

Southwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0037940

 APS ID
 744252

 Authorization ID
 1372115

plicant Name	Cente	er Township Sanitary Authority	Facility Name	Elkhorn Run STP
pplicant Address	224 C	enter Grange Road	Facility Address	996 Biskup Lane
	Aliqui	ppa, PA 15001-1421	_	Monaca, PA 15061-2937
plicant Contact	Frank	Vescio	Facility Contact	Robert Martini
plicant Phone	(724)	774-0326	Facility Phone	(724) 774-0326
ient ID	11913	36	Site ID	102381
94 Load Status	Not C	verloaded	Municipality	Center Township
nection Status	No Li	mitations	County	Beaver
te Application Rece	eived	October 1, 2021	EPA Waived?	No
e Application Acce	epted	October 8, 2021	If No, Reason	Major Facility

Summary of Review

Introduction

The applicant has applied for the renewal of existing NPDES Permit No. PA0027430. The permit expired on March 31, 2022 and is currently under administrative extension.

Facility Overview

Sewage from this plant is treated with a mechanical bar screen, contact stabilization, and clarifiers. The resulting effluent is disinfected with chlorine and discharges to the Ohio River which is designated as Warm Water Fishery (WWF) per 25 Pa. Chapter 93 Designated Use and located in State Watershed 20-G. Stormwater Outfalls 011 and 012 will again be permitted for the discharge of uncontaminated stormwater runoff from the areas in and around the treatment plant. Part C. VI, Requirements Applicable to Stormwater Outfalls, has been added to the permit. The outfalls at this facility are listed below.

Outfall Number	Outfall Name	Outfall Type
001	_	Treated Sewage
011		Stormwater
012		Stormwater

Summary of the Whole Effluent Toxicity (WET) Tests

For the permit renewal, Center Township Sanitary Authority performed 4 WET Tests at a TIWC of 2% and a dilution series of 1%, 2%, 30%, 60%, and 100%. Based on the WET Test Evaluation (Attachment A), Reasonable Potential (RP) was not

Approve	Deny	Signatures	Date
Х		grace Polahodi	
		Grace Polakoski, E.I.T. / Environmental Engineering Specialist	November 18, 2022
х			
		Mahbuba Iasmin, Ph.D., P.E. / Environmental Engineer Manager	February 8, 2023

Summary of Review

established therefore no WET limits will be included in this permit. For the next permit cycle, the chronic WET Tests should be performed at a TIWC of 2% and a dilution series of 1%, 2%, 30%, 60%, and 100%.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Below is a summary of changes that have been made to this permit:

- Rerate of the plant from 2 MGD to 2.5 MGD
- Change of all instances of 8-hour composite samples to 24-hour composite samples
- E. Coli monitoring was imposed
- A WQBEL for Total Mercury was imposed
- Average monthly mass loading limits for ammonia-nitrogen were imposed
- More stringent limits for Total Residual Chlorine were imposed

Sludge use and disposal description and location(s): Joseph Brunner Landfill (211 Brunner Road Zelienople, PA 16063)

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Water	s and Water Supply Info	ormation			
Outfall No. 001		_ Design Flow (MGD)	2.5		
Latitude 40° 40′ 23"		_ Longitude	-80° 15' 29"		
Quad Name Beaver		_ Quad Code	1303		
Wastewater Description:	Sewage Effluent				
Receiving Waters Ohio	River (WWF)	Stream Code	32317		
NHD Com ID 99379	9124	RMI	958.1		
Drainage Area 19600) sq mi	Yield (cfs/mi²)	0.245		
Q ₇₋₁₀ Flow (cfs) 4800		Q ₇₋₁₀ Basis	US Army Corps of Engineers		
Elevation (ft) 680		Slope (ft/ft)	Linginicoro		
Watershed No. 20-G		Chapter 93 Class.	WWF		
Eviating Lloo		Eviating Llas Qualifier	***************************************		
Exceptions to Use		Exceptions to Critoria	ORSANCO Pollution Control Standards		
Assessment Status	Attaining Use(s)				
Cause(s) of Impairment	Pathogens, Dioxins, PC	Bs			
Source(s) of Impairment					
TMDL Status		Name			
Background/Ambient Data		Data Source			
pH (SU)	6.4(MIN)/ 7.4 (MAX)	NPDES Renewal Application			
Temperature (°F)	_68	NPDES Renewal Application			
Hardness (mg/L) 170		NPDES Renewal Application			
Other:					
Nearest Downstream Publi	c Water Supply Intake	Center Twp Water Authority			
PWS Waters Ohio Riv	/er	Flow at Intake (cfs)			
PWS RMI		Distance from Outfall (mi)	4.63		

Changes Since Last Permit Issuance: N/A

Other Comments: USGS StreamStats (Attachment B) was used to find the drainage area of the discharge point. Because the Ohio River is controlled by a series of locks and dams, data from the US Army Corps of Engineers (Attachment C) was used for the Q₇₋₁₀ flow.

Treatment Facility Summary									
Treatment Facility Na	ame: Elkhorn Run STP								
WQM Permit No.	Issuance Date		Purpose						
0468401 A-2	Under DEP Review	Hydraulic re-rate of the ST	P from 2.0 MGD to 2.5 MG	D					
0421408	12/10/2021	Sewer replacement and u development, replacemen	psizing to accommodate futo t of 20 manholes	ure					
0420401	12/08/2020	Upgrade/expansion of the Upper Moon Run Interceptor to prevent surcharging and prepare for additional development							
0420400	07/30/2020	Construction of a new pur	np station and force main						
368S010 A-3	02/08/2019	Improvements to the Markey's Run Interceptor to prepare for additional development							
0418406	12/11/2018	New gravity sanitary sewe Glade Path Development	er collection system to serve	the Bluffs at					
368S010 A-2	10/04/2018	Improvements to the Mark	cey's Run Interceptor						
0490403 A-5	04/02/2018	Replacement of the comm mechanical bar screen	ninutor at Elkhorn Run STP	with a					
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)					
Sewage	Secondary	Activated Sludge	Gas Chlorine	2.5					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
2.5	3400	Not Overloaded	Aerobic Digestion	Landfill					

Changes Since Last Permit Issuance: Annual Average Flow and Hydraulic Capacity are now listed as 2.5 MGD according to the re-rate request

Other Comments: N/A

Compliance History

Facility: Elkhorn Run STP

NPDES Permit No.: PA0037940

Compliance Review Period: 11/2017 – 11/2022

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	INSPECTION RESULT DESC
3459221	11/17/2022	Compliance Evaluation	Viol(s) Noted & Immediately Corrected
3368438	05/26/2022	Compliance Evaluation	Viol(s) Noted & Immediately Corrected
<u>3146237</u>	02/10/2021	Compliance Evaluation	No Violations Noted
2950793	10/23/2019	Compliance Evaluation	No Violations Noted
<u>2822691</u>	10/25/2018	Compliance Evaluation	No Violations Noted

Violation Summary:

	 				
VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE	VIOLATION COMMENT
956734	05/26/2022	92A.47(C)	NPDES - Illegal discharge to waters of the Commonwealth from a sanitary sewer overflow (SSO)	07/05/2022	Dec 2021, Feb 2022, April 2022 Moon run. Reported on DMRs and resolved. Long term repair is in the planning approval process.

Open Violations by Client ID:

No Clean Water open violations for Client ID 11936

Enforcement Summary:

No enforcements

DMR Violation Summary:

No DMR violations

Compliance Status:

Permittee in compliance

<u>Completed by:</u> John Murphy <u>Completed date:</u> 11/18/2022

DMR Data for Outfall 001 (from September 1, 2020 to August 31, 2021)

Parameter	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20
Flow (MGD)												
Average Monthly	1.0	1.01	0.94	1.1	0.90	1.42	1.32	1.19	1.33	0.84	0.77	0.83
Flow (MGD)												
Daily Maximum	6.0	6.0	6.0	6.0	4.5	6.0	4.1	5.5	6.0	4.0	3.9	4.7
pH (S.U.)												
Minimum	6.9	6.8	6.7	7.1	6.8	6.7	6.7	6.4	6.7	6.9	6.7	6.8
pH (S.U.)												
Maximum	7.5	7.4	7.3	7.5	7.8	7.3	7.2	7.1	7.4	7.3	7.3	7.3
DO (mg/L)												
Minimum	6.7	6.6	6.4	7.1	6.8	7.1	7.1	7.1	7.1	7.0	7.2	7.1
TRC (mg/L)												
Average Monthly	0.34	0.36	0.29	0.38	0.34	0.33	0.32	0.35	0.32	0.33	0.3	0.37
TRC (mg/L)												
Instantaneous												
Maximum	0.64	0.62	0.50	0.65	0.61	0.65	0.68	0.77	0.59	0.63	0.71	0.63
CBOD5 (lbs/day)												
Average Monthly	76.0	70.3	61.1	66.0	68.4	67.8	47.0	70.3	58.3	38.4	35.1	52.6
CBOD5 (lbs/day)												
Weekly Average	142.5	141.5	96.0	80.0	88.5	95.0	71.0	165.0	78.5	54.0	43.5	72.5
CBOD5 (mg/L)												
Average Monthly	8.3	6.4	7.9	7.1	9.7	6.3	5.3	6.6	5.1	5.4	6.0	7.6
CBOD5 (mg/L)												
Weekly Average	10.5	6.5	10.5	10.5	13.0	8.5	8.0	8.5	6.0	7.5	7.0	9.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	1024.4	1199.5	838.8	938.4	815.4	1262.1	1163.0	1355.8	1257.6	758.3	710.5	766.8
BOD5 (lbs/day)												
Raw Sewage Influent			10010	40000		00440			4=00=	0400	0.45	4040 =
 	2129.5	2632.0	1204.0	1080.0	958.0	3014.0	3353.0	2796.5	1709.5	910.0	845.0	1018.5
BOD5 (mg/L)												
Raw Sewage Influent												
 br/> Average	400.4	405.5	400.4	404.0	4400	4000	405.0	400.0	400 5	400.4	400.4	440.0
Monthly	106.1	105.5	109.1	101.6	116.2	106.6	105.8	126.8	109.5	106.1	122.4	110.6
BOD5 (mg/L)												
Raw Sewage Influent	400.0	400.0	404.0	440.5	400.0	447.0	447.5	450.5	440 5	440.5	440.5	400.5
 	130.0	126.0	134.0	110.5	130.0	117.0	117.5	152.5	118.5	118.5	146.5	136.5
TSS (lbs/day)	447.0	400.4	404.0	00.0	00.0	70.7	4044	407.7	400 5	40.0	70.5	00.7
Average Monthly	117.0	136.1	101.8	90.3	69.2	76.7	104.1	107.7	100.5	43.0	73.5	66.7

NPDES Permit Fact Sheet Elkhorn Run STP

r		1		Г		Г		1		Г	1	
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	1064.6	1158.3	1026.9	856.5	710.7	1043.7	989.1	940.2	1233.3	628.5	1055.9	1146.2
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Weekly Average	2107.0	2383.5	1407.5	898.0	945.5	2813.0	2568.0	1802.0	1919.0	808.0	1352.5	2191.0
TSS (lbs/day)												
Weekly Average	233.5	261.5	144.0	133.5	88.5	167.0	178.0	227.0	168.5	50.5	93.5	103.5
TSS (mg/L)												
Average Monthly	12.4	12.8	13.2	10.0	9.8	7.1	11.3	10.0	8.3	6.1	12.8	9.3
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	112.3	103.8	133.0	93.8	100.9	88.2	94.0	90.9	101.8	88.0	180.5	157.2
TSS (mg/L)												
Raw Sewage Influent												
 br/> Weekly Average	149.0	135.0	200.0	119.0	139.0	101.0	110.0	97.0	126.0	95.0	253.0	207.0
TSS (mg/L)												
Weekly Average	16.0	20.0	20.5	17.5	13.0	10.5	16.0	12.0	11.0	7.0	17.5	12.5
Fecal Coliform												
(No./100 ml)												
Geometric Mean	71.83	99.58	102.72	107.73	126.7	150.35	255.71	280.9	62.6	30.27	47.7	84.32
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	237.0	311.0	186.0	166.0	413.0	517.0	623.0	711.0	164	78.0	69	208
Total Nitrogen (mg/L)												
Daily Maximum			31.8			16.01			5.47			12.95
Ammonia (mg/L)												
Average Monthly	13.9	16.1	16.0	17.7	15.9	4.0	4.2	5.5	5.1	2.6	3.0	7.4
Total Phosphorus												
(mg/L)												
Daily Maximum			0.96			2.38			0.68			0.36

	Development of Effluent Limitations									
Outfall No.	001		Design Flow (MGD)	2.5						
Latitude	40° 40' 23"		Longitude	-80° 15' 29"	_					
Wastewater	Description:	Sewage Effluent	-							

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
Flow (MGD)	Report	Average Monthly	-	92a.27, 92a.61
	Report	Average Weekly	-	92a.27, 92a.61
	Max Daily			
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
(TSS)	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
Total Residual Chlorine				
(TRC)	0.5	Average Monthly	-	92a.48(b)(2)
	25	Average Monthly	-	92a.61
Ammonia-Nitrogen (NH₃-N)	50	IMAX	-	92a.61
		Instantaneous		
Dissolved Oxygen (DO)	4.0	Minimum	-	93.6, 92a.61
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Total N	Report	Average Monthly	-	92a.61
Total P	Report	Average Monthly	-	92a.61
Fecal Coliform (No./100mL)		-		
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (No./100mL)				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (No./100mL)				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (No./100mL)				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
E. Coli (No./100mL)	Report	IMAX	-	92a.61

Water Quality-Based Limitations

WQM7.0

WQM7.0 is a water quality modeling program for Windows that determines Waste Load Allocations ("WLAs") and effluent limitations for carbonaceous biochemical oxygen demand ("CBOD5"), ammonia-nitrogen, and dissolved oxygen for single and multiple point-source discharge scenarios. To accomplish this, the model simulates two basic processes. In the ammonia-nitrogen module, the model simulates the mixing and degradation of ammonia-nitrogen in the stream and compares calculated instream ammonia-nitrogen concentrations to ammonia-nitrogen water quality criteria. In the dissolved oxygen module, the model simulates the mixing and consumption of dissolved oxygen in the stream due to the degradation of CBOD₅ and ammonia-nitrogen and compares calculated instream dissolved oxygen concentrations to dissolved oxygen water quality criteria. WQM7.0 then determines the highest pollutant loadings that the stream can assimilate while still meeting water quality criteria under design conditions.

DEP's modeling for sewage discharges is a two-step process. First, a discharge is modeled for the summer period (May through October) using warm temperatures for the discharge and the receiving stream. Modeling for the summer period is done first because allowable ammonia-nitrogen concentrations in a discharge are lower at higher temperatures (i.e., warm temperatures are more likely to result in critical loading conditions). Reduced dissolved oxygen levels also appear to

increase ammonia toxicity and the maximum concentration of dissolved oxygen in water is lower at higher temperatures. The second step is to evaluate WQBELs for the winter period, but only if modeling shows that WQBELs are needed for the summer period.

The model inputs used to model the discharge from Elkhorn Run STP are shown below:

Stream Parameters										
Reach 1 Reach 2										
Stream Code	32317	Stream Code	32317							
RMI	958.1	RMI	957.1							
Elevation (ft)	680	Elevation (ft)	679							
Drainage Area (mi ²)	1960	Drainage Area (mi ²)	19800							
Q ₇₋₁₀ Flow (cfs)	4800	Q ₇₋₁₀ Flow (cfs)	4800							

Facility/Design Parameters						
Discharge Flow (MGD)	2.5					
LFY (cfs/mi ²) [for use in summer modeling]	0.245					
2*LFY (cfs/mi²) [for use in winter modeling]	0.490					

Summer Modeling Inputs								
Tributary		Discharge						
Temperature (°C)	25	Temperature (°C)	20					
pH (S.U.)	7	pH (S.U.)	7					
DO (mg/L)	8.24	DO (mg/L)	4					
CBOD ₅ (mg/L)	2	CBOD ₅ (mg/L)	25					
NH ₃ -N (mg/L)	0	NH ₃ -N (mg/L)	25					
DO Goal (mg/L)	5	DO Goal (mg/L)	5					
<u>Wir</u>	nter Mod	eling Inputs						
Tributary		Discharge						
Temperature (°C)	5	Temperature (°C)	15					
pH (S.U.)	7	pH (S.U.)	7					
DO (mg/L)	12.51	DO (mg/L)	4					
CBOD₅ (mg/L)	2	CBOD ₅ (mg/L)	25					
NH ₃ -N (mg/L)	0	NH ₃ -N (mg/L)	25					
DO Goal (mg/L)	5	DO Goal (mg/L)	5					

The modeling results show technology-based effluent limitations are appropriate for CBOD₅. The weekly average value of 37.5 mg/L for CBOD₅ is more stringent than the TBEL of 40 mg/L so 37.5 mg/L will be reimposed during this permit cycle to comply with antibacksliding regulations. Per DEP SOP "Establishing Effluent Limitations for Individual Sewage Permits" (Rev. March 34, 2021, BCW-PMT-033), when WQM7.0 indicates that a summer limit of 25 mg/L for ammonia nitrogen is acceptable, a year-round monitoring requirement for ammonia-nitrogen will be established, at a minimum. The modeling results can be found in Attachment D.

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	4	Minimum	WQM7.0
Ammonia Nitrogen	25	Average Monthly	WQM7.0

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria

that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site-specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. TRC_CALC recommends an average monthly limit of 0.018 mg/L and an IMAX limit of 0.059 mg/L (Attachment E). Elkhorn Run STP will not be able to immediately comply with these more restrictive TRC limits therefore they will be given a compliance schedule of one year. For the first 12 months after the permit is effective, Elkhorn Run STP will be required to meet their previous TRC limit. On the beginning of the 13th month from the Permit Effective Date, Elkhorn Run STP will be expected to meet the new TRC limit discussed above.

Toxics Management Spreadsheet (TMS)

WQBELs are developed pursuant to Section 301(b)(1)(C) of the Clean Water Act and, per 40 CFR § 122.44(d)(1)(i), are imposed to "control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) that are or may be discharged at a level that will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard, including state narrative criteria for water quality." The Department of Environmental Protection developed the Toxics Management Spreadsheet (TMS) to facilitate calculations necessary to complete a reasonable potential (RP) analysis and determine WQBELs for discharges of toxic and some nonconventional pollutants.

The TMS is a single discharge, mass-balance water quality modeling program for Microsoft Excel® that considers mixing, first-order decay, and other factors to determine WQBELs for toxic and nonconventional pollutants. Required input data including stream code, river mile index, elevation, drainage area, discharge flow rate, low-flow yield, and the hardness and pH of both the discharge and the receiving stream are entered into the TMS to establish site-specific discharge conditions. Other data such as reach dimensions, partial mix factors, and the background concentrations of pollutants in the stream also may be entered to further characterize the discharge and receiving stream. The pollutants to be analyzed by the model are identified by inputting the maximum concentration reported in the permit application or Discharge Monitoring Reports, or by inputting an Average Monthly Effluent Concentration (AMEC) calculated using DEP's TOXCONC.xls spreadsheet for datasets of 10 or more effluent samples. Pollutants with no entered concentration data and pollutants for which numeric water quality criteria in 25 Pa. Code Chapter 93 have not been promulgated are excluded from the modeling.

The TMS evaluates each pollutant by computing a Wasteload Allocation for each applicable criterion, determining the most stringent governing WQBEL, and comparing that governing WQBEL to the input discharge concentration to determine whether permit requirements apply in accordance with the following RP thresholds:

- Establish limits in the permit where the maximum reported effluent concentration or calculated AMEC equals or exceeds 50% of the WQBEL. Use the average monthly, maximum daily, and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
- For non-conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated AMEC is between 25% 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated AMEC is between 10% 50% of the WQBEL.

In most cases, pollutants with effluent concentrations that are not detectable at the level of DEP's Target Quantitation Limits are eliminated as candidates for WQBELs and water quality-based monitoring.

There is a disparity in Mercury quantitation limits required by Ohio River Valley Water Sanitation Commission (ORSANCO) and by the DEP. The DEP's NPDES permit application instructions require Total Mercury testing to a sensitivity of 0.2 µg/L (or 200 ng/L). ORSANCO's 2019 Publication "Pollution Control Standards for Discharges to the Ohio River" states that the total mercury concentration may not exceed 12.0 ng/L (or 0.012 µg/L). Since ORSANCO regulations are stricter with respect to total mercury, they supersede DEP requirements in this case. This requires DEP to act under 25 Pa. Code § 92a.21(d) and request that the applicant use a testing method that can achieve the stricter regulations. As such, the DEP requested additional sampling (results found in Attachment F). There were 10 or more additional samples so the values were entered into the TOXCONC spreadsheet to determine the average monthly effluent concentration per DEP SOP "Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for

Toxic Pollutants in NPDES Permits for Existing Dischargers" (BCW-PMT-037). The TOXCONC results can be found in Attachment G.

