

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0036790
APS ID	547437
Authorization ID	1425304

Applicant and Facility Information

Applicant Name	Paradi	se MHP Inc.	Facility Name	Paradise MHP
Applicant Address	4007 Dean Martin Drive		Facility Address	53 Mountain Road
	Las Ve	gas, NV 89103-4137		Bloomfield, PA 17068
Applicant Contact	Kelly T	homas	Facility Contact	Lewis Massie
Applicant Phone	(724) 3	74-5962	Facility Phone	(717) 834-4092
Client ID	239390		Site ID	251609
Ch 94 Load Status	Not Overloaded		Municipality	Wheatfield Township
Connection Status	No Lim	itations	County	Perry
Date Application Receiv	ved	January 31, 2023	EPA Waived?	Yes
Date Application Accep	oted	February 9, 2023	If No, Reason	
		-		
Purpose of Application		This is an application reques	t for NPDES renewal.	

Approve	Deny	Signatures	Date
x		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	May 3, 2023
x		Daniel W. Martin, P.E. / Environmental Engineer Manager Maria D. Bebenek for	May 19, 2023
x		Maria D. Bebenek, P.E. / Environmental Program Manager Maria D. Bebenek	May 19, 2023

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Paradise MHP located at 53 Mountain Road, Bloomfield, PA 17068 in Perry County, municipality of Wheatfield Township. The existing permit became effective on February 1, 2018 and expired on January 31, 2023. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on January 31, 2023.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.04 MGD treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 1) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Perry County Commissioners and Wheatfield Township and the notice was received by the parties on January 30, 2023. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Trib 11008 To Dark Run. The sequence of receiving streams that the Trib 11008 To Dark Run discharges into are Dark Run, Sherman Creek, and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for cold water fishes (CWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The presence of high quality and/or exceptional value surface waters triggers the need for an additional evaluation of anti-degradation requirements.

The Trib 11008 To Dark Run is a Category 2 stream listed in the 2022 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports aquatic life, recreational uses, and fish consumption. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Ammonia-nitrogen limits have been reduced. The summer/winter months were corrected in accordance with DEP guidance documents
- Due to the EPA triennial review, monitoring for E. Coli is required.

Sludge use and disposal description and location(s): Sewage sludge/biosolids disposed at Annville STP located at 675 W Main Street, Annville, PA 17003

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

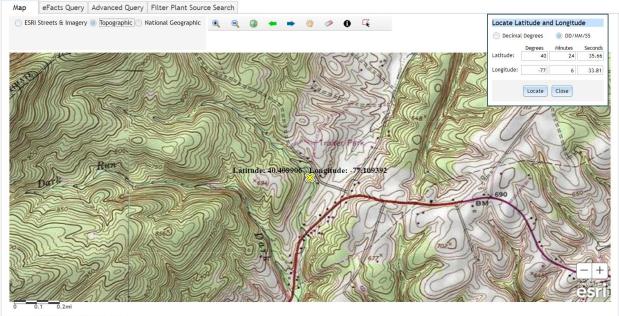
1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name:	Paradise MHP
NPDES Permit #	PA0036790
Physical Address:	53 Mountain Road Bloomfield, PA 17068
Mailing Address:	4007 Dean Martin Drive Las Vegas, NV 89103
Contact:	Kelly Thomas Property Manager (724) 209-4442 <u>kelly@patriotholdings.com</u>
	Lewis Massie Operator (717) 215-9759 foamic@verizon.net
Consultant:	Thomas Bibby Wastewater System Services 676 Banning Road Dawson, PA 15428 (724) 366-5184 <u>Tombibby@verizon.net</u>

1.2 Permit History

Permit submittal included the following information.


• NPDES Application

2.0 Treatment Facility Summary

2.1.1 Site location

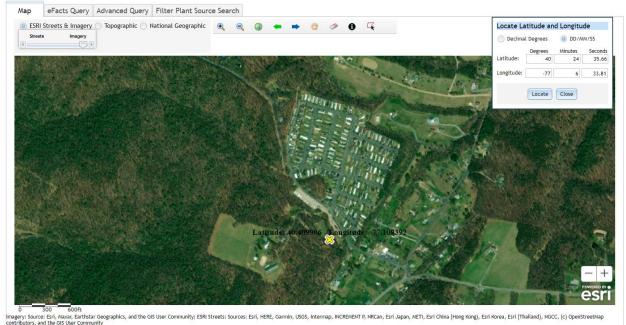

The physical address for the facility is 53 Mountain Road, Bloomfield, PA 17068. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

Copyright: © 2013 National Geographic Society, i-cubed

Figure 2: Aerial Photograph of the subject facility

2.1.2 Sources of Wastewater/Stormwater

All the wastewater generated originates from the Paradise MHP.

2.2 Description of Wastewater Treatment Process

The subject facility is a 0.04 MGD hydraulic design flow facility. The subject facility treats wastewater using an EQ tank(s), an aeration tank(s), a clarifier(s), a chlorine contact tank, a dechlorination tank, a polishing clarifier, and a post aeration tank prior to discharge through the outfall. The facility is being evaluated for flow, pH, dissolved oxygen, TRC, CBOD5, TSS, TRC, fecal coliform, nitrogen species, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Tr	eatment Facility Summar	у	
Freatment Facility Nar	ne: Paradise MHP			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
		Extended Aeration With		
Sewage	Tertiary	Solids Removal	Hypochlorite	0.04
		•		
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposa
0.04	76.7	Not Overloaded		•

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001		Design Flow (MGD)	.04
Latitude	40° 24' 35.99	1	Longitude	-77º 6' 32.88"
Wastewater De	escription:	Sewage Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

- Chlorine for disinfection
- Sodium meta-bisulfite for dechlorination
- Alum for phosphorus removal
- Soda ash for alkalinity

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS						
I. A. For Outfall 001	, Latitude					
Receiving Waters:	Unnamed Tributary to Dark Run					

Type of Effluent: Sewage Effluent

1. The permittee is authorized to discharge during the period from February 1, 2018 through January 31, 2023.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent Limitations					Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required	
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	xxx	XXX	XXX	xxx	Continuous	Measured	
pH (S.U.)	XXX	xxx	6.0 Daily Min	xxx	xxx	9.0	1/day	Grab	
Dissolved Oxygen	xxx	xxx	5.0 Daily Min	xxx	xxx	xxx	1/day	Grab	
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.1	XXX	0.29	1/day	Grab	
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	XXX	xxx	xxx	25.0	xxx	50	2/month	24-Hr Composite	
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	xxx	xxx	xxx	20.0	xxx	40	2/month	24-Hr Composite	
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60	2/month	24-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab	
Ammonia-Nitrogen Oct 1 - Apr 30	xxx	xxx	xxx	6.0	xxx	12	2/month	24-Hr Composite	

