stream = 20°C, a default value (for CWF and/or Trout Stocked Fishes TSF designated use) because there is no site-specific data available

pH of discharge = 7.0 s.u., assumed

Temperature of discharge = 25°C, assumed

Low Flow Yield = 0.20 cfs/sq.mi, as described on page 4 of the Fact Sheet

Drainage area of Northkill Creek at outfall 001 according to USGS's Pa Streamstats online tool = 41.6 sq.mi. (see Fact Sheet attachment)

Drainage area of Northkill Creek at downstream Bernville Borough STP's outfall according to USGS's Pa Streamstats online tool = 42 sq.mi. (see Fact Sheet attachment)

Drainage area of Northkill Creek at downstream confluence with Tulpehocken Creek according to USGS's Pa Streamstats online tool = 42 sq.mi. (see Fact Sheet attachment)

River Mile Indices and elevations of outfall 001, Bernville Borough STP's outfall, and the confluence between Northkill Creek and Tulpehocken Creek are according to DEP's eMapPA online tool

Because the Bernville Borough Sewage Treatment Plant (STP) is located downstream of this facility, at approximately 0.2 RMI on Northkill Creek, discharging to the same receiving water segment, it was modeled along with the North Heidelberg STP. Bernville Borough STP's NPDES permit (PA0024023) authorizes it to discharge 0.285 MGD.

The model input and output pages are attached to this Fact Sheet. In this case, the model defaulted to the TBELs, signifying that more stringent limits are not needed to protect the receiving waterway. The TBELs were imposed as limits in the draft permit. The CBOD₅ and Ammonia limits have not changed from the previous permit's limits.

TOXIC POLLUTANTS:

The following limitations were determined through water quality modeling and Reasonable Potential to exceed an instream criteria analysis:

Parameter	Limit (mg/l)	Statistical Base Code (SBC)	Model
None	none	-	Toxics Management Spreadsheet (TMS)

DEP used to use a model called PENTOX. The Toxics Management Spreadsheet (TMS) is a macro-enabled Excel binary file that combines the functions of the former PENTOX model and the former Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine Water Quality-Based Effluent Limitations (WQBELs) as needed. (Note: Unlike the WQM 7.0 model, TMS only analyzes for single dischargers to a single stream segment.)

The model will recommend a limit where the effluent concentration equals or exceeds 50% of the WQBEL (deemed a demonstration of Reasonable Potential to exceed water quality criteria in a receiving stream). The model will recommend a monitoring requirement where the effluent concentration is between 25% and 50% of the WQBEL for non-conservative pollutants. The model will recommend a monitoring requirement where the effluent concentration is between 10% and 50% of the WQBEL for conservative pollutants. [Standard Operating Procedure (SOP): Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers, Version 1.5, May 20, 2021.]

Because there is no site-specific data available in this case, the following defaults were used in the model:

pH stream = 7.0 s.u. Hardness stream = 100 mg/l

Other defaults used:

pH discharge = 7.0 s.u. Hardness discharge = 100 mg/l

The TMS simulation pages are attached to the FS showing input values and results. No WQBELs were indicated.

The TMS recommended monitoring, but no limit, for Total Thallium based on the fact that the maximum concentration reported in the discharge, <3 ug/l, was greater than 10% of the calculated WQBEL of 13.1 ug/l. However, there was only one effluent sample result in the application for Total Thallium and it was "non-detect". The lab reporting level used (also

called the Quantitation Level) was larger than DEP's Target Quantitation Level (TQL), causing the recommendation to require monitoring in the permit for Total Thallium. (The instructions to the Minor Sewage NPDES Permit application do not include a TQL for Total Thallium, meaning it was not a case of the applicant not following the application instructions. DEP's TQL for Total Thallium appears in the Major Sewage NPDES Permit application: 2.0 ug/l.)

At the permit writer's discretion and based on the available data, monitoring has <u>not</u> been included as a permit requirement. The permit writer notes that a) the discharge concentration of <3 ug/l is less than 50% of the WQBEL and therefore reasonable potential is not indicated, b) the TQL of 2.0 ug/l for Total Thallium is also greater than 10% of the WQBEL (13.1 ug/l) calculated by the TMS for Total Thallium, and c) there are no industrial users indicated in the application and no reason to suspect that Thallium is a pollutant of concern.

Mass Loading Limits

The mass loading limits for CBOD₅, TSS, Ammonia, and Total Phosphorus were carried forward from the previous permit since the concentration limits and design flow have not changed.

Anti-Backsliding

No limits have been made less stringent from the previous permit.

Monitoring

In accordance with 25 Pa Code § 92a.61, monitoring for UV, Total Nitrogen and its components Total Kjeldahl Nitrogen and Nitrate-Nitrite, and for E. Coli have been included in the draft renewal permit. In the case of nitrogen, DEP is gathering information to assess nutrients in Pennsylvania streams. In the case of E. Coli, the latest revision to Pennsylvania's Water Quality Standards, 25 Pa Code Chapter 93, added a water quality criteria for E. Coli. which has prompted the new monitoring requirement in NPDES sewage permits. A minimum monitoring frequency of quarterly for E. Coli. has been added to the draft permit consistent with DEP's SOP Establishing Effluent Limitations for Individual Sewage Permits, Version 1.9, March 24, 2021.

The new monitoring requirement for TDS has already been discussed in the Fact Sheet.

The monitoring requirements for Flow are the same as the previous permit and as those imposed in other NPDES sewage permits for facilities of this size.

The monitoring requirements for influent BOD₅ and influent TSS are the same as the previous permit and consistent with DEP's SOP: New and Reissuance Individual Sewage NPDES Permits.

Minimum monitoring frequencies are based on DEP's Technical Guidance for the Development and Specification of Effluent Limitations [document #362-0400-001], BPJ, and/or carried forward from the previous permit.