A "Reasonable Potential Analysis" was performed using the TMS using effluent concentrations as reported in the NPDES Renewal application received by the DEP on October 1, 2021 and the additional total mercury sampling received by the DEP on January 17, 2022. The TMS results can be found in Attachment H. The permittee was informed of potential WQBELs via Pre-Draft Letter on February 1, 2022 (Attachment I). The Pre-Draft Survey was returned to the DEP on March 2, 2022 (Attachment J). The permittee elected to resample for total mercury and the additional sample results were received by the DEP on June 8, 2022 (Attachment K). The additional samples were added into TOXCONC to give a new AMEC value (Attachment L). This new AMEC was used to update the TMS run, and the updated TMS results can be found in Attachment M.

The following WQBELs were recommended for this facility:

Parameter	Average Monthly (ng/L)	Maximum Daily (ng/L)	IMAX (ng/L)
Total Mercury	12.0	18.7	30.3

Best Professional Judgment (BPJ) Limitations

In accordance with the WQM7.0 modeling results, the standard in 25 PA Code Chapter 93, and best professional judgment, a Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented.

ORSANCO Pollution Control Standards

The Ohio River Valley Water Sanitation Commission (ORSANCO) sets water quality standards for the Ohio River. Since Elkhorn Run STP is a direct discharger to the Ohio River, the DEP will implement ORSANCO's water quality standards pursuant to 25 Pa. Code § 93.2(b).

Water quality standards set by ORSANCO in the 2019 revision of "Pollution Control Standards for Discharges to the Ohio River" can be found in the table below. ORSANCO standards for TSS and CBOD₅ are the same as the ones required by 25 Pa. Code § 92a.47(a). ORSANCO standards for *E. Coli* and Fecal Coliform differ from what is required by the PA Code.

Parameter	Average Monthly	Weekly Average
TSS (mg/L)	30	45
CBOD₅ (mg/L)	25	40
Fecal Coliform (No./100 mL)	2,000	
	(geometric mean)	
E. Coli (No./100 mL)	130	240
Apr. 1 – Oct. 31	(90-day geometric mean)	(in 25% of samples)

According to the 2019 Revision of ORSANCO's "Pollution Control Standards for Discharges to the Ohio River," the maximum allowable level for *E. Coli* for contact recreation from April – October is a monthly average 130/100 mL (90-day geometric mean) and a weekly average of 240/100 mL. The 90-day geometric mean must be based on not less than 5 samples per month. The weekly average limit also means that 240/100 mL may not be exceeded in more than 25% of the samples taken. The average monthly limit for fecal coliform bacteria is 2,000 CFU/100 mL (geometric mean), based on not less than 5 samples per month.

In a correlation equation developed by the Ohio EPA, concentrations of *E. Coli* and Fecal Coliform bacteria can be interchanged. The equation is as follows:

$$E.Coli = 0.403 (Fecal Coliform)^{1.028}$$

$$\sqrt{\frac{E.Coli}{0.403}} = Fecal Coliform$$

Using the equation to convert the ORSANCO *E. Coli* water quality limits to fecal coliform values, it is apparent that DEP fecal coliform standards, imposed as TBELs per DEP SOP "Establishing Effluent Limitations for Individual Sewage Permits" (SOP No. BCW-PMT-033), are more stringent.

	ORSANCO <i>E. Coli</i> Limits (No./100 mL)	ORSANCO Fecal Coliform Equivalent (No./100 mL)	PA Code Fecal Coliform Limits (No./100 mL)	
Average Monthly	130	275.62	200	

Mass Loading Limitations

Per Department SOP "Establishing Effluent Limitations for Individual Sewage Permits" (BCW-PMT-033), mass loading limits will be established for POTWs for CBOD₅, TSS, and ammonia nitrogen. Average monthly mass loading limits will be established for CBOD₅, TSS, and ammonia nitrogen. Average weekly mass loading limits will be established for CBOD₅ and TSS. Mass loading limits will be calculated according to the formula below:

average annual design flow (MGD) × concentration limit
$$\left(\frac{mg}{L}\right)$$
 × 8.34 (converstion factor) = mass loading limit $\left(\frac{lbs}{day}\right)$

The following mass loading limitations were calculated:

Parameter	Average Monthly (lbs/day)	Average Weekly (lbs/day)
CBOD ₅	520	780
TSS	625	935
Ammonia Nitrogen	520	_

The above mass loading limitations for CBOD $_5$ and TSS are much less stringent than those found in the previous permit due to the request for a hydraulic re-rate from 2.0 MGD to 2.5 MGD. To comply with anti-backsliding regulations and because the permittee did not request a re-rate for their organic loading, the mass loading limitations found in the previous permit will once again be imposed during this permit cycle.

Monthly mass loading limitations for ammonia-nitrogen will be imposed during this permit cycle, even though they were not imposed during the last permit cycle.

Additional Considerations

Sewage discharges will include monitoring, at a minimum, for $E.\ coli$, in new and reissued permits, with a monitoring frequency of 1/month for design flows \geq 1 MGD.

The receiving stream is not impaired for nutrients, therefore, quarterly sampling for nitrogen and phosphorus will be reimposed per 25 PA Code §92a.6.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations.

Hydraulic Re-Rate Study

The re-rate analysis will be addressed in WQM Permit #0468401 A-2, which is currently under Department Review.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of First Year from Permit Effective Date.

	Effluent Limitations						Monitoring Red	uirements
Parameter	Mass Units	(lbs/day) (1)	Concentrations (mg/L)				Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.0	1/day	Grab

Compliance Sampling Location: Outfall 001

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Second Year from Permit Effective Date

		Monitoring Requirements						
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum ⁽²⁾	Required
Farameter	Average	Average		Average	Daily	Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Type
								24-Hr
Mercury, Total (ng/L)	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite

Compliance Sampling Location: Outfall 001

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Beginning of Third Year from Permit Effective Date through Permit Expiration Date.

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
Farameter	Average	Average		Average	Daily	Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Type
								24-Hr
Mercury, Total (ng/L)	XXX	XXX	XXX	12.0	18.7	30.3	1/week	Composite

Compliance Sampling Location: 001

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Beginning of Second Year from Permit Effective Date through Permit Expiration Date.

	Effluent Limitations						Monitoring Red	quirements
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.018	XXX	0.059	1/day	Grab

Compliance Sampling Location: 001

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Red	quirements					
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum ⁽²⁾	Required
Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample .
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			4.0					_
Dissolved Oxygen	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical								24-Hr
Oxygen Demand (CBOD5)	415.0	625.0	XXX	25.0	37.5	50	2/week	Composite
Biochemical Oxygen Demand								
(BOD5)	_	_		_	_		_,	24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	Report	XXX	2/week	Composite
								24-Hr
Total Suspended Solids	500.0	750.0	XXX	30.0	45.0	60	2/week	Composite
Total Suspended Solids	_ ,		2006			2007		24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	Report	XXX	2/week	Composite
Fecal Coliform (No./100 ml)	2007	2004	2006	2000	2007	40000		
Nov 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml)	\/\/\/	2007	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	200	2007	400	0/	0 1
May 1 - Oct 31	XXX	XXX	XXX	Geo Mean	XXX	400	2/week	Grab
5 0 1/01 /400 N	\/\/\/	2007	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2007	Report	2007	47 11	0 1
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Grab
Total NP conse	V/V/V	V/V/	V/V/	Report	V/V/V	V////	Aller and an	24-Hr
Total Nitrogen	XXX	XXX	XXX	Daily Max	XXX	XXX	1/quarter	Composite
Ammonia-Nitrogen	D	\/\/\/	\/\/\/	December	V/V/V	V////	0/	24-Hr
Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Ammonia-Nitrogen	500	VVV	VVV	05.0	VVV	50	0/	24-Hr
May 1 - Oct 31	520	XXX	XXX	25.0	XXX	50	2/week	Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

	Effluent Limitations						Monitoring Requirement	
Parameter	Mass Units (lbs/day) (1) Con			Concentrati	ions (mg/L)	Minimum (2)	Required	
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
		711 01 ta go		Report			1 requestey	24-Hr
Total Phosphorus	XXX	XXX	XXX	Daily Max	XXX	XXX	1/quarter	Composite

Compliance Sampling Location: 001

ATTACHMENT A: WET Test Evaluation

NPDES Permit No. PA0037940 Elkhorn Run STP

Whole Effluent Toxicity (WET)
For Outfall 001, Acute Chronic WET Testing was completed:
For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other:
The dilution series used for the tests was: 100%, 60%, 30%, 2%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 2%.
Summary of Four Most Recent Test Results
TST Data Analysis
Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE – In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests).
☐ YES ☒ NO
Comments: all tests were passed, see summary results below

NPDES Permit No. PA0037940 Elkhorn Run STP

ı	DEP Whole	Effluent Toxici	ty (WET) Analysis	Spreadshee	t	
Type of Test	Chr	onic		Facility Na	me	
Species Test		iodaphnia				
Endpoint		vival	Center T	Center Township Sanitary Author		
TIWC (decim		2				
No. Per Repli				Permit No)	
TST b value TST alpha va	0.75 lue 0.2	•			J	
151 aipna va	100 0.2					
	Took Com	pletion Date		Toot Come	letion Date	
D F		/2018	n		2019	
Replicate No.		TIWC	Replicate No.	Control	TIWC	
	Control		1 [
1	1	1		1	1	
2	1	0	2	1	1	
3	1	1	3	1	1	
4	1	1	4	11	11	
5	11	1	5	1	1	
6	1	1	6	1	1	
7	1	1	7	1	1	
8	1	1	8	0	1	
9	1	1	9 [1	1	
10	1	1	10	1	1	
11			11			
12			12			
13			13			
14			14			
15			15			
			[
Mean	1.000	0.900	Mean	0.900	1.000	
Std Dev.	0.000	0.316	Std Dev.	0.316	0.000	
# Replicates	10	10	# Replicates	10	10	
# rvepricates	10	10	# Replication	10	10	
T-Test Result			T-Test Result			
Deg. of Freed			Deg. of Freedo			
			Critical T Valu			
Critical T Valu					00	
Pass or Fail	P	ASS	Pass or Fail	PA	SS	
	T 0	-letter Dete		T 0	tetles Date	
		pletion Date /2020	1		detion Date 2021	
Replicate No.	Control	TIWC	Replicate No.	Control	TIWC	
1						
		1	1		1	
2	1	1	2	1 1	0	
3	1	1 1	3			
4		-	-			
	1	1	4	1	1	
5	1	1	4 5	1	1	
6	1	1	4 5 6	1 1	1 1	
	1	1	4 5	1	1	
6	1	1	4 5 6	1 1	1 1	
6 7	1 1	1 1	4 5 6 7	1 1 1	1 1 1	
6 7 8	1 1 1	1 1 1	4 5 6 7 8	1 1 1 1	1 1 1 1 1	
6 7 8 9	1 1 1 1	1 1 1 1 1	4 5 6 7 8 9	1 1 1 1 1 1	1 1 1 1 1 1	
6 7 8 9 10	1 1 1 1	1 1 1 1 1	4 5 6 7 8 9 10	1 1 1 1 1 1	1 1 1 1 1 1	
6 7 8 9 10 11 12	1 1 1 1	1 1 1 1 1	4 5 6 7 8 9 10 11	1 1 1 1 1 1	1 1 1 1 1 1	
6 7 8 9 10 11 12	1 1 1 1	1 1 1 1 1	4 5 6 7 8 9 10 11 12 13	1 1 1 1 1 1	1 1 1 1 1 1	
6 7 8 9 10 11 12 13	1 1 1 1	1 1 1 1 1	4 5 6 7 8 9 10 11 12 13	1 1 1 1 1 1	1 1 1 1 1 1	
6 7 8 9 10 11 12	1 1 1 1	1 1 1 1 1	4 5 6 7 8 9 10 11 12 13	1 1 1 1 1 1	1 1 1 1 1 1	
6 7 8 9 10 11 12 13 14	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	4 5 6 7 8 9 10 11 12 13 14	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	
6 7 8 9 10 11 12 13 14 15	1.000	1.000	4 5 6 7 8 9 10 11 12 13 14 15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	
6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	1.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 0.900 0.316	
6 7 8 9 10 11 12 13 14 15	1.000	1.000	4 5 6 7 8 9 10 11 12 13 14 15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.900	
6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 0.900 0.316	
6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	1.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.900 0.316 10	
6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.900 0.316 10	
6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	1.000 0.000 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.900 0.316 10	

1	DEP Whole E	Effluent Toxi	city (WET) Analysis	Spreadshee	t
Type of Test Species Test	Chro	onic odaphnia		Facility Nar	me
Endpoint		roduction	Center T	ownship Sanit	tary Authority
TIWC (decim				DIt N	
No. Per Replicate 1 Permit No. TST b value 0.75					
TST alpha va					
		letion Date			letion Date
Replicate No.	Control	2018 TIWC	Replicate No.	Control	2019 TIWC
1	31	38	1	34	32
2	35	0	2	34	13
3	37	32	3	29	35
4	37	31	4	30	33
5	35	34	5	28	31
6	36	36	6	31	32
7	32	31	7	32	32
8	31	38	8	14	31 32
9 10	41 35	40 40	9 10	34	30
11	30	40	11	- 33	30
12			12		
13			13		
14			14		
15			15		
Mean	35.000	32.000	Mean	29.900	30.100
Std Dev.	3.091	11.766	Std Dev.	5.990	6.154
# Replicates	10	10	# Replicates	10	10
T-Test Result	1.5	162	T-Test Result	24	852
	1.0				
Don of Front	iom 1				
Deg. of Freed Critical T Valu		1	Deg. of Freed	om 1	6
Critical T Valu	ie 0.8			om 1 ie 0.8	
	ie 0.8	1 755	Deg. of Freed Critical T Valu	om 1 ie 0.8	6 847
Critical T Valu	ue 0.8 PA	1 755	Deg. of Freed Critical T Valu	om 1 ie 0.8 PA	6 847
Critical T Valu Pass or Fail Replicate	Test Comp	1 755 SS eletion Date 2020	Deg, of Freed Critical T Valu Pass or Fail Replicate	om 1 ie 0.8 PA Test Comp	6 647 ASS eletion Date 2021
Critical T Value Pass or Fail Replicate No.	Test Comp	1 755 SS eletion Date 2020 TIWC	Deg, of Freed Critical T Valu Pass or Fail Replicate No.	om 1 e 0.8 PA Test Comp 8/2/ Control	6 647 ISS Idetion Date 2021 TIWC
Critical T Value Pass or Fail Replicate No.	Test Comp 8/3// Control 31	1 755 SS eletion Date 2020 TIWC	Deg, of Freed Critical T Valu Pass or Fail Replicate No.	om 1 e 0.8 PA Test Comp 8/2/ Control 26	6 847 SS eletion Date 2021 TIWC
Critical T Valu Pass or Fail Replicate No. 1 2	Test Comp 8/3// Control 31 30	1 755 SS eletion Date 2020 TIWC 12 30	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	Test Composition 26 24	6 847 8SS eletion Date 2021 TIWC 26 29
Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 8/3// Control 31 30 27	1 7755 SS sletion Date 2020 TIWC 12 30 31	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	om 1	6 6 647 ISS Interest of the second of the se
Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 8/3/ Control 31 30 27 29	1 7755 .sss slettion Date 2020 TIWC 12 30 31 23	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	om 1 0.8 PA Test Comp 8/2/ Control 28 24 14 22	6 6 647 ISS Determined to the second
Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 8/3// Control 31 30 27	1 7755 SS sletion Date 2020 TIWC 12 30 31	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	om 1	6 6 647 ISS Interest of the second of the se
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 8/3/ Control 31 30 27 29 34	1 7755 .sss oletion Date 2020 TIWC 12 30 31 23 29	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om 1	66 847 ISS Deletion Date 2021 TIWC 26 29 16 25 5
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 8/3// Control 31 30 27 29 34 29	1 7755 (SS) Deletion Date 2020 TIWC 12 30 31 23 29 28	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om 1	66 647 ISS Deletion Date 2021 TIWC 26 29 16 25 5
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 8/3// Control 31 30 27 29 34 29 35	1 7755 SSS soletion Date 2020 TIWC 12 30 31 23 29 28 31 32 20	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 1	66 647 SSS Deletion Date 2021 TIWC 26 29 16 25 5 24 31
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 8/3// Control 31 30 27 29 34 29 35 33	1 7755 ISS Idetion Date 2020 TIWC 12 30 31 23 29 28 31 32	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 1	6 847 ISS soletion Date 2021 TIWC 26 29 16 25 5 24 31 14
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	e 0.8 PA Test Comp 8/3/ Control 31 30 27 29 34 29 35 33 33	1 7755 SSS soletion Date 2020 TIWC 12 30 31 23 29 28 31 32 20	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 8/2/ Control 26 24 14 22 16 31 32 26	6 847 ISS soletion Date 2021 TIWC 26 29 16 25 5 24 31 14 28
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	e 0.8 PA Test Comp 8/3/ Control 31 30 27 29 34 29 35 33 33	1 7755 SSS soletion Date 2020 TIWC 12 30 31 23 29 28 31 32 20	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 8/2/ Control 26 24 14 22 16 31 32 26	6 847 ISS soletion Date 2021 TIWC 26 29 16 25 5 24 31 14 28
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	e 0.8 PA Test Comp 8/3/ Control 31 30 27 29 34 29 35 33 33	1 7755 SSS soletion Date 2020 TIWC 12 30 31 23 29 28 31 32 20	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 8/2/ Control 26 24 14 22 16 31 32 26	6 847 ISS soletion Date 2021 TIWC 26 29 16 25 5 24 31 14 28
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	e 0.8 PA Test Comp 8/3/ Control 31 30 27 29 34 29 35 33 33	1 7755 SSS soletion Date 2020 TIWC 12 30 31 23 29 28 31 32 20	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 8/2/ Control 26 24 14 22 16 31 32 26	6 847 ISS soletion Date 2021 TIWC 26 29 16 25 5 24 31 14 28
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	e 0.8 PA Test Comp 8/3/ Control 31 30 27 29 34 29 35 33 33	1 7755 SSS soletion Date 2020 TIWC 12 30 31 23 29 28 31 32 20	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 8/2/ Control 26 24 14 22 16 31 32 26	6 847 ISS soletion Date 2021 TIWC 26 29 16 25 5 24 31 14 28
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 8/3/ Control 31 30 27 29 34 29 35 33 33 31	1 7755 SSS slettion Date 2020 TIWC 12 30 31 23 29 28 31 32 20 34	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 8 PA Test Compo 26 224 14 22 16 28 31 32 26 25	6 847 ISS soletion Date 2021 TIWC 26 29 16 25 5 24 31 14 28 24
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 8/3/ Control 31 30 27 29 34 29 34 29 35 33 33 31	1 7755 SSS slettion Date 2020 TIWC 12 30 31 23 29 28 31 32 20 34 27.000	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om 1	6 847 ISS Interior Date 2021 TIWC 26 29 16 25 5 24 31 14 28 24 24 22 200
Critical T Value Pass or Fail Replicate No. 1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	20 0.8 PA Test Comp 8/3/ Control 31 30 27 29 34 29 35 33 33 31 31 31.200 2.530	1 7755 ISS Idetion Date 2020 TIWC 12 30 31 23 29 28 31 32 20 34 27.000 6.749	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om 1	16
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	20 0.8 PA Test Comp 8/3/ Control 31 30 27 29 34 29 35 33 33 31 31 31.200 2.530	1 7755 ISS Idetion Date 2020 TIWC 12 30 31 23 29 28 31 32 20 34 27.000	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om 1	6 847 ISS Interior Date 2021 TIWC 26 29 16 25 5 24 31 14 28 24 24 22 200
Critical T Value Pass or Fail Replicate No. 1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	20 0.8 PA Test Comp 8/3/ Control 31 30 27 29 34 29 35 33 31 31.200 2.530 10	1 7755 ISS Idetion Date 2020 TIWC 12 30 31 23 29 28 31 32 20 34 27.000 6.749	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om 1	16
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	20 0.8 PA Test Comp 8/3// Control 31 30 27 29 34 29 35 33 31 31.200 2.530 10	1 7755 ISS Idetion Date 2020 TIWC 12 30 31 23 29 28 31 32 20 34 27.000 6.749 10	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 8/2/ Control 26 24 14 22 26 31 32 26 25 24.200 5.712 10	16 847 ISS Interior Date 2021 TIWC 26 29 16 25 5 24 31 14 28 24 24 22 200 8.080 10
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	29 35 33 31 31.200 2.530 10 1.66	1 7755 ISS Idetion Date 2020 TIWC 12 30 31 23 29 28 31 32 20 34 27.000 6.749 10 237	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 8/2/ Control 26 24 14 22 16 28 31 32 26 25 24 11 16 28 31 32 26 25	22.200 8.080 10 8.080
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Resull Deg. of Freed	Test Comp 8/3/ Control 31 30 27 29 34 29 35 33 31 31.200 2.530 10 1.8	1 755 sss sletion Date 2020 TIWC 12 30 31 23 29 28 31 32 20 34 27.000 6.749 10 237 12	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp 8	22.200 8.080 1004

