

 Application Type
 Renewal & Transfer

 Facility Type
 Non-Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0033936
APS ID	1100042
Authorization ID	1460233

Applicant and Facility Information

New Applicant Name	Denny Ridge Mobile Home Park LLC	Facility Name	Denny Ridge MHP
New Applicant Address	4463 Pitts Road	Facility Address	14807 Nickelson Drive
	Adamsville, PA 16110-1323		Meadville, PA 16335-7880
Applicant Contact	John Nickelson	New Contact	Steven Pfaff
Applicant Phone	(814) 336-1007	New Contact Phone	(724) 932-5068
Applicant E Mail	jchasn@zoominternet.net	New Contact E Mail	pfaff1993@yahoo.com
Client ID	<u>198912</u> New Client <u>380383</u>	Site ID	2274
Municipality	Hayfield Township	County	Crawford
Ch 94 Load Status	Not Overloaded	Connection Status	No Limitations
SIC Code	6515	SIC Code	4952
SIC Description	Fin, Ins & Real Est - Mob Home Site Opers	SIC Description	Trans. & Utilities - Sewerage Systems
Application Received	March 4, 2019	EPA Waived?	Yes
Application Accepted	May 20, 2019	If No, Reason	

Purpose of Application

NPDES program treated sewage permit renewal and transfer.

Summary of Review

A new owner and operator is proposed to address existing noncompliance through an anticipated Consent Order and Agreement (COA). Electronically reporting as of October 11, 2011. No current reports or certified operator information are available. Lagoon sludge depth is unknown.

Proposed changes more frequent dissolved oxygen, pH and total residual chlorine monitoring, a higher technology based dissolved oxygen daily minimum requirement, and lower technology based TRC requirements.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		William 74. Mentzer William H. Mentzer, P.E. Environmental Engineering Specialist	November 2, 2023
X		Chad W. Yurisic Chad W. Yurisic, P.E. Environmental Engineer Manager	11/7/2023

