

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0038733

 APS ID
 275016

 Authorization ID
 1394449

Applicant and Facility Information

Applicant Name	East Providence Township Municipal opplicant Name Authority Bedford County		East Providence Township STP	
Applicant Address	PO Box 83	Facility Address	244 Municipal Lane	
	Breezewood, PA 15533-0083		Breezewood, PA 15533-1011	
Applicant Contact	Joseph Payne	Facility Contact	John Payne	
Applicant Phone	(814) 735-4215	Facility Phone	(814) 735-4215	
Client ID	42504	Site ID	249252	
Ch 94 Load Status	Not Overloaded	Municipality	East Providence Township	
Connection Status	No Limitations	County	Bedford	
Date Application Rece	eivedApril 29, 2022	EPA Waived?	Yes	
Date Application Acce	epted May 5, 2022	If No, Reason		

Approve	Deny	Signatures	Date
x		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	June 16, 2022
x		Daniel W. Martin, P.E. / Environmental Engineer Manager Daniel W. Martin	June 27, 2022

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the East Providence Township STP located at 244 Municipal Lane, Breezewood, PA 15533 in Bedford County, municipality of East Providence Township. The existing permit became effective on November 1, 2017 and expires(d) on October 31, 2022. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on April 29, 2022.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.38 MGD treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Bedford County Commissioners and East Providence Township Supervisors and the notice was received by the parties in March 2022. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Tributary 14144 to Tub Mill Run. The sequence of receiving streams that Tributary 14144 to Tub Mill Run discharges into are Tub Mill Run, Raystown Branch Juniata River, Juniata River, the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for warm water fishes (WWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Tributary 14144 to Tub Mill Run is a Category 2 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports aquatic life. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Effluent limits for ammonia-nitrogen have been reduced to 1.5 mg/l during summer months and 4.5 mg/l during winter months.
- Nitrate-Nitrogen as N, TKN, and Total Phosphorus shall reduce monitoring frequency from 1x/wk to 1x/month
- Due to the EPA Triennial Review, E. Coli shall be monitored 1x/quarter.
- Monitoring shall be required for total lead
- Monitoring for TDS, sulfate, chloride, and bromide have been eliminated.

Sludge use and disposal description and location(s): Biosolids/Sewage sludge disposed at Site 1 located in East Providence in Bedford County

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Summary of Review

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

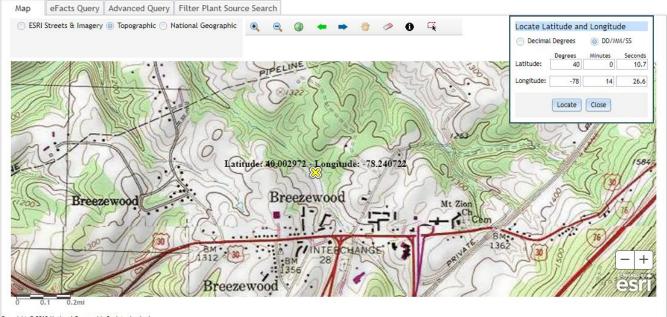
1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name:	East Providence Township MA
NPDES Permit #	PA0038733
Physical Address:	244 Municipal Lane Breezewood, PA 15533
Mailing Address:	PO Box 83 Breezewood, PA 15533
Contact:	Joseph Payne Operator Joseph.payne@ftr.com
Consultant:	Maggie Weitzel Senior Environmental Scientist Gwin, Dobson, and Foreman, Inc. mweitzel@gdfengineers.com

1.2 Permit History

Permit submittal included the following information.