Outfall001, Continued (from February 1, 2018 through January 31, 2023)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum (2)	Required
Parameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Ammonia-Nitrogen								24-Hr
May 1 - Sep 30	XXX	XXX	XXX	2.0	XXX	4	2/month	Composite
								24-Hr
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at discharge from facility

PART	PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS								
I. B.	For Outfall 001	_, Latitude _40° 24' 35.66" , Longitude77° 6' 33.61" , River Mile Index _0.58 , Stream Code _11008							
	Receiving Waters: Unnamed Tributary to Dark Run								
	Type of Effluent: Sewage Effluent								

1. The permittee is authorized to discharge during the period from February 1, 2018 through January 31, 2023.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
	monany	Annuar	monany	Attelage	maximam	maximum	requerey	24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	1/quarter	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	1/quarter	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	1/quarter	Composite
Total Nitrogen	Report	Report	xxx	Report	XXX	xxx	1/quarter	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	1/quarter	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at discharge from facility

Footnotes:

(1) See Part C for Chesapeake Bay Requirements.

(2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

06/10/2019:

• The chlorine contact tank was undergoing repairs for an uneven drip from the chlorine feed. The facility repaired a cracked line inside the chemical feed pump during inspection. The chlorine feed tube had a normal drip pattern by the end of the inspection.

04/28/2020:

• An administrative inspection was conducted by telephone. The purpose of the inspection was to follow-up on the facility during the COVID-19 related restrictions. Mr. Lewis Massie (Certified Operator) responded to my inquiry. The wastewater treatment facility is currently operating normal with all treatment units online. No significant operational changes were made to the treatment facility. Mr. Massie added that there was an increase of flow and BOD due to the COVID-19 "Stay at Home" restrictions. Mr. Massie stated that no recent bypasses, SSOs, or sampling issues have occurred since the last inspection. The facility has spare parts on hand. Mr. Massie stated that there are no changes in staffing or outstanding issues.

8/27/2020:

- The purpose of the inspection was in response to a complaint received by the Department on 8-26-2020 at 1423 hours. The complaint described that the sewage treatment plant had not been taken care of and is causing a film on the creek with a stagnant odor. Mr. Massie stated that he was aware of odor complaints since 7-4-2020. Since that time Mr. Massie has taken measures to reduce odors at the sewage treatment plant (STP). Mr. Massie covered the two influent EQ tanks on 7-4-2020 upon hearing the first complaint. Mr. Massie has changed the air filters for the blowers to ensure efficient aeration in the entire treatment system. Mr. Massie added ferric chloride, beginning on 7-14-2020, to the first influent EQ tank to assist with odor control. The additions of ferric chloride was stopped on 8-24-2020. Mr. Massie believed there was improvement with the amount of odor but did not receive any feedback from local residents or the ownership of the mobile home park.
- An odor was present when the DEP inspector arrived near the STP. Both of the influent EQ tanks had a pungent odor as the coverings were removed. All other tanks (five aeration, two clarifiers, chlorine contact tank, and the sludge holding tank) had no malodor. The effluent from the STP was clear, without odor, and was not producing a sheen at the outfall.
- The facility had only one effluent violation so far in 2020 for average monthly phosphorus.
- A couple of odor control options were discussed for feasibility.

10/20/2020:

• On 9-23-2020, the complaint described an odor from the sewage treatment plant. A similar complaint was documented in an inspection dated 8-27-2020.

07/13/2022:

- The facility's EQ tanks contained excessive accumulation of solids, rags, grease, and sanitary
 products which form a pile that extends above the tank's water line. White suspended solids that
 resembled grease particles were observed in the chlorine contact tank and at outfall 001. The
 particles were present beneath the outfall pipe and in the slack water of UNT of Dark Run near the
 outfall pipe.
- Mr. Massie stated that the facility's composite sampler refrigerator was discovered to not be working properly on 7/8/2022. Mr. Massie will continue to utilize the composite sampler, but the sample bottle will be retained in a cooler with ice during sampling. Samples shall be retained on ice or stored in a refrigerator equipped with a NIST traceable thermometer capable of maintaining a temperature of less than or equal to 6 degrees Celsius.
- DMR review revealed that TRC values obtained by the certified operator are reported as they appear and not as the reasonable detection limit (RDL). Mr. Massie often observes a TRC reading of 0.00 mg/L and reports it as such on the daily effluent monitoring supplemental form. Every occurrence of 0.00 mg/L appears blank on the daily effluent monitoring supplemental form. TRC values must be reported using the RDL found in the colorimeter's user manual. The RDL for the colorimeter is set by the manufacturer. I.e. If the TRC analysis yields a result of 0.00 mg/L and the RDL for your colorimeter unit is 0.05 mg/L, the result must be reported as < 0.05 on the daily effluent supplemental form. All analysis results under the RDL must be reported using the RDL</p>

10/4/2022:

- A follow up inspection was conducted to observe the status of violations cited during the 7/13/2022 compliance evaluation inspection.
- The following violations were cited during the 7/13/2022 inspection:
 - Floating solids that resembled grease particles were observed at and immediately downstream of Outfall 001., in violation of Part A, 1(a) of NPDES Permit No. PA0036790.

- Failure to maintain permitted treatment units in operable condition is a violation of Part B, I., E(2) of NPDES Permit No. PA0036790.
- A baffle was installed at the effluent weir of the chlorine contact tank to prevent further discharge of floating solids to outfall 001.
- The buildup of grease and floating solid particles were removed from the stream around outfall 001.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.021 MGD in January 2022. The design capacity of the treatment system is 0.04 MGD.

The off-site laboratory used for the analysis of the parameters was Microbac located at 4359 Linglestown Road, Harrisburg, PA 17112.