Latitude NHD41° 40' 12.02"Longitude NHD-80°Latitude DP41° 40' 12.00"Longitude DP-80°Quad NameMeadvilleQuad Code0504Wastewater:Treated mobile home park domestic wastes0504WatersUnnamed tributary to Cussewago CreekStream Code52489NHD Com ID127350370RMI0.88Drainage Area0.68Yield (cfs/mi²)0.100Q7-10 Flow (cfs)0 (intermittent stream)Q7-10 BasisSugaElevation (ft)1189Slope (ft/ft)0.028Watershed No.16-DChapter 93 Class.WWF	harge, Receiving	Waters and Water Supply Infor	rmation		
Latitude NHD 41° 40' 12.02" Longitude NHD -80° - Latitude DP 41° 40' 12.00" Longitude DP -80° - Quad Name Meadville Quad Code 0504 Wastewater: Treated mobile home park domestic wastes 0.60 0.504 Waters Unnamed tributary to Cussewago Creek Stream Code 5248 NHD Com ID 127350370 RMI 0.88 Drainage Area 0.68 Yield (cfs/mi²) 0.100 Q7-10 Flow (cfs) 0 (intermittent stream) Q7-10 Basis Suga Elevation (ft) 1189 Slope (ft/ft) 0.022 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Comments This is a discharge to Cussewago Creek. through two unnamed tributaries wi Stream conditions near the confluence with Cussewago Creek. through two unnamed tributaries wi Source(s) of Impairment					
Latitude DP 41° 40' 12.00" Longitude DP -80° Quad Name Meadville Quad Code 0504 Wastewater: Treated mobile home park domestic wastes Quad Code 0504 Receiving Waters Unnamed tributary to Cussewago Creek Stream Code 5248: NHD Com ID 127350370 RMI 0.88 0.100 Qr-10 Flow (cfs) 0 (intermittent stream) Qr-10 Basis Suga Elevation (ft) 1189 Slope (ft/ft) 0.028 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Comments This is a discharge to Cussewago Creek through two unnamed tributaries wi Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are at 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Attaining Use(s) Cause(s) of Impairment Data Source PH (SU) TMDL Status T.2 1981 and 1982 stream data Temperature (°C) 25 WWF default BOD5 BOD5 1.50 1981 a	Jutfall No.	001		Design Flow (MGD)	0.01335
Quad Name Meadville Quad Code 0504 Wastewater: Treated mobile home park domestic wastes 0504 Receiving Waters Unnamed tributary to Cussewago Creek Stream Code 5248: NHD Com ID 127350370 RMI 0.88 Drainage Area 0.68 Yield (cfs/mi²) 0.100 Qr-10 Flow (cfs) 0 (intermittent stream) Qr-10 Basis Suga Elevation (ft) 1189 Slope (ft/ft) 0.022 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Comments This is a discharge to Cussewago Creek through two unnamed tributaries wi Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are at 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment TMDL Status Name	.atitude NHD	41º 40' 12.02"		Longitude NHD	-80º 14' 13.73"
Wastewater: Treated mobile home park domestic wastes Receiving Waters Unnamed tributary to Cussewago Creek Stream Code 5248: NHD Com ID 127350370 RMI 0.88 Drainage Area 0.68 Yield (cfs/mi²) 0.100 Q7-10 Flow (cfs) 0 (intermittent stream) Q7-10 Basis Suga Elevation (ft) 1189 Slope (ft/ft) 0.028 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Use Exceptions none Exceptions to Criteria none Comments This is a discharge to Cussewago Creek through two unnamed tributaries wi Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are at 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment TMDL Status Name Mame Background/Ambient Data Data Source pH (SU) 7.2 1981 and 1982 stream data Temperature (°C) 25 WWF default BOD5 1.50 1981 and 1982 str	atitude DP	41º 40' 12.00"		Longitude DP	-80º 14' 12.00"
Receiving Unnamed tributary to Cussewago Creek Stream Code 5248 NHD Com ID 127350370 RMI 0.88 Drainage Area 0.68 Yield (cfs/mi²) 0.100 Qr-10 Flow (cfs) 0 (intermittent stream) Qr-10 Basis Suga Elevation (ft) 1189 Slope (ft/ft) 0.028 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Use Exceptions none Exceptions to Criteria none Comments This is a discharge to Cussewago Creek through two unnamed tributaries with Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are as 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment Source(s) of Impairment	Juad Name	Meadville		Quad Code	0504
Waters Unnamed tributary to Cussewago Creek Stream Code 52483 NHD Com ID 127350370 RMI 0.88 Drainage Area 0.68 Yield (cfs/mi²) 0.100 Q7-10 Flow (cfs) 0 (intermittent stream) Q7-10 Basis Suga Elevation (ft) 1189 Slope (ft/ft) 0.028 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Use Exceptions none Exceptions to Criteria none Comments This is a discharge to Cussewago Creek through two unnamed tributaries with Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are at 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment Source(s) of Impairment Mame Suree PH (SU) 7.2 1981 and 1982 stream data Temperature (°C) 25 WWF default BOD5 1.50 1981 and 1982 stream data Hardness (mg/L)	Vastewater:	Treated mobile home park dome	estic wastes	5	
Waters Unnamed tributary to Cussewago Creek Stream Code 52483 NHD Com ID 127350370 RMI 0.88 Drainage Area 0.68 Yield (cfs/mi²) 0.100 Q7-10 Flow (cfs) 0 (intermittent stream) Q7-10 Basis Suga Elevation (ft) 1189 Slope (ft/ft) 0.028 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Use Exceptions none Exceptions to Criteria none Comments This is a discharge to Cussewago Creek through two unnamed tributaries will Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are at 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Attaining Use(s) Cause(s) of Impairment	_				
NHD Com ID 127350370 RMI 0.88 Drainage Area 0.68 Yield (cfs/mi²) 0.100 Qr-10 Flow (cfs) 0 (intermittent stream) Qr-10 Basis Suga Elevation (ft) 1189 Slope (ft/ft) 0.028 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Use Exceptions none Exceptions to Criteria none Comments This is a discharge to Cussewago Creek through two unnamed tributaries wi Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are a 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Attaining Use(s) Cause(s) of Impairment Source Name TMDL Status Name Data Source pH (SU) 7.2 1981 and 1982 stream data Temperature (°C) 25 WWF default BOD5 1.50 1981 and 1982 stream data Armonia 0.06 1981 and 1982 stream data	5		A 1		50.405