NPDES Permit No. PA0037940 Elkhorn Run STP

	DEP Whole !	Effluent Toxi	city (WET) Analysis	Sproadehoo	t
			(WEI) Analysis		
Type of Test	Chro			Facility Nar	me
Species Test		ephales	— Cantas T	Saucabia Cani	tans Authorits
Endpoint TIWC (decim		vival	Genter I	ownship Sani	tary Authority
No. Per Repli				Permit No).
TST b value	0.75	;		1 0111111 140	
TST alpha va					
l	Test Comp	letion Date		Test Comp	eletion Date
Replicate	7/31/	/2018	Replicate	7/30/	(2019
No.	Control	TIWC	No.	Control	TIWC
1	1	1	1	1	1
2	1	0.9	2	1	1
3	1	1	3	1	1
4	0.9	1	4	1	1
5	0.5	<u> </u>	5		
6			6		
7			7		\vdash
8			8		
9			9		
10			10		
11			11.		
12			12		
13			13		
14			14		
15			15		
Mean	0.975	0.975	Mean	1.000	1.000
Std Dev.	0.050	0.050	Std Dev.	0.000	0.000
			# Replicates	4	4
# Replicates	4	4	# Replicates	4	4
T-Test Result		8898	T-Test Result		
Deg. of Freed	om	5	Deg. of Freed	om	
Deg. of Freed Critical T Valu	om ie 0.7	5 '267	Deg. of Freed Critical T Valu	om	
Deg. of Freed	om ie 0.7	5	Deg. of Freed	om e	ASS
Deg. of Freed Critical T Valu	om ie 0.7	5 '267	Deg. of Freed Critical T Valu	om e	ss
Deg. of Freed Critical T Valu	om ie 0.7 PA	5 '267	Deg. of Freed Critical T Valu	om e PA	ASS ofetion Date
Deg. of Freed Critical T Valu Pass or Fall	om e 0.7 PA	5 267 ASS	Deg. of Freed Critical T Valu Pass or Fall	om PA Test Comp	
Deg. of Freed Critical T Valu	om e 0.7 PA	5 267 ASS oletion Date	Deg. of Freed Critical T Valu	om PA Test Comp	ofetion Date
Deg. of Freed Critical T Valu Pass or Fall Replicate	om pe 0.7 PA Test Comp 8/4/ Control	5 267 ASS pletion Date 2020	Deg. of Freed Critical T Valu Pass or Fall Replicate	om ee PA Test Comp	oletion Date 2021
Deg. of Freed Critical T Valu Pass or Fall Replicate No.	Test Comp 8/4/ Control 0.6	5 267 ASS pletion Date 2020 TIWC	Deg. of Freed Critical T Valu Pass or Fall Replicate No.	Test Comp 8/3/ Control 0.5	Diletion Date 2021 TIWC 0.9
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1	Test Comp 8/4/ Control 0.6 0.9	5 267 ASS pletion Date 2020 TIWC 1 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No.	Test Comp 8/3/ Control 0.5	Dietion Date 2021 TIWC 0.9 0.9
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3	Test Comp 8/4/ Control 0.6 0.9	5 267 ASS pletion Date 2020 TIWC 1 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3	Test Comp 8/3/ Control 0.5	Dietion Date 2021 TIWC 0.9 0.9
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 8/4/ Control 0.6 0.9 1	5 267 ASS oletion Date 2020 TIWC 1 1 0.9	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 8/3/ Control 0.5 1 0.9	71WC 0.9 0.9 0.7
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 8/4/ Control 0.6 0.9 1	5 267 USS oletion Date 2020 TIWC 1 0.9 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 8/3/ Control 0.5 1 0.9 0.8	0.9 0.9 0.9 0.9
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.6 0.9 1 1 0.8 0.9 1 1 0.875	5 267 USS oletion Date 2020 TIWC 1 0.9 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Ome PA Test Comp 8/3/ Control 0.5 1 0.9 0.8	0.850
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.875 0.89	5 267 USS oletion Date 2020 TIWC 1 0.9 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Ome PA Test Comp 8/3/. Control 0.5 1 0.9 0.8	0.850 0.100
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.875 0.89	5 267 USS oletion Date 2020 TIWC 1 0.9 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Ome PA Test Comp 8/3/ Control 0.5 1 0.9 0.8	0.850
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.875 0.89	5 267 USS oletion Date 2020 TIWC 1 0.9 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Ome PA Test Comp 8/3/. Control 0.5 1 0.9 0.8	0.850 0.100
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.875 0.894 0.875	5 267 USS oletion Date 2020 TIWC 1 0.9 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Description (Control O.5 1 0.9 0.8 0.8 0.8 0.216 4	0.850 0.100
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.875 0.189 4	5 267 ASS oletion Date 2020 TIWC 1 1 0.9 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Ome PA Test Comp 8/3/ Control 0.5 1 0.9 0.8 0.800 0.216 4	0.850 0.100 4
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.875 0.894 0.875 0.875 0.189	5 267 USS oletion Date 2020 TIWC 1 0.9 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.800 0.216 4.4.4	0.850 0.100 4
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.875 0.89 4 6.7	5 267 USS oletion Date 2020 TIWC 1 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.800 0.216 4.4.4	0.850 0.100 4

ı	DEP Whole E	ffluent Toxic	ity (WET) Analysis	Spreadshee	t
Toma of Tool	Chro	-i-		Facility No.	
Type of Test Species Test		phales	_	Facility Nar	ne
Endpoint	Grov		Center T	ownship Sanit	ary Authority
TIWC (decima	al) 0.02				
No. Per Repli				Permit No	
TST b value	0.75				
TST alpha va	lue 0.25				
	T	ledies Dete		T1 C	tettes Data
	Test Comp 7/31/				tetion Date 2019
Replicate			Replicate	Control	TIWC
No.	Control	0.338	No. 1	0.404	0.628
1	0.305		2		
2	0.299	0.304	3	0.519	0.479
3	0.343	0.359	4	0.401	0.554
4	0.3178	0.34		0.49	0.502
5			5		
6			6		
7			7		
8	\vdash	<u> </u>	8		
9	\vdash		9		
10			10		
11			11		
12		$\overline{}$	12		
13	\vdash		13		
14			14		
15			15		
Mean	0.316	0.335	Mean	0.454	0.541
Std Dev.	0.020	0.023	Std Dev.	0.080	0.066
# Replicates	4	4	# Replicates	4	4
T-Test Result		236	T-Test Result		164
Deg. of Freed	lom !	5	Deg. of Freed	om :	5
Deg. of Freed Critical T Valu	om 5	5 267	Deg. of Freed Critical T Valu	om !	5 267
Deg. of Freed	om 5	5	Deg. of Freed	om !	5
Deg. of Freed Critical T Valu	lom 5 Je 0.77 PA	5 2267 SS	Deg. of Freed Critical T Valu	om : ie 0.7 PA	5 267 SS
Deg. of Freed Critical T Valu Pass or Fail	om (pe 0.7: PA	5 267 SS letion Date	Deg. of Freed Critical T Valu Pass or Fail	om : ie 0.7 PA Test Comp	5 267 SS eletion Date
Deg. of Freed Critical T Valu Pass or Fail Replicate	om () pe 0.77 PA Test Comp	267 SS eletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate	om 5 de 0.7 PA Test Comp	5 267 SS eletion Date 2021
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	om 9 De 0.77 PA Test Comp 8/4/2 Control	5 267 SS eletion Date 2020	Deg. of Freed Critical T Valu Pass or Fail Replicate No.	om 6 be 0.7. PA Test Comp 8/3/ Control	5 267 SS Seletion Date 2021
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	Test Comp 8/4/2 Control 0.15	267 SS seletion Date 2020 TIWC 0.319	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om 9.7. pa 0.7. PA Test Comp 8/3/ Control 0.258	5 287 SS sletion Date 2021 TIWC 0.331
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	Test Comp 8/4/2 Control 0.15 0.298	267 SS seletion Date 2020 TIWC 0.319 0.326	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2	Test Comp 8/3// Control 0.258 0.334	5 267 SS eletion Date 2021 TIWC 0.331 0.25
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 8/4/2 Control 0.15 0.298	267 SS seletion Date 2020 TIWC 0.319 0.326	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 8/3// Control 0.258 0.334	5 267 SS eletion Date 2021 TIWC 0.331 0.25
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 8/4// Control 0.15 0.298 0.251	5 267 SS seletion Date 2020 TIWC 0.319 0.326 0.261	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 8/3/ Control 0.258 0.334 0.25	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 8/4// Control 0.15 0.298 0.251 0.307	267 SS SS eletion Date 2020 TIWC 0.319 0.326 0.261 0.292	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 8/3/ Control 0.258 0.334 0.25 0.253	5 267 SS letion Date 2021 TIWC 0.331 0.25 0.239 0.202
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	0.252 0.072	5 267 SS selection Date 2020 TIWC 0.319 0.326 0.261 0.292 0.300	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	om : 0.7 PA Test Comp 8/3/ Control 0.258 0.334 0.25 0.253	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239 0.202
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.252 0.072	0.300 0.030 0.030	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0m 9 0.7 PA Test Comp 8/3/. Control 0.258 0.334 0.25 0.253	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239 0.202 0.202
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.252 0.272 4	0.300 0.030 0.030	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0m 9 0.7 PA Test Comp 8/3/ Control 0.258 0.334 0.25 0.253	5 287 SS letion Date 2021 TIWC 0.331 0.25 0.239 0.202 0.202
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.252 0.252 0.272 4	0.300 0.030 4	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0m 9 0.7 PA Test Comp 8/3// Control 0.258 0.334 0.25 0.253	5 287 SS selection Date 2021 TIWC 0.331 0.25 0.239 0.202 0.202
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.252 0.272 4	0.300 0.030 4	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0m 9 0.7 PA Test Comp 8/3// Control 0.258 0.334 0.25 0.253 0.253	0.256 0.054 4
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.252 0.272 4 3.6	0.300 0.030 4	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0m 9 0.7 PA Test Comp 8/3/ Control 0.258 0.334 0.25 0.253 0.274 0.040 4 1.6 om 18 0.7	0.256 0.054 4

WET Summary and Evaluation

Facility Name Permit No.

PA0037940 2.5

Elkhorn Run STP

Design Flow (MGD) Q₇₋₁₀ Flow (cfs)

4800

PMF_a

0.063 0.435

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	Endpoint	7/31/18	7/30/19	8/3/20	8/2/21	
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)			
	[Test Date	Test Date	Test Date	Test Date
Species	Endpoint	7/24/18	7/30/19	8/3/20	8/2/21
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date				
Species	Endpoint	7/31/18	7/30/19	8/4/20	8/3/21	
Pimephales	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date	Test Date	Test Date	Test Date	
Species	Endpoint	7/31/18	7/30/19	8/4/20	8/3/21	
Pimephales	Growth	PASS	PASS	PASS	PASS	

Reasonable Potential? NO

Permit Recommendations

Test Type Chronic

TIWC 1 % Effluent

Dilution Series 1, 2, 30, 60, 100 % Effluent

Permit Limit None

Permit Limit Species

NPDES Permit No. PA0037940 Elkhorn Run STP

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.063 Chronic Partial Mix Factor (PMFc): 0.435 1. Determine IWC - Acute (IWCa): $(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$ $[(2.5 \text{ MGD x } 1.547) / ((4800 \text{ cfs x } 0.063) + (2.5 \text{ MGD x } 1.547))] \times 100 = 1.26\%$ Is IWCa < 1%? ☐ YES ☒ NO Type of Test for Permit Renewal: Chronic 2. Determine Target IWCc (If Chronic Tests Required) $(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$ $[(2.5 \text{ MGD x } 1.547) / ((4800 \text{ cfs x } 0.435) + (2.5 \text{ MGD x } 1.547))] \times 100 = 0.185\%$ 3. Determine Dilution Series (NOTE - check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 60%, 30%, 2%, and 1%. **WET Limits** Has reasonable potential been determined? ☐ YES ☒ NO Will WET limits be established in the permit? ☐ YES ☒ NO

NPDES Permit No. PA0037940 Elkhorn Run STP

ATTACHMENT B: USGS STREAMSTATS

Outfall 001 StreamStats Report

Region ID: PA

Workspace ID: PA20211025193431034000

Clicked Point (Latitude, Longitude): 40.67364, -80.25629

Time: 2021-10-25 15:35:01 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	19600	square miles
ELEV	Mean Basin Elevation	1669	feet
PRECIP	Mean Annual Precipitation	45	inches

Low-Flow Statistics Parameters [57.1 Percent (11200 square miles) Low Flow Region 3]

Parameter Code Parameter Name Value Units Min Limit Max Limit

NPDES Permit No. PA0037940 Elkhorn Run STP

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	19600	square miles	2.33	1720
ELEV	Mean Basin Elevation	1669	feet	898	2700
PRECIP	Mean Annual Precipitation	45	inches	38.7	47.9

Low-Flow Statistics Parameters [42.6 Percent (8340 square miles) Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	19600	square miles	2.26	1400
ELEV	Mean Basin Elevation	1669	feet	1050	2580

Low-Flow Statistics Disclaimers [57.1 Percent (11200 square miles) Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [57.1 Percent (11200 square miles) Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	2830	ft^3/s
30 Day 2 Year Low Flow	3560	ft^3/s
7 Day 10 Year Low Flow	2010	ft^3/s
30 Day 10 Year Low Flow	2330	ft^3/s
90 Day 10 Year Low Flow	3110	ft^3/s

Low-Flow Statistics Disclaimers [42.6 Percent (8340 square miles) Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [42.6 Percent (8340 square miles) Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	2870	ft^3/s
30 Day 2 Year Low Flow	3560	ft^3/s
7 Day 10 Year Low Flow	1950	ft*3/s
30 Day 10 Year Low Flow	2040	ft^3/s
90 Day 10 Year Low Flow	2780	ft^3/s

NPDES Permit No. PA0037940 Elkhorn Run STP

Low-Flow Statistics Flow Report [Area-Avera	redl	ea-Averac	[Area-/	Report	Flow	atistics	low Sta	Low-F	
---	------	-----------	---------	--------	------	----------	---------	-------	--

Statistic	Value	Unit
7 Day 2 Year Low Flow	2840	ft^3/s
30 Day 2 Year Low Flow	3550	ft*3/s
7 Day 10 Year Low Flow	1980	ft^3/s
30 Day 10 Year Low Flow	2200	ft^3/s
90 Day 10 Year Low Flow	2960	ft*3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

NPDES Permit No. PA0037940 Elkhorn Run STP

ATTACHMENT C: USACE Q₇₋₁₀ Flows of Major Rivers

Q₇₋₁₀ Flows of Major Rivers

Nicolas Lazzaro, P.E. U.S. Army Corp of Engineers Pittsburgh District Water Management December 1, 2017

UPPER OHIO BASIN LOW FLOWS		
Location		Q7, 10 Flow (cfs)
Allegheny River		
Franklin downstream of French Creek (RMI 123.96)		1,450
L&D 9 at Templeton (RMI 62.2; Upper Pool El. 822.2	2)	2,070
L&D 8 at Templeton (RMI 52.6; Upper Pool El. 800.2	2)	2,070
L&D 7 at Kittanning (RMI 45.7; Upper Pool El. 782.4	Crooked Creek enters at RMI 40.11	2,070
L&D 6 at Freeport (RMI 36.3; Upper Pool El. 769.4)		2,070
L&D 5 at Freeport (RMI 30.4; Upper Pool El. 757.0)	2,070	
L&D 4 at Natrona (RMI 24.2; Upper Pool El. 745.4)	2,390	
C.W. Bill Young L&D at New Kensington (RMI 14.5;	2,390	
L&D 2 at Pittsburgh (RMI 6.7, Pool El. 721.0)	2,390	
Monongahela River		
Point Marion L&D (RMI 90.8; Upper Pool El. 797.0)	Cheat River enters at RMI 89.68 Dunkard Creek enters at RMI 87.18	420
Grays Landing L&D (RMI 82.0; Upper Pool El. 778.0)	Tenmile Creek enters at RMI 65.62	530
Maxwell L&D (RMI 61.2; Upper Pool El. 763.0)	530	
L&D 4 at Charleroi (RMI 41.5; Upper Pool El. 743.5)	550	
L&D 3 at Elizabeth (RMI 23.8; Upper Pool El. 726.9)	550	
McKeesport downstream of the Youghiogheny Rive	r (RMI 15.53)	1,060
Braddock L&D (RMI 11.2; Upper Pool El. 718.7)		1,230
Youghiogheny River		
Youghiogheny Dam at Confluence (RMI 74.8)		390
Dam at Connellsville (RMI 46.27)		460
Sutersville downstream of Sewickley Creek (~RMI 1	5.0)	510
Beaver River		
Beaver Falls		640
Ohio River		
Emsworth L&D (RMI 974.8; Pool El. 710.0) 97,1	0 is halved for each side of Neville Island	4,730
Dashields L&D (RMI 967.7; Upper Pool El. 692.0)		4,730
Montgomery L&D (RMI 949.3; Upper Pool El. 682.0)	5,880
New Cumberland L&D (RMI 926.7; Upper Pool El. 6	64.5)	5,880
Pike Island L&D (RMI 896.8; Upper Pool El. 664.0)		5,880
Hannibal L&D (RMI 854.6; Upper Pool El. 623.0)		5,880

NPDES Permit No. PA0037940 Elkhorn Run STP

ATTACHMENT D: WQM7.0 MODELING RESULTS

NPDES Permit No. PA0037940 Elkhorn Run STP

Input Data WQM 7.0

	In					put Data WQM 7.0								
	SWF Basi			Stre	eam Name		RMI	Elevat		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	20E	323	17 OHIO	RIVER			958.10) 68	80.00	19600.00	0.00000)	0.00	\checkmark
					Str	ream Dat	a							
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Temp	ributary pH	Ten		pH	
27-10		4800.00	0.00			0.0				.00 7.0		0.00	0.00	
27-10 21-10 230-10	0.245	0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	1270.00	15.00	20.	.00 7.1		0.00	0.00	
					Di	scharge l	Data							
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	d Design Disc Flow (mgd)	Rese Fac		ip (isc pH		
		Elkho	rn Run ST	P PAI	0037940	0.000	0.0000	2.500	0 0.	.000 2	0.00	7.00		
					Pa	rameter								
				aramete	r Name	C	onc Co	one C	eam onc	Fate Coef (1/days)				
	-								-			-		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved NH3-N	Oxygen			4.00 25.00	0.00	0.00	0.00				
	SWI Bas			Str	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)		VS Irawal gd)	App
	20E	32	317 OHIO	RIVER			957.10	0 6	79.00	19800.00	0.00000	0	0.00	☑
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Te	Strear mp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(%	C)		
Q7-10 Q1-10 Q30-10	0.245	4800.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	1270.00	15.00	25	5.00 7.	00	0.00	0.00)
					D	ischarge							1	
			Name	Pe	rmit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Rese Fac		пр	Disc pH		
					_	0.000		0.000	0 0	.000 2	25.00	7.00		
				Paramete			isc T		ream Conc	Fate Coef				
				raramete	a Name	(n	ng/L) (m	ıg/L) (n	ng/L)	(1/days)				
			CBOD5 Dissolved	Oxygen			25.00 3.00	2.00 8.24	0.00	1.50				
	- 1			78						3.00			1	

25.00

0.00

0.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

		P Basin 20E		m Code 2317				Stream OHIO R				
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
	0 Flow 4800.00	0.00	4800.00	3.8675	0.00019	15	1270	84.67	0.25	0.242	25.00	7.00
	0 Flow 3072.00	0.00	3072.00	3.8675	0.00019	NA	NA	NA	0.16	0.378	24.99	7.00
	10 Flow 6528.00		6528.00	3.8675	0.00019	NA	NA	NA	0.34	0.178	25.00	7.00