DMR Data for Outfall 001 (from January 1, 2022 to December 31, 2022)

Parameter	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22
Flow (MGD)												
Average Monthly	0.02	0.018	0.018	0.019	0.02	0.0182	0.02	0.02	0.02	0.02	0.0202	0.021
Flow (MGD)												
Daily Maximum	0.031	0.025	0.023	0.023	0.028	0.025	0.031	0.025	0.031	0.026	0.029	0.028
pH (S.U.)												
Daily Minimum	7.0	7.2	7.2	7.2	7.4	7.4	7.2	7.4	7.1	7.1	7.3	7.1
pH (S.U.)												
Instantaneous												
Maximum	7.8	7.8	7.9	7.9	7.9	8.3	7.9	7.8	7.8	7.7	7.7	7.9
DO (mg/L)												
Daily Minimum	8.3	8.1	8.1	8.1	7.6	8.1	9.8	10.1	10.8	8.9	8.9	9.0
TRC (mg/L)												
Average Monthly	0.02	0.016	0.02	0.01	0.01	0.02	0.02	0.02	0.03	0.01	0.01	0.01
TRC (mg/L)												
Instantaneous	0.04	0.04	0.04	0.04	0.00	0.00	0.04	0.00	0.14	0.00	0.01	0.01
Maximum	0.04	0.04	0.04	0.04	0.02	0.09	0.04	0.09	0.14	0.02	0.01	0.01
CBOD5 (mg/L)												
Average Monthly TSS (mg/L)	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Average Monthly	5.21	4.86	< 3.3	4.1	< 2.67	< 2.98	< 3.89	4.37	< 4.26	< 3.6	< 2.5	< 4.0
Fecal Coliform	0.21		10.0		12.01	12.00	10.00		3 1120	10.0	12.0	4 110
(No./100 ml)												
Geometric Mean	< 1	< 11	28	62	< 6	7	50	< 1	< 1	6	< 1	< 1
Fecal Coliform												
(No./100 ml)												
Înstantaneous												
Maximum	1	121.1	49.6	139.6	34	53	411	< 1	1	39	< 1	< 1
Nitrate-Nitrite (mg/L)												
Average Quarterly	33.9			36.5			73.4			67.1		
Nitrate-Nitrite (lbs)												
Total Quarterly	19.98			5.78			12.24			0.116		
Total Nitrogen (mg/L)												
Average Quarterly	33.9			37.0			73.4			67.7		
Total Nitrogen (lbs)												
Total Quarterly	19.98			5.86			12.24			10.7		
Total Nitrogen (lbs)												
Total Annual				6.47								

NPDES Permit Fact Sheet Paradise MHP

NPDES Permit No. PA0036790

Ammonia (mg/L)												
Average Monthly	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.26	< 0.2	< 0.2	< 0.2
Ammonia (mg/L)												
Average Quarterly	< 0.2			0.2			< 0.2			< 0.2		
Ammonia (lbs)												
Total Quarterly	0.111			0.03			0.033			< 3		
Ammonia (lbs)												
Total Annual				0.36								
TKN (mg/L)												
Average Quarterly	< 0.5			0.506			< 0.5			0.562		
TKN (lbs)												
Total Quarterly	0.27			0.08			0.08			0.089		
Total Phosphorus												
(mg/L)												
Average Monthly	0.69	2.0	2.0	2.19	1.9	1.38	1.26	1.26	2.57	0.841	0.691	1.8
Total Phosphorus												
(mg/L)												
Average Quarterly	0.689			2.69			1.22			0.841		
Total Phosphorus (lbs)												
Total Quarterly	0.378			0.427			0.203			12		
Total Phosphorus (lbs)												
Total Annual				3.42								

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in February 1, 2018 to April 27, 2023, the following were observed effluent non-compliances.

	Summary of Non-Compliance with NPDES Effluent Limits									
	Beginning February 1, 2018 and Ending April 27, 2023									
NON_COMPLIANCE_ DATE	NON_COMPL_TYPE_ DESC	NON_COMP L_CATEGORY _DESC	PARAMETER	SAMPLE_ VALUE	VIOLATION _CONDITIO N	PERMIT_ VALUE	UNIT_OF_ MEASURE	STAT_BASE_CODE	FACILITY_COMMENTS	
10/26/2019	Violation of permit condition	Effluent	Total Suspended Solids	< 39.0	>	30.0	mg/L	Average Monthly	Particulate in sample Flush sample line	
11/29/2020	Late DMR Submission	Other Violations								
8/13/2020	Violation of permit condition	Effluent	Total Phosphorus	4.4	>	2.0	mg/L	Average Monthly	chemical feed pump failed. purchased and installed new pump	
4/1/2021	Late DMR Submission	Other Violations								
8/28/2021	Violation of permit condition	Effluent	Total Phosphorus	2.8	>	2.0	mg/L	Average Monthly		
5/27/2022	Violation of permit condition	Effluent	Total Phosphorus	2.57	>	2.0	mg/L	Average Monthly	chemical pump failed. pump was replaced.	
10/23/2022	Violation of permit condition	Effluent	Total Phosphorus	2.19	>	2.0	mg/L	Average Monthly	Cause - chemical line leak	
3/23/2023	Violation of permit condition	Effluent	Total Phosphorus	2.38	>	2.0	mg/L	Average Monthly		

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in February 1, 2018 to April 27, 2023, the table summarizes observed enforcement actions.

ENF CREATION ENF CLOSED # OF EXECUTED DATE INITIATED DATE ENF ID ENF TYPE ENF TYPE DESC VIOLATIONS ENF FINALSTATUS VIOLATIONS DATE DATE 405378 NOV Notice of 07/19/2022 07/15/2020 92A.41(A)5; 92A.41(C) 2 Comply/Closed 10/04/2022 Violation <u>414863</u> NOV Notice of 04/17/2023 04/05/2023 92A.62 1 Violation NOV Notice of 09/20/2022 09/20/2022 09/01/2022 92A.75(A) Administrative Close 01/31/2023 407343 1 Violation Out

Summary of Enforcement Actions Beginning February 1, 2018 and Ending April 27, 2023

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

2022							
Sewage Sludge / Biosolids Production Information							
	Hauled	Off-Site					
2022	Gallons	% Solids	Dry Tons				
January							
February	5,500	2.04	0.468				
March							
April							
May	5,500	1	0.229				
June	5,000	1.53	0.319				
July	5,500	1.77	0.406				
August							
September	5,500	2.33	0.534				
October	5,500	1.62	0.372				
November							
December							
Notes:							
		posed at Annv	ille Township				
Authority in A	nnville, Leban	on County					

3.5 Open Violations

As of April 2023, an open violation existed. The facility was cited for failure to pay annual fee. The final NPDES permit may be withheld until the open violation is addressed.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Trib 11008 To Dark Run. The sequence of receiving streams that the Trib 11008 To Dark Run discharges into are Dark Run, Sherman Creek, and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Suez Water (PWS ID # 7220015) located approximately 15 miles downstream of the subject facility on the Susquehanna River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2022 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2022 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 waterbody. The surface waters is an attaining stream that supports aquatic life, recreational uses, and fish consumption. The designated use has been classified as protected waters for cold water fishes (CWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Susquehanna River @ Harrisburg, PA (WQN202). This WQN station is located approximately 21 miles downstream on the Susquehanna River.