Drainage Area 0.68 Yield (cfs/mi²) 0.100 Qr-10 Flow (cfs) 0 (intermittent stream) Qr-10 Basis Suga Elevation (ft) 1189 Slope (ft/ft) 0.028 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none none Use Exceptions none Exceptions to Criteria none none Comments This is a discharge to Cussewago Creek through two unnamed tributaries with Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are a 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Attaining Use(s) Cause(s) of Impairment Data Source pH (SU) PH (SU) 7.2 1981 and 1982 stream data PH (SU) 25 WWF default BOD5 1.50 1981 and 1982 stream data Ammonia 0.06 1981 and 1982 stream data			jo Creek		
Qr-10 Flow (cfs) 0 (intermittent stream) Qr-10 Basis Suga Elevation (ft) 1189 Slope (ft/ft) 0.028 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Use Exceptions none Exceptions to Criteria none Comments This is a discharge to Cussewago Creek through two unnamed tributaries will Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are at 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment	-				
Elevation (ft) 1189 Slope (ft/ft) 0.028 Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Use Exceptions none Exceptions to Criteria none Comments This is a discharge to Cussewago Creek through two unnamed tributaries with Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are a 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment					
Watershed No. 16-D Chapter 93 Class. WWF Existing Use statewide Existing Use Qualifier none Use Exceptions none Exceptions to Criteria none Comments This is a discharge to Cussewago Creek through two unnamed tributaries with Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are a 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment	_	· · ·			Sugar Creek at Utica
Existing Use statewide Existing Use Qualifier none Use Exceptions none Exceptions to Criteria none Comments This is a discharge to Cussewago Creek through two unnamed tributaries with Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are a 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment	. , _			• • •	0.02854
Use Exceptions none Exceptions to Criteria none Comments This is a discharge to Cussewago Creek through two unnamed tributaries with Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are at 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment		<u>16-D</u>		-	
Comments This is a discharge to Cussewago Creek through two unnamed tributaries with Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are a 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment	Existing Use	statewide		Existing Use Qualifier	none
Stream conditions near the confluence with Cussewago Creek. Perennial stream conditions are a 52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment Name Source(s) of Impairment Data Source Background/Ambient Data Data Source pH (SU) 7.2 1981 and 1982 stream data Temperature (°C) 25 WWF default BOD5 1.50 1981 and 1982 stream data Ammonia 0.06 1981 and 1982 stream data	Jse Exceptions	none		Exceptions to Criteria	none
52478 RMI 0.36, elevation 1080.00 feet and basin drainage 1.4-square miles. Assessment Status Attaining Use(s) Cause(s) of Impairment	Comments	This is a discharge to Cussewag	go Creek th	rough two unnamed trib	outaries with perennial
Assessment Status Attaining Use(s) Cause(s) of Impairment	Stream conditions n	ear the confluence with Cussewa	ago Creek.	Perennial stream condi	itions are at tributary
Cause(s) of Impairment Source(s) of Impairment TMDL Status Background/Ambient Data pH (SU) 7.2 1981 and 1982 stream data Temperature (°C) 25 WWF default BOD5 1.50 1981 and 1982 stream data Ammonia 0.06 Hardness (mg/L)	2478 RMI 0.36, ele	vation 1080.00 feet and basin dr	rainage 1.4	-square miles.	
Cause(s) of Impairment Source(s) of Impairment TMDL Status Background/Ambient Data pH (SU) 7.2 1981 and 1982 stream data Temperature (°C) 25 WWF default BOD5 1.50 1981 and 1982 stream data Ammonia 0.06 1981 and 1982 stream data					
Source(s) of Impairment Name TMDL Status Name Background/Ambient Data Data Source pH (SU) 7.2 1981 and 1982 stream data Temperature (°C) 25 WWF default BOD5 1.50 1981 and 1982 stream data Ammonia 0.06 1981 and 1982 stream data Hardness (mg/L)	ssessment Status	Attaining Use(s)			
TMDL StatusNameBackground/Ambient DataData SourcepH (SU)7.21981 and 1982 stream dataTemperature (°C)25WWF defaultBOD51.501981 and 1982 stream dataAmmonia0.061981 and 1982 stream dataHardness (mg/L)	Cause(s) of Impairm	ient			
Background/Ambient DataData SourcepH (SU)7.21981 and 1982 stream dataTemperature (°C)25WWF defaultBOD51.501981 and 1982 stream dataAmmonia0.061981 and 1982 stream dataHardness (mg/L)	Source(s) of Impairr	nent			
pH (SU) 7.2 1981 and 1982 stream data Temperature (°C) 25 WWF default BOD5 1.50 1981 and 1982 stream data Ammonia 0.06 1981 and 1982 stream data Hardness (mg/L)	MDL Status			Name	
pH (SU) 7.2 1981 and 1982 stream data Temperature (°C) 25 WWF default BOD5 1.50 1981 and 1982 stream data Ammonia 0.06 1981 and 1982 stream data Hardness (mg/L)					
Temperature (°C)25WWF defaultBOD51.501981 and 1982 stream dataAmmonia0.061981 and 1982 stream dataHardness (mg/L)	3ackground/Ambier	it Data	Data So	ource	
BOD5 1.50 1981 and 1982 stream data Ammonia 0.06 1981 and 1982 stream data Hardness (mg/L)	νΗ (SU)	7.2	1981 an	nd 1982 stream data	
Ammonia 0.06 1981 and 1982 stream data Hardness (mg/L)	emperature (°C)	_25	WWF de	efault	
Hardness (mg/L)	BOD5	1.50	1981 an	nd 1982 stream data	
	\mmonia	0.06	1981 an	nd 1982 stream data	
Other:	lardness (mg/L)				
)ther:				
Nearest Downstream Public Water Supply Intake Aqua Pa (Emlenton Water Company)	Jearest Downstrea	n Public Water Supply Intake	Aqua Pa	a (Emlenton Water Corr	ipany)
PWS Waters Allegheny River Flow at Intake (cfs) 1250				•	
PWS RMI 90.57 Distance from Outfall (mi) 67.89				–	