- NPDES Application
- Flow Diagrams
- Influent Sample Data
- Effluent Sample Data

2.0 Treatment Facility Summary

2.1.1 Site location

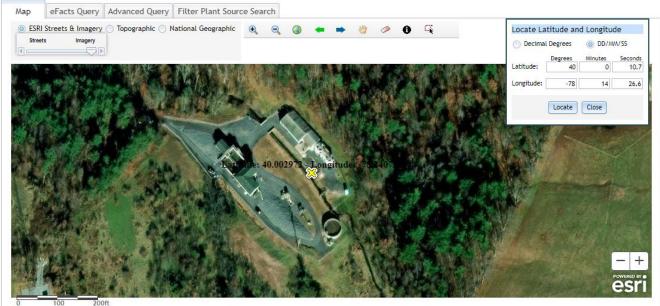

The physical address for the facility is 244 Municipal Lane, Breezewood, PA 15533. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

Copyright: © 2013 National Geographic Society, i-cubed

Figure 2: Aerial Photograph of the subject facility

magery: Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community; ESRI Streets: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community

2.1.2 Sources of Wastewater/Stormwater

The facility receives 100% flow contribution from East Providence Township.

The facility did not receive any hauled-in wastes in the last three years. The facility also does not anticipate receiving hauled-in wastes in the next five years.

The facility receives industrial / commercial wastewater contributions. A summary of contributors is in the table. The facility does not have an EPA approved pretreatment program.

COMMERCIAL WASTEWATER CONTRIBUTORS

COMMERCIAL ACCT	AVG DAILY FLOW
GATEWAY	25,303
BLUE BEACON	11,455
ALL AMERICAN	14,099
HOLIDAY INN EXPRESS	7,416
HOWARD JOHNSONS	3,288
JILL DAHARA INC	4,936
BOB EVANS	2,952
SHEETZ	4,123
MCDONALDS	2,917
DENNYS	2,439
BREEZEMANOR MOTEL	2,905
HINISH CAR WASH	1,641
BT COFFEE LLC	2,411
TRAVELER'S OASIS	2,864
SUNOCO	1,107
TACO BELL	758
WENDY'S	0
EXXON-UPPER	356
BREEZEWOOD MOTEL	1,154
PIZZA HUT	682
BREEZEWOOD ELEMENTARY	477
WILTSHIRE MOTEL	258
WILDWOOD INN	346
PA TURNPIKE	136
HI-WAY MOTEL	170
CRAWFORD' S MUSEUM	159
STONEWALL JACKSON MOTEL	138
BREEZEWOOD FIRE CO.	80
INTERSTATE EMERGENCY	130
POST OFFICE	25
EAST PROV. TWP	25
LASALLES ENGINE	108
BREEZEWOOD METHODIST	6
FRONTIER	55
MT ZION CHURCH	8
BB&T BANK	30
DEL'S TRUCK REPAIR	20
WEAVERS DIESEL	21
BOB'S GARAGE	7
BREEZEWOOD TRANSFER	49

2.2 Description of Wastewater Treatment Process

The subject facility is a 0.38 MGD design flow facility. The subject facility treats wastewater using an ICEAS reactor(s) and a UV disinfection prior to discharge through the outfall. The facility is being evaluated for flow, pH, dissolved oxygen, CBOD5, TSS, fecal coliform, nitrogen species, phosphorus, UV intensity, TDS, copper, sulfate, zinc, chloride, and bromide. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

WQM Permit No. 0503405 A-1	Issuance Date			
	05/13/2015			
0503405 A-2	09/06/2016			
0503405 A-3	11/22/2017			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Secondary With	Sequencing Batch		、
Sewage	Phosphorus Reduction	Reactor	Ultraviolet	0.38
lydraulic Capacity	Organic Capacity			Biosolids

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001	Design Flow (MGD)	.38
Latitude	40° 0' 10.25"	Longitude	-78º 14' 28.00"
Wastewater D	Description: Sewage Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

- Polymer for improving the efficiency of sludge dewatering. This chemical is not currently used but may be utilized as needed.
- Caustic for pH adjustment. This chemical is not currently used but may be utilized as needed.
- Alum for removing phosphorus.