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code			Stream Name	
20E	32317			OHIO RIVER	
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperature	e (°C) Analysis pH
958.100	2.50	0		24.996	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
1270.000	15.00	00		84.667	0.252
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg	/L) Reach Kn (1/days)
2.02	0.01	_		0.02	1.028
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
8.240	0.12	6		O'Connor	5
Reach Travel Time (days)		Subreach	Results		
0.242	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.024	2.02	0.02	7.54	
	0.048	2.02	0.02	7.54	
	0.073	2.02	0.02	7.54	
	0.097	2.02	0.02	7.54	
	0.121	2.01	0.02	7.54	
	0.145	2.01	0.02	7.54	
	0.170	2.01	0.02	7.54	
	0.194	2.01	0.02	7.54	
	0.218		0.02	7.54	
	0.242		0.02	7.54	
	0.242	2.01	0.02		

NPDES Permit No. PA0037940 Elkhorn Run STP

SWP Basin

Stream Code

WQM 7.0 Wasteload Allocations

\$	SWP Basin 20E		m <u>Code</u> 2317						Name IVER			
NH3-N A	cute Alloca	ation	s									
RMI	Discharge I	Name	Baseline Criterion (mg/L)	٧	seline VLA ng/L)	Multiple Criterio (mg/L	on	V	ltiple VLA ng/L)	Critical Reach	Percent Reductio	
958.100	Elkhom Run	STP	11.08		50	11	.08		50	0	0	_
NH3-N C	Chronic Allo		Baseline Criterion (mg/L)	Base WI (mg	LA.	Multiple Criterion (mg/L)	ı	Multi WL (mg	A	Critical Reach	Percent Reduction	
958.100	Elkhom Run	STP	1.37		25	1	.37		25	0	0	
Dissolve	d Oxygen A	Alloca										_
RMI	Discharg	e Nam	_		<u>5</u> lultiple ng/L)	NH Baseline (mg/L)		ltiple g/L)	Dissolve Baseline (mg/L)		Critical	Percent Reduction
958.10	Elkhom Run	STP		25	25	25		25	4	4	0	0

WQM 7.0 Effluent Limits

Stream Name

	20E	32317	OHIO RIVER							
RMI	Name	Permit Number	Disc Flow Parameter (mgd)		Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)			
958.100	Elkhorn Run STP	PA0037940	0.000	CBOD5	25					
				NH3-N	25	50				
				Dissolved Oxygen			4			

NPDES Permit No. PA0037940 Elkhorn Run STP

ATTACHMENT E: TRC_CALC Results

	ite values in A	3:A9 and D3:D9			
0.245 = Q stream (cfs)		0.5	= CV Daily		
2.5 = Q discharge (MGD) 30 = no. samples 0.3 = Chlorine Demand of Stream 0 = Chlorine Demand of Discharge		0.5	= CV Hourly		
		1	= AFC_Partial Mix Factor		
		mand of Stream	1	= CFC_Partial Mix Factor	
		mand of Discharge	720 = CFC_Criteria Compliance Time (min) =Decay Coefficient (K)		
0.5	= BAT/BPJ Value = % Factor of Safety (FOS)				
0					
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.ili	WLA afc =	0.039	1.3.2.iii	WLA cfc = 0.031
PENTOXSD TRG	5.1a	LTAMULT afc = 0.373		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	0.015	5.1d	LTA_cfc = 0.018
Source		Effluer	nt Limit Calcul	lations	
PENTOXSD TRG	5.1f	AML MULT = 1.231			
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		AFC
			LIMIT (mg/l) =		
WLA afc	(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)				
TILA dio	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)				
LTAMULT afc		7- 1	•		
		vh^2+1))-2.326*LN(cvh^2+	•		
LTAMULT afc	EXP((0.5*LN(c wla_afc*LTAM (.011/e(-k*CFC + Xd + (CFC_	vh^2+1))-2.326*LN(cvh^2+ ULT_afc C_tc) + [(CFC_Yc*Qs*.011/0 _Yc*Qs*Xs/Qd)]*(1-FOS/10	1)^0.5) Qd*e(-k*CFC_: 0)		
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	EXP((0.5*LN(c) wla_afc*LTAM (.011/e(-k*CFC)+ Xd + (CFC) EXP((0.5*LN(c)	vh^2+1))-2.326*LN(cvh^2+ ULT_afc C_tc) + [(CFC_Yc*Qs*.011/0 _Yc*Qs*Xs/Qd)]*(1-FOS/10 vd^2/no_samples+1))-2.320	1)^0.5) Qd*e(-k*CFC_: 0)		.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	EXP((0.5*LN(c wla_afc*LTAM (.011/e(-k*CFC + Xd + (CFC_	vh^2+1))-2.326*LN(cvh^2+ ULT_afc C_tc) + [(CFC_Yc*Qs*.011/0 _Yc*Qs*Xs/Qd)]*(1-FOS/10 vd^2/no_samples+1))-2.320	1)^0.5) Qd*e(-k*CFC_: 0)		.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	EXP((0.5*LN(c) wla_afc*LTAM (.011/e(-k*CFC)+ Xd + (CFC_EXP((0.5*LN(c) wla_cfc*LTAM) EXP(2.326*LN(c) wla_cfc*LTAM)	vh^2+1))-2.326*LN(cvh^2+ ULT_afc C_tc) + [(CFC_Yc*Qs*.011/(_ Yc*Qs*Xs/Qd)]*(1-F0S/10 vd^2/no_samples+1))-2.32(ULT_cfc ((cvd^2/no_samples+1)^0.6	1)^0.5) Qd*e(-k*CFC_5 0) 6*LN(cvd^2/no 5)-0.5*LN(cvd	o_samples+1)^0	
LTAMULT afc LTA_afc	EXP((0.5*LN(c) wla_afc*LTAM (.011/e(-k*CFC)+ Xd + (CFC) EXP((0.5*LN(c) wla_cfc*LTAM EXP(2.326*LN(MIN(BAT_BPJ)	vh^2+1))-2.326*LN(cvh^2+ ULT_afc 2_tc) + [(CFC_Yc*Qs*.011/ (_ Yc*Qs*Xs/Qd)]*(1-FOS/10 (vd^2/no_samples+1))-2.32(ULT_cfc	1)^0.5) Qd*e(-k*CFC_ D) 6*LN(cvd^2/nd 5)-0.5*LN(cvd ⁴ IL_MULT)	o_samples+1)^0	

ATTACHMENT F:
ADDITIONAL MERCURY SAMPLING VIA EPA TEST METHOD 1631E
(January 17, 2022)

Managing Principals: Kevin A. Brett, P.E. Ned Mitrovich, P.E. Jason E. Stanton, P.E.

January 17, 2022

S. O. No. 495-025

VIA EMAIL ONLY (grpolakosk@pa.gov)

Ms. Grace Polakoski Environmental Engineering Specialist Department of Environmental Protection Clean Water Program 400 Waterfront Drive Pittsburgh, Pennsylvania 15222

Subject: Center Township Sanitary Authority

ne

NPDES Permit No PA0037940 Renewal

Dear Ms. Polakoski:

As discussed, enclosed herewith please find additional analyses for effluent Mercury (12 samples), that were collected and analyzed by CWM Environmental from December 1, 2021 through December 15, 2021. These analyses represent supplemental data to the NPDES Permit Renewal Application submitted by the Center Township Sanitary Authority (NPDES Permit No PA0037940) as requested by PaDEP via email on October 26, 2021.

Should you have any questions, please contact Marie S. Hartman, P.E. directly (Ext. 246).

Sincerely,

Ned Mitrovich, P.E.

NM/vcl

Attachments

cc/att: Robert Martini, Operations Supervisor - CTSA (martini@ctsapa.us)

Marie S. Hartman, P.E., LSSE (mhartman@lsse.com)

N/PROJ/495/495-25 Elkhorn Run NPDES Permit Renewal Application/2022 Renewal/Docs/49525C14 DEP Mercury Sampling.docx

Center Township Sanitary Authority NPDES Permit No PA0037940 Renewal CWM Environmental Sampling Results Summary

EffI	Effluent 24 Hour Composite Sample										
Date	Result	Notes									
12/1/2021	Mercury 9.8 ng/L	Sample 1									
12/2/2021	Mercury 19.0 ng/L	Sample 2									
12/3/2021	Mercury 15.5 ng/L	Sample 3									
12/4/2021	Mercury 14.2 ng/L	Sample 4									
12/5/2021	Mercury 19.4 ng/L	Sample 5									
12/7/2021	Mercury 26.9 ng/L	Sample 6									
12/9/2021	Mercury 18.3 ng/L	Sample 7									
12/10/2021	Mercury 44.0 ng/L	Sample 8									
12/11/2021	Mercury 20.7 ng/L	Sample 9									
12/12/2021	Mercury 8.7 ng/L	Sample 10									
12/13/2021	Mercury 25.2 ng/L	Sample 11									
12/15/2021	Mercury 5.3 ng/L	Sample 12									
12/15/2021	Mercury 10.2 ng/L	Field Blank									
12/15/2021	Mercury 0.6 ng/L*	Method Blank 1									
12/15/2021	Mercury 0.5 ng/L**	Method Blank 2									
12/15/2021	Mercury 0.5 ng/L**	Method Blank 3									

^{*}Estimated value (above detection limit/below reporting limit)

^{**}The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

NPDES Permit No. PA0037940 Elkhorn Run STP

ATTACHMENT G: TOXCONC MODELING FOR MERCURY (10 samples)

NPDES Permit No. PA0037940 Elkhorn Run STP

INPUT:

	Facility:	Elkhorn Run STP			
	NPDES #:	PA0037940			
	Outfall No:	001			
	n (Samples/Month):	4			
	Reviewer/Permit Engineer:	GRP			
Parameter Name	Total Mercury				
Units	other				
Detection Limit	12				
Sample Date	When entering values below	the detection limit, er	nter "ND" or us	se the < notation	(eg. <0.02)
12/01/21	9.8				
12/02/21	19				
12/03/21	15.5				
12/04/21	14.2				
12/05/21	19.4				
12/07/21	26.9				
12/09/21	18.3				
12/10/21	44				
12/11/21	20.7				
12/12/21	8.7				
12/13/21	25.2				
12/13/21					

OUTPUT:

		Reviewer/Permit Engineer:	GRP
Facility:	Elkhorn Run STP		
NPDES #:	PA0037940		
Outfall No:	001		
n (Samples/Month):	4		
Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
. a. amotor	Distribution Applied	coefficient of Variation (daily)	Avg. monding
. u.umotoi	Distribution Applied	coemcicite of variation (dulity)	Avg. monthly
Total Mercury (other)	Lognormal	0.6106083	37.0786549
			Ĭ
			Ĭ

NPDES Permit No. PA0037940 Elkhorn Run STP

ATTACHMENT H: TMS MODELING RESULTS (Run 1)

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Disc	harge Stream		
Facility: Elkhor	n Run STP	NPDES Permit No.: PA0037940	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: treated sewage	

			Discharge	Characterist	tics							
Design Flow	Hardness (mg/l)*	pH (SU)* Partial Mix Factors (PMFs) Complete Mix Times (min)										
(MGD)*	naruness (mg/l)	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
2.5	170	6.4										

					0 if lef	blank	0.5 if le	eft blank	0 if left blank			1 if left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L											
12	Chloride (PWS)	mg/L											
Group	Bromide	mg/L											
6	Sulfate (PWS)	mg/L											
1	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		320									
1	Total Antimony	µg/L		1									
1	Total Arsenic	µg/L	<	1									
1	Total Barium	µg/L		57									
1	Total Beryllium	µg/L	<	0.3									
1	Total Boron	µg/L		250									
1	Total Cadmium	µg/L	<	0.4									
1	Total Chromium (III)	µg/L		3									
1	Hexavalent Chromium	µg/L		11									
1	Total Cobalt	µg/L	<	0.7									
1	Total Copper	µg/L		9									
N	Free Cyanide	µg/L		22									
Group	Total Cyanide	μg/L		11									
Ιĕ	Dissolved Iron	µg/L		631									
1	Total Iron	μg/L		417									
1	Total Lead	μg/L		3									
1	Total Manganese	µg/L		115									
1	Total Mercury	ng/L		37.08									
1	Total Nickel	µg/L	<	6									
1	Total Phenols (Phenolics) (PWS)	μg/L		4									
1	Total Selenium	µg/L	<	1									
1	Total Silver	µg/L	<	1									
1	Total Thallium	μg/L		3									
1	Total Zinc	µg/L		48									
	Total Molybdenum	µg/L		4									
	Acrolein	µg/L	<	1.3									
1	Acrylamide	µg/L	<										
	Acrylonitrile	μg/L	<	2									
	Benzene	µg/L	<	0.12									
1	Bromoform	µg/L	<	0.37									

Chioroptenomentame	_		_			100000000000000000000000000000000000000				 000000000000000000000000000000000000000
Chloroethyn Line	(Carbon Tetrachloride	μg/L	<	0.23					
Chicrocethane	(Chlorobenzene	μg/L	<	0.25					
Calciorative Line Line	(Chlorodibromomethane	μg/L	<	0.25					
Chicordomomethane	(Chloroethane	μg/L	<	0.47					
Dichlorocethane	2	2-Chloroethyl Vinyl Ether	μg/L	<	3.1					
1.1-Dichloroethane	(Chloroform	μg/L		1.4					
1.1-Dichoroethane	Ī	Dichlorobromomethane	µg/L	<	0.18					
1.1-Dichloroethlyane	1	1,1-Dichloroethane	µg/L	<	0.05					
Description	_	1,2-Dichloroethane		<	0.12					
1,3-Dictroropropoprer pg/L	ă.	1.1-Dichloroethylene	1 0	<	0.13					
1,4-Dictorropropylerie µg/L	3			-						
1.4-Dioxane	<u>ن</u>			-						
Etrybenzene	-			-						
Methyl Bromide µg/L 0.69 Methylere Chloride µg/L 0.33 Methylere Chloride µg/L 0.35 Methylere Chloride µg/L 0.27 Methylere µg/L 0.42 Methylere µg/L 0.13 Methylere µg/L 0.13 Methylere µg/L 0.13 Methylere µg/L 0.33 Methylere µg/L 0.33 Methylere µg/L 0.33 Methylere µg/L 0.33 Methylere µg/L 0.34 Methylere µg/L 0.44 Methylere µg/L 0.44 Methylere µg/L 0.44 Methylere µg/L 0.45 Methylere µg/L 0.36 Methylere µg/L 0.37 Methylere µg/L		,		-						
Methy Chloride µg/L 0.33 Methylene Chloride µg/L 0.38 1.1.2.2-Tetachloroethane µg/L 0.38 Tetrachloroethylene µg/L 0.27 Tolusne µg/L 0.02 1.1.1-Trichloroethane µg/L 0.12 1.1.1-Trichloroethane µg/L 0.12 1.1.1-Trichloroethane µg/L 0.29 Vinyl Chloride µg/L 0.29 Vinyl Chlorophenol µg/L 0.33 2.4-Dichlorophenol µg/L 0.33 2.4-Dichlorophenol µg/L 2.8 2.4-Dichlorophenol µg/L 2.8 2.4-Dichlorophenol µg/L 2.8 2.4-Dichlorophenol µg/L < 2.8 2.4-Dichlorophenol µg/L < 2.8 2.4-Dichlorophenol µg/L < 0.38 3Photorom-Cresol µg	-			•						
Methylene Chloride	-	•		_						
1,1,2,2-Tetrachloroethane	- н			-						
Tetrachloroethylene	-			-						
Toluene Upt Color Color				-						
1,2-trans-Dichloroethylene	1	Tetrachloroethylene	μg/L	<						
1,1,1-Trichloroethane			μg/L		0.42					
1,1,2-Trichloroethylene	Ľ	1,2-trans-Dichloroethylene	μg/L	<	0.08					
Trichloroethylene	1	1,1,1-Trichloroethane	μg/L	<	0.12					
Viryl Chloride	1	1,1,2-Trichloroethane	μg/L	<	0.13					
2-Chiorophenol	1	Trichloroethylene	µg/L	<	0.29					
2,4-Dichlorophenol	١	Vinyl Chloride	µg/L	<	0.33					
2,4-Dichlorophenol	- 1	2-Chlorophenol	ug/L	<	0.38					
2,4-Dimethylphenol	-			<						
4,6-Dinitro-o-Cresol µg/L < 1.2		-			0.92					
2,4-Dinitrophenol μg/L < 2.8	-			<						
2-Nitrophenol	₹ .		- 1 -	-						
P-Chloro-m-Cresol μg/L < 0.38	9			-						
P-Chloro-m-Cresol μg/L < 0.38	2	_		-						
Pentachlorophenol μg/L < 0.25				-						
Phenol				-						
2,4,6-Trichlorophenol μg/L < 0.46	-			$\overline{}$						
Acenaphthene	- н			-						
Acenaphthylene μg/L 0.38 Anthracene μg/L 0.39 Benzidine μg/L 2.5 Benzo(a)Anthracene μg/L 0.4 Benzo(a)Pyrene μg/L 0.35 3,4-Benzofluoranthene μg/L 0.39 Benzo(k)Fluoranthene μg/L 0.41 </td <td>$\overline{}$</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	$\overline{}$			-						
Anthracene	-			-						
Benzidine	4	Acenaphthylene	μg/L	-						
Benzo(a)Anthracene	-		μg/L	$\overline{}$						
Benzo(a)Pyrene	E	Benzidine	μg/L	<	2.5					
3,4-Benzofluoranthene μg/L < 0.39	E	Benzo(a)Anthracene	μg/L	<	0.4					
Benzo(ghi)Perylene	E	Benzo(a)Pyrene	μg/L	٧	0.35					
Benzo(k)Fluoranthene μg/L < 0.38	5	3,4-Benzofluoranthene	μg/L	<	0.39					
Bis(2-Chloroethoxy)Methane μg/L < 0.43	E	Benzo(ghi)Perylene	μg/L	<	0.41					
Bis(2-Chloroethoxy)Methane μg/L < 0.43	Ī	Benzo(k)Fluoranthene		<	0.38					
Bis(2-Chloroethyl)Ether	-			<	0.43					
Bis(2-Chloroisopropyl)Ether μg/L				<	0.37					
Bis(2-Ethylhexyl)Phthalate				<	0.43					
4-Bromophenyl Phenyl Ether μg/L < 0.44 Butyl Benzyl Phthalate μg/L < 0.57 2-Chloronaphthalene μg/L < 0.39 4-Chlorophenyl Phenyl Ether μg/L < 0.39 Chrysene μg/L < 0.41 Dibenzo(a,h)Anthrancene μg/L < 0.42 1,2-Dichlorobenzene μg/L < 0.37 1,3-Dichlorobenzene μg/L < 0.43 1,4-Dichlorobenzene μg/L < 0.43 3,3-Dichlorobenzene μg/L < 0.43 Diethyl Phthalate μg/L < 0.55 Diethyl Phthalate μg/L < 0.55 Dimethyl Phthalate μg/L < 0.41										
Butyl Benzyl Phthalate										
2-Chloronaphthalene μg/L < 0.39 4-Chlorophenyl Phenyl Ether μg/L < 0.39 Chrysene μg/L < 0.41 Dibenzo(a,h)Anthrancene μg/L < 0.42 1,2-Dichlorobenzene μg/L < 0.43 1,3-Dichlorobenzene μg/L < 0.43 1,4-Dichlorobenzene μg/L < 0.43 3,3-Dichlorobenzene μg/L < 0.43 Diethyl Phthalate μg/L < 0.55 Dimethyl Phthalate μg/L < 0.41				-						
4-Chlorophenyl Phenyl Ether μg/L < 0.39 Chrysene μg/L < 0.41 Dibenzo(a,h)Anthrancene μg/L < 0.42 1,2-Dichlorobenzene μg/L < 0.37 1,3-Dichlorobenzene μg/L < 0.43 1,4-Dichlorobenzene μg/L < 0.43 3,3-Dichlorobenzene μg/L < 0.43 Diethyl Phthalate μg/L < 0.55 Dimethyl Phthalate μg/L < 0.41	-			-						
Chrysene μg/L 0.41 Dibenzo(a,h)Anthrancene μg/L 0.42 1,2-Dichlorobenzene μg/L 0.37 1,3-Dichlorobenzene μg/L 0.43 1,4-Dichlorobenzene μg/L 0.43 3,3-Dichlorobenzidine μg/L 1 Diethyl Phthalate μg/L 0.55 Dimethyl Phthalate μg/L 0.41	-			-						
Dibenzo(a,h)Anthrancene	-			$\overline{}$						
1,2-Dichlorobenzene				-						
1,3-Dichlorobenzene				-						
1,4-Dichlorobenzene				-						
3,3-Dichlorobenzidine	-			-						
Differily Printage pgc - 0.41			μg/L	<	0.43					
Differily Printage pgc - 0.41	d S		μg/L	<	1					
Differily Filinate pg. 5 0.41	2	Diethyl Phthalate	µg/L	<	0.55					
	9	Dimethyl Phthalate		<	0.41					
	Ī	Di-n-Butyl Phthalate	μg/L	<	0.56					
2,4-Dinitrotoluene µg/L < 0.44	-			<	0.44					