TDS Baseline

In order to apply the requirements in Pa Code § 95.10 in the future, i.e. if the facility proposes an expansion, a TDS Baseline as of August 21, 2010 should be documented. However, the 2009 renewal application did not include sampling results for TDS, nor was monitoring for TDS required by the previous permit. The 2009 renewal application indicated 0.032 MGD as the "Existing annual average flow for the previous year". The 2023 renewal application includes two effluent sample results for TDS, with 621 mg/l as a maximum and 612 mg/l as an average. If the TDS concentration had been similar in 2009, the estimated TDS baseline as of August 2010 would be: 0.032 MGD x 612 mg/l TDS x 8.34 c.f. = 163 lbs/day

The current TDS load is calculated as: 0.05 MGD average flow (from July 1, 2021-June 30, 2023 DMRs, summarized in attachment to this Fact Sheet) x 612 mg/l TDS x 8.34 c.f. = 259 lbs/day.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Antidegradation

The effluent limits for this discharge have been developed to ensure that existing in-stream uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Water or Exceptional Value Waters are impacted by this discharge.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality as needed and BPJ. Instantaneous Maximum (IMAX) limits are generally determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Red	quirements
Parameter	Mass Unit	s (lbs/day*)		Concentrati	ons (mg/L*)		Minimum	Required
Farameter	Average	Weekly	Instant.	Average	Weekly	Instant.	Measurement	Sample .
	Monthly*	Average*	Minimum	Monthly*	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen (DO)	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
UV Light Intensity (uw/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
Carbonaceous Biochemical								24-Hr
Oxygen Demand (CBOD ₅)	21	33	XXX	25	40	50	1/week	Composite
Biochemical Oxygen Demand		_						
(BOD ₅)		Report					., .	24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
Total Suspended Solids (TSS)	25	40	XXX	30	45	60	1/week	24-Hr Composite
Total Suspended Solids (133)	25	Report		30	40	00	1/WEEK	24-Hr
Raw Sewage Influent	Report	Daily Max	xxx	Report	XXX	xxx	1/week	Composite
The state of the s		zany max	7001	Report	7000	7001	.,	24-Hr
Total Dissolved Solids (TDS)	XXX	XXX	XXX	Avg. Qrtrly.	XXX	XXX	1/quarter	Composite
Fecal Coliform (No./100 ml)				2000			·	
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ammonia - Nitrogen	16	XXX	XXX	20	XXX	40	1/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

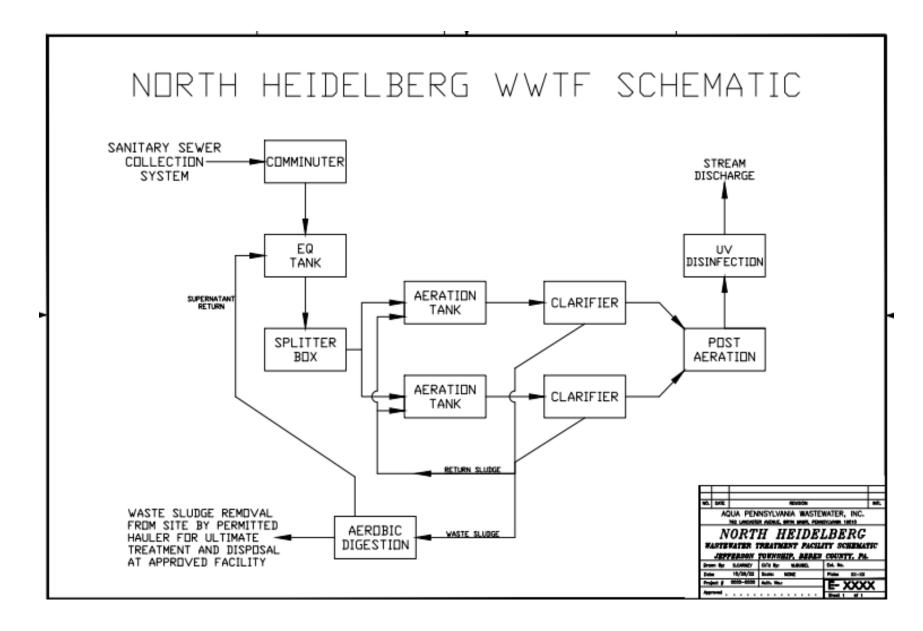
			Effluent L	imitations			Monitoring Red	quirements
Parameter Nitrate-Nitrite as N Total Kjeldahl Nitrogen Total Nitrogen Total Phosphorus	Mass Units	s (lbs/day*)		Concentrati	Minimum	Required		
	Average Monthly*	Weekly Average*	Instant. Minimum	Average Monthly*	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
	Report			Report	g			24-Hr
Nitrate-Nitrite as N	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
	Report			Report				24-Hr
Total Kjeldahl Nitrogen	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
	Report			Report				
Total Nitrogen	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Calculation
								24-Hr
Total Phosphorus	0.83	XXX	XXX	1.0	XXX	2	1/week	Composite

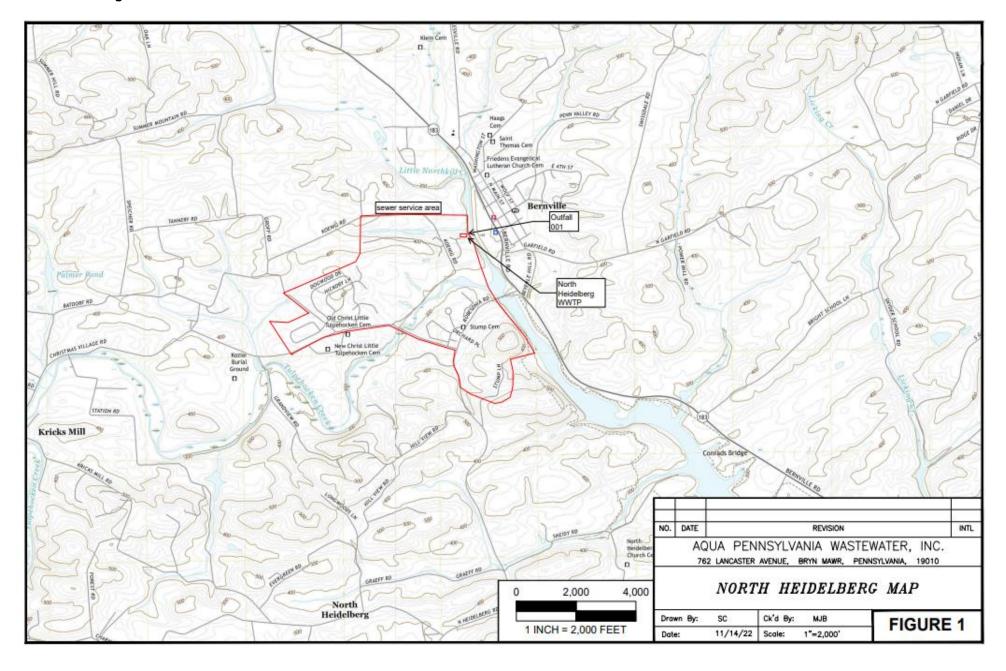
^{*}unless otherwise indicated

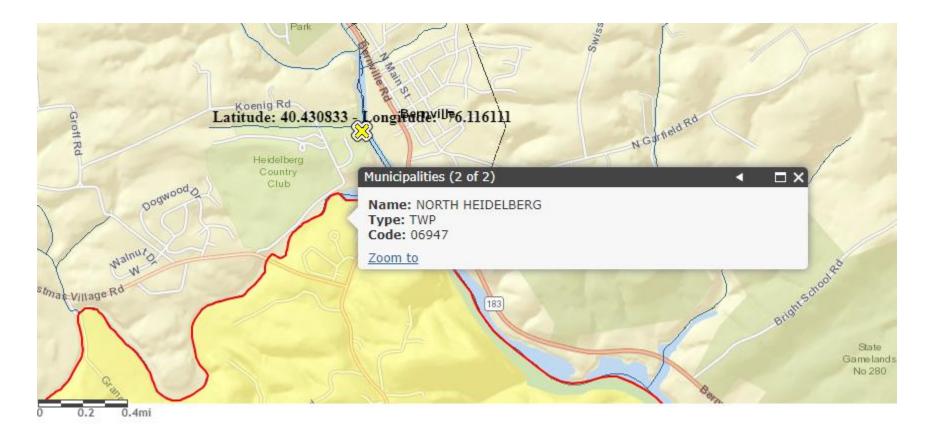
Compliance Sampling Location: at Outfall 001