The closest gauge station to the subject facility is the Sherman Creek at Shermans Dale, PA (USGS station number 1568000). This gauge station is located on the Sherman Creek about 9.5 miles upstream from confluence of Dark Run and Sherman Creek.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.25 and the stream water temperature was estimated to be 23.75 C.

The hardness of the stream was estimated from the water quality network to be 109 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

	Gauge Station Data		
USGS Station Number			
Station Name	Shermans Da	le	
Q710	15.5	ft ³ /sec	
Drainage Area (DA)	207	mi ²	
Calculations			
The low flow yield of th	ne gauge station is:		
Low Flow Yield (LFY) = (
LFY =	(15.5 ft ³ /sec / 207 mi ²)		
LFY =	0.0749	ft³/sec/mi²	
The low flow at the sub	ject site is based upon the DA of	0.52	mi ²
Q710 = (LFY@gauge sta	tion)(DA@Subject Site)		
Q710 = (0.0749 ft ³ /sec/r	mi ²)(0.52 mi ²)		
Q710 =	0.039	ft ³ /sec	

NPDES Permit Fact Sheet Paradise MHP

1.6 Summary of Di	scharge,	Receiving Waters and W	later Supply Information				
				- /			
Outfall No. 00	-	- "	Design Flow (MGD)	.04			
	° 24' 35.6	6"	_ Longitude	-77º 6' 33.61"			
Quad Name			Quad Code				
Wastewater Dese	cription:	Sewage Effluent					
	Unna	amed Tributary to Dark Rur	2				
Receiving Waters			Stream Code	11008			
NHD Com ID		9291	RMI	0.55			
Drainage Area	0.52		Yield (cfs/mi²)	0.0749			
Q ₇₋₁₀ Flow (cfs)	0.039)	Q7-10 Basis	StreamStats/streamgauge			
Elevation (ft)	594		Slope (ft/ft)				
Watershed No.	7-A		Chapter 93 Class.	CWF, MF			
Existing Use	Sam	e as Chapter 93 class	Existing Use Qualifier				
Exceptions to Us	e		Exceptions to Criteria				
Assessment Stat	us	Attaining Use(s) support	ts aquatic life, recreational uses, a	and fish consumption			
Cause(s) of Impa	irment	Not applicable					
Source(s) of Imp	airment	Not applicable					
TMDL Status		Not applicable	Name				
Background/Amb	oient Data	l	Data Source				
pH (SU)		8.25	WQN202; median July to Sept				
Temperature (°C)	23.75	WQN202; median July to Sep	t			
Hardness (mg/L)		109	WQN202; median historical				
Other:							
Nearest Downstr	eam Pub	ic Water Supply Intake	Suez Water				
PWS Waters	Susque	hanna River	Flow at Intake (cfs)				
PWS RMI	76		Distance from Outfall (mi)	15			

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

NPDES Permit Fact Sheet Paradise MHP

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform	/ /	• • •		
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

The modeling point nodes utilized for this facility are summarized below.

General Data 1	(Modeling Point #1)	(Modeling Point #2)	Units
Stream Code	11008	11008	
River Mile Index	2.13	0	miles
Elevation	594	406	feet
Latitude	40.409906	40.386522	
Longitude	-77.109392	-77.102603	
Drainage Area	0.52	5.15	sq miles
Low Flow Yield	0.0749	0.0749	cfs/sq mile

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

⁽a) a minimum concentration for DO in the discharge as 30-day average;

- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH_3 -N in the discharge;
- (d) 24-hour average concentration for NH_3 -N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The subject facility is not subject to toxics modeling.

5.3.3 Whole Effluent Toxicity (WET)

The subject facility is not subject to toxics WET.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety (MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. The TMDL components are illustrated using the following equation:

$$\mathsf{TMDL} = \Sigma W \mathsf{LAs} + \Sigma \, \mathsf{LAs} + \mathsf{MOS}$$

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are

part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was September 13, 2021.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30. For facilities that have received Cap Loads in any other form, the Cap Loads will be modified accordingly when the permits are renewed.

Offsets have been incorporated into Cap Loads in several permits issued to date. From this point forward, permits will be issued with the WLAs as Cap Loads and will identify Offsets separately to facilitate nutrient trading activities and compliance with the TMDL.

Based upon the supplement the subject facility has been categorized as a Sector C discharger. The supplement defines Sector C as a non-significant dischargers include sewage facilities (Phase 4 facilities: ≥ 0.2 MGD and < 0.4 MGD and Phase 5 facilities: > 0.002 MGD and < 0.2 MGD), small flow/single residence sewage treatment facilities (≤ 0.002 MGD), and non-significant IW facilities, all of which may be covered by statewide General Permits or may have individual NPDES permits.

At this time, there are approximately 850 Phase 4 and 5 sewage facilities, approximately 715 small flow sewage treatment facilities covered by a statewide General Permit, and approximately 300 non-significant IW facilities.

For Phase 5 sewage facilities with individual permits (average annual design flow on August 29, 2005 > 0.002 MGD and < 0.2 MGD), DEP will issue individual permits with monitoring and reporting for TN and TP throughout the permit term at a frequency no less than annually, unless 1) the facility has already conducted at least two years of nutrient monitoring and 2) a summary of the monitoring results are included in the next permit's fact sheet. If, however, Phase 5 facilities choose to expand, the renewed or amended permits will contain Cap Loads based on the lesser of a) existing TN/TP concentrations at current design average annual flow or b) 7,306 lbs/yr TN and 974 lbs/yr TP.

If no data are available to determine existing concentrations for expanding Phase 4 or 5 facilities, default concentrations of 25 mg/l TN and 4 mg/l TP may be used (these are the average estimated concentrations of all non-significant sewage facilities).