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART A - EFFLUENT LIMITA	ATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS
I. B. For Outfall 001	_, Latitude _40° 0' 10.25" _, Longitude _78° 14' 28.00" _, River Mile Index _1.09 _, Stream Code _14144
Receiving Waters:	Unnamed Tributary to Tub Mill Run
Type of Effluent:	Sewage Effluent

1. The permittee is authorized to discharge during the period from <u>Completion of Construction</u> through <u>Permit Expiration Date</u>.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Total Dissolved Solids	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Ultraviolet light intensity (mioules/cm ²)	XXX	XXX	Report	XXX	XXX	XXX	1/dav	Metered
Managanad /								24-Hr
Copper, Total	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Sulfate, Total	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Zinc, Total	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Chloride	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Bromide	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I. C.	For Outfall 001	, Latitude _40°0'10.25", Longitude _78°14'28.00", River Mile Index _1.09, Stream Code _1414	14
	Receiving Waters:	Unnamed Tributary to Tub Mill Run	
	-		

Type of Effluent: Sewage Effluent

1. The permittee is authorized to discharge during the period from <u>Permit Effective Date</u> through <u>Permit Expiration Date</u>.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum (2)	Required
Falameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	xxx	xxx	6.0	xxx	9.0 Max	xxx	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	xxx	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	79	127	XXX	25.0	40.0	50	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	xxx	1/week	24-Hr Composite
Total Suspended Solids	95	145	XXX	30.0	45.0	60	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	19	XXX	XXX	6.0	XXX	12	1/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	6.3	XXX	XXX	2.0	XXX	4	1/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾	(1) Concentrations (mg/L)			Minimum ⁽²⁾	Required	
Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
								24-Hr
Total Phosphorus	6.3	XXX	XXX	2.0	XXX	4	1/week	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I. D.	For Outfall 001	_, Latitude _40° 0' 10.25" _, Longitude _78° 14' 28.00" _, River Mile Index _1.09 _, Stream Code _14144
	Receiving Waters:	Unnamed Tributary to Tub Mill Run
	Type of Effluent:	Sewage Effluent

1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes). 2.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
A			2004		2004	2022		24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	1/week	Composite 24-Hr
KieldahlN	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	xxx	xxx	1/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Net Total Nitrogen	Report	Report	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	Report	XXX	XXX	XXX	XXX	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Footnotes:

 See Part C for Chesapeake Bay Requirements.
 This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

08/30/2018:

- The UV system was sending out frequent alarms. The unit is being examined.
- The facility had been dealing with filamentous bacteria issues in the new SBRs.
- The facility had errors on DMRS for nitrite-nitrate and TN. Other errors involved TSS. The facility was requested to review all reports since November 2017.
- The facility should update SOPs to reflect changes at the plant and include routine maintenance work
- The sample refrigerator needed a new thermometer.

10/3/2019:

- The facility completed a major upgrade last year. All treatment units were replaced except for grit removal and sludge digesters. One equalization tank was converted to an additional digester.
- The facility was dealing with a filamentous bacteria problem in the SBRs. One tank had the entire surface covered with a thick dark foam and the other tank had a layer of scum and green algae on the surface. Filamentous is being treated with chlorine.
- One sludge digester was out for repair and one pump station was being repaired.
- The facility was having difficulty with the fine screen clogging up near the exit end of the unit.
- The terms of the COA signed on 9/3/2015 were met and the agreement was terminated on 10/11/2019

12/15/2021:

- A review of EDMR showed that some test parameters in Part A of the NPDES permit were sampled for but not included in the eDMR. The eDMR help desk should be contact and made aware of the necessary changes.
- The facility contracted to clean and televise the collection system mainlines.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.129 MGD in November 2021. The design capacity of the treatment system is 0.38 MGD.

The off-site laboratory used for the analysis of the parameters was Fairway Laboratories located at 2019 9th Avenue, Altoona, PA 16601.

DMR Data for Outfall 001 (from May 1, 2021 to April 30, 2022)