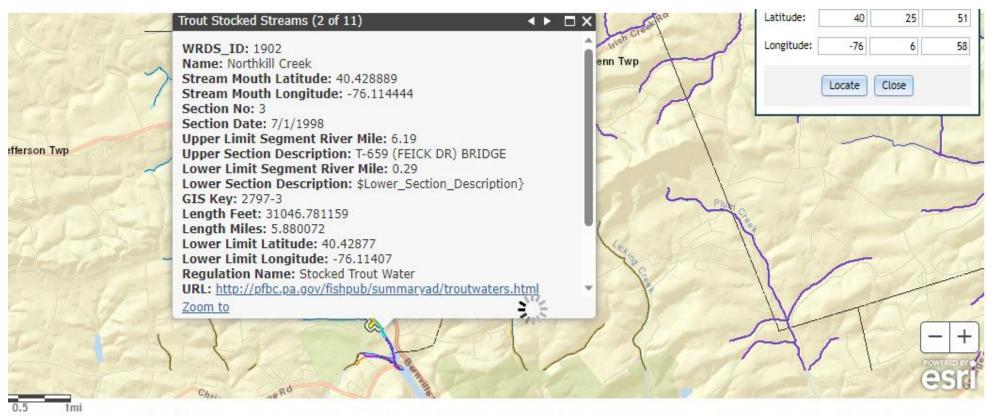
Note: Some DEP document ID numbers for Technical Guidance are changing/have changed. See next page for revised numbers.

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP: New and Reissuance Sewage Individual NPDES Permit Applications, Version 2.0, February 3, 2022
SOP: Establishing Effluent Limitations in Individual Sewage NPDES Permits, version 1.9, March 24, 2021
SOP: Establishing Water-Quality Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers. Version 1.5, May 20, 2021
Other:


Current Doc ID No.			Туре	Name	Current Folder	New Folder	
391-2000-017	386-2000- 001	4/11/09	G	Implementation Guidance For Temperature Criteria	Water Standards and Facility Regulation	Clean Water	
385-2000-011	386-2000- 00-011		Point and Nonpoint Source Management	Clean Water			
385-0810-001	386-0810- Statement of Policy Defining		Chapter 95 – Total Dissolved Solids, Statement of Policy Defining the Term "Authorization"	Water Standards and Facility Regulation	Clean Water		
391-2000-023	9/14/98	G	Design Stream Flows	Water Supply and Wastewater Management	Clean Water		
391-2000-003	386-2000- 004	12/9/1997	G	Determining Water Quality Based Effluent Limits	Water Supply and Wastewater Management	Clean Water	
391-2000-021	386-2000- 005	3/22/99	G	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness	Water Supply and Wastewater Management	Clean Water	
391-2000-024	386-2000- 006	10/13/98	G	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Coefficients of Variation (CV) and Other Discharge Characteristics	Water Supply and Wastewater Management	Clean Water	
391-2000-006	386-2000- 007	9/15/97	G	Implementation Guidance Design Conditions	Water Supply and Wastewater Management	Clean Water	
391-2000-002	386-2000- 008	4/7/97	G	Implementation Guidance Evaluation & Process Thermal Discharge (316 (a)) Federal Water Pollution Act Water Supply and Wastewate Management		Clean Water	
391-2000-002 008 386-2000- 391-2000-010 009		3/30/99	G	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments	Water Supply and Wastewater Management	Clean Water	


391-2000-022	386-2000- 010	3/22/99	G	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances	Water Supply and Wastewater Management	Clean Water
391-2000-015	386-2000- 391-2000-015 011		G	Implementation Guidance Total Residual Chlorine (TRC) Regulation	Water Supply and Wastewater Management	Clean Water
362-0300-004	386-0300- 002	10/1/97	G	Industrial Wastewater Management	Water Supply and Wastewater Management	Clean Water
391-2000-008	386-2000- 012	10/24/97	G	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges	Water Supply and Wastewater Management	Clean Water
391-2000-014	386-2000- 013	4/12/08	G	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers	Water Standards and Facility Regulation	Clean Water
391-2000-020	386-2000- 014	9/7/95	G	Protocol for Estimating First Order Pollutant Fate Coefficients for Volatile Organic Substances	Water Supply and Wastewater Management	Clean Water
391-2000-011	386-2000- 015	5/22/04	G	Technical Reference Guide (TRG) PENTOXSD for Windows PA Single Discharge Wasteload Allocation Program for Toxics Version 2.0	Water Supply and Wastewater Management	Clean Water
391-2000-007	386-2000- 016	6/26/04	G	Technical Reference Guide (TRG) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.0	Water Supply and Wastewater Management	Clean Water
362-2000-001	386-2000- 017	?	G	Permitting Policy and Procedure Manual	Water Quality	Clean Water


362-0400-001	386-0400- 001	10/1/1997	G	Technical Guidance for the Development and Specification of Effluent Limitations	Water Quality	Clean
302-0400-001	001	10/1/1997	U	Technology Based Control	water Quarty	water
362-2183-003	2-2183-003		Requirements for Water Treatment Plant	Water Quality	Clean Water	
362-2000-008	386-2000- Reviews of Minor NPDES Permit			Water Quality	Clean	
302-2000-008	386-2000-	11/1/1990	u	Policy for Permitting Surface Water	water Quarity	Clean
362-2000-003	019	3/1/1998	G	Diversions	Water Quality	Water
362-2183-004	386-2183- 002	12/1/1997	G	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry	Water Quality	Clean
391-2000-019	386-2000- 020	10/28/199	G	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids (TDS), Nitrite-Nitrate (NO2-NO3), Non-Priority Pollutant Phenolics and Fluorides	Watershed Conservation	Clean Water
391-2000-018	386-2000- 021	10/27/199	G	Implementation Guidance for Section 95.9 Phosphorus discharges to Free Flowing Streams	Watershed Conservation	Clean
391-2000-013	386-2000- 022	11/4/1997	G	Implementation Guidance of Section 93.7 Ammonia Criteria	Watershed Management	Clean Water
385-2100-002	386-2100- 002	11/12/201	G	Policy and Procedure for NPDES Permitting of Discharges of Total Dissolved Solids	Water Standards and Facility Regulation	Clean Water
391-3200-013	386-3200- 001	6/10/1997	G	Evaluations of Phosphorus Discharges to Lakes, Ponds, and Impoundments	Water Supply and Wastewater Management	Clean Water
392-0300-002	386-0300- 003	9/28/2002	P	Comprehensive Stormwater Management Policy	Watershed Management	Clean Water