Changes Since Last Permit Issuance: none

Other Comments:

Above the public water intake at Franklin, Pa the Allegheny River is regulated to provide a minimum stream flow.

Compliance History

No available eDMR reports limiting the compliance review.

The facility was inspected by Melissa Carver and Emily Bach on August 30, 2019 and August 23, 2019. John Nickelson's operator certification expired in 2011 and has not been renewed. Inspected on August 23, 2019. Inspection Comments: The outfall remains broken. Ongoing unpermitted discharge. New unpermitted chlorine contact-tank discharge. No tablets in chlorinator. One mobile home not connected to the sewage system and using a port-a-john. One mobile home has a continuing bad collection system connection. John Nickelson visits the facility monthly while weekly analysis is required. No discharge is frequently reported. Annual sludge grid report and chlorine tablet receipts was requested. Application Data MGD PPD Design Annual Average Flow 0 01335

Design Annual Average Flow			0.01335	
Hydraulic Design Capacity			0.01335	
Organic Design Capacity				
Annual Average Flow		2015	0.002478	
		2016	0.002405	
		2017	0.002414	
Highest Monthly Average Flow			0.002201	
Highest Monthly Average Flow Month	January			

No effluent data tabulation presented

WQM Per	mit No).	ls	suance	Date					
2072405		3 January	/ 1973	1972	1, 2, 9,	10, 11,12, 1	3, 14, 15,	16, 17, 18, 19	9, 20, 21,	22, 23, 26, 29, & 3
2072405	A1	10 April	1978			· · ·		`````````````````````````````````		· · ·
2072405	T1	28 Januar	y 1988	1983		1, 7, 8, 9), 10, 11, 1	2, 13, 14, 15	, 21, and	recording
Waste	Туре		Degre Treatm		Р	rocess Ty	be	Disinfec	tion	Avg Annual Flow (MGD)
Sewa	ade		Second	larv		eptic tank w bilization Lag polishing		Hypochle	orite	0.01335
	0									
Hydraulic	Capac	ity Or	ganic C	apacity	1					Biosolids
(MG	-	-	(lbs/d	ay)	I	_oad Statu	s	Biosolids Tr	eatment	Use/Disposa
0.010	335		32.5	5	N	lot Overload	he	Anaerobic D	idestion	Off-site

Changes Since Last Permit Issuance: Little maintenance provided

Other Comments: Maintenance required

Some sludge anaerobic digestion is provided in the septic tanks and polishing lagoon bottoms. Sludge removal is not reported and during the August 30 inspection an annual sludge grid report was requested.

The existing NPDES permit requires an annual lagoon bottom sludge depth report. The report is based on determination of the sludge depth over the entire lagoon bottom

Sludge sources: Septic tanks and polishing lagoons. Annual sludge production is unknown. No specific sludge treatment is provided. Some anaerobic sludge digestion is expected in the septic tanks while the polishing lagoons depending on sludge build-up should provide some aerobic and anaerobic sludge digestion. Septic tank sludge is hauled off site.

Originally designed for 100 homes and 20 camp sites. In 1978 the system design was reduced to 60-homes with 25-units in use and no plans to add the remaining units. The current population was 56 people.

25 EDU are in use with a site specific 2.24 people per EDU. The estimated population-based flow is 0.003 920-MGD which is marginally higher than the application reported 0.003 MGD mean flow. The camper population density may be high as 3 people per unit will provide the 1978 design flow.

Original 1972 Desig	า:											
Units		Hy	/draulic		Inorg	ganic				0	rganic	
		per cap	oita		TS	S		BOD			Ammonia	Phosphate
	people/unit	gpcd	gpd	ppcd	mg/L	PPD	ppcd	people	mg/L	PPD	mg/L PPD	mg/L PPD
100 Mobile homes	2.5	70	17 500				0.17	250		42.50		
60 campers	4	60	14 400				0.16	80		9.60		
20 campers	4	60	4 800				0.16	80		9.60		
Total 1			31 900	0.17	250	58	0.16	330	223	52.10	12	12
Total 2			28 000									
Total 3			22 300									
maximum			56 000									
Alkalinity 950-mg/L												
1978 as built Design	I											
		70	13 350					191				
Recalculation		70	13 370	0.17	290	32.47	0.17	191	290	32.47		

TREATMENT FACILITIES

10,692-gallon primary septic tank followed by a 5,909-gallon secondary septic tank, 54,000-square foot 270-foot long by 200-foot wide by 5-foot deep primary polishing pond, 30,400-square foot 190-foot long by 160-foot wide by 5-foot deep secondary polishing pond, calcium (dry) hypo-chlorination, and 390-gallon, 4-foot 8-inch diameter by 3-foot deep with a 1-foot 3-inch freeboard chlorine contact tank.

Design Flow: 0.013350-MGD also stated as 0.013400-MGD Runoff Flow: 0.020100-MGD Maximum Flow: 0.026800-MGD Primary - Septic Tanks First Tank: 10,692-gallons Second tank: 5,909 gallons 16,601-gallons Total: Polishing – Lagoons 2 Cell 1 total 270-ft 190-ft 54.000 sa ft Length Width 200-ft 160-ft 30,400-sq ft Mean SWD 5 5 Min SWD 2 2 **Operating SWD** 5 5 Freeboard 3 3 Inside Slope 1:3 1:3 **Outside Slope** 1:2 1:2 Liner earth earth

Disinfection – revised chlorinator and original contact tank. Sanuril chlorinator using dry calcium hypochlorite Contact Tank Diameter 4-ft 8-inch Mean SWD 3-ft Freeboard 1'-ft 3-inch Capacity 390-gallons

Application 2072405 is dated 5 June 1972, was revised on 19 December 1972 and issued on 3 January 1973 to provide waste treatment serving 100 mobile home sites and 20 camp sites (sites later reduced).