Parameter	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21
Flow (MGD)												
Average Monthly	0.099	0.086	0.103	0.078	0.067	0.129	0.078	0.126	0.105	0.096	0.086	0.082
Flow (MGD)												
Daily Maximum	0.128	0.122	0.229	0.126	0.101	0.188	0.122	0.715	0.223	0.173	0.162	0.131
pH (S.U.)												
Minimum	6.7	6.8	6.3	6.8	6.8	6.8	7.0	7.0	7.0	6.9	6.9	6.8
pH (S.U.)												
Maximum	7.4	7.3	7.3	7.3	7.6	7.5	7.5	7.4	7.6	7.5	8.0	7.5
DO (mg/L)												
Minimum	7.4	7.6	7.6	7.4	7.8	7.4	7.8	7.8	5.6	7.3	7.4	7.9
TRC (mg/L)												
Average Monthly	< 0.0001	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TRC (mg/L)												
Instantaneous												
Maximum	< 0.0001	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
CBOD5 (lbs/day)												
Average Monthly	2	2	2	2	2	15	2	2	2	3	3	2
CBOD5 (lbs/day)												
Weekly Average	3	4	2	3	3	65	3	2	4	6	5	2
CBOD5 (mg/L)												
Average Monthly	3.0	4.0	< 3.0	3.0	3.9	4.4	3.5	3.1	3.6	4.1	4.2	3.0
CBOD5 (mg/L)												
Weekly Average	5.0	6.0	< 3.0	5.0	6.0	10.0	5.0	4.0	5.0	6.0	7.0	3.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	266	210	227	181	299	223	353	198	220	284	194	162
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	333	286	253	193	405	392	540	253	310	544	292	209
BOD5 (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	369	307	318	318	390	369	421	315	306	342	292	288
TSS (lbs/day)												
Average Monthly	5	4	6	4	6	16	6	4	4	6	6	6
TSS (lbs/day)												7
Raw Sewage Influent												
 Average												
Monthly	118	126	196	81	76	104	241	126	137	179	92	75

NPDES Permit No. PA0038733

			1		1		1		1	
) 196	290	120	84	142	330	159	244	404	120	80
6	8	5	7	59	7	5	6	11	8	7
) 6.0	9.0	3.0	10.2	8.5	10.0	6.7	7.1	8.3	9.6	9.1
<u>)</u> 179	275	141	104	170	291	197	200	211	141	136
<u> </u>	15.0	8.0	12.0	9.2	13.6	9.6	10.0	11.6	12.4	10.4
									_	
< 1	< 2	< 1	1	1	< 1	< 1	10	1	3	3
									4.40	
2	4	< 1	1	1	1	< 1	145	1	142	22.8
	0.0		0.0	1.0	4.4			1.0	4.0	1.0
) 1	0.9	1	0.8	1.2	1.4	1.4	1.4	1.3	1.3	1.3
	47	10	10	67	24	24	07	20	25	25
	17	19	13	67	24	24	21	29	25	25
26	2.4	2.0	1.0	4.4	20	4.0	4	2.2	2.0	1.9
3.0	2.4	2.9	4.9	4.4	3.0	4.2	4	2.3	2.9	1.9
76	46	56	86	236	66	70	75	50	56	36
	40		00	230	00	70	75			
76	46	56	86	236	66	70	75	50	56	36
			00	230	00	10	75			50
						150				
			1							
						150				
0.5	< 0.6	0.9	1	2	0.5	0.6	0.4	0.3	0.2	0.1
			<u> </u>							
8 0.7	< 0.79	0.5	2.57	1.2	1.0	1.0	0.7	0.5	0.33	0.19
		-			-					
15	< 15	16	44	52	16	17	13	10	6	4
						58				
	2 76 2 76 1 0.5 8 0.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 8 5 7 59 7 0 6.0 9.0 3.0 10.2 8.5 10.0 6 179 275 141 104 170 291 0 10.0 15.0 8.0 12.0 9.2 13.6 1 <1 <2 <1 1 1 <1 1 <2 <1 1 1 <1 <1 6 10.0 15.0 8.0 12.0 9.2 13.6 1 <1 <2 <1 1 1 <1 1 2 4 <1 1 1 <1 1 2 4 <1 1 1 1 1 2 4 <1 1 1 1 3.6 2.4 2.9 4.9 4.4 3.8 2 76 46 56 86 236 66 2 <	6 8 5 7 59 7 5 0 6.0 9.0 3.0 10.2 8.5 10.0 6.7 6 179 275 141 104 170 291 197 0 10.0 15.0 8.0 12.0 9.2 13.6 9.6 1 <1 <2 <1 1 1 <1 <1 1 <2 <1 1 1 <1 <1 <1 1 2 4 <1 1 1 <1 <1 6 10.9 1 0.8 1.2 1.4 1.4 22 17 19 13 67 24 24 3.6 2.4 2.9 4.9 4.4 3.8 4.2 2 76 46 56 86 236 66 70	6 8 5 7 59 7 5 6 0 6.0 9.0 3.0 10.2 8.5 10.0 6.7 7.1 6 179 275 141 104 170 291 197 200 0 10.0 15.0 8.0 12.0 9.2 13.6 9.6 10.0 1 <1 <2 <1 1 1 <1 <1 0.0 1 <2 <1 1 1 <1 <1 10.0 1 2 4 <1 1 1 <1 <1 10.0 1 2 4 <1 1 1 <1 145 1 0.9 1 0.8 236 66 70 75 2 76 46 56 86 236 66 70 <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