392-0300-001	386-0300- 004	5/14/1985	G	Stormwater Management Guidelines and Model Ordinances	Watershed Management	Clean Water
				Standards and Guidelines for Identifying, Tracking, and Resolving		
	386-4000-			Violations of the Storm Water	****	Clean
363-4000-003	001	38871	G	Management Act	Watershed Management	Water

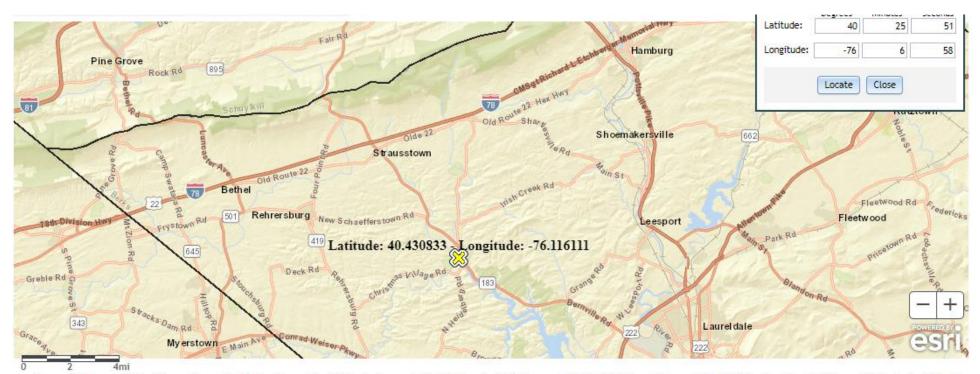
Where G = Guidance, P = Policy

Esri, Maxar, Earthstar Geographics, and the GIS User Community; ESRI Streets: Sources: Esri, HERE, Garmín, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) contributors, and the GIS User Community

Online Pa Code effective thru 53 Pa.B. 2932 (May 27, 203)

93.9f Drainage List F....DE River Basin

1-DE Estuary


2-Schuylkill River

3-Tulpehocken Creek

4-Northkill Creek.....

STREAM	ZONE	COUNTY	Uses Excep	otions
3—Tulpehocken Creek	Blue Marsh Reservoir	Berks	WWF, MF N	one
4—Unnamed Tributaries to Blue Marsh Reservoir	Basins, Source to Slackwater of Blue Marsh Reservoir	Berks	TSF, MF N	one
4-Northkill Creek	Basin, Source to I-78 Bridge	Berks	EV, MF N	one
4—Northkill Creek	Basin, I-78 Bridge to Slackwater of Blue Marsh Reservoir	Berks	CWF, MF N	one

NPDES Permit No. PA0033766

igery: Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community; ESRI Streets: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) anStreetMap contributors, and the GIS User Community

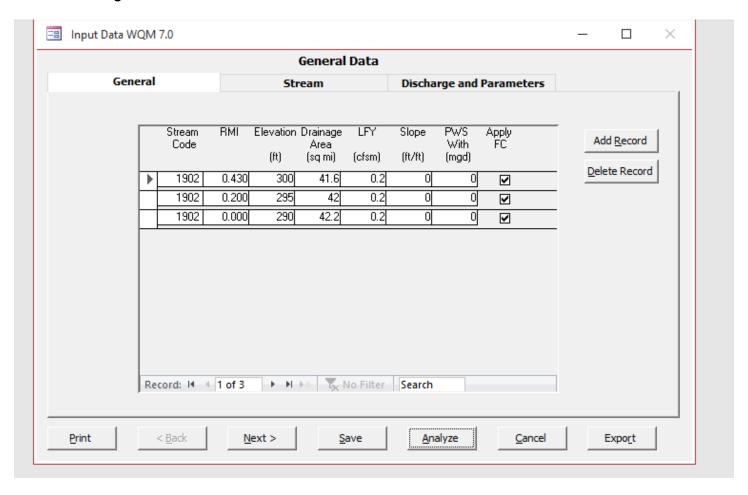
NPDES Permit Fact Sheet North Heidelberg Sewer Co. STP

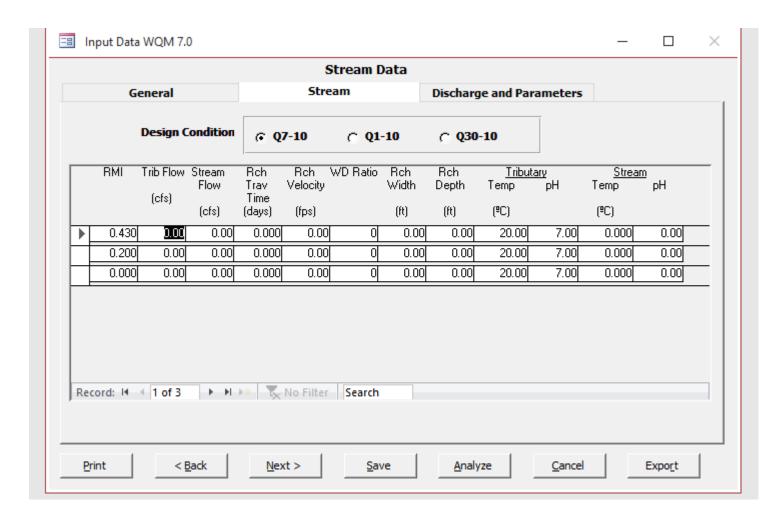
DMR data, flow:

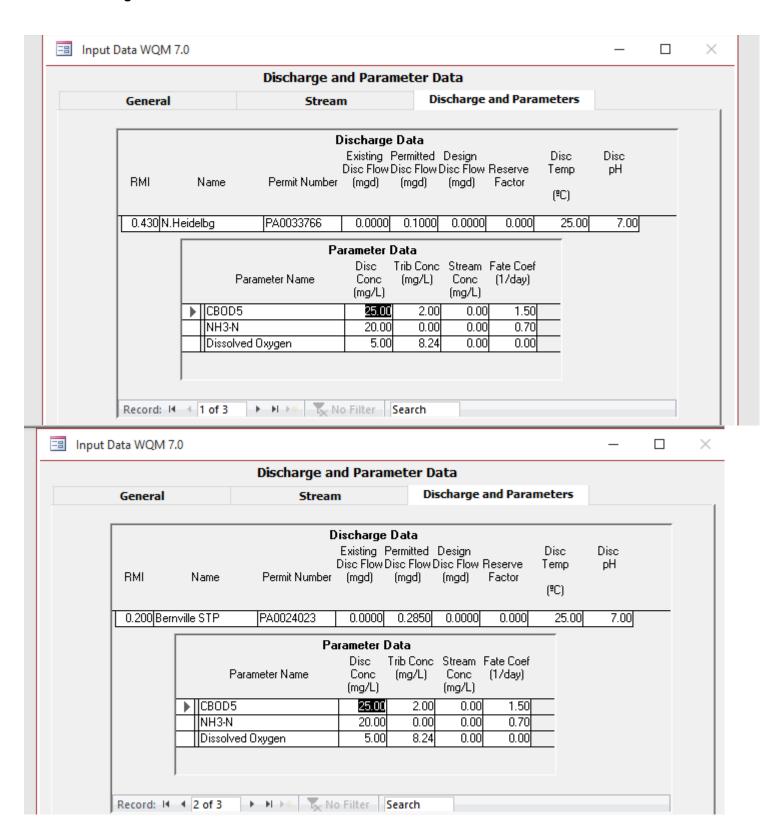
							0.090 Max 0.082 90th pe		0.281	Max 90th per					
							0.054 Avg		0.124						
PA0033766	6/1/2023	6/30/2023 Monthly	1	1 Final Effluent	Flow	MGD	0.049 Monito	r Average Mo	0.115	Monitor	Daily Maximum				
PA0033766	5/1/2023	5/31/2023 Monthly	1	1 Final Effluent	Flow	MGD	0.045 Monito	r Average Mo	0.107	Monitor	Daily Maximum				
PA0033766	4/1/2023	4/30/2023 Monthly	1	1 Final Effluent	Flow	MGD	0.044 Monito	r Average Mo	0.092	Monitor	Daily Maximum				
PA0033766	3/1/2023	3/31/2023 Monthly	1	1 Final Effluent	Flow	MGD	0.066 Monito	r Average Mo	0.191	Monitor	Daily Maximum				
PA0033766	2/1/2023	2/28/2023 Monthly	1	1 Final Effluent	Flow	MGD	0.052 Monito	r Average Mo	0.121	Monitor	Daily Maximum				
PA0033766	1/1/2023	1/31/2023 Monthly	1	1 Final Effluent	Flow	MGD	0.088 Monito	r Average Mo	0.189	Monitor	Daily Maximum				
PA0033766	12/1/2022	12/31/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.09 Monito	r Average Mo	0.251	Monitor	Daily Maximum				
PA0033766	11/1/2022	11/30/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.0509 Monito	r Average Mo	0.0857	Monitor	Daily Maximum				
PA0033766	10/1/2022	10/31/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.041 Monito	r Average Mo	0.09	Monitor	Daily Maximum				
PA0033766	9/1/2022	9/30/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.0388 Monito	r Average Mo	0.0756	Monitor	Daily Maximum				
PA0033766	8/1/2022	8/31/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.046 Monito	r Average Mo	0.072	Monitor	Daily Maximum				
PA0033766	7/1/2022	7/31/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.046 Monito	r Average Mo	0.096	Monitor	Daily Maximum				
PA0033766	6/1/2022	6/30/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.045 Monito	r Average Mo	0.077	Monitor	Daily Maximum				
PA0033766	5/1/2022	5/31/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.061 Monito	r Average Mo	0.187	Monitor	Daily Maximum				
PA0033766	4/1/2022	4/30/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.086 Monito	r Average Mo	0.281	Monitor	Daily Maximum				
PA0033766	3/1/2022	3/31/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.052 Monito	r Average Mo	0.098	Monitor	Daily Maximum				
PA0033766	2/1/2022	2/28/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.06 Monito	r Average Mo	0.21	Monitor	Daily Maximum				
PA0033766	1/1/2022	1/31/2022 Monthly	1	1 Final Effluent	Flow	MGD	0.045 Monito	r Average Mo	0.066	Monitor	Daily Maximum				
PA0033766	12/1/2021	12/31/2021 Monthly	1	1 Final Effluent	Flow	MGD	0.038 Monito	r Average Mc	0.067	Monitor	Daily Maximum				
PA0033766	11/1/2021		1	1 Final Effluent	Flow	MGD	0.057 Monito				Daily Maximum				
PA0033766	10/1/2021	10/31/2021 Monthly	1	1 Final Effluent	Flow	MGD	0.05 Monito	r Average Mo	0.117	Monitor	Daily Maximum		_		
PA0033766	9/1/2021	9/30/2021 Monthly	3	1 Final Effluent	Flow	MGD	Monito	r Average Mo	nthly	Monitor	Daily Maximum	coded as E	, both avg	mo and d n	nax
PA0033766	8/1/2021	8/31/2021 Monthly	1	1 Final Effluent	Flow	MGD	0.043 Monito	r Average Mo	0.1	Monitor	Daily Maximum				
PA0033766	7/1/2021	7/31/2021 Monthly	1	1 Final Effluent	Flow	MGD	0.04 Monito	r Average Mo	0.066	Monitor	Daily Maximum				