			_		 			 	
	2,6-Dinitrotoluene	μg/L	<	0.4					
	Di-n-Octyl Phthalate	μg/L	<	0.86					
	1,2-Diphenylhydrazine	µg/L	<	0.37					
	Fluoranthene	µg/L	<	0.42					
l	Fluorene	µg/L	<	0.37					
l	Hexachlorobenzene	µg/L	<	0.42					
l	Hexachlorobutadiene	µg/L	<	0.48					
l	Hexachlorocyclopentadiene	µg/L	<	0.72					
	Hexachloroethane	µg/L	<	0.36					
l	Indeno(1,2,3-cd)Pyrene	µg/L	<	0.39					
	Isophorone	µg/L	<	0.42					
l	Naphthalene	μg/L	<	0.39					
l	Nitrobenzene	µg/L	<	0.51					
l	n-Nitrosodimethylamine	µg/L	<	1.1					
l	n-Nitrosodi-n-Propylamine	µg/L	<	0.41					
l	n-Nitrosodiphenylamine	μg/L	<	0.48					
l	Phenanthrene	µg/L	<	0.38					
	Pyrene	µg/L µg/L	<	0.30					
			<	0.41					
\vdash	1,2,4-Trichlorobenzene Aldrin	µg/L	<	0.41					
	alpha-BHC	µg/L	<						
		µg/L	-						
	beta-BHC	μg/L	<						
	gamma-BHC	μg/L	<						
	delta BHC	μg/L	<						
l	Chlordane	μg/L	<						
	4,4-DDT	µg/L	<						
	4,4-DDE	μg/L	<						
	4,4-DDD	μg/L	<						
	Dieldrin	μg/L	<						
	alpha-Endosulfan	μg/L	<						
	beta-Endosulfan	μg/L	٧						
9	Endosulfan Sulfate	µg/L	<						
Group	Endrin	µg/L	<						
5	Endrin Aldehyde	µg/L	<						
	Heptachlor	µg/L	<						
	Heptachlor Epoxide	µg/L	<						
	PCB-1016	µg/L	<						
	PCB-1221	µg/L	<						
	PCB-1232	µg/L	<						
	PCB-1242	μg/L	<						
	PCB-1248	μg/L	<						
	PCB-1254	µg/L	<						
	PCB-1260	µg/L	<						
	PCBs, Total	µg/L	<						
	Toxaphene	µg/L	<						
	2.3.7.8-TCDD	ng/L	<						
\vdash	Gross Alpha	pCi/L	-						
	Total Beta Padium 226/228	pCi/L	<						
Group	Radium 226/228	pCi/L	$\overline{}$						
Ğ	Total Strontium	µg/L	<						
آ	Total Uranium	μg/L	<						
	Osmotic Pressure	mOs/kg							

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Elkhorn Run STP, NPDES Permit No. PA0037940, Outfall 001

Instructions Disch	arge Str	ream														
Receiving Surface W	/ater Name:	Ohio River					No. Rea	iches to	Mode	el: <u>1</u>	<u></u>	-	tewide Criteri at Lakes Crit			
Location	Stream Co	de* RMI	Elevati	on DA (mi	²)• SI	lope (ft/ft)		Withdrav MGD)	val	Apply F Criteria		OR	SANCO Crite	ria		
Point of Discharge	032317	958.	1 680	19600)	0.0001				Yes						
End of Reach 1	032317	957.	1 679	19800)	0.0001				Yes						
Q ₇₋₁₀		LFY	51	(-5-)	WID	107-00	D	17-13		avei	72		Observed		Amaka	•-
Location	RMI			(cfs)	W/D Ratio		Depth	Velocit		ime	Tributa		Stream		Analys	
Delet of Direct const	050.4	(cfs/mi ²)*	Stream	Tributary	Ratio	11	(ft)	y (fps)	(d	lave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	958.1	0.245				1270	15						100	- /		
End of Reach 1	957.1	0.245				1270	15									
Q _h																
Location	RMI	LFY	Flow	(cfs)	W/D			Velocit		ime	Tributa	ary	Stream	m	Analys	sis
Location	1 civii	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)		lave)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	958.1															
End of Reach 1	957.1															

NPDES Permit No. PA0037940 Elkhorn Run STP

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Elkhorn Run STP, NPDES Permit No. PA0037940, Outfall 001

Instructions	s Results		RETUR	RN TO INPU	TS	SAVE AS	PDF	PRI	NT	● All	○ Inputs	O Results	O Limits	
_ ,	lynamics													
Q 7-10													rraver	
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs) Flo	rge Analys ow (cfs)	Slope (,	th (ft)	Width (ft)		Velocity (fps)	Time (days)	Complete Mix Time (min)
958.1	4,802			4,802		3.868	0.000)1 1	5.	1270.	84.667	0.252	0.242	3799.259
957.1	4,851			4,851										
Q _h											_		Havel	
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs		rge Analys ow (cfs)	Slope (ft/ft) Dep	th (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
958.1	12261.73			12261.73	3	3.868	0.000)1 22.	653	1270.	56.062	0.426	0.143	2049.081
957.1	12371.015			12371.02	2									
✓ Wastel	oad Allocatio		T (min):	15	PMF:	0.063		lysis Hardr		ng/l): 10	00.89	Analysis pH:	6.98	
	Pollutants		Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj	WL	.A (μg/L)		C	omments	
Т	otal Aluminu	m	0	0		0	750	750		59,263				
1	Total Antimon	y	0	0		0	1,100	1,100	_	36,918				
	Total Arsenic		0	0		0	340	340		26,866		Chem Tran	slator of 1 ap	plied
	Total Barium	l	0	0		0	21,000	21,000		659,352				
L .	Total Boron		0	0		0	8,100	8,100	6	40,036		OL T		E1
	Total Cadmiur tal Chromium		0	0		0	2.031 573.894	2.15 1,816	+ .	170 43,504		Chem Transle Chem Transle		
	avalent Chror		0	0		0	16	1,816		1,287		Chem Transk		
Hex	Total Cobalt		0	0		0	95	95.0		7,507		Chem mansk	ator UI U.30Z	арриои
	Total Copper		0	0		0	13.551	14.1		1.115		Chem Trans	lator of 0.96	applied
	Free Cyanide		0	0		0	22	22.0		1,738				
	Dissolved Iron		0	0		0	N/A	N/A	\top	N/A				
	Total Iron		0	0		0	N/A	N/A		N/A				
	Total Lead		0	0		0	65.204	82.6		6,524		Chem Trans	lator of 0.79	applied

Total Manganese	0	0	 0	N/A	N/A	N/A	
Total Mercury	0	0	0	1.400	1.65	130	Chem Translator of 0.85 applied
Total Nickel	0	0	0	471.743	473	37,350	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0	0	3.266	3.84	304	Chem Translator of 0.85 applied
Total Thallium	0	0	0	65	65.0	5,136	
Total Zinc	0	0	0	118.059	121	9,539	Chem Translator of 0.978 applied
Acrolein	0	0	0	3	3.0	237	
Acrylonitrile	0	0	0	650	650	51,361	
Benzene	0	0	0	640	640	50.571	
Bromoform	0	0	0	1,800	1,800	142,230	
Carbon Tetrachloride	0	0	0	2,800	2,800	221,247	
Chlorobenzene	0	0	0	1,200	1,200	94,820	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	1,422,302	
Chloroform	0	0	0	1,900	1,900	150,132	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1.2-Dichloroethane	0	0	 0	15.000	15.000	1.185.252	
1,1-Dichloroethylene	0	0	0	7,500	7,500	592,626	
1,2-Dichloropropane	0	0	0	11.000	11.000	869.185	
1,3-Dichloropropylene	0	0	0	310	310	24,495	
Ethylbenzene	0	0	0	2,900	2.900	229,149	
Methyl Bromide	0	0	0	550	550	43,459	
Methyl Chloride	0	0	0	28.000	28.000	2.212.470	
Methylene Chloride	0	0	0	12,000	12,000	948,201	
1,1,2,2-Tetrachloroethane	0	0	 0	1,000	1,000	79,017	
Tetrachloroethylene	0	0	0	700	700	55.312	
Toluene	0	0	0	1,700	1.700	134,329	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	537,314	
1.1.1-Trichloroethane	0	0	0	3.000	3.000	237.050	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	268,657	
Trichloroethylene	0	0	0	2.300	2,300	181,739	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	44.249	
2,4-Dichlorophenol	0	0	0	1,700	1,700	134,329	
2,4-Dimethylphenol	0	0	0	660	660	52.151	
4.6-Dinitro-o-Cresol	0	0	0	80	80.0	6.321	
2,4-Dinitrophenol	0	0	0	660	660	52.151	
2-Nitrophenol	0	0	0	8.000	8.000	632,134	
4-Nitrophenol	0	0	0	2.300	2,300	181,739	
p-Chloro-m-Cresol	0	0	0	160	160	12.643	
Pentachlorophenol	0	0	0	8.583	8.58	678	
Phenol	0	0	0	0.363 N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	36.348	
Acenaphthene	0	0	0	83	83.0	6,558	
Anthracene	0	0	 0	N/A	N/A	0,556 N/A	

Benzo(a)Anthracene	0	0	0	0.5	0.5	39.5	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	2,370,503	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	355,576	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	21,335	
Butyl Benzyl Phthalate	0	0	0	140	140	11,062	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	64,794	
1,3-Dichlorobenzene	0	0	0	350	350	27,656	
1,4-Dichlorobenzene	0	0	0	730	730	57,682	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	316,067	
Dimethyl Phthalate	0	0	0	2,500	2,500	197,542	
Di-n-Butyl Phthalate	0	0	0	110	110	8,692	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	126,427	
2,6-Dinitrotoluene	0	0	0	990	990	78,227	
1,2-Diphenylhydrazine	0	0	0	15	15.0	1,185	
Fluoranthene	0	0	0	200	200	15,803	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	790	
Hexachlorocyclopentadiene	0	0	0	5	5.0	395	
Hexachloroethane	0	0	0	60	60.0	4,741	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	790,168	
Naphthalene	0	0	0	140	140	11,062	
Nitrobenzene	0	0	0	4,000	4,000	316,067	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	1,343,285	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	23,705	
Phenanthrene	0	0	0	5	5.0	395	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	10,272	

1	CFC	CCT (min):	720	PMF:	0.435	Analysis Hardness (mg/l):	100.13	Analysis pH:	7.00	
---	-----	------------	-----	------	-------	---------------------------	--------	--------------	------	--

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	119,134	
Total Arsenic	0	0		0	150	150	81,227	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	2,220,216	

Total Boron	0	0	0	1,600	1,600	866,426	
Total Cadmium	0	0	0	0.246	0.27	147	Chem Translator of 0.909 applied
Total Chromium (III)	0	0	0	74.193	86.3	46,717	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0	0	10	10.4	5,629	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	10,289	
Total Copper	0	0	0	8.966	9.34	5,057	Chem Translator of 0.96 applied
Free Cyanide	0	0	0	5.2	5.2	2,816	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	1,863,943	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.520	3.19	1,726	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	491	Chem Translator of 0.85 applied
Total Nickel	0	0	0	52.063	52.2	28,278	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	2,702	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	7,040	
Total Zinc	0	0	0	118.268	120	64,954	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	1,625	
Acrylonitrile	0	0	0	130	130	70,397	
Benzene	0	0	0	130	130	70,397	
Bromoform	0	0	0	370	370	200,361	
Carbon Tetrachloride	0	0	0	560	560	303,249	
Chlorobenzene	0	0	0	240	240	129,964	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	1,895,306	
Chloroform	0	0	0	390	390	211,191	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	1,678,700	
1,1-Dichloroethylene	0	0	0	1,500	1,500	812,274	
1,2-Dichloropropane	0	0	0	2,200	2,200	1,191,335	
1,3-Dichloropropylene	0	0	0	61	61.0	33,032	
Ethylbenzene	0	0	0	580	580	314,079	
Methyl Bromide	0	0	0	110	110	59,567	
Methyl Chloride	0	0	0	5,500	5,500	2,978,339	
Methylene Chloride	0	0	0	2,400	2,400	1,299,639	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	113,718	
Tetrachloroethylene	0	0	0	140	140	75,812	
Toluene	0	0	0	330	330	178,700	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	758,123	
1,1,1-Trichloroethane	0	0	0	610	610	330,325	
1,1,2-Trichloroethane	0	0	0	680	680	368,231	
Trichloroethylene	0	0	0	450	450	243,682	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	59,567	

2,4-Dichlorophenol	0	0	0	340	340	184,115	
2,4-Dimethylphenol	0	0	0	130	130	70,397	
4.6-Dinitro-o-Cresol	0	0	0	16	16.0	8.664	
2,4-Dinitrophenol	0	0	0	130	130	70.397	
2-Nitrophenol	0	0	0	1,600	1,600	866,426	
4-Nitrophenol	0	0	0	470	470	254,513	
p-Chloro-m-Cresol	0	0	0	500	500	270,758	
Pentachlorophenol	0	0	0	6.585	6.59	3,566	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	49,278	
Acenaphthene	0	0	0	17	17.0	9,206	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	31,949	
Benzo(a)Anthracene	0	0	0	0.1	0.1	54.2	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	3,249,097	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	492,780	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	29,242	
Butyl Benzyl Phthalate	0	0	0	35	35.0	18,953	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	86,643	
1,3-Dichlorobenzene	0	0	0	69	69.0	37,365	
1,4-Dichlorobenzene	0	0	0	150	150	81,227	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	433,213	
Dimethyl Phthalate	0	0	0	500	500	270,758	
Di-n-Butyl Phthalate	0	0	0	21	21.0	11,372	
2,4-Dinitrotoluene	0	0	0	320	320	173,285	
2,6-Dinitrotoluene	0	0	0	200	200	108,303	
1,2-Diphenylhydrazine	0	0	0	3	3.0	1,625	
Fluoranthene	0	0	 0	40	40.0	21,661	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	1,083	
Hexachlorocyclopentadiene	0	0	0	1	1.0	542	
Hexachloroethane	0	0	0	12	12.0	6,498	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	1,137,184	
Naphthalene	0	0	0	43	43.0	23,285	
Nitrobenzene	0	0	0	810	810	438,628	

n-Nitrosodimethylamine	0	0	0	3,400	3,400	1,841,155	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	31,949	
Phenanthrene	0	0	0	1	1.0	542	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	14,079	

✓ THH CC	CT (min): 7	20	PMF:	0.435	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	3,032	
Total Arsenic	0	0		0	10	10.0	5,415	
Total Barium	0	0		0	1,000	1,000	541,516	
Total Boron	0	0		0	3,100	3,100	1,678,700	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	1,300	1,300	703,971	
Free Cyanide	0	0		0	4	4.0	2,166	
Dissolved Iron	0	0		0	300	300	162,455	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	541,516	
Total Mercury	0	0		0	0.012	0.012	6.5	
Total Nickel	0	0		0	610	610	330,325	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	130	
Total Zinc	0	0		0	7,400	7,400	4,007,219	
Acrolein	0	0		0	3	3.0	1,625	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	54,152	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	17,870	

1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	36,823	
Methyl Bromide	0	0	0	47	47.0	25,451	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	30,866	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	54,152	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	5,415,161	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	16,245	
2,4-Dichlorophenol	0	0	0	10	10.0	5,415	
2,4-Dimethylphenol	0	0	0	100	100.0	54,152	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	1,083	
2,4-Dinitrophenol	0	0	0	10	10.0	5,415	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	2,166,064	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	37,906	
Anthracene	0	0	0	300	300	162,455	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	108,303	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	54.2	
2-Chloronaphthalene	0	0	0	800	800	433,213	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	420	420	227,437	
1,3-Dichlorobenzene	0	0	0	7	7.0	3,791	
1,4-Dichlorobenzene	0	0	0	63	63.0	34,116	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	

Dimethyl Phthalate	0	0	0	2,000	2,000	1,083,032	
Di-n-Butyl Phthalate	0	0	0	20	20.0	10,830	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	10,830	
Fluorene	0	0	0	50	50.0	27,076	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	2,166	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	18,412	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	5,415	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	10,830	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	37.9	

☑ CRL			Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A		
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	

Total Silver	0	0	0	50	50.0	94,018	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	0.051	0.051	95.9	
Benzene	0	0	0	0.58	0.58	1,091	
Bromoform	0	0	0	4.3	4.3	8,086	
Carbon Tetrachloride	0	0	0	0.4	0.4	752	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.4	0.4	752	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	10,718	
Dichlorobromomethane	0	0	0	0.55	0.55	1,034	
1,2-Dichloroethane	0	0	0	0.38	0.38	715	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.5	0.5	940	
1,3-Dichloropropylene	0	0	0	0.27	0.27	508	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	4.6	4.6	8.650	
1.1.2.2-Tetrachloroethane	0	0	0	0.17	0.17	320	
Tetrachloroethylene	0	0	0	0.69	0.69	1,297	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1.1.1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1.1.2-Trichloroethane	0	0	0	0.55	0.55	1.034	
Trichloroethylene	0	0	0	0.6	0.6	1,128	
Vinyl Chloride	0	0	0	0.02	0.02	37.6	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4.6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	56.4	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.4	1.4	2.632	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.000086	0.00009	0.16	
Benzo(a)Anthracene	0	0	0	0.000	0.0003	1.88	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.19	
Delizo(a)Pyrelie	U	U	U	0.0001	0.0001	0.18	

NPDES Permit No. PA0037940 Elkhorn Run STP

3,4-Benzofluoranthene	0	0	0	0.001	0.001	1.88	
Benzo(k)Fluoranthene	0	0	0	0.0038	0.004	7.15	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	56.4	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	602	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.0038	0.004	7.15	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.19	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.021	0.021	39.5	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	94.0	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	94.0	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	56.4	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.15	
Hexachlorobutadiene	0	0	0	0.01	0.01	18.8	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	188	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	1.88	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.00069	0.0007	1.3	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	9.4	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	6,205	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Mercury	0.0003	0.0004	12.0	18.7	30.0	ng/L	12.0		Discharge Conc ≥ 50% WQBEL (RP)

NPDES Permit No. PA0037940 Elkhorn Run STP

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Aluminum	37,985	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	3,032	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	541,516	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	410,237	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	109	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	46,717	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	825	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	4,811	μg/L	Discharge Conc < TQL
Total Copper	715	μg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	1,114	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	162,455	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	1,863,943	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	1,726	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	541,516	μg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	23,940	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Selenium	2,702	μg/L	Discharge Conc < TQL
Total Silver	195	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	130	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	6,114	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	152	μg/L	Discharge Conc < TQL
Acrylonitrile	95.9	μg/L	Discharge Conc < TQL
Benzene	1,091	μg/L	Discharge Conc < TQL
Bromoform	8,086	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	752	μg/L	Discharge Conc < TQL
Chlorobenzene	54,152	μg/L	Discharge Conc < TQL