On 10 April 1978 Jack Walter, P.E. approved as built construction with down-sizing to 0.013350-MGD based on a 191person population. The as built submission included a monitoring well between the lagoons and the receiving waters.

		Ар	olication Data:			
Parameter	Minimum	Mean	Maximum	Units		
рН	7.7		7.6	SU	2	Grab
TRC	0.4	1.5		mg/L	1	Grab
Fecal Coliform	< 10	200		#.100ml	1	Grab
CBOD5	2	25		mg/L	1	8 hr Comp
TSS	4	30		mg/L	1	8 hr comp

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.01335
Latitude	41º 40' 12.00)"	Longitude	-80º 14' 12.00"
Wastewater De	escription:	Sewage Effluent	_	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Supponded Solida	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO	4.0			BPJ

Comments:

Proposed are:

Daily DO, pH and TRC monitoring - increased from weekly. In accordance with the Department's February 3, 2022 SOP for "New and Reissuance Sewage Individual NPDES Permit Applications" 11/7/2023 CWY

4.0-mg/L minimum daily DO - up from 3.0-mg/L *In accordance with the Department's March 24, 2021 SOP for "Establishing Effluent Limitations for Individual Sewage Permits"* 11/7/2023 CWY

0.5-mg/L monthly average TRC - down from 1.5-mg/L. Regulatory standard under §§92a.47(a)(8) and §§92a.48(b) and as calculated using the Department's TRC worksheet 11/7/2023 CWY

Summer time ammonia limits of 9.3 mg/l monthly average and 18.6 mg/l maximum. A three year compliance schedule will be added to the permit as no sample data is available to determine if the existing facility is capable of meeting the more stringent limits. 11/8/2023 CWY

The revised requirement compliance cannot be verified because of self-monitoring report availability.

Water Quality-Based Limitations

The water quality evaluations are based on the TRC spreadsheet and DOSAG Model WQM7. Model print outs are attached.

TRC spreadsheet evaluation showed no chlorine impairment in the primary intermittent receiving waters.

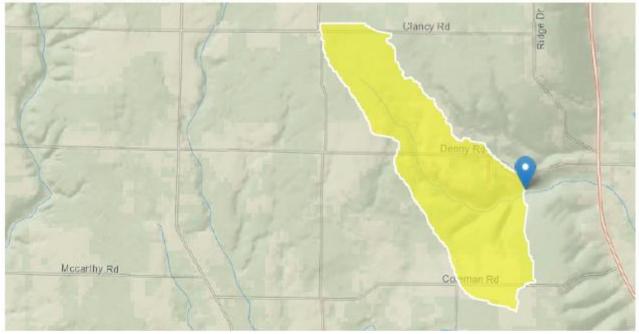
WQM7 DOSAG evaluation recommended secondary treatment with a 4.0-mg/L technology based dissolved oxygen daily minimum. *Modeling indicates the need for a summer WQBEL for Ammonia of 9.3 mg/l average and 18.6 mg/l maximum.*

Best Professional Judgment (BPJ) Limitations

Comments: For DO at a facultative polishing lagoon.

Anti-Backsliding

The existing requirements are technology controlled and not subject to backsliding.


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20231108185343114000

 Clicked Point (Latitude, Longitude):
 41.67053, -80.23496

 Time:
 2023-11-08 13:54:06 -0500

Collapse All

Basin Characteristics Parameter Code **Parameter Description** Value Unit DRNAREA 0.68 Area that drains to a point on a stream square miles ELEV Mean Basin Elevation 1352 feet PRECIP Mean Annual Precipitation 45 inches

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.68	square miles	2.33	1720

		<u>m Code</u> 2478	т	<u>Stream Nam</u> rib 52478 to Cussew	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.880	Denny Ridge MHP	PA0033936	0.000	CBOD5	25		
				NH3-N	9.3	18.6	
				Dissolved Oxygen			3