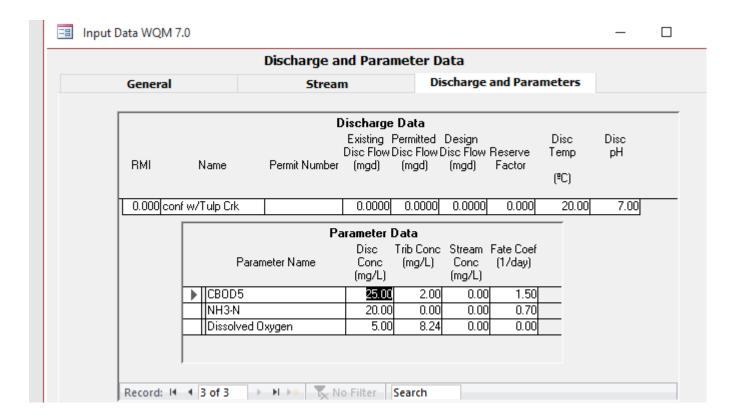
StreamStats Output Rep	ort -North	kill Crk at I	N.Heidelbg	STP's 001					
State/Region ID	PA								
Workspace ID		0317170385	52000						
Latitude	40.43071								
Longitude	-76.1158								
Time	8/3/2023	1:17:24 PI	M						
Basin Characteristics									
Parameter Code	Paramete	Value	Unit						
CARBON	Percentag	1.15	percent						
DRNAREA	Area that	41.6	square mi	les					
PRECIP	Mean Ann	46	inches						
ROCKDEP	Depth to r	3.6	feet						
STRDEN	Stream De	1.54	miles per	square mil	e				
Low-Flow Statistics Flov	100.0 Pero	ent Low Fl	ow Region	2					
Statistic	Value	Unit	SE	ASEp					
7 Day 2 Year Low Flow	5.81	ft^3/s	38	38					
30 Day 2 Year Low Flow	8.24	ft^3/s	33	33					
7 Day 10 Year Low Flow	2.25	ft^3/s	51	51					
30 Day 10 Year Low Flow	3.34	ft^3/s	46	46					
90 Day 10 Year Low Flow	5.6	ft^3/s	36	36					
USGS Data Disclaimer: U	nless othe	rwise state	ed, all data	, metadata	and rela	ted materi	ials are cor	sidered to	satisfy the
USGS Software Disclaim									•
USGS Product Names Di	sclaimer: A	any use of	trade, firm	, or produc	t names i	s for descr	iptive pur	poses only a	and does n
Application Version: 4.1	6.1								
StreamStats Services Ve		22							
NSS Services Version: 2.	2.1								

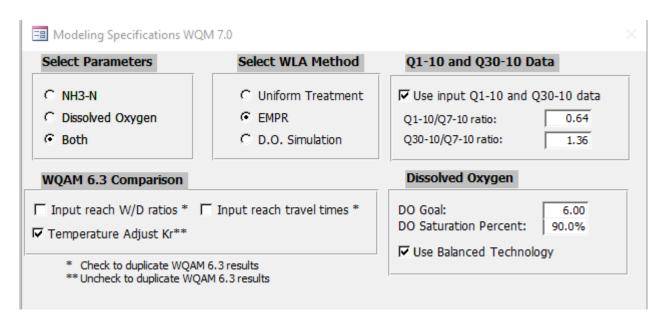
Downstream points from N.Heidelberg STP......

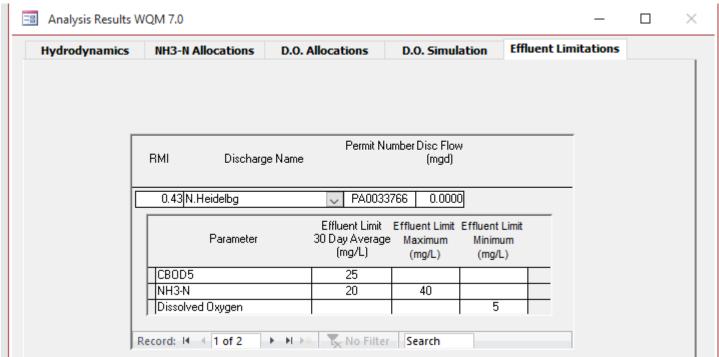

StreamSta	ts Output	Report-No	rthkill Crk	at Bernville	e STP's 001
oti cumote	es output	neport ito			2011 2002
State/Reg	PA				
Workspac	PA2023080	0317262112	24000		
Latitude	40.42805				
Longitude	-76.1136				
Time	8/3/2023	1:26:41 PN	M		
Basin Char	racteristics				
Paramete	Paramete	Value	Unit		
CARBON	Percentag	1.13	percent		
DRNAREA	Area that	42	square mi	les	
PRECIP	Mean Ann	46	inches		
ROCKDEP	Depth to r	3.6	feet		
STRDEN	Stream De	1.53	miles per	e	
Low-Flow	100.0 Perc	ent Low Fl	ow Region	2	
Statistic	Value	Unit	SE	ASEp	
7 Day 2 Ye	5.91	ft^3/s	38	38	
30 Day 2 Y	8.37	ft^3/s	33	33	
7 Day 10 Y	2.29	ft^3/s	51	51	
30 Day 10	3.39	ft^3/s	46	46	
90 Day 10	5.69	ft^3/s	36	36	

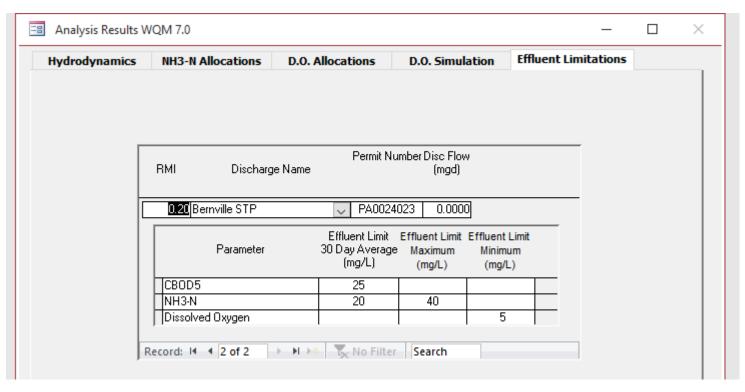

Downstream points from N.Heidelberg STP......

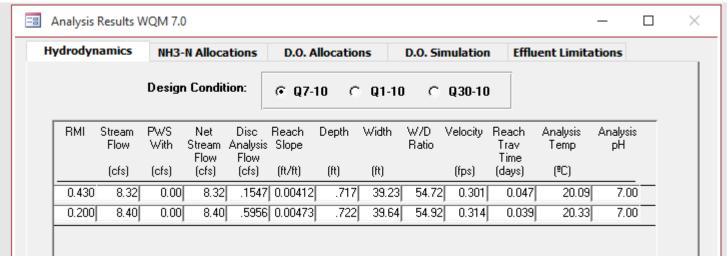

StreamStats Report-a	t confl Northkill Crk & Tulpe	hocken	Crk		
State/Region ID	PA				
Workspace ID	PA20230803173658241000				
Latitude	40.42565				
Longitude	-76.11249				
Time	8/3/2023	1:37:19	PM		
Basin Characteristics					
Parameter Code	Parameter Description	Unit			
CARBON	Percentage of area of carbo	percen	t		
DRNAREA	Area that drains to a pt. on a stream	42.2	square	miles	
PRECIP	Mean Annual Precipitation	46	inches		
ROCKDEP	Depth to rock	3.6	feet		
STRDEN	Stream Density total leng	1.53	miles per squa		
Low-Flow Statistics Fl	100.0 Percent Low Flow Reg	ion 2			
Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow	5.94	ft^3/s	38	38	
30 Day 2 Year Low Flo		ft^3/s	33	33	
7 Day 10 Year Low Flo	2.3	ft^3/s	51	51	
30 Day 10 Year Low Flo		ft^3/s	46	46	
90 Day 10 Year Low Flo		ft^3/s	36	36	