Chlorodibromomethane	752	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	911.638	µg/L	Discharge Conc < TQL
Chloroform	10.718	μg/L μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	1.034	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,1-Dichloroethane	715	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	17.870	μg/L μg/L	Discharge Conc < TQL
1,2-Dichloropropane	940	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	508	µg/L	Discharge Conc < TQL
1.4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	36.823	µg/L	Discharge Conc < TQL
Methyl Bromide	25.451	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	1,418,104	µg/L	Discharge Conc < TQL
Methylene Chloride	8.650	μg/L μg/L	Discharge Conc < TQL
1.1.2.2-Tetrachloroethane	320	μg/L	Discharge Conc < TQL
Tetrachloroethylene	1,297	μg/L μg/L	Discharge Conc < TQL
Toluene	30,866	μg/L	Discharge Conc ≤ 25% WQBEL
1.2-trans-Dichloroethylene	54,152	μg/L	Discharge Conc < TQL
1,1-Trichloroethane	151,940		Discharge Conc < TQL
1,1,2-Trichloroethane	1.034	µg/L	Discharge Conc < TQL
Trichloroethylene	1,128	μg/L μg/L	Discharge Conc < TQL
Vinyl Chloride	37.6	μg/L μg/L	Discharge Conc < TQL
2-Chlorophenol	16.245	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	5.415	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	33.427	µg/L	Discharge Conc ≤ 25% WQBEL
4,6-Dinitro-o-Cresol	1,083	µg/L	Discharge Conc < TQL
2.4-Dinitrophenol	5.415	µg/L	Discharge Conc < TQL
2-Nitrophenol	405,173	µg/L	Discharge Conc < TQL
4-Nitrophenol	116,487	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	8,103	µg/L	Discharge Conc < TQL
Pentachlorophenol	56.4	µg/L	Discharge Conc < TQL
Phenol	2,166,064	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	2.632	µg/L	Discharge Conc < TQL
Acenaphthene	4,204	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	162,455	µg/L	Discharge Conc < TQL
Benzidine	0.16	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	1.88	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.19	µg/L	Discharge Conc < TQL
3.4-Benzofluoranthene	1.88	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	7.15	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	56.4	µg/L	Discharge Conc < TQL
Dia(2-Chiloroeutyr)Euter	30.4	µg/L	Discharge Conc > TQL

Bis(2-Chloroisopropyl)Ether	108,303	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	602	μg/L	Discharge Conc ≤ 25% WQBE
4-Bromophenyl Phenyl Ether	13,675	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	54.2	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	433,213	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	7.15	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.19	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	41,530	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	3,791	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	34,116	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	39.5	μg/L	Discharge Conc < TQL
Diethyl Phthalate	202,586	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	126,616	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	5,571	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	94.0	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	94.0	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	56.4	μg/L	Discharge Conc < TQL
Fluoranthene	10,129	μg/L	Discharge Conc < TQL
Fluorene	27,076	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.00008	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.01	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	253	μg/L	Discharge Conc < TQL
Hexachloroethane	188	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	1.88	μg/L	Discharge Conc < TQL
Isophorone	18,412	μg/L	Discharge Conc < TQL
Naphthalene	7,091	μg/L	Discharge Conc < TQL
Nitrobenzene	5,415	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	1.3	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	9.4	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	6,205	μg/L	Discharge Conc < TQL
Phenanthrene	253	μg/L	Discharge Conc < TQL
Pyrene	10,830	μg/L	Discharge Conc < TQL
	37.9		Discharge Conc < TQL

NPDES Permit No. PA0037940 Elkhorn Run STP

ATTACHMENT I: PRE-DRAFT LETTER

February 1, 2022

VIA ELECTRONIC MAIL:

Frank Vescio Center Township Sanitary Authority 224 Center Grange Road Aliquippa, PA 15001

Re: Draft NPDES Permit- Sewage

Elkhorn Run STP

Application No. PA0037940 Authorization ID No. 1372115 Center Township, Beaver County

Dear Permittee:

The Department of Environmental Protection (DEP) has reviewed your NPDES permit application and has reached a preliminary finding that new or more stringent water quality-based effluent limitations (WQBELs) for toxic pollutant(s) should be established in the permit. This finding is based on DEP's assessment that reasonable potential exists to exceed water quality criteria under Chapter 93 in the receiving waters during design flow conditions. The following WQBELs are anticipated based on the information available to DEP during its review:

Outfall No.	Pollutant	Average Monthly (ng/L)	Maximum Daily (ng/L)	IMAX (ng/L)
001	Total Mercury	12.0	18.7	30.3

Attached is a survey that DEP requests that you complete and return to DEP in 30 days. Completion of this survey will help DEP understand your current capabilities or plans to treat or control these pollutant(s). Your response to this notice does not constitute an official comment for DEP response but will be taken under consideration. When the draft NPDES permit is formally noticed in the *Pennsylvania Bulletin*, you may make official comments for DEP's further consideration and response.

NPDES Permit No. PA0037940 Elkhorn Run STP

Please contact me if you have any questions about this information or the attached survey.

Sincerely,

Grace Polakoski, E.I.T.

grace tolahoodi

Environmental Engineering Specialist

Clean Water Program

Enclosures

cc: Robert Martini - Center Township Sanitary Authority

Marie S. Hartman - Lennon, Smith, Souleret Engineering, Inc.

US EPA Region III

Southwest Regional Office

NPDES Permit No. PA0037940 Elkhorn Run STP

ATTACHMENT J: PRE-DRAFT SURVEY

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PRE-DRAFT PERMIT SURVEY FOR TOXIC POLLUTANTS

· · · · · · · · · · · · · · · · · · ·	ermit PA0037940 o.:
Pollutant(s) identified by DEP that may require WQBELs:	
Is the permittee aware of the source(s) of the \square Yes \square N pollutant(s)?	No Suspected
If Yes or Suspected, describe the known or suspected source(s) of polluta	ant(s) in the effluent.
Has the permittee completed any studies in the past to control or tr pollutant(s)?	reat the Yes X No
If Yes, describe prior studies and results:	
Does the permittee believe it can achieve the proposed WQBELs now?	Yes X No Uncertain
If No, describe the activities, upgrades or process changes that would be known.	necessary to achieve the WQBELs, if
Unknown. Extensive sampling is required to identify/quantify baseline M studies are required to determine Best Available Technologies (BAT) to this would require a significant capital expenditure and upgrade to the S'	treat Mercury to proposed WQBEL.
Estimated date by which the permittee could achieve the proposed WQBELs:	X Uncertain
Will the permittee conduct additional sampling for the pollutant(s) to application?	supplement the X Yes No
Check the appropriate box(es) below to indicate site-specific data that ha the past. If any of these data have <u>not</u> been submitted to DEP, please atta	
☐ Discharge pollutant concentration coefficient(s) of variability	Year(s) Studied:
Discharge and background Total Hardness concentrations (metals)	Year(s) Studied:
☐ Background / ambient pollutant concentrations	Year(s) Studied:

NPDES Permit No. PA0037940 Elkhorn Run STP

Chemical translator(s) (metals)	Year(s) Studied:
Slope and width of receiving waters	Year(s) Studied:
Velocity of receiving waters at design conditions	Year(s) Studied:
Acute and/or chronic partial mix factors (mixing at design conditions)	Year(s) Studied:
Volatilization rates (highly volatile organics)	Year(s) Studied:
Site-specific criteria (e.g., Water Effect Ratio or related study)	Year(s) Studied:

Please submit this survey to the DEP regional office that is reviewing the permit application within 30 days of receipt.

NPDES Permit Fact Sheet
NPDES Permit No. PA0037940 Elkhorn Run STP
ATTACHMENT K:
ADDITIONAL MERCURY SAMPLING VIA EPA TEST METHOD 1631E

(June 8, 2022)

Managing Principals: Kevin A. Brett, P.E. Ned Mitrovich, P.E. Jason E. Stanton, P.E.

June 8, 2022

S. O. No. 495-025

VIA EMAIL ONLY (grpolakosk@pa.gov)

Ms. Grace Polakoski Environmental Engineering Specialist Department of Environmental Protection Clean Water Program 400 Waterfront Drive Pittsburgh, Pennsylvania 15222

Subject: Center Township Sanitary Authority

or co

NPDES Permit No PA0037940 Renewal

Dear Ms. Polakoski:

As discussed, enclosed herewith please find additional analyses for effluent Mercury (12 samples), that were collected and analyzed by CWM Environmental from April 12, 2022 through May 4, 2022. These analyses represent the second set of supplemental data to the NPDES Permit Renewal Application submitted by the Center Township Sanitary Authority (NPDES Permit No PA0037940).

Should you have any questions, please contact Marie S. Hartman, P.E. directly (Ext. 246).

Sincerely,

Ned Mitrovich, P.E.

NM/als

Attachment

cc/att: Robert Martini, Operations Supervisor - CTSA (martini@ctsapa.us)

Marie S. Hartman, P.E., LSSE (mhartman@lsse.com)

Ken Parks, LSSE (kparks@rabellsurvey.com)

Center Township Sanitary Authority NPDES Permit No PA0037940 Renewal CWM Environmental Sampling Results Summary

Efflu	ent 24 Hour Composite Sa	imple
Date	Result	Notes
4/12/2022	0.5 ng/L	Blank**
4/12/2022	3.4 ng/L	Sample 2
4/13/2022	49.8 ng/L	Sample 3
4/13/2022	43.2 ng/L	Sample 4
4/19/2022	7.5 ng/L	Sample 5
4/20/2022	28.1 ng/L	Sample 6
4/25/2022	6.2 ng/L	Sample 7
4/26/2022	25.9 ng/L	Sample 8
4/27/2022	6.1 ng/L	Sample 9
4/28/2022	30.2ng/L	Sample 10
4/28/2022	0.5 ng/L	Blank 1**
4/28/2022	0.5 ng/L	Blank 2**
4/28/2022	0.5 ng/L	Blank 3**
5/3/2022	37.4 ng/L	Sample 1
5/4/2022	25.7 ng/L	Sample 2
5/4/2022	0.5 ng/L	Sample 3**
5/4/2022	0.5 ng/L	Blank 1**
5/4/2022	0.5 ng/L	Blank 2**
5/4/2022	0.5 ng/L	Blank 3**

^{*}Estimated value (above detection limit/below reporting limit)

^{**}The analyte was not detected at or above the listed concentration, which is below the laboratory quantitation limit.

NPDES Permit No. PA0037940 Elkhorn Run STP

ATTACHMENT L: TOXCONC MODELING FOR MERCURY (20 samples)

NPDES Permit No. PA0037940 Elkhorn Run STP

INPUT:

	Facility:		Elkhorn Run STP				
	NPDES #:		PA0037940				
	Outfall No:		001				
	n (Samples/Mon	th):	4				
	Reviewer/Permi	t Engineer:	GRP				
Parameter Name	Total Mercury						
Units	other						
Detection Limit	12						
Sample Date	When entering y	alues helow th	ne detection limit, e	nter "ND" or u	se the < notation	(eg. <0.02)	
12/01/21	9.8	ardes below to	detection mint, et	ner ND or a	se the \ notation	(cy. <0.02)	
12/02/21	19						
12/03/21	15.5						
12/04/21	14.2						
12/05/21	19.4						
12/07/21	26.9						
12/09/21	18.3						
12/10/21	44						
12/11/21	20.7						
12/12/21	8.7						
12/13/21	25.2						
12/15/21	5.3						
04/12/22	3.4						
04/13/22	49.8						
04/13/22	43.2						
04/19/22	7.5						
04/20/22	28.1						
04/25/22	6.2						
04/26/22	25.9						
04/27/22	6.1						
04/28/22	30.2						
05/03/22	37.4						
05/04/22 05/04/22	25.7						

OUTPUT:

n (Samples/Month):

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Total Mercury (other)	Lognormal	1.3693173	88.5128543

NPDES Permit No. PA0037940 Elkhorn Run STP

ATTACHMENT M: TMS MODELING RESULTS (Run 2)

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Discharge Characteristics								
Design Flow	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs) Complete Mix Times (x Times (min)
(MGD)*	nardiless (ilig/i)	рн (30)	AFC	AFC CFC THH CRL				Qh
2.5	170	6.4						

					0 if left blank		0.5 if left blank		0 if left blank			1 if left blank	
	Discharge Pollutant	Units	Max Discharge Conc		Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
10	Total Dissolved Solids (PWS)	mg/L											
	Chloride (PWS)	mg/L											
Group	Bromide	mg/L											
6	Sulfate (PWS)	mg/L											
L	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L		320									
1	Total Antimony	μg/L		1									
	Total Arsenic	µg/L	<	1									
	Total Barium	µg/L		57									
	Total Beryllium	µg/L	<	0.3									
	Total Boron	µg/L		250									
1	Total Cadmium	µg/L	<	0.4									
1	Total Chromium (III)	µg/L		3									
Group 2	Hexavalent Chromium	µg/L		11									
	Total Cobalt	µg/L	<	0.7									
	Total Copper	µg/L		9									
	Free Cyanide	μg/L		22									
	Total Cyanide	μg/L		11									
	Dissolved Iron	μg/L		631									
	Total Iron	µg/L		417									
	Total Lead	µg/L		3									
	Total Manganese	µg/L		115									
	Total Mercury	ng/L		86.5									
	Total Nickel	μg/L	<	6									
	Total Phenols (Phenolics) (PWS)	µg/L		4									
	Total Selenium	μg/L	<	1									
	Total Silver	μg/L	<	1									
1	Total Thallium	μg/L		3									
1	Total Zinc	μg/L		48									
	Total Molybdenum	μg/L		4									
	Acrolein	μg/L	<	1.3									
	Acrylamide	µg/L	<										
	Acrylonitrile	μg/L	<	2									
	Benzene	µg/L	<	0.12									
	Bromoform	µg/L	<	0.37									

	Carbon Tetrachloride	μg/L	<	0.23							
	Chlorobenzene	μg/L	<	0.25							
	Chlorodibromomethane	μg/L	<	0.25							
	Chloroethane	μg/L	<	0.47							
	2-Chloroethyl Vinyl Ether	μg/L	<	3.1							
	Chloroform	µg/L		1.4							
	Dichlorobromomethane	µg/L	<	0.18							
	1.1-Dichloroethane		<	0.16			_	_	_		
		μg/L									
60	1,2-Dichloroethane	μg/L	<	0.12							
Group	1,1-Dichloroethylene	μg/L	<	0.13							
2	1,2-Dichloropropane	μg/L	<	0.26							
9	1,3-Dichloropropylene	μg/L	٧.	0.47							
	1,4-Dioxane	μg/L	<	0.34							
	Ethylbenzene	μg/L	<	0.2							
	Methyl Bromide	µg/L		0.69							
	Methyl Chloride	µg/L	<	0.33			_	_	_		
			<					_			
	Methylene Chloride	μg/L	-	0.33							
	1,1,2,2-Tetrachloroethane	μg/L	<	0.38							
	Tetrachloroethylene	μg/L	<	0.27							
	Toluene	μg/L		0.42							
	1,2-trans-Dichloroethylene	μg/L	<	0.08							
	1,1,1-Trichloroethane	μg/L	<	0.12							
	1.1.2-Trichloroethane	µg/L	<	0.13							
	Trichloroethylene	µg/L	<	0.29							
	Vinyl Chloride	µg/L	<	0.29							
$\vdash\vdash$	*		-								
	2-Chlorophenol	μg/L	<	0.38							
	2,4-Dichlorophenol	μg/L	<	0.43							
	2,4-Dimethylphenol	μg/L		0.92							
	4,6-Dinitro-o-Cresol	μg/L	<	1.2							
4	2,4-Dinitrophenol	μg/L	<	2.8							
Group	2-Nitrophenol	µg/L	<	0.38							
2	4-Nitrophenol	µg/L	<	1.3							
-	p-Chloro-m-Cresol	µg/L	<	0.38							
	Pentachlorophenol	µg/L	<	1.7							
	Phenol		<	0.25							
		μg/L	-								
Ш	2,4,6-Trichlorophenol	μg/L	<	0.46							
	Acenaphthene	μg/L	<	0.39							
	Acenaphthylene	μg/L	<	0.38							
	Anthracene	μg/L	<	0.39							
	Benzidine	μg/L	<	2.5							
	Benzo(a)Anthracene	μg/L	<	0.4							
	Benzo(a)Pyrene	µg/L	<	0.35							
	3.4-Benzofluoranthene	µg/L	<	0.39							
			<	0.39							
	Benzo(ghi)Perylene	μg/L	-								
	Benzo(k)Fluoranthene	μg/L	<	0.38							
	Bis(2-Chloroethoxy)Methane	μg/L	<	0.43							
	Bis(2-Chloroethyl)Ether	μg/L	<	0.37							
	Bis(2-Chloroisopropyl)Ether	μg/L	<	0.43							
	Bis(2-Ethylhexyl)Phthalate	μg/L		1.6							
	4-Bromophenyl Phenyl Ether	μg/L	<	0.44							
	Butyl Benzyl Phthalate	µg/L	<	0.57							
	2-Chloronaphthalene	µg/L	<	0.39							
			<								
	4-Chlorophenyl Phenyl Ether	μg/L	-	0.39							
	Chrysene	μg/L	<	0.41							
	Dibenzo(a,h)Anthrancene	μg/L	<	0.42							
	1,2-Dichlorobenzene	μg/L	<	0.37							
	1,3-Dichlorobenzene	μg/L	<	0.43							
2	1,4-Dichlorobenzene	µg/L	<	0.43							
	3,3-Dichlorobenzidine	µg/L	<	1							
Group	Diethyl Phthalate	µg/L	<	0.55							
ō	Dimethyl Phthalate		<	0.55							
		µg/L	-								
	Di-n-Butyl Phthalate 2,4-Dinitrotoluene	μg/L μg/L	<	0.56							
,			<	0.44	P-000000000000000000000000000000000000	1			1	1	

r	0.0.01.11.11				***************************************			I			
·	2,6-Dinitrotoluene	μg/L	<	0.4							
	Di-n-Octyl Phthalate	μg/L	٧	0.86							
	1,2-Diphenylhydrazine	μg/L	<	0.37							
·	Fluoranthene	μg/L	٧	0.42							
	Fluorene	μg/L	*	0.37							
	Hexachlorobenzene	μg/L	<	0.42							
	Hexachlorobutadiene	μg/L	<	0.48							
	Hexachlorocyclopentadiene	μg/L	٧	0.72							
	Hexachloroethane	μg/L	<	0.36							
	Indeno(1,2,3-cd)Pyrene	μg/L	<	0.39							
- 1	Isophorone	μg/L	٧	0.42							
- 1	Naphthalene	μg/L	<	0.39							
	Nitrobenzene	µg/L	<	0.51							
- 1	n-Nitrosodimethylamine	µg/L	<	1.1							
	n-Nitrosodi-n-Propylamine	µg/L	<	0.41							
	n-Nitrosodiphenylamine	µg/L	<	0.48							
H	Phenanthrene	µg/L	<	0.38							
	Pyrene		<	0.41							
	•	μg/L									
$\overline{}$	1,2,4-Trichlorobenzene	µg/L	<	0.41							
	Aldrin	μg/L	<								
- 1	alpha-BHC	μg/L	<								
	beta-BHC	μg/L	<								
	gamma-BHC	μg/L	<								
	delta BHC	μg/L	<								
	Chlordane	μg/L	<								
	4,4-DDT	μg/L	<								
	4,4-DDE	μg/L	٧								
	4,4-DDD	μg/L	٧								
	Dieldrin	μg/L	٧								
	alpha-Endosulfan	μg/L	<								
- 1	beta-Endosulfan	μg/L	٧								
9	Endosulfan Sulfate	μg/L	<								
Group	Endrin	μg/L	<								
<u>ج</u> ا	Endrin Aldehyde	µg/L	<								
	Heptachlor	µg/L	<								
H	Heptachlor Epoxide	µg/L	<								
	PCB-1016	µg/L	<								
	PCB-1221		<				_			_	
	PCB-1221 PCB-1232	µg/L	<				_			_	
	PCB-1232 PCB-1242	μg/L	<								
- 1		μg/L	_								
L	PCB-1248	μg/L	<								
	PCB-1254	μg/L	٧.								
	PCB-1260	μg/L	<								
H	PCBs, Total	μg/L	<								
H	Toxaphene	μg/L	<								
\rightarrow	2,3,7,8-TCDD	ng/L	<								
	Gross Alpha	pCi/L									
- [Total Beta	pCi/L	٧								
	Radium 226/228	pCi/L	٧								
ē	Total Strontium	μg/L	٧								
9	Total Uranium	μg/L	٧								
-	Osmotic Pressure	mOs/kg									
\neg											
-											
-											
-											
-											
- 1											
									_	_	

NPDES Permit No. PA0037940 Elkhorn Run STP

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Elkhorn Run STP, NPDES Permit No. PA0037940, Outfall 001

Instructions Disch	arge Str	ream														
Receiving Surface W	/ater Name:	Ohio River					No. Rea	aches to	Model	: <u>1</u>		_	tewide Criteri			
Location	Stream Co	de* RMI	Elevat	DA (mi	²)* SI	lope (ft/ft)		Withdraw MGD)	val /	Apply Fi Criteria		● OR	SANCO Crite	ria		
Point of Discharge	032317	958.	1 680	19600	0	0.0001				Yes						
End of Reach 1	032317	957.	1 679	19800	0	0.0001				Yes						
Q ₇₋₁₀						_										
Location	RMI	LFY		(cfs)	W/D		Depth	Velocit		me	Tributa		Stream		Analys	
		(cfs/mi ²)*	Stream	Tributary	Ratio		(ft)	y (fps)	(de	ave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	958.1	0.245				1270	15						100	7		
End of Reach 1	957.1	0.245				1270	15									
Q _h																
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit		me	Tributa	iry	Stream	m	Analys	is
Location	TAVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)		ave)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	958.1															
End of Reach 1	957.1															