DEP will not issue permits to existing Phase 4 and 5 facilities containing Cap Loads unless it is done on a broad scale or unless the facilities are expanding.

NPDES Permit Fact Sheet Paradise MHP

For new Phase 4 and 5 sewage discharges, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance, with the exception of small flow and single residence facilities.

This facility is subject to Sector C monitoring requirements. Monitoring shall be required at least 1x/quarter.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected*. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a special protection water.

The designation was a basin delineation which included all tributaries draining into the stream segment in Dark Run basin from source to mouth. The evaluation date was March 24, 2017. A discussion with DEP's Water Pollution Biologist Supervisor indicated that the existing dischargers are exempted from Anti-degradation analysis. (Fact Sheet October 2017)

The permit conditions are imposed to protect existing instream water quality and uses.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1 Conventional Pollutants and Disinfection

Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
pH (S.U.)	TBEL	Effluent Limit:	Effluent limits may range from pH = 6.0 to 9.0
рп (3.0.)	IDEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
Dissolved	olved BPJ	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.
Oxygen		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.
		Monitoring:	The monitoring frequency shall be 2x/month as an 24-hr composite sample (Table 6-3).
CBOD	Anti-backsliding	Effluent Limit:	During the months of May 1 to October 31, effluent limits shall not exceed 20 mg/l as an average monthly.During the months of Nov 1 to April 30, effluent limits shall not exceed 25 mg as an average monthly.
		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3. Due to anti- backsliding, effluent limits shall be 20 mg/l during the summer and 25 mg/l during the winter
		Monitoring:	The monitoring frequency shall be 2x/month as a 24-hr composite sample (Table 6-3).
TSS TBEL		Effluent Limit:	Effluent limits shall not exceed 30 mg/l as an average monthly.
	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD.	
		Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).
		Effluent Limit:	The average monthly limit should not exceed 0.1 mg/l and/or 0.29 mg/l as an instantaneous maximum.
TRC	WQBEL/Anti- backsliding	other forms of to be imposed shall be expre- concentration Based on the facility calcula The monitorin	lorine in both combined (chloramine) and free form is extremely toxic to freshwater fish and aquatic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations d on a discharger shall be the more stringent of either the WQBEL or TBEL requirements and essed in the NPDES permit as an average monthly and instantaneous maximum effluent (Implementation Guidance Total Residual Chlorine 4). Stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject ated by the TRC Evaluation worksheet, the WQBEL is more stringent than the TBEL. g frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned be-backsliding shall continue the current effluent limits to the proposed draft permit.
		Monitoring:	The monitoring frequency shall be 2x/month as a grab sample (Table 6-3).
Fecal Coliform	TBEL	Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluen limits shall not exceed 2000 No./100 mL as a geometric mean.
		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).
		Monitoring:	The monitoring frequency shall be 1x/yr as a grab sample (SOP).
	SOP; Chapter	Effluent Limit:	No effluent requirements.
E. Coli	92a.61	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be require to monitor for E.Coli.
otes:			

2 Monitoring frequency based on flow rate of 0.04 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.2 Nitrogen Species and Phosphorus

Ammonia-nitrogen limits were reduced. Based upon the 12 months of DMR beginning January 2022 and ending December 2022, the facility will have no issues meeting the reduced effluent limits.

			Paradise MHP, PA0036790								
Parameter	Permit Limitation Required by ¹ :		Recommendation								
		Monitoring:	The monitoring frequency shall be 2x/mo as a 24-hr composite sample								
Ammonia- Nitrogen	WQBEL	Effluent Limit:	During the months of May 1 to October 31, effluent limits shall not exceed 1.5 mg/l as an average monthly.During the months of November 1 to April 30, effluent limits shall not exceed 4.5 mg/l as an average monthly.								
		Rationale:	Water quality modeling recommends effluent limits for ammonia-nitrogen								
		Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample								
Nitrate-	Chesapeake Bay	Effluent Limit:	No effluent requirements.								
Nitrite as N	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/quarter.								
		Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample								
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.								
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/quarter.								
		Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample								
TKN	Chesapeake Bay	Effluent Limit:	No effluent requirements.								
I KIN	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/quarter.								
		Monitoring:	The monitoring frequency shall be 2x/month as a 24-hr composite sample								
Total		Effluent Limit:	Effluent limits shall not exceed 2.0 mg/l as an average monthly.								
Phosphorus Anti-backslic		Rationale:	Due to the DEP's Technical Guidance for Phosphorus (391-2000-018) and PA Code 25 Chapt 96.5., the facility is required to be monitored on a frequency at least 2x/mo. Anti-backsliding shall continue the current effluent limits to the proposed draft permit.								

2 Monitoring frequency based on flow rate of 0.04 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.3.1 Implementation of Regulation- Chapter 92a.61

Chapter 92a.61 provides provisions to DEP to monitor for pollutants that may have an impact on the quality of waters of the Commonwealth. Based upon DEP policy directives issued on March 22, 2021 and in conjunction with EPA's 2017 Triennial Review, monitoring for E. Coli shall be required.

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

	Changes in Permit Monitoring or Effluent Quality						
Parameter	Existing Permit	Draft Permit					
E. Coli	No monitoring or effluent requirements	Due to the EPA triennial review, monitoring shall be required 1x/yr.					
Ammonia Nitrogen	During the months of May 1 to Sept 30, effluent limits shall not exceed 2.0 mg/l. During the months of October 1 to April 30, effluent limits shall not exceed 6.0 mg/l.	Water quality modeling recommends a reduction in ammonia-nitrogen limits. The summer/winter months were corrected in accordance with the DEP Determining Water-Quality-Based Effluent Limits guidance document. During the months of May 1 to October 31, effluent limits shall not exceed 1.5 mg/l. During the months of November 1 to April 30, effluent limits shall not exceed 4.5 mg/l.					