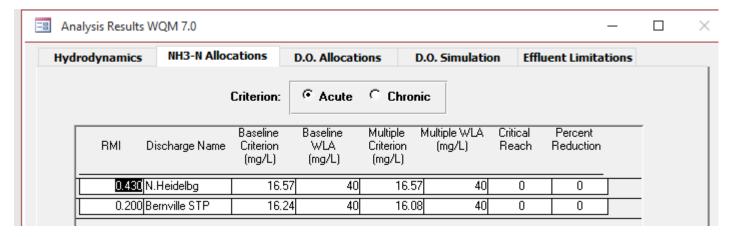

StreamStats Gage-after Blue Marsh	Lake on Tu	lpehocken Crk									
USGS Station Number	1470960										
Station Name	Tulpehock	en Cr at Blue Marsh Da	amsite n	ear Reading, Pa.							
Station Type		Gaging Station, continuous record									
Latitude	40.37065										
Longitude	-76.0252										
Is regulated?	TRUE										
Agency	United Sta	ates Geological Survey									
NWIS Discharge Period of Record		0 - 2023-08-01									
Basin Dimensional Characteristics											
Characteristic Name	Value	Units	Citation	ì							
Contributing Drainage Area	175	square miles	193								
Drainage Area	_	square miles	142								
Characteristic Name	Value	Units	Citation	ו							
Percent Forest	26.26	percent	139								
Percent Storage	1.94	percent	142								
Percent Urban	3.08	3.08 percent									
Percent Storage	1.87	percent	169								
Depth to Rock	4.325833	feet	139								
Percent Carbonate	42.1	percent	142								
Percent of Glaciation	0	percent	139								
Percent Carbonate	41.59	percent	169								
Mean Annual Precipitation	44.59	inches	139								
Mean Basin Elevation	544	feet	142								
Mean Basin Slope degrees	4.83	degrees	139								
Maximum Basin Elevation	1642	feet	169								
Mean Basin Slope degrees	5.34	degrees	169								
Stream Density	1.28	miles per square mile	139								
Low-Flow Statistics											
Statistic Name	Value	Units	Citation	Comments							
1 Day 10 Year Low Flow	32.7	cubic feet per second	34 49	Statistic Date Rang	ge 4/1/1966 -	3/31/1					
7 Day 2 Year Low Flow		cubic feet per second		Statistic Date Rang							
7 Day 10 Year Low Flow		cubic feet per second		Statistic Date Rang							
30 Day 2 Year Low Flow		cubic feet per second		Statistic Date Rang							
30 Day 10 Year Low Flow		cubic feet per second		Statistic Date Rang	-						

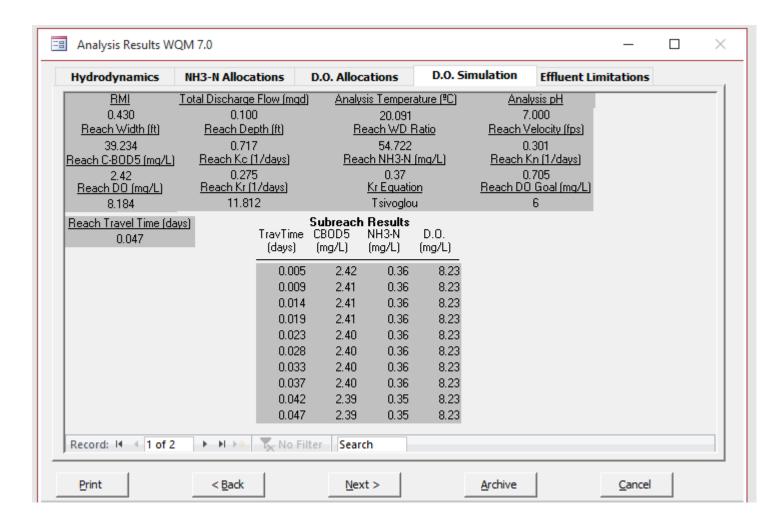

7 Day 10 Year Low Flow	38.2	cubic feet per second	49 S	tatistic	Date Ran	ge 4/1/1966	- 3/31/19	78								
30 Day 2 Year Low Flow	88.3	cubic feet per second	cond 49 Statistic Date Range 4/1/1966 - 3/31/1978													
30 Day 10 Year Low Flow	47.6	cubic feet per second	49 Statistic Date Range 4/1/1966 - 3/31/1978													
90 Day 10 Year Low Flow	59.5	cubic feet per second	49 S	tatistic	Date Rang	ge 4/1/1966	5 - 3/31/19	78								
Low flow years	12	years	49													
Controlled 1 Day 10 Year Low Flow	29.4	cubic feet per second	49 S	tatistic	Date Rang	ge 4/1/1979	- 3/31/20	08								
Controlled 7 Day 2 Year Low Flow	52.4	cubic feet per second	49 S	tatistic	Date Rang	ge 4/1/1979	- 3/31/20	08								
Controlled 7 Day 10 Year Low Flow	31.8	cubic feet per second	49 <mark>S</mark>	tatistic	Date Rang	ge 4/1/1979	- 3/31/20	<mark>0</mark> 8								
Controlled 30 Day 2 Year Low Flow	74.7	cubic feet per second	49 S	tatistic	Date Ran	ge 4/1/1979	- 3/31/20	08								
Controlled 30 Day 10 Year Low Flow	47	cubic feet per second	49 S	tatistic	Date Rang	ge 4/1/1979	- 3/31/20	08								
Controlled 90 Day 10 Year Low Flow	66.3	cubic feet per second	49 S	tatistic	Date Ran	ge 4/1/1979	- 3/31/20	08								
ID	Citation															
142	Roland, M	.A., and Stuckey, M.H.,	2008, Reg	ressior	equation	s for estim	ating floo	d flows at	selected re	currence i	ntervals fo	r ungaged	streams in	Pennsylva	nia: U.S. Ge	eolog
49	Stuckey, N	Λ.H., and Roland, M.A.,	2011, Sele	ected s	treamflow	statistics (or stream	gage locat	ions in and	near Penn	sylvania:	U.S. Geolog	gical Surve	y Open-Fil	e Report 20	11-10
USGS Data Disclaimer: Unless other	wise stated	d, all data, metadata and	l related	materia	als are cor	isidered to	satisfy the	quality st	tandards re	lative to th	le purpose	for which	the data v	vere collec	ted. Althou	gh th
USGS Software Disclaimer: This soft	ware has b	een approved for relea	se by the	U.S. Ge	eological S	Survey (USC	S). Althou	gh the sof	tware has l	een subje	cted to rig	gorous revi	ew, the US	GS reserve	s the right t	to up
USGS Product Names Disclaimer: Ar	y use of tr	ade, firm, or product na	mes is fo	r descri	ptive pur	poses only	and does	not imply	endorseme	nt by the l	J.S. Gover	nment.			_	
Application Version:	4.16.1	-														











Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

N.Heidelberg STP, NPDES Permit No. PA0033766, Outfall 001

Instructions Discl	narge Sti	ream												
Receiving Surface V	Vater Name:	Northkill C	reek			No. Reaches to Model: 1 Statewide Great Lake								
Location	Stream Co	de* RM	Elevat (ft)*	Slope (ft/	Slope (ft/ft) PWS Withdrawal (MGD)			Fish ORSANCO Criteria			eria			
Point of Discharge	001902	0.4	3 300	41.6				Yes						
End of Reach 1	001902	0.2	295	42				Yes						
Q ₇₋₁₀														
Location	RMI	LFY	Flow	(cfs)	N/D Widt			Time	Tributa	ary	Strea	m	Analys	sis
		(cfs/mi ²)*	Stream	Tributary F	Ratio (ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge		0.2									100	7		
End of Reach 1	0.2	0.2									100	7		
Q_h														
Location	RMI	LFY			N/D Widt		Velocit	Time	Tributa	-	Strea		Analys	
		(cfs/mi ²)	Stream	Tributary F	Ratio (ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	0.43													
End of Reach 1	0.2													

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Facility: N.Heidelberg STP NPDES Permit No.: PA0033766 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: treated sewage

Discharge Characteristics										
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	s)	Complete Mix Times (min)			
(MGD)*	naruness (mg/i)	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q_h		
0.1	100	7								

					0 if let	t blank	0.5 if le	ft blank	0	if left blan	k	1 if left	blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		621									
1.	Chloride (PWS)	mg/L		182									
Ιā	Bromide	mg/L	٧	0.1									
Group	Sulfate (PWS)	mg/L		43									
	Fluoride (PWS)	mg/L											
\Box	Total Aluminum	μg/L		280									
1	Total Antimony	μg/L	٧	3									
ı	Total Arsenic	μg/L	٧	1									
1	Total Barium	μg/L		49									
1	Total Beryllium	μg/L	٧	1									
1	Total Boron	μg/L		300									
1	Total Cadmium	μg/L	٧	1									
1	Total Chromium (III)	μg/L	٧	1									
ı	Hexavalent Chromium	μg/L	٧	0.25									
ı	Total Cobalt	μg/L	٧	5									
ı	Total Copper	mg/L		0.006									
0 2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L	٧	10									
ō	Dissolved Iron	μg/L											
1	Total Iron	μg/L		30									
1	Total Lead	μg/L	٧	1									
1	Total Manganese	μg/L	٧	2									
1	Total Mercury	μg/L	٧	0.2									
1	Total Nickel	μg/L		3.1									
1	Total Phenols (Phenolics) (PWS)	μg/L	٧	2									
1	Total Selenium	μg/L	٧	1									
I	Total Silver	μg/L	٧	1									
1	Total Thallium	μg/L	٧	3									
1	Total Zinc	mg/L		0.028									
	Total Molybdenum	μg/L											

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

☑ CFC

CCT (min): 52.203

PMF:

N.Heidelberg STP, NPDES Permit No. PA0033766, Outfall 001

Instructions Results	RETURN	TO INPU	тѕ	SAVE AS	PDF	PRIN	r	Inputs
☐ Hydrodynamics								
✓ Wasteload Allocations								
☑ AFC CC		15	PMF:	0.536	Ana	lysis Hardne	ss (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	22,372	
Total Antimony	0	0		0	1,100	1,100	32,812	
Total Arsenic	0	0		0	340	340	10,142	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	626,408	
Total Boron	0	0		0	8,100	8,100	241,615	
Total Cadmium	0	0		0	2.014	2.13	63.6	Chem Translator of 0.944 applied
Total Chromium (III)	0	0		0	569.763	1,803	53,783	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	486	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	2,834	
Total Copper	0	0		0	13.439	14.0	418	Chem Translator of 0.96 applied
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	64.581	81.6	2,435	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	49.1	Chem Translator of 0.85 applied
Total Nickel	0	0		0	468.236	469	13,995	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.217	3.78	113	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	1,939	
Total Zinc	0	0		0	117.180	120	3,574	Chem Translator of 0.978 applied

Analysis Hardness (mg/l):

100

Analysis pH:

7.00

✓ CFC CCT (min): 52.203 PMF: 1 Analysis Hardness (mg/l): 100 Analysis pH: 7.00

Model Results 8/22/2023

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	12,052	
Total Arsenic	0	0		0	150	150	8,217	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	224,604	
Total Boron	0	0		0	1,600	1,600	87,650	
Total Cadmium	0	0		0	0.246	0.27	14.8	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.115	86.2	4,721	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	569	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	1,041	
Total Copper	0	0		0	8.956	9.33	511	Chem Translator of 0.96 applied
Total Iron	0	0		0	1,500	1,500	82,172	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.517	3.18	174	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	49.6	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.007	52.2	2,858	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	273	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	712	
Total Zinc	0	0		0	118.139	120	6,564	Chem Translator of 0.986 applied

☑ THH	CCT (min): 52.203	PMF:	1	Ana	lysis Hardne	ss (mg/l):	N/A	Analysis pH:	N/A	
	Stream	Tally Oama	Esta	MOO	MIO OF					

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	307	
Total Arsenic	0	0		0	10	10.0	548	
Total Barium	0	0		0	2,400	2,400	131,476	
Total Boron	0	0		0	3,100	3,100	169,823	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	

Model Results 8/22/2023

Total Manganese	0	0	0	1,000	1,000	54,782	
Total Mercury	0	0	0	0.050	0.05	2.74	
Total Nickel	0	0	0	610	610	33,417	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	13.1	
Total Zinc	0	0	0	N/A	N/A	N/A	

☑ CRL CCT (min): 17.254 PMF: Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Thallium	Report	Report	Report	Report	Report	μg/L	13.1	THH	Discharge Conc > 10% WQBEL (no RP)

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharg concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	14,339	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	307	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	131,476	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	87,650	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	14.8	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	4,721	μg/L	Discharge Conc < TQL
Hexavalent Chromium	312	μg/L	Discharge Conc < TQL
Total Cobalt	1,041	μg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	0.27	mg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Total Iron	82,172	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	174	μg/L	Discharge Conc < TQL
Total Manganese	54,782	μg/L	Discharge Conc < TQL
Total Mercury	2.74	μg/L	Discharge Conc < TQL
Total Nickel	2,858	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	273	μg/L	Discharge Conc < TQL
Total Silver	72.4	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	2.29	mg/L	Discharge Conc ≤ 10% WQBEL