NPDES Permit No. PA0037940 Elkhorn Run STP

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Elkhorn Run STP, NPDES Permit No. PA0037940, Outfall 001

Wiodei	Nesuit	3								LIKITOTTI	Kull STF, KFDE	o remit No.	, A0037340,	Odtidii 001
Instructions	Results		RETUR	N TO INPU	TS [SAVE AS PD	F	PI	RINT	⊚ Al	I 🔘 Inputs	O Results) Limits	
□ Hudrad	hunamiaa													
✓ Hydrod	ynamics													
Q 7-10														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (f	t/ft) De	pth (ft)	Width (f	t) W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
958.1	4,802			4,802		3.868	0.000	1	15.	1270.	84.667	0.252	0.242	3799.259
957.1	4,851			4,851										
Q _h														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (f	t/ft) De	pth (ft)	Width (f	1	Velocity (fps)	Time (days)	Complete Mix Time (min)
958.1	12261.73			12261.73		3.868	0.000	1 2	2.653	1270.	56.062	0.426	0.143	2049.081
957.1	12371.015			12371.02	!									
✓ Wasteld	oad Allocatio		T (min):	15	PMF:	0.063		ysis Har	`	mg/l):	100.89	Analysis pH:	6.98	
	Pollutants		Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ C (µg/L) WI	LA (µg/L)		С	omments	
	otal Aluminur		0	0		0	750	750		59,263				
	otal Antimon		0	0		0	1,100	1,10		86,918				
	Total Arsenic		0	0		0	340	340		26,866		Chem Tran	slator of 1 ap	pplied
	Total Barium Total Boron		0	0		0	21,000 8,100	21,00 8,10		659,352 40,036				
—	otal Cadmiur	,	0	0		0	2.031	2.15	_	170		Chem Transl	ator of 0.044	applied
	al Chromium		0	0			73.894	1,81		43,504		Chem Transl		
	avalent Chron		0	0		0	16	16.3		1,287		Chem Transl		
	Total Cobalt		0	0		0	95	95.0		7,507				
	Total Copper		0	0		0	13.551	14.1		1,115		Chem Trans	lator of 0.96	applied
	Free Cyanide)	0	0		0	22	22.0		1,738				
[Dissolved Iron	1	0	0		0	N/A	N/A		N/A				
	Total Iron		0	0		0	N/A	N/A		N/A				
	Total Lead		0	0		0	65 204	826		6 524		Chem Trans	lator of 0.79	annlied

Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	130	Chem Translator of 0.85 applied
Total Nickel	0	0		0	471.743	473	37,350	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.266	3.84	304	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	5,136	
Total Zinc	0	0		0	118.059	121	9,539	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	237	
Acrylonitrile	0	0		0	650	650	51,361	
Benzene	0	0		0	640	640	50,571	
Bromoform	0	0		0	1,800	1,800	142,230	
Carbon Tetrachloride	0	0		0	2,800	2,800	221,247	
Chlorobenzene	0	0		0	1,200	1,200	94,820	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	18.000	18.000	1,422,302	
Chloroform	0	0		0	1,900	1,900	150,132	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	 	0	15,000	15,000	1,185,252	
1,1-Dichloroethylene	0	0		0	7.500	7.500	592,626	
1.2-Dichloropropane	0	0	 	0	11.000	11.000	869.185	
1,3-Dichloropropylene	0	0		0	310	310	24.495	
Ethylbenzene	0	0		0	2.900	2.900	229,149	
Methyl Bromide	0	0		0	550	550	43,459	
Methyl Chloride	0	0		0	28.000	28.000	2.212.470	
Methylene Chloride	0	0		0	12.000	12.000	948.201	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	79.017	
Tetrachloroethylene	0	0		0	700	700	55.312	
Toluene	0	0		0	1.700	1.700	134.329	
1,2-trans-Dichloroethylene	0	0		0	6.800	6.800	537.314	
1.1.1-Trichloroethane	0	0		0	3.000	3.000	237,050	
1.1.2-Trichloroethane	0	0		0	3,400	3,400	268.657	
Trichloroethylene	0	0		0	2,300	2.300	181.739	
Vinyl Chloride	0	0	-	0	2,300 N/A	N/A	N/A	
2-Chlorophenol	0	0		0	560	560	44,249	
2,4-Dichlorophenol	0	0		0	1,700	1.700	134,329	
2,4-Dichlorophenol	0	0		0	660	660	52.151	
4,6-Dinitro-o-Cresol	0	0		0	80	80.0	6.321	
2,4-Dinitro-o-Cresol	0	0		0	660	660	52,151	
2,4-Dinitrophenol	0	0		0	8,000	8.000	632,134	
4-Nitrophenol	0	0		0	2,300	2.300	181,739	
		_		_	160	160		
p-Chloro-m-Cresol	0	0		0	8.583	160 8.58	12,643 678	
Pentachlorophenol	0	_		0	8.583 N/A	8.58 N/A	678 N/A	
Phenol	0	0		0				
2,4,6-Trichlorophenol	0	0		0	460	460	36,348	
Acenaphthene	0	0		0	83	83.0	6,558	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	23,705	

Benzo(a)Anthracene	0	0	0	0.5	0.5	39.5	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	2,370,503	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	355,576	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	21,335	
Butyl Benzyl Phthalate	0	0	0	140	140	11,062	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	64,794	
1,3-Dichlorobenzene	0	0	0	350	350	27,656	
1,4-Dichlorobenzene	0	0	0	730	730	57,682	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	316,067	
Dimethyl Phthalate	0	0	0	2,500	2,500	197,542	
Di-n-Butyl Phthalate	0	0	0	110	110	8,692	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	126,427	
2,6-Dinitrotoluene	0	0	0	990	990	78,227	
1,2-Diphenylhydrazine	0	0	0	15	15.0	1,185	
Fluoranthene	0	0	0	200	200	15,803	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	790	
Hexachlorocyclopentadiene	0	0	0	5	5.0	395	
Hexachloroethane	0	0	0	60	60.0	4,741	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	790,168	
Naphthalene	0	0	0	140	140	11,062	
Nitrobenzene	0	0	0	4,000	4,000	316,067	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	1,343,285	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	23,705	
Phenanthrene	0	0	0	5	5.0	395	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	10,272	

✓ CFC CCT (min):	720	PMF:	0.435	Analysis Hardness (mg/l):	100.13	Analysis pH:	7.00	1
------------------	-----	------	-------	---------------------------	--------	--------------	------	---

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	119,134	
Total Arsenic	0	0		0	150	150	81,227	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	2,220,216	

Total Boron	0	0	0	1,600	1,600	866,426	
Total Cadmium	0	0	0	0.246	0.27	147	Chem Translator of 0.909 applied
Total Chromium (III)	0	0	0	74.193	86.3	46,717	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0	0	10	10.4	5,629	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	10,289	
Total Copper	0	0	0	8.966	9.34	5,057	Chem Translator of 0.96 applied
Free Cyanide	0	0	0	5.2	5.2	2,816	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	1,863,943	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.520	3.19	1,726	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	491	Chem Translator of 0.85 applied
Total Nickel	0	0	0	52.063	52.2	28,278	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	2,702	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	7,040	
Total Zinc	0	0	0	118.268	120	64,954	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	1,625	
Acrylonitrile	0	0	0	130	130	70,397	
Benzene	0	0	0	130	130	70,397	
Bromoform	0	0	0	370	370	200,361	
Carbon Tetrachloride	0	0	0	560	560	303,249	
Chlorobenzene	0	0	0	240	240	129,964	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	1,895,306	
Chloroform	0	0	0	390	390	211,191	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	1,678,700	
1,1-Dichloroethylene	0	0	0	1,500	1,500	812,274	
1,2-Dichloropropane	0	0	0	2,200	2,200	1,191,335	
1,3-Dichloropropylene	0	0	0	61	61.0	33,032	
Ethylbenzene	0	0	0	580	580	314,079	
Methyl Bromide	0	0	0	110	110	59,567	
Methyl Chloride	0	0	0	5,500	5,500	2,978,339	
Methylene Chloride	0	0	0	2,400	2,400	1,299,639	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	113,718	
Tetrachloroethylene	0	0	0	140	140	75,812	
Toluene	0	0	0	330	330	178,700	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	758,123	
1,1,1-Trichloroethane	0	0	0	610	610	330,325	
1,1,2-Trichloroethane	0	0	0	680	680	368,231	
Trichloroethylene	0	0	0	450	450	243,682	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	59.567	

2,4-Dichlorophenol	0	0	0	340	340	184,115	Γ
2,4-Dichlorophenol	0	0	0	130	130	70,397	
	_		_				
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	8,664	
2,4-Dinitrophenol	0	0	 0	130	130	70,397	
2-Nitrophenol	0	0	0	1,600	1,600	866,426	
4-Nitrophenol	0	0	0	470	470	254,513	
p-Chloro-m-Cresol	0	0	0	500	500	270,758	
Pentachlorophenol	0	0	0	6.585	6.59	3,566	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	49,278	
Acenaphthene	0	0	0	17	17.0	9,206	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	31,949	
Benzo(a)Anthracene	0	0	0	0.1	0.1	54.2	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	3,249,097	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	492,780	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	29,242	
Butyl Benzyl Phthalate	0	0	0	35	35.0	18,953	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	86,643	
1,3-Dichlorobenzene	0	0	0	69	69.0	37,365	
1,4-Dichlorobenzene	0	0	0	150	150	81,227	
3.3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	433,213	
Dimethyl Phthalate	0	0	0	500	500	270,758	
Di-n-Butyl Phthalate	0	0	0	21	21.0	11,372	
2.4-Dinitrotoluene	0	0	0	320	320	173,285	
2.6-Dinitrotoluene	0	0	0	200	200	108,303	
1,2-Diphenylhydrazine	0	0	0	3	3.0	1,625	
Fluoranthene	0	0	0	40	40.0	21,661	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	ő	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	1.083	
Hexachlorocyclopentadiene	0	0	0	1	1.0	542	
Hexachloroethane	0	0	0	12	12.0	6.498	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	1,137,184	
Naphthalene	0	0	0	43	43.0	23,285	
Nitrobenzene	0	0	0	810	810	438.628	
Millobenzene	U	U	Ü	010	010	430,028	

n-Nitrosodimethylamine	0	0	0	3,400	3,400	1,841,155	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	31,949	
Phenanthrene	0	0	0	1	1.0	542	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	14,079	

✓ THH C	CT (min): 7	20	PMF:	0.435	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	3,032	
Total Arsenic	0	0		0	10	10.0	5,415	
Total Barium	0	0		0	1,000	1,000	541,516	
Total Boron	0	0		0	3,100	3,100	1,678,700	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	1,300	1,300	703,971	
Free Cyanide	0	0		0	4	4.0	2,166	
Dissolved Iron	0	0		0	300	300	162,455	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	541,516	
Total Mercury	0	0		0	0.012	0.012	6.5	
Total Nickel	0	0		0	610	610	330,325	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	130	
Total Zinc	0	0		0	7,400	7,400	4,007,219	
Acrolein	0	0		0	3	3.0	1,625	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	54,152	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	17,870	

1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0	-	0	68	68.0	36.823	
Methyl Bromide	0	0		0	47	47.0	25,451	
•	_	_					-	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0	ļI	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A N/A	
Tetrachloroethylene	0	0		0	N/A	N/A		
Toluene	0	0		0	57	57.0	30,866	
1,2-trans-Dichloroethylene	0	0		0	100	100.0	54,152	
1,1,1-Trichloroethane	0	0		0	10,000	10,000	5,415,161	
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0	ļ	0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	16,245	
2,4-Dichlorophenol	0	0		0	10	10.0	5,415	
2,4-Dimethylphenol	0	0		0	100	100.0	54,152	
4,6-Dinitro-o-Cresol	0	0		0	2	2.0	1,083	
2,4-Dinitrophenol	0	0		0	10	10.0	5,415	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0		0	4,000	4,000	2,166,064	
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	70	70.0	37,906	
Anthracene	0	0		0	300	300	162,455	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	108,303	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	54.2	
2-Chloronaphthalene	0	0		0	800	800	433,213	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	420	420	227,437	
1.3-Dichlorobenzene	0	0		0	7	7.0	3.791	
1,4-Dichlorobenzene	0	0		0	63	63.0	34,116	
3.3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	324,910	
Dietriyi Filtilalate	U	U		v	000	000	324,810	

Dimethyl Phthalate	0	0	0	2,000	2,000	1,083,032	
Di-n-Butyl Phthalate	0	0	0	20	20.0	10,830	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	10,830	
Fluorene	0	0	0	50	50.0	27,076	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	2,166	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	18,412	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	5,415	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	10,830	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	37.9	

☑ CRL C	CT (min): 7	20	PMF:	0.593	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	