WQM 7.0 Effluent Limits

Version 1.1

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Withd	VS Irawal gd)	Apply FC
	16D	524	78 Trib 52	2478 to C	ussewago (Creek	0.88	80	1189.00	0.68	0.000	00	0.00	✓
					St	ream Data	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> Ip pH	т	<u>Strear</u> emp	n pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00 7.	00	0.00	0.00	
	Discharge Data										T			
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Dis Flo	ic Res w Fa	Dis erve Ter ctor (%	np	Disc pH		
		Denny	y Ridge Mł	HP PA	0033936	0.0000	0.013	3 0.0	0133 (0.000	25.00	7.00		
					Pa	arameter 🛛	Data							
			,	Dis Co		Trib Conc	Stream Conc	Fate Coef						
						(m;	g/L) (mg/L) (mg/L)		(1/days)					
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	7.54	0.00	0.00				
			NH3-N			2	25.00	0.10	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Str	eam Name		RM		vation (ft)	Drainage Area (sq mi)		With	WS ndrawal ngd)	Apply FC
	16D	524	478 Trib 53	2478 to C	ussewago C	Creek	0.0	00	1098.00	1.0	02 0.00	0000	0.00	~
					St	ream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary	н	<u>Strea</u> Temp	am pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	9		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	0 2	0.00	7.00	0.00	0.00	
					Di	ischarge	Data						Т	
			Name	Pe	rmit Numbe	Disc	Permit Disc Flov (mgc	o Dis V Flo	ic Res w Fa	erve T ictor	Disc 'emp (°C)	Disc pH		
						0.000	0 0.00	00 0.0	0000	0.000	25.00	7.00	-	
					Pa	arameter	Data							
				Paramete	r Name	_		Trib Conc	Stream Conc	Fate Coef				
						(n	ng/L) (mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			

Input Data WQM 7.0

	~											
	SW	P Basin	Stream Code									
		16D	5	2478		1	Frib 5247	8 to Cus	sewago	Creek		
RMI \$	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	Flow											
0.880	0.07	0.00	0.07	.0207	0.01959	.344	3.9	11.34	0.07	0.815	21.16	7.00
Q1-10	Flow											
0.880	0.04	0.00	0.04	.0207	0.01959	NA	NA	NA	0.06	0.977	21.61	7.00
Q30-10	0 Flow											
0.880	0.09	0.00	0.09	.0207	0.01959	NA	NA	NA	0.08	0.711	20.91	7.00

WQM 7.0 Hydrodynamic Outputs

Wednesday, November 8, 2023

Version 1.1

<u>SWP Basin</u> <u>St</u> 16D	ream Code 52478		Trib 524	<u>Stream Name</u> 78 to Cussewago Cr	eek
RM	Total Discharge	Flow (mgd) Anal	ysis Temperature (ºC) Analysis pH
0.880	0.01	3		21.165	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
3.905	0.34	4		11.341	0.066
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
7.36	0.99			2.24	0.766
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.482	25.94	1		Owens	5
Reach Travel Time (days)		Subreach	Reculte		
0.815	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)	
	0.082	6.76	2.11	7.54	
	0.163	6.20	1.98	7.54	
	0.245	5.70	1.86	7.54	
	0.326	5.23	1.75	7.54	
	0.408	4.80	1.64	7.54	
	0.489	4.41	1.54	7.54	
	0.571	4.05	1.45	7.54	
	0.652	3.72	1.36	7.54	
	0.734	3.42	1.28	7.54	
	0.815	3.14	1.20	7.54	

WQM 7.0 D.O.Simulation

Version 1.1

_

WQM 7.0 Wasteload Allocations

	SWP Basin Str 16D	eam Code 52478			ream Name to Cussewage	o Creek	
NH3-N	Acute Allocatio	ns					
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
						-	
0.8	80 Denny Ridge MH	14.67	45.36	14.67	45.36	0	0
	80 Denny Ridge MH		45.36	14.67	45.36	0	0
	, ,		45.36 Baseline WLA (mg/L)	Multiple Criterion (mg/L)	45.36 Multiple WLA (mg/L)	0 Critical Reach	0 Percent Reduction

		CBOD5		NH	NH3-N		d Oxygen	Critical	Percent
RMI	Discharge Name		Multiple (mg/L)		Multiple	Baseline (mg/L)	Multiple	Reach	Reduction
0.88 0	Denny Ridge MHP	25	25	9.3	9.3	3	3	0	0