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS							
I. A. For Outfall 001	_, Latitude _40° 24' 35.99" _, Longitude _77° 6' 32.88" _, River Mile Index _0.55 _, Stream Code _11008						
Receiving Waters:	Unnamed Tributary to Dark Run (CWF)						
Type of Effluent:	Sewage Effluent						

1. The permittee is authorized to discharge during the period from <u>Permit Effective Date</u> through <u>Permit Expiration Date</u>.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	xxx	xxx	6.0 Daily Min	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	xxx	xxx	5.0 Daily Min	xxx	xxx	xxx	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.1	XXX	0.29	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	XXX	xxx	xxx	25.0	XXX	50	2/month	24-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	XXX	xxx	xxx	20.0	XXX	40	2/month	24-Hr Composite
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Re	quirements					
Parameter	Mass Units (lbs/day) (1)			Concentrations (mg/L)				Required
Parameter	Average	Average		Average	Daily	Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Type
				Report				24-Hr
Nitrate-Nitrite as N	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
Nitrate-Nitrite as N (Total Load,	Report							
lbs) (lbs)	Total Qrtly	XXX	XXX	XXX	XXX	XXX	1/quarter	Calculation
				Report				
Total Nitrogen	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Calculation
Total Nitrogen (Total Load, Ibs)	Report							
(lbs)	Total Qrtly	XXX	XXX	XXX	XXX	XXX	1/quarter	Calculation
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	4.5	XXX	9	2/month	Composite
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	XXX	XXX	XXX	1.5	XXX	3	2/month	Composite
				Report				24-Hr
Ammonia-Nitrogen	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
Ammonia-Nitrogen (Total	Report							
Load, lbs) (lbs)	Total Qrtly	XXX	XXX	XXX	XXX	XXX	1/quarter	Calculation
				Report				24-Hr
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
Total Kjeldahl Nitrogen (Total	Report							
Load, lbs) (lbs)	Total Qrtly	XXX	XXX	XXX	XXX	XXX	1/quarter	Calculation
								24-Hr
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	Composite
Total Dhaanhama	VVV	VVV	~~~~	Report	~~~~	~~~~	1/munter	24-Hr
Total Phosphorus	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
Total Phosphorus (Total Load,	Report	2022	2022	2022			Almundar	Onlawlatin
lbs) (lbs)	Total Qrtly	XXX	XXX	XXX	XXX	XXX	1/quarter	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: New and Reissuance Sewage Individual NPDES Permit Applications, rev 2/3/2022
	Other:

NPDES Permit No. PA0036790

NPDES Permit Fact Sheet Paradise MHP

Attachment A Stream Stats/Gauge Data

14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.-Continued

[Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01561000	Brush Creek at Gapsville, Pa.	39.956	-78.254	36.8	N
01562000	Raystown Branch Juniata River at Saxton, Pa.	40.216	-78.265	756	Ν
01562500	Great Trough Creek near Marklesburg, Pa.	40.350	-78.130	84.6	N
01563200	Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa.	40.429	-77.991	960	Y
01563500	Juniata River at Mapleton Depot, Pa.	40.392	-77.935	2,030	Y
01564500	Aughwick Creek near Three Springs, Pa.	40.213	-77.925	205	N
01565000	Kishacoquillas Creek at Reedsville, Pa.	40.655	-77.583	164	N
01565700	Little Lost Creek at Oakland Mills, Pa.	40.605	-77.311	6.52	N
01566000	Tuscarora Creek near Port Royal, Pa.	40.515	-77.419	214	Ν
01566500	Cocolamus Creek near Millerstown, Pa.	40.566	-77.118	57.2	N
01567000	Juniata River at Newport, Pa.	40.478	-77.129	3,354	Y
01567500	Bixler Run near Loysville, Pa.	40.371	-77.402	15.0	Ν
01568000	Sherman Creek at Shermans Dale, Pa.	40.323	-77.169	207	Ν
01568500	Clark Creek near Carsonville, Pa.	40.460	-76.751	22.5	LF
01569000	Stony Creek nr Dauphin, Pa.	40.380	-76.907	33.2	N
01569800	Letort Spring Run near Carlisle, Pa.	40.235	-77.139	21.6	N
01570000	Conodoguinet Creek near Hogestown, Pa.	40.252	-77.021	470	LF
01570500	Susquehanna River at Harrisburg, Pa.	40.255	-76.886	24,100	Y
01571000	Paxton Creek near Penbrook, Pa.	40.308	-76.850	11.2	Ν
01571500	Yellow Breeches Creek near Camp Hill, Pa.	40.225	-76.898	213	N
01572000	Lower Little Swatara Creek at Pine Grove, Pa.	40.538	-76.377	34.3	N
01572025	Swatara Creek near Pine Grove, Pa.	40.533	-76.402	116	N
01572190	Swatara Creek near Inwood, Pa.	40.479	-76.531	167	N
01573000	Swatara Creek at Harper Tavern, Pa.	40.403	-76.577	337	N
01573086	Beck Creek near Cleona, Pa.	40.323	-76.483	7.87	Ν
01573160	Quittapahilla Creek near Bellegrove, Pa.	40.343	-76.562	74.2	N
01573500	Manada Creek at Manada Gap, Pa.	40.397	-76.709	13.5	N
01573560	Swatara Creek near Hershey, Pa.	40.298	-76.668	483	N
01574000	West Conewago Creek near Manchester, Pa.	40.082	-76.720	510	N
01574500	Codorus Creek at Spring Grove, Pa.	39.879	-76.853	75.5	Y
01575000	South Branch Codorus Creek near York, Pa.	39.921	-76.749	117	Y
01575500	Codorus Creek near York, Pa.	39.946	-76.755	222	Y
01576000	Susquehanna River at Marietta, Pa.	40.055	-76.531	25,990	Y
01576085	Little Conestoga Creek near Churchtown, Pa.	40.145	-75.989	5.82	N
01576500	Conestoga River at Lancaster, Pa.	40.050	-76.277	324	N
01576754	Conestoga River at Conestoga, Pa.	39.946	-76.368	470	N
01578310	Susquehanna River at Conowingo, Md.	39.658	-76.174	27,100	Y
01578400	Bowery Run near Quarryville, Pa.	39.895	-76.114	5.98	N
01580000	Deer Creek at Rocks, Md.	39.630	-76.403	94.4	Ν
01581500	Bynum Run at Bel Air, Md.	39.541	-76.330	8.52	Ν
01581700	Winters Run near Benson, Md.	39.520	-76.373	34.8	N
01582000	Little Falls at Blue Mount, Md.	39.604	-76.620	52.9	Ν
01582500	Gunpowder Falls at Glencoe, Md.	39.550	-76.636	160	Y
01583000	Slade Run near Glyndon, Md.	39.495	-76.795	2.09	Ν
01583100	Piney Run at Dover, Md.	39.521	-76.767	12.3	Ν