Total Traillium Total Zirc 0 0 0 NiA NiA NiA Archien Acrolein 0 0 0 NiA NiA NiA Archien Acrolein 0 0 0 0 NiA NiA NiA Archien 0 0 0 0 NiA NiA NiA Archien 0 0 0 0 0 NiA NiA NiA Archien 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Silver	0	0	0	50	50.0	94,018	
Total Zinc		_	_	_				
Acrolein								
Acryontifie				_				
Benzene			_	_		1411		
Bromoform	•	_	0	0				
Chlorobenzene 0 0 N/A N/A N/A Chlorodbromomethane 0 0 0 0 1,4 0 752 2-Chlorodbryl Vinyl Ether 0 0 0 N/A N/A N/A Chloroform 0 0 0 5.7 5.7 10,718 Dichlorobromethane 0 0 0 0.55 1,534 1,1-Dichloroptrophane 0 0 0 0.38 0.38 715 1,1-Dichloroptrophane 0 0 0 0.5 0.5 940 1,2-Dichloroptrophane 0 0 0 0.27 0.27 508 Ethythenzene 0 0 0 0.27 0.27 508 Ethythenzene 0 0 0 N/A N/A N/A Metryd Chloride 0 0 0 N/A N/A N/A Metryd Chloride 0 0 0 N/A N/A				_				
Chlorodibromomethane	Carbon Tetrachloride	0	0	0	0.4	0.4	752	
2-Chloroethyl Vinyl Ether	Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chloroform	Chlorodibromomethane	0	0	0	0.4	0.4	752	
Chloroform	2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane 0 0 0 0.38 0.38 715 1,1-Dichloroethylene 0 0 0 N/A N/A N/A 1,2-Dichloropropylene 0 0 0.5 0.5 940 1,3-Dichloropropylene 0 0 0.27 0.27 508 Elthylbenzene 0 0 0 N/A N/A N/A Methyl Ghoride 0 0 0 N/A N/A N/A Methylene Chloride 0 0 0 4.6 4.6 8,650 1,1,2-Tretachloroethylene 0 0 0.17 0.17 320 Tetrachioroethylene 0 0 0.69 0.69 1.297 Toluene 0 0 0 N/A N/A N/A 1,1-Trichloroethylene 0 0 0 N/A N/A N/A 1,1,1-Trichloroethylene 0 0 0 0.55 0.55 1,534		0	0	0	5.7	5.7	10,718	
1,1-Dichloroethylene 0 0 N/A N/A N/A 1,2-Dichloropropane 0 0 0.5 0.5 940 1,3-Dichloropropylene 0 0 0.27 0.27 508 Ethylbenzene 0 0 0 N/A N/A N/A Methyl Chloride 0 0 0 N/A N/A N/A Methyl Chloride 0 0 0 N/A N/A N/A Methyl Chloride 0 0 0 1,12,2 Testachloroethane 0 0 0.17 0.17 320 Tetrachloroethylene 0 0 0 0.69 0.69 1,297 Toluene 0 0 0 0.69 0.69 1,297 Toluene 0 0 0 N/A N/A N/A 1,1,2-Trichloroethylene 0 0 N/A N/A N/A 1,1,1-Trichloroethylene 0 0 0 N/A	Dichlorobromomethane	0	0	0	0.55	0.55	1,034	
1,2-Dichloroprophene 0 0 0.5 0.5 940 1,3-Dichloroprophene 0 0 0.27 0.27 508 Ethylbenzene 0 0 0.1/4 N/A N/A Methyl Bromide 0 0 0.0 N/A N/A N/A Methylene Chloride 0 0 0.0 N/A N/A N/A Methylene Chloride 0 0 0.4.6 4.6 4.6 8.650 1,1,2.2-Tetrachloroethane 0 0 0.17 0.17 320 Tetrachloroethylene 0 0 0.69 1.297 Toluene 0 0 0.69 1.297 Toluene 0 0 0.1/4 N/A N/A 1,1-Trichloroethylene 0 0 0.1/4 N/A N/A 1,1-Trichloroethylene 0 0 0.55 0.55 1,034 Trichloroethylene 0 0 0.66 1,128	1,2-Dichloroethane	0	0	0	0.38	0.38	715	
1,3-Dichloropropylene	1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene		0	0	0	0.5	0.5	940	
Methyl Bromide 0 0 N/A N/A N/A N/A Methyl Chloride 0 0 0 N/A N/A N/A Methylene Chloride 0 0 0 4.6 4.6 8,650 1,1,2,2-Tetrachloroethylene 0 0 0.17 0.17 320 Tetrachloroethylene 0 0 0.69 0.69 1,297 Toluene 0 0 0 N/A N/A N/A 1,2-trans-Dichloroethylene 0 0 0 N/A N/A N/A 1,1,1-Trichloroethane 0 0 0 N/A N/A N/A 1,1,2-Trichloroethane 0 0 0.55 0.55 1,034 Trichloroethylene 0 0 0.6 0.6 1,128 Vinyl Chloride 0 0 0.6 0.6 1,128 Vinyl Chloride 0 0 0 0.02 37.6 2-Chloridrophenol	1,3-Dichloropropylene	0	0	0	0.27	0.27	508	
Methyl Chloride 0 0 N/A N/A N/A Methylene Chloride 0 0 4.6 4.6 8,650 1,1,2,2-Tetrachloroethylene 0 0 0.17 0.17 320 Tetrachloroethylene 0 0 0.69 0.69 1,297 Toluene 0 0 0 N/A N/A N/A 1,2-trans-Dichloroethylene 0 0 0 N/A N/A N/A 1,1,1-Trichloroethane 0 0 0 N/A N/A N/A 1,1,2-Trichloroethylene 0 0 0 0.55 0.55 1,034 Trichloroethylene 0 0 0 0.55 0.55 1,034 Trichloroethylene 0 0 0 0.6 0.6 1,128 Vinyl Chloride 0 0 0 0.6 0.6 1,128 Vinyl Chloride 0 0 0 N/A N/A N/A <td>Ethylbenzene</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Chloride 0 0 N/A N/A N/A Methylene Chloride 0 0 4.6 4.6 8,650 1,1,2.2-Fetrachloroethane 0 0 0.17 0.17 320 Tetrachloroethylene 0 0 0.69 0.69 1,297 Toluene 0 0 0 N/A N/A N/A 1,2-trans-Dichloroethylene 0 0 0 N/A N/A N/A 1,1,2-Trichloroethylene 0 0 0 N/A N/A N/A 1,1,2-Trichloroethylene 0 0 0 0.55 0.55 1,034 1,1,2-Trichloroethylene 0 0 0 0.55 0.55 1,034 1,1,2-Trichloroethylene 0 0 0.6 0.6 1,128 Vinyl Chloride 0 0 0.55 0.55 1,034 Yinyl Chloride 0 0 0 0.02 37.6 2,4-Dirichlorophenol	Methyl Bromide	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	Methyl Chloride	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	Methylene Chloride	0	0	0	4.6	4.6	8,650	
Toluene 0 0 0 N/A	1,1,2,2-Tetrachloroethane	0	0	0	0.17	0.17		
1,2-trans-Dichloroethylene 0 0 N/A N/A N/A 1,1,1-Trichloroethane 0 0 0 N/A N/A N/A 1,1,2-Trichloroethylene 0 0 0.55 0.55 1,034 Trichloroethylene 0 0 0.6 0.6 1,128 Vinyl Chloride 0 0 0.02 0.02 37.6 2-Chlorophenol 0 0 0.02 37.6 2-Chlorophenol 0 0 N/A N/A N/A 2,4-Direthylphenol 0 0 N/A N/A N/A 2,4-Dimethylphenol 0 0 N/A N/A N/A 4,6-Dinitro-o-Cresol 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A <	Tetrachloroethylene	0	0	0	0.69	0.69	1,297	
1,1,1-Trichloroethane 0 0 N/A N/A N/A 1,1,2-Trichloroethylene 0 0 0.55 0.55 1,034 Trichloroethylene 0 0 0.6 0.6 1,128 Vinyl Chloride 0 0 0.02 0.02 37.6 2-Chlorophenol 0 0 N/A N/A N/A 2,4-Dichlorophenol 0 0 N/A N/A N/A 2,4-Dimetrylphenol 0 0 N/A N/A N/A 4,6-Dinitro-o-Cresol 0 0 N/A N/A N/A 4,6-Dinitrophenol 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A 4-Nitrophenol 0 0 N/A N/A N/A		0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane 0 0 0.55 0.55 1,034 Trichloroethylene 0 0 0.6 0.6 1,128 Vinyl Chloride 0 0 0.02 0.02 37.6 2-Chlorophenol 0 0 N/A N/A N/A 2,4-Dichlorophenol 0 0 N/A N/A N/A 2,4-Dimethylphenol 0 0 N/A N/A N/A 4,6-Dinitro-o-Cresol 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A 4,6-Dinitro-o-Cresol 0 0 N/A N/A N/A 4-Nitrophenol 0 0 N/A N/A N/A <	1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
Trichloroethylene 0 0 0.6 0.6 1,128 Vinyl Chloride 0 0 0.02 0.02 37.6 2-Chlorophenol 0 0 N/A N/A N/A 2,4-Dichlorophenol 0 0 N/A N/A N/A 2,4-Dimethylphenol 0 0 N/A N/A N/A 4,6-Dinitro-Cresol 0 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A N/A 4-Nitrophenol 0 0 N/A N/A N/A N/A p-chloro-m-Cresol	1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
Vinyl Chloride 0 0 0.02 0.02 37.6 2-Chlorophenol 0 0 N/A N/A N/A 2,4-Dichlorophenol 0 0 N/A N/A N/A 2,4-Dimitrophenol 0 0 N/A N/A N/A 4,6-Dinitro-c-Cresol 0 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A N/A 4-Nitrophenol 0 0 N/A N/A N/A N/A p-Chloro-m-Cresol 0 0 N/A N/A N/A N/A	1,1,2-Trichloroethane	0	0	0	0.55	0.55	1,034	
2-Chlorophenol 0 0 N/A N/A N/A 2,4-Dichlorophenol 0 0 N/A N/A N/A 2,4-Dimethylphenol 0 0 N/A N/A N/A 4,6-Dinitro-o-Cresol 0 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A 4-Nitrophenol 0 0 N/A N/A N/A 4-Nitrophenol 0 0 N/A N/A N/A Pentachlorophenol 0 0 N/A N/A N/A Phenol 0 0 N/A N/A N/A	Trichloroethylene	0	0	0	0.6	0.6		
2,4-Dichlorophenol 0 0 N/A N/A N/A 2,4-Dimethylphenol 0 0 N/A N/A N/A 4,6-Dinitro-o-Cresol 0 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 N/A N/A N/A 4-Nitrophenol 0 0 N/A N/A N/A p-Chloro-m-Cresol 0 0 N/A N/A N/A Pentachlorophenol 0 0 0 0.03 56.4 Phenol 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 N/A N/A <	Vinyl Chloride	0	0	0	0.02	0.02		
2,4-Dimethylphenol 0 0 N/A N/A N/A 4,6-Dinitro-o-Cresol 0 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 0 N/A N/A N/A 4-Nitrophenol 0 0 0 N/A N/A N/A P-Chloro-m-Cresol 0 0 0 N/A N/A N/A Pentachlorophenol 0 0 0 0.03 56.4 Phenol 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 N/A N/A N/A Acenaphthene 0 0 N/A N/A N/A Anthracene 0	2-Chlorophenol	0	0	0	N/A	N/A		
4,6-Dinitro-o-Cresol 0 0 N/A N/A N/A 2,4-Dinitrophenol 0 0 0 N/A N/A N/A 2-Nitrophenol 0 0 0 N/A N/A N/A 4-Nitrophenol 0 0 0 N/A N/A N/A p-Chloro-m-Cresol 0 0 0 N/A N/A N/A Pentachlorophenol 0 0 0 0.030 56.4 Phenol 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 1.4 1.4 2,632 Acenaphthene 0 0 N/A N/A N/A Anthracene 0 0 N/A N/A N/A Benzoline 0 0 0.000086 0.00009 0.16 Benzolaphtracene 0 0 0.0001 0.001 1.88	2,4-Dichlorophenol	0	0	0				
2,4-Dinitrophenol 0 0 N/A N/A N/A 2-Nitrophenol 0 0 0 N/A N/A N/A 4-Nitrophenol 0 0 0 N/A N/A N/A p-Chloro-m-Cresol 0 0 0 N/A N/A N/A Pentachlorophenol 0 0 0 0.030 0.03 56.4 Phenol 0 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 1.4 1.4 2,632 Acenaphthene 0 0 N/A N/A N/A Anthracene 0 0 N/A N/A N/A Benzidine 0 0 0.000086 0.00009 0.16 Benzo(a)Anthracene 0 0 0.0001 0.001 1.88	2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol 0 0 N/A N/A N/A 4-Nitrophenol 0 0 0 N/A N/A N/A p-Chloro-m-Cresol 0 0 0 N/A N/A N/A Pentachlorophenol 0 0 0 0.030 0.03 56.4 Phenol 0 0 0 N/A N/A N/A 2.4,6-Trichlorophenol 0 0 1.4 1.4 2,632 Acenaphthene 0 0 0 N/A N/A N/A Anthracene 0 0 0 N/A N/A N/A Benzo(a)Anthracene 0 0 0 0.001 0.001 1.88	4,6-Dinitro-o-Cresol	0	0	0				
4-Nitrophenol 0 0 N/A N/A N/A p-Chloro-m-Cresol 0 0 0 N/A N/A N/A Pentachlorophenol 0 0 0 0.030 0.03 56.4 Phenol 0 0 0 N/A N/A N/A 2.4,6-Trichlorophenol 0 0 0 1.4 1.4 2,632 Acenaphthene 0 0 N/A N/A N/A Anthracene 0 0 N/A N/A N/A Benzidine 0 0 0.000086 0.00009 0.16 Benzo(a)Anthracene 0 0 0.0001 0.001 1.88	2,4-Dinitrophenol	0	0	0	N/A	N/A		
p-Chloro-m-Cresol 0 0 N/A N/A N/A Pentachlorophenol 0 0 0.030 0.03 56.4 Phenol 0 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 0 1.4 1.4 2,632 Acenaphthene 0 0 0 N/A N/A N/A Anthracene 0 0 0 N/A N/A N/A Benzo(a)Anthracene 0 0 0 0.001 1.88	2-Nitrophenol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol 0 0 0.030 0.03 56.4 Phenol 0 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 1.4 1.4 2,632 Acenaphthene 0 0 0 N/A N/A N/A Anthracene 0 0 0 N/A N/A N/A Benzidine 0 0 0 0.000086 0.00009 0.16 Benzo(a)Anthracene 0 0 0 0.001 1.88		_		0				
Phenol 0 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 1.4 1.4 2,632 Acenaphthene 0 0 0 N/A N/A N/A Anthracene 0 0 0 N/A N/A N/A Benzidine 0 0 0.000086 0.00009 0.16 Benzo(a)Anthracene 0 0 0.001 0.001 1.88		0	0	0	N/A			
2,4,6-Trichlorophenol 0 0 1.4 1.4 2,632 Acenaphthene 0 0 0 N/A N/A N/A Anthracene 0 0 0 N/A N/A N/A Benzidine 0 0 0.000086 0.00009 0.16 Benzo(a)Anthracene 0 0 0.001 0.001 1.88			_					
Acenaphthene 0 0 N/A N/A N/A Anthracene 0 0 0 N/A N/A N/A Benzidine 0 0 0.000086 0.00009 0.16 Benzo(a)Anthracene 0 0 0.001 0.001 1.88				0				
Anthracene 0 0 0 N/A N/A N/A Benzidine 0 0 0 0.000086 0.00009 0.16 Benzo(a)Anthracene 0 0 0 0.001 1.88			_	-			,	
Benzidine 0 0 0 0.000086 0.00009 0.16 Benzo(a)Anthracene 0 0 0.001 0.001 1.88						,		
Benzo(a)Anthracene 0 0 0 0.001 0.001 1.88			_	0				
		0	0	0	0.000086	0.00009		
Benzo(a)Pyrene 0 0 0 0.0001 0.0001 0.19	Benzo(a)Anthracene	_	_	_				
	Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.19	

NPDES Permit No. PA0037940 **Elkhorn Run STP**

3,4-Benzofluoranthene	
Bis(2-Chloroethyl)Ether 0 0 0.03 0.03 56.4 Bis(2-Chloroisopropyl)Ether 0 0 N/A N/A N/A Bis(2-Ethylhexyl)Phthalate 0 0 0.32 602 4-Bromophenyl Phenyl Ether 0 0 N/A N/A N/A Butyl Benzyl Phthalate 0 0 N/A N/A N/A 2-Chloronaphthalene 0 0 N/A N/A N/A 2-Chloronaphthalene 0 0 0.0038 0.004 7.15 Dibenzo(a,h)Anthrancene 0 0 0.0038 0.004 7.15 Dibenzo(a,h)Anthrancene 0 0 0.0001 0.0001 0.19 1,2-Dichlorobenzene 0 0 0.0001 0.0001 0.19 1,3-Dichlorobenzene 0 0 N/A N/A N/A 1,4-Dichlorobenzidine 0 0 0.021 0.021 39.5 Diethyl Phthalate 0 0 0	
Bis(2-Chloroisopropyl)Ether	
Bis(2-Ethylhexyl)Phthalate	
4-Bromophenyl Phenyl Ether 0 0 N/A N/A N/A Butyl Benzyl Phthalate 0 0 0 N/A N/A N/A 2-Chloronaphthalene 0 0 0 N/A N/A N/A Chrysene 0 0 0.0038 0.004 7.15 Dibenzo(a,h)Anthrancene 0 0 0.0001 0.19 1,2-Dichlorobenzene 0 0 N/A N/A N/A 1,3-Dichlorobenzene 0 0 N/A N/A N/A 1,4-Dichlorobenzidine 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 N/A N/A N/A Diethyl Phthalate 0 0 N/A N/A N/A Dimethyl Phthalate 0 0 N/A N/A N/A Din-Butyl Phthalate 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0.05 0.5	
Butyl Benzyl Phthalate 0 0 N/A N/A N/A 2-Chloronaphthalene 0 0 0 N/A N/A N/A Chrysene 0 0 0.0038 0.004 7.15 Dibenzo(a,h)Anthrancene 0 0 0.0001 0.19 1,2-Dichlorobenzene 0 0 N/A N/A N/A 1,3-Dichlorobenzene 0 0 N/A N/A N/A 1,4-Dichlorobenzene 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0 N/A N/A N/A Diethyl Phthalate 0 0 0 N/A N/A N/A Dimethyl Phthalate 0 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 N/A N/A N/A 2,6-Dinitrotoluene 0 0 0.05<	
2-Chloronaphthalene 0 0 N/A N/A N/A Chrysene 0 0 0.0038 0.004 7.15 Dibenzo(a,h)Anthrancene 0 0 0.0001 0.0001 0.19 1,2-Dichlorobenzene 0 0 0 N/A N/A N/A 1,3-Dichlorobenzene 0 0 0 N/A N/A N/A 1,4-Dichlorobenzidine 0 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0.021 39.5 0.021 39.5 Diethyl Phthalate 0 0 0 N/A N/A N/A Din-Butyl Phthalate 0 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 0 0.05 94.0 2,4-Dinitrotoluene 0 0 0 0.05 94.0	
Chrysene 0 0 0.0038 0.004 7.15 Dibenzo(a,h)Anthrancene 0 0 0.0001 0.0001 0.19 1,2-Dichlorobenzene 0 0 0 N/A N/A N/A 1,3-Dichlorobenzene 0 0 0 N/A N/A N/A 1,4-Dichlorobenzeine 0 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0.021 39.5 Diethyl Phthalate 0 0 N/A N/A N/A Dimethyl Phthalate 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0.05 0.05 94.0 2,6-Dinitrotoluene 0 0 0.05 0.05 94.0 1,2-Diphenylhydrazine 0 0 0	
Dibenzo(a,h)Anthrancene 0 0 0.0001 0.0001 0.19 1,2-Dichlorobenzene 0 0 0 N/A N/A N/A 1,3-Dichlorobenzene 0 0 0 N/A N/A N/A 1,4-Dichlorobenzene 0 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0 0.021 0.021 39.5 Diethyl Phthalate 0 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0 0.05 0.05 94.0 2,6-Dinitrotoluene 0 0 0 0.05 0.05 94.0 1,2-Diphenylhydrazine 0 0 0 0.03 0.03 56.4 Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 <td< td=""><td></td></td<>	
1,2-Dichlorobenzene 0 0 N/A N/A N/A 1,3-Dichlorobenzene 0 0 N/A N/A N/A 1,4-Dichlorobenzene 0 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0 0.021 0.021 39.5 Diethyl Phthalate 0 0 0 N/A N/A N/A Din-Butyl Phthalate 0 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0.05 0.05 94.0 2,6-Dinitrotoluene 0 0 0.05 0.05 94.0 1,2-Diphenylhydrazine 0 0 0.03 0.03 56.4 Fluorenthene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.00008 0.15	
1,3-Dichlorobenzene 0 0 N/A N/A N/A 1,4-Dichlorobenzene 0 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0.021 0.021 39.5 Diethyl Phthalate 0 0 N/A N/A N/A Dimethyl Phthalate 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0.05 0.05 94.0 2,6-Dinitrotoluene 0 0 0.05 0.05 94.0 1,2-Diphenylhydrazine 0 0 0.03 0.03 56.4 Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 0 0.0008 0.05 Hexachlorobenzene 0 0 0.00008 0.00008 0.15	
1,4-Dichlorobenzene 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0.021 39.5 Diethyl Phthalate 0 0 N/A N/A N/A Dimethyl Phthalate 0 0 N/A N/A N/A Din-Butyl Phthalate 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0.05 0.05 94.0 2,6-Dinitrotoluene 0 0 0.05 0.05 94.0 1,2-Diphenylhydrazine 0 0 0.03 0.03 56.4 Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.00008 0.05 0.15	
3,3-Dichlorobenzidine 0 0 0 0.021 0.021 39.5	
Diethyl Phthalate 0 0 N/A N/A N/A Dimethyl Phthalate 0 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0.05 0.05 94.0 2,6-Dinitrotoluene 0 0 0.05 0.05 94.0 1,2-Diphenylhydrazine 0 0 0.03 0.03 56.4 Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.00008 0.15	
Dimethyl Phthalate	
Di-n-Butyl Phthalate 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0.05 0.05 94.0 2,6-Dinitrotoluene 0 0 0.05 0.05 94.0 1,2-Diphenylhydrazine 0 0 0.03 0.03 56.4 Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.00008 0.15	
2,4-Dinitrotoluene 0 0 0.05 0.05 94.0 2,6-Dinitrotoluene 0 0 0.05 0.05 94.0 1,2-Diphenylhydrazine 0 0 0.03 0.03 56.4 Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.00008 0.15	
2,6-Dinitrotoluene 0 0 0.05 0.05 94.0 1,2-Diphenylhydrazine 0 0 0.03 0.03 56.4 Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.00008 0.15	
1,2-Diphenylhydrazine 0 0 0.03 56.4 Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 N/A N/A N/A Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.00008 0.15	
Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.00008 0.15	
Fluorene 0 0 0 N/A N/A N/A N/A Hexachlorobenzene 0 0 0 0.00008 0.00008 0.15	
Hexachlorobenzene 0 0 0 0.00008 0.00008 0.15	
Hexachlorobutadiene 0 0 0 0.01 0.01 18.8	
Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A	
Hexachloroethane 0 0 0 0.1 0.1 188	
Indeno(1,2,3-cd)Pyrene 0 0 0 0.001 0.001 1.88	
Isophorone 0 0 0 N/A N/A N/A	
Naphthalene 0 0 0 N/A N/A N/A	
Nitrobenzene 0 0 0 N/A N/A N/A	
n-Nitrosodimethylamine 0 0 0 0.00069 0.0007 1.3	
n-Nitrosodi-n-Propylamine 0 0 0 0.005 0.005 9.4	
n-Nitrosodiphenylamine 0 0 0 3.3 3.3 6,205	
Phenanthrene 0 0 0 N/A N/A N/A	
Pyrene 0 0 0 N/A N/A N/A	
1,2,4-Trichlorobenzene 0 0 0 N/A N/A N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Mercury	0.0003	0.0004	12.0	18.7	30.0	ng/L	12.0		Discharge Conc ≥ 50% WQBEL (RP)

NPDES Permit No. PA0037940 Elkhorn Run STP

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Aluminum	37,985	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	3,032	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	541,516	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	410,237	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	109	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	46,717	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	825	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	4,811	μg/L	Discharge Conc < TQL
Total Copper	715	μg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	1,114	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	162,455	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	1,863,943	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	1,726	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	541,516	μg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	23,940	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Selenium	2,702	μg/L	Discharge Conc < TQL
Total Silver	195	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	130	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	6,114	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	152	μg/L	Discharge Conc < TQL
Acrylonitrile	95.9	μg/L	Discharge Conc < TQL
Benzene	1,091	μg/L	Discharge Conc < TQL
Bromoform	8,086	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	752	μg/L	Discharge Conc < TQL
Chlorobenzene	54,152	μg/L	Discharge Conc < TQL
Chlorodibromomethane	752	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	911,638	μg/L	Discharge Conc < TQL
Chloroform	10,718	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	1,034	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	715	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	17,870	μg/L	Discharge Conc < TQL

1,2-Dichloropropane	940	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	508	μg/L	Discharge Conc < TQL
1.4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	36.823	μg/L	Discharge Conc < TQL
Methyl Bromide	25,451	μg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	1,418,104	μg/L	Discharge Conc < TQL
Methylene Chloride	8,650	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	320	μg/L	Discharge Conc < TQL
Tetrachloroethylene	1,297	μg/L	Discharge Conc < TQL
Toluene	30,866	μg/L	Discharge Conc ≤ 25% WQBEL
1,2-trans-Dichloroethylene	54,152	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	151,940	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	1,034	μg/L	Discharge Conc < TQL
Trichloroethylene	1,128	μg/L	Discharge Conc < TQL
Vinyl Chloride	37.6	μg/L	Discharge Conc < TQL
2-Chlorophenol	16,245	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	5,415	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	33,427	μg/L	Discharge Conc ≤ 25% WQBEL
4,6-Dinitro-o-Cresol	1,083	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	5,415	μg/L	Discharge Conc < TQL
2-Nitrophenol	405,173	μg/L	Discharge Conc < TQL
4-Nitrophenol	116,487	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	8,103	μg/L	Discharge Conc < TQL
Pentachlorophenol	56.4	μg/L	Discharge Conc < TQL
Phenol	2,166,064	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	2,632	μg/L	Discharge Conc < TQL
Acenaphthene	4,204	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	162,455	μg/L	Discharge Conc < TQL
Benzidine	0.16	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	1.88	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.19	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	1.88	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	7.15	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	56.4	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	108,303	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	602	μg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	13,675	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	54.2	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	433,213	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	7.15	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.19	μg/L	Discharge Conc < TQL

1,2-Dichlorobenzene	41,530	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	3,791	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	34,116	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	39.5	μg/L	Discharge Conc < TQL
Diethyl Phthalate	202,586	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	126,616	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	5,571	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	94.0	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	94.0	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	56.4	μg/L	Discharge Conc < TQL
Fluoranthene	10,129	μg/L	Discharge Conc < TQL
Fluorene	27,076	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.00008	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.01	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	253	μg/L	Discharge Conc < TQL
Hexachloroethane	188	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	1.88	μg/L	Discharge Conc < TQL
Isophorone	18,412	μg/L	Discharge Conc < TQL
Naphthalene	7,091	μg/L	Discharge Conc < TQL
Nitrobenzene	5,415	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	1.3	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	9.4	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	6,205	μg/L	Discharge Conc < TQL
Phenanthrene	253	μg/L	Discharge Conc < TQL
Pyrene	10,830	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	37.9	μg/L	Discharge Conc < TQL