0.6 input appropriate 79 500 0.043 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e values in B- 81 30 	Q discharge Q discharge no. samples Chlorine De Schorgen (0 19/e(L*AFCC +Xd + (AFCC +Xd + (AFCC +Xd + (CFCC +Xd + (CFCCC +Xd + (CFCC +Xd	fs) 6 (MGD) 1 mmand of Stream 1 mmand of Disch alue f Safety (FOS) 1 FC Calculatio C_to)) + [(AFC - YerCax:sUGA 1 ULT_afc 2 to) + [(CFC) - YerCax:sUGA 2 to) + [(CFC) - YerCax:sUGA 2 to) + [(CFC) - YerCax:sUGA - YerCax:sUGA	arge NULA atc = LTAMULT atc = LTAafc= Yte^Qs^_019/Qd^*e(]]*(1+F05/100) *LN(cxh*2+1)*0.5 (e*Qs*_011/Qd*e(]]*(1+F05/100) es+1))>2.326*LN(c	0.6 0.6 0.3 1 1 1 1 720 720 720 720 720 720 720 720	=Decay Coefficient Reference 5: Efflue 1.231 0.500 1.835 es+1)*0.5)	Mix Factor Compliance Ti Compliance Ti Lient (K) rence 2.iii 1c	me (min) CFC Calculations WLA cfc = 371.728 LTAMULT cfc = 0.581 LTA_cfc = 216.105	
VILA arc LTAMULT_crc LTAMULT_crc LTAMULT_crc LTAMULT_crc LTAMULT_crc	81 30 5 5 5 5 5	Q discharge Q discharge no. samples Chlorine De Schorgen (0 19/e(L*AFCC +Xd + (AFCC +Xd + (AFCC +Xd + (CFCC +Xd + (CFCCC +Xd + (CFCC +Xd	fs) 6 (MGD) 1 mmand of Stream 1 mmand of Disch alue f Safety (FOS) 1 FC Calculatio C_to)) + [(AFC - YerCax:sUGA 1 ULT_afc 2 to) + [(CFC) - YerCax:sUGA 2 to) + [(CFC) - YerCax:sUGA 2 to) + [(CFC) - YerCax:sUGA - YerCax:sUGA	arge NULA atc = LTAMULT atc = LTAafc= Yte^Qs^_019/Qd^*e(]]*(1+F05/100) *LN(cxh*2+1)*0.5 (e*Qs*_011/Qd*e(]]*(1+F05/100) es+1))>2.326*LN(c	0.6. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= CV Hourky = AFC_Partial I = CFC_Partial I = CFC_Partial I = CFC_Partial I = CFC_Partial = CFC_Partial = CFC_Partial = CFC_Partial = CFC = CFCC = CFC = CFCC = CFC = CFCC = CFC = CFCC = CFCC = CFCC = CFCC = CFCC = CFCC = CFCCC = CFCCC = CFCCC = CFCCCC = CFCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Mix Factor Compliance Ti Compliance Ti Sient (K) rence 2.iii 1c 1d	cFC Calculations VALA cfc = 371.728 LTAMULT cfc = 0.581 LTA_cfc = 216.105	
Source Source PENTOXSD TRG PENTOXSD TRG WULA arc LTAMULT arc LTAMULT arc LTAMULT arc LTAMULT arc LTAMULT_crc LTAMULT_crc LTA_efc	3	5.1b 5.11 5.12 (019/e(-k^AFC EXP(10.5 ² LN(c wia_atc ² LTAM (011/e(-k^CFC wia_ctc ² LTAM EXP(2.328 ¹ LN wiNIN(BAT_BPJ	:_Yo*Qs*Xs/Qd) :>vh*2+1))-2.326 iULT_afc C_tc) + [(CFC_Y :_Yo*Qs*Xs/Qd) :>vd*2/no_sampl ULT_cfc i((cvd*2/no_sam	LTA_afc= Yc^Qs*_0.19/Qd*e JT(1+F05/100) *LN(cvh*2+1)*0.5 (c*Qs*_0.11/Qd*e(JT(1+F05/100) es+1))>2.328*LN(c	142.081 AML MULT = V LIMIT (mg/l) = V LIMIT (mg/l) = (.k*AFC_tc)) -k*CFC_tc)) cvd*2/no_sampl	5. Efflue 1.231 0.500 1.835 es+1)*0.5)	1 d	LTA_cfc = 216.105	
PENTOXSD TRG PENTOXSD TRG WLA arc LTAMULT arc LTA_arc WLA_cfc LTA_ULT_cfc LTA_efc		5.1g (019)e(-k*APC + Xd + (APC EXP((0.5*LN(c wia_afc*LTAM (0.11)e(-k*CFC EXP((0.5*LN(c wia_cf*LTAM EXP(2.326*LN MIN(BAT_BPJ MIN(BAT_BPJ	:_Yo*Qs*Xs/Qd) :>vh*2+1))-2.326 iULT_afc C_tc) + [(CFC_Y :_Yo*Qs*Xs/Qd) :>vd*2/no_sampl ULT_cfc i((cvd*2/no_sam	Yo^Qs*.019/Qd*ei)]*(1-FOS/100) *LN(cvh^2+1)^0.5 /o*Qs*.011/Qd*e()]*(1-FOS/100) es+1))-2.325*LN((<pre>4 LIMIT (mg/l) = 4 LIMIT (mg/l) = (-k*AFC_tc))) -k*CFC_tc)) >vd*2/no_sampl</pre>	1.231 0.500 1.835 es+1)^0.5)	nt Limit Calcul		