Table 2 27

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01565000	1941-2008	37	17.6	18.6	28.6	20.3	32.4	24.4
01565700	1965-1981	17	.4	.4	.9	.5	1.1	.8
01566000	1913-2008	52	4.3	7.9	18.8	12.4	25.6	19.2
01566500	1932-1958	27	1.7	2.4	4.0	3.2	5.7	4.9
01567000	21974-2008	35	504	534	725	589	857	727
01567000	31901-1972	72	311	367	571	439	704	547
01567500	1955-2008	54	2.0	2.2	3.3	2.6	3.8	3.1
01568000	1931-2008	78	12.7	15.5	25.5	19.2	32.0	26.0
01568500	21943-1997	55	1.8	2.3	4.3	2.7	5.0	3.1
01569000	1939-1974	14	2.6	4.0	7.4	5.1	9.4	7.8
01569800	1978-2008	31	15.9	17.0	24.4	18.4	26.1	20.3
01570000	31913-1969	35	_	63.1	110	76.1	124	95.3
01570000	21971-2008	38	63.1	69.3	109	78.3	125	97.8
01570500	31901-1972	72	2,310	2,440	4,000	2,830	4,950	3,850
01570500	21974-2008	35	3,020	3,200	5,180	3,690	6,490	4,960
01571000	1941-1995	16	.1	.2	.6	.3	1.2	.8
01571500	1911-2008	62	81.6	86.8	115	94.0	124	105
01572000	1921-1984	14	2.1	2.3	4.8	3.0	6.5	4.5
01572025	1990-2008	17	15.2	16.4	26.7	18.5	34.6	27.7
01572190	1990-2008	17	19.1	20.5	36.2	23.9	45.8	35.3
01573000	1920-2008	89	18.0	22.0	52.0	30.8	69.2	50.9
01573086	1965-1981	17	.5	.6	2.6	.8	3.3	1.1
01573160	1977-1994	18	26.9	29.6	46.4	33.6	51.9	39.5
01573500	1939-1958	20	1.3	1.4	2.5	1.8	3.2	2.6
01573560	1977-2008	30	50.3	62.0	104	76.9	131	108
01574000	1930-2008	79	8.0	11.1	32.0	17.7	47.0	33.9
01574500	21968-2008	41	14.2	24.0	35.9	29.4	42.0	33.3
01574500	31930-1966	34	2.3	7.1	11.5	9.3	14.8	12.7
01575000	21973-1995	23	.7	1.4	6.7	3.2	12.0	9.3
01575000	31929-1971	43	.1	.6	10.3	2.3	15.0	6.1
01575500	21948-1996	49	12.1	18.7	41.3	23.9	50.0	33.8
01576000	31933-1972	40	2,100	2,420	4,160	2,960	5,130	4,100
01576000	21974-2008	35	2,990	3,270	5,680	3,980	7,180	5,540
01576085	1984-1995	12	.4	.5	.8	.7	1.2	1.2
01576500	1931-2008	78	27.2	38.6	79.4	49.1	97.3	66.1
01576754	1986-2008	23	74.2	84.9	151	106	189	147
401578310	1969-2008	40	549	2,820	5,650	4,190	7,380	6,140
01578400	1964-1981	18	1.4	1.5	2.7	1.9	3.2	2.5
401580000	1928-2008	81	19.7	22.8	48.1	28.1	51.8	35.4
401581500	1946-2008	28	.2	.3	1.2	.8	1.7	1.5
401581700	1969-2008	40	4.7	5.5	17.5	8.1	18.3	12.0
401582000	1946-2008	63	11.3	12.5	25.0	15.5	28.0	20.3
401582500	1979-2008	27	41.2	43.9	78.8	53.8	90.6	74.1
401583000	1949-1981	33	.3	.3	.7	.3	1.0	.6
401583100	1984-2008	15	2.1	2.4	5.5	3.2	6.0	4.2


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20230427123905451000

 Clicked Point (Latitude, Longitude):
 40.41007, -77.10937

 Time:
 2023-04-27 08:39:26 -0400

Paradise MHP PA0036790 Modeling Point #1 April 2023

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	0	percent
DRNAREA	Area that drains to a point on a stream	0.52	square miles
PRECIP	Mean Annual Precipitation	41	inches
ROCKDEP	Depth to rock	4.1	feet
STRDEN	Stream Density total length of streams divided by drainage area	1.99	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.52	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	41	inches	35	50.4
STRDEN	Stream Density	1.99	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.1	feet	3.32	5.65
CARBON	Percent Carbonate	0	percent	0	99

Low-Flow Statistics Disclaimers [Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0298	ft^3/s
30 Day 2 Year Low Flow	0.0449	ft^3/s
7 Day 10 Year Low Flow	0.01	ft^3/s
30 Day 10 Year Low Flow	0.0153	ft^3/s
90 Day 10 Year Low Flow	0.0287	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.14.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20230427124147052000

 Clicked Point (Latitude, Longitude):
 40.38650, -77.10261

 Time:
 2023-04-27 08:42:10 -0400

Paradise MHP PA0036790 Modeling Point #2 April 2023

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	0	percent
DRNAREA	Area that drains to a point on a stream	5.15	square miles
PRECIP	Mean Annual Precipitation	41	inches
ROCKDEP	Depth to rock	3.7	feet
STRDEN	Stream Density total length of streams divided by drainage area	2.23	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	5.15	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	41	inches	35	50.4
STRDEN	Stream Density	2.23	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	3.7	feet	3.32	5.65
CARBON	Percent Carbonate	0	percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.278	ft^3/s	38	38
30 Day 2 Year Low Flow	0.422	ft^3/s	33	33
7 Day 10 Year Low Flow	0.093	ft^3/s	51	51
30 Day 10 Year Low Flow	0.147	ft^3/s	46	46
90 Day 10 Year Low Flow	0.275	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.14.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

Attachment B

WQM 7.0 Modeling Output Values

	SWP Basin 07A	Stream Code 11008		<u>Stream Name</u> Trib 11008 to Dark	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.130	Paradise MH	P PA0036790	0.040	CBOD5	25		
				NH3-N	1.48	2.96	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

	<u>SWP Basin</u> 07A	tream Code 11008			<u>ream Name</u> 008 to Dark F	lun	
NH3-N	Acute Allocat	ons					
RMI	Discharge Na	Baseline me Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.1	30 Paradise MHP	4.75	7.21	4.75	7.21	0	0
NH3-N	Chronic Alloc	ations					
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	30 Paradise MHP	.83	1.48	.83	1.48	0	0