PENTOXSD TRG PENTOXSD TRG WLA arc LTAMULT arc LTA_arc WLA_cfc LTA_ULT_cfc LTA_efc		5.1g (019)e(-k*APC + Xd + (APC EXP((0.5*LN(c wia_afc*LTAM (0.11)e(-k*CFC EXP((0.5*LN(c wia_cf*LTAM EXP(2.326*LN MIN(BAT_BPJ MIN(BAT_BPJ	:_Yo*Qs*Xs/Qd) :>vh*2+1))-2.326 iULT_afc C_tc) + [(CFC_Y :_Yo*Qs*Xs/Qd) :>vd*2/no_sampl ULT_cfc i((cvd*2/no_sam	Yo^Qs*.019/Qd*ei)]*(1-FOS/100) *LN(cvh^2+1)^0.5 /o*Qs*.011/Qd*e()]*(1-FOS/100) es+1))-2.325*LN((<pre>4 LIMIT (mg/l) = 4 LIMIT (mg/l) = (-k*AFC_tc))) -k*CFC_tc)) >vd*2/no_sampl</pre>	1.231 0.500 1.835 es+1)^0.5)			
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc		+ Xd + (AFC EXP((0.5*LN(c wla_afc*LTAM (.011/e(+*CFC EXP((0.5*LN(c wla_cfc*LTAM EXP(2.326*LN MIN(BAT_BFJ	:_Yo*Qs*Xs/Qd) :>vh*2+1))-2.326 iULT_afc C_tc) + [(CFC_Y :_Yo*Qs*Xs/Qd) :>vd*2/no_sampl ULT_cfc i((cvd*2/no_sam)]^(1-FOS/100) *LN(cvh^2+1)^0.5 /c^Qs^.011/Qd^e()]^(1-FOS/100) es+1))-2.326*LN(() - k*CFC_tc)). svd*2/no_sampl				
LTAMULT_cfc LTA_cfc		+ Xd + (CFC EXP((0.5*LN(c wla_cfc*LTAM EXP(2.326*LN MIN(BAT_BPJ	:_Yc^Qs^Xs/Qd cvd^2/no_sampl ULT_cfc I((cvd^2/no_sam)]*(1-FOS/100) es+1))-2.326*LN((cvd*2/no_sampl				
		EXP(2.326*LN MIN(BAT_BPJ	l((cvd^2/no_san	onles+1)00 5) 0 5*					
AVG MON LIMIT NST MAX LIMIT			I,MIN(LTA_afc,L	TA_cfc)*AML_MU TA_cfc)*AML_MU	ILT)	imples+1))			
Stream R	_tc/1440)))+Xd Iorine Require Reach/Node	I+(CFC_Yc*Qs 9d		° (1-FOS/100) perennial 1	2	Demand 3	+ 4	Chlorine Residual	
Stream Ci	low Code Junction	Conditions		intermittent 52485	perennial 52478	perennial 52468	perennial 51591 unknown		
	utfall ≀each End		RMI RMI feet sq miles	30 1.01 0 5332.8 0.51	30 0.67 0 3537.6 1.2588	30 5.53 0 29198.4 92.8	30 32.2 0 170016 790.32		
TRC lin elevation slope low flow		average maximum modelled modelled modelled	mg/L mg/L feet feet foot/foot cfs/sq mi	0.164 0.535 1205.59 1090.27 0.022 0.101	0.294 0.961 1090.27 1073.31 0.005 0.101	0.500 1.600 1073.31 1065.35 0.000 0.101	0.350 1.600 1065.35 908.3 0.001 0.10		
	Period harge with no nial stream flo	o aquatic life to ow conditions	mgd hours protection (0.0313 24.000 0.5-mg/L technol	0.0420 24.000 ogy limt should	0.0430 24.000 t be adequae a	0.0430 24.000 s the chlorine s	houlddispate within a few feet of the dischar	rge and not
stream flo stream flo stream ch	hlorine	total demand demand	cfs MGD MGD mg/L mg/l	0.05131 0.033161 0.064496 0.3	0.12664 0.081848 0.123848 0.3	9.33590 6.033953 6.076953 0.3	79.50810 51.387434 51.430434 0.3		
	ischarge iotal Stream/v		mg/L ratio	2.1	2.9	141.3	1196.1		
		mean maximum	BAT BAT	0.5 1.6	0.5 1.6	0.5 1.6	0.5 1.6		

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

				Monitoring Re	quirements			
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	ххх	XXX	XXX	XXX	XXX	1/week	Measured
рН (S.U.)	ХХХ	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
DO	ххх	ххх	4.0 Daily Min	xxx	xxx	xxx	1/day	Grab
TRC	XXX	ххх	XXX	0.5	xxx	1.6	1/day	Grab
CBOD5	ххх	xxx	XXX	25.0	xxx	50.0	2/month	8-Hr Composite
TSS	xxx	XXX	xxx	30.0	XXX	60.0	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	ххх	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	ххх	xxx	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	ХХХ	ХХХ	XXX	XXX	Report	1/year	Grab
Total Nitrogen	xxx	XXX	xxx	Report	XXX	xxx	2/month	8-Hr Composite
Ammonia Nov 1 – Apr 30	ххх	xxx	xxx	25	50	ххх	2/month	8-Hr Composite
Ammonia May 1 – Oct 31	XXX	XXX	xxx	9.3	18.6	XXX	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite

Compliance Sampling Location: Outfall 001 after disinfection

NPDES Permit Fact Sheet Denny Ridge MHP

Other Comments: None