			CBC	205	NH	3-IN	Dissolved	a Oxygen	Critical	Percent	
_	RMI	Discharge Name	Baseline (mg/L)		Baseline (mg/L)	Muluple	Daseline	Muluple	Reach	Reduction	
	2.13 P	aradise MHP	25	25	1.48	1.48	5	5	0	0	

	SWP Basir			Stre	eam Name		RMI	Elevati (ft)	4	iinage Area q mi)	Slope (ft/ft)	PWS Withdra (mgd	wal	Apply FC
	07A	110	008 Trib 1	1008 to Da	ark Run		2.13	0 59	4.00	0.52	0.00000		0.00	✓
					St	ream Data	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Trib</u> Temp	<u>utary</u> pH	Tem	<u>Stream</u> p	pН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
Q7-10	0.075	0.00	0.00	0.000	0.000	0.0	0.00	0.00	23.75	8.25	5 0	0.00	0.00	
Q1-10 Q30-10		0.00 0.00	0.00 0.00	0.000 0.000	0.000 0.000									
					Di	scharge [Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow	ed Design Disc Flow	Reserve Factor	Disc Temp				
						(mgd)	(mgd)			(°C)				
		Para	dise MHP	PA	0036790	0.0400	0.040	0 0.0400	0.00	0 25	.00	7.54		
					Pa	arameter [Data							

Disc

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

25.00

5.00

25.00

Trib

Conc

(mg/L)

2.00

8.24

0.00

Stream

Conc

Fate

Coef

1.50

0.00

0.70

(mg/L) (1/days)

0.00

0.00

0.00

Input Data WQM 7.0

Input Data WQM 7.0

	SWP Basin	Strea Coo		Stre	eam Name		RMI		vation (ft)	Draina Are (sq r	a	Slope (ft/ft)	PW Withd (mg	Irawal	Apply FC
	07A	110	008 Trib 1	1008 to Da	ark Run		0.00)0	406.00		5.15	0.00000		0.00	✓
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ter	<u>Tributa</u> np	ary pH	Tem	<u>Strean</u> p	n pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	C)		(°C)		
Q7-10 Q1-10 Q30-10	0.075	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	23.75	8.25	; (0.00	0.00	
					Di	ischarge l	Data]	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	ic Rea w Fa	serve actor	Disc Temp (°C)	Di:) p	sc H		
						0.000	0.000	0.0	0000	0.000	25	.00	7.00		
					Pa	arameter	Data								
			I	Paramete	r Name	C	onc C	frib Conc ng/L)	Stream Conc (mg/L)	Fate Coe (1/day	f				
	-		CBOD5			:	25.00	2.00	0.00) 1	.50				

8.24

0.00

3.00

25.00

0.00

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

<u>SWP Basin</u> 07A	Stream Code 11008		Trik	<u>Stream Name</u> 11008 to Dark R	un
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature	(°C) Analysis pH
2.130	0.04	0		24.517	7.702
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
3.850	0.35	3		10.906	0.074
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/l	L) Reach Kn (1/days)
16.12	0.96			0.91	0.991
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.253	29.02	29		Owens	5
Reach Travel Time (day	<u>s)</u>	Subreach	Results		
1.754	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)	
	0.175	13.08	0.76	7.48	
	0.351	10.62	0.64	7.60	
	0.526	8.62	0.54	7.60	
	0.702	6.99	0.45	7.60	
	0.877	5.68	0.38	7.60	
	1.053	4.61	0.32	7.60	
	1.228	3.74	0.27	7.60	
	1.403	3.04	0.23	7.60	
	1.579	2.46	0.19	7.60	
	1.754	2.00	0.16	7.60	

WQM 7.0 D.O.Simulation

Version 1.1

SWP Basin			Strea	m Code			Stream Name					
		07A	1	1008			Trib	11008 to	Dark Ru	n		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
2.130	0.04	0.00	0.04	.0619	0.01672	.353	3.85	10.91	0.07	1.754	24.52	7.70
Q1-1	0 Flow											
2.130	0.03	0.00	0.03	.0619	0.01672	NA	NA	NA	0.07	1.827	24.57	7.68
Q30-	10 Flow	1										
2.130	0.05	0.00	0.05	.0619	0.01672	NA	NA	NA	0.08	1.669	24.45	7.73

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.82	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.24	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Attachment C TRC Evaluation

May 2023

Paradise MHP PA0036790

_		_	_	_	
B	C	D	E	F	G
TRC EVALU		4.P9 and E4.E7			
	= Q stream (cf	4:B8 and E4:E7	0.5	= CV Daily	
	= Q stream (ch = Q discharge	•		= CV Daily = CV Hourly	
	= Q discharge = no. samples	(MGD)		= CV Houriy = AFC_Partial Mi	v Factor
	3 = Chlorine Der	and of Stream		= CFC_Partial Mi	
		nand of Discharge		_	compliance Time (min)
	5 = BAT/BPJ Val	+		_	compliance Time (min)
) = % Factor of			=Decay Coefficie	
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	0.220	1.3.2.iii	WLA cfc = 0.207
PENTOXSD TRO	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRO	5.1b	LTA_afc=	0.082	5.1d	LTA_cfc = 0.120
Source			Limit Calc		
PENTOXSD TRO			L MULT =		
PENTOXSD TRG	6 5.1g	AVG MON LIMI			AFC
			. (
WLA afc	• •	_tc)) + [(AFC_Yc*Qs Yc*Qs*Xs/Qd)]*(1-F(e(-k*AFC_tc))	
LTAMULT afc		vh^2+1))-2.326*LN(c	-	0.5)	
LTA_afc	wla_afc*LTAM	ULT_afc	-		
WLA_cfc	+ Xd + (CFC_	_tc) + [(CFC_Yc*Qs Yc*Qs*Xs/Qd)]*(1-F	OS/100)		
LTAMULT_cfc LTA_cfc	wla_cfc*LTAM	vd^2/no_samples+1) ULT_cfc)-2.326°LI	N(cvd^2/no_sam)	bles+1)^0.5)
AML MULT AVG MON LIMIT INST MAX LIMIT	MIN(BAT_BPJ,	(cvd^2/no_samples MIN(LTA_afc,LTA_c limit/AML_MULT)/LT	fc)*AML_M	NULT)	samples+1))