NPDES Permit No. PA0038733

TKN (mg/L)												
Average Monthly	1.4	2.6	1.5	1.9	4.2	3	2.4	2.8	2.6	1	1.6	0.6
TKN (lbs)												
Total Monthly	32	54	29	37	72	165	41	46	49	20	31	11
Total Phosphorus												
(lbs/day)												
Average Monthly	0.2	0.2	0.2	0.08	0.4	0.4	0.3	0.2	0.4	0.3	0.2	0.06
Total Phosphorus												
(mg/L)												
Average Monthly	0.3	0.3	0.4	0.1	0.6	0.2	0.5	0.3	0.7	0.5	0.3	0.1
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	5.9	5.5	6.4	2.4	10.9	11.2	8.8	5.1	12.8	10.2	5.4	1.9
Total Phosphorus (lbs)												
Total Monthly	5.9	5.5	6.4	2.4	10.9	11.2	8.8	70	12.8	10.2	5.4	1.9
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual								11				
Total Phosphorus (lbs)												
Total Annual								11				

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in November 1, 2017 to June 7, 2022, there were no observed effluent non-compliances.

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in November 1, 2017 to June 7, 2022, there were no observed enforcement actions.

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

2021							
Sewage Sludge / Biosolids Production Information							
	Hauled	Off-Site					
Date (2021)	Gallons	% Solids	Dry Tons				
January							
February							
March							
April	52,000	2.05	4.445				
May	42,000	1.95	3.353				
June	46,000	2.5	4.812				
July							
August							
September							
October	62,000	2.03	5.213				
November	68,000	1.85	5.421				
December							
Notes:							
Biosolids/Sewage sludge disposed at Site 1 located in East Providence in Bedford County							

3.5 Open Violations

No open violations existed as of June 2022.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Tributary 14144 to Tub Mill Run. The sequence of receiving streams that Tributary 14144 to Tub Mill Run discharges into are Tub Mill Run, Raystown Branch Juniata River, Juniata River, the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Saxton Municipal Water Authority (PWS ID # 4050021) located approximately 36 miles downstream of the subject facility on the Juniata River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 waterbody. The surface waters is an attaining stream that supports aquatic life. The designated use has been classified as protected waters for warm water fishes (WWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Raystown Branch Juniata (WQN223). This WQN station is located approximately 37 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Raystown Branch Juniata River at Saxton, PA (USGS station number 1562000). This gauge station is located approximately 37 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.0 and the stream water temperature was estimated to be 23.3 C.

The hardness of the stream was estimated from the water quality network to be 96 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated using StreamStats.

The low flow yield is 0.0043 $ft^3/s/mi^2$ and the Q710 is 0.00131 ft^3/s .

4.6 Summary of Discharge,	Receiving Waters and Wa	ater Supply Information	
Outfall No. 001		Design Flow (MGD)	.38
Latitude 40° 0' 10.20"		Longitude	-78º 14' 26.18"
Quad Name		Quad Code	
Wastewater Description:	Sewage Effluent		
Unna Receiving Waters (WWI	med Tributary to Tub Mill R	un Stream Code	14144
NHD Com ID 6584	1	RMI	1.1
Drainage Area 0.3		Yield (cfs/mi ²)	0.0043
Q ₇₋₁₀ Flow (cfs) 0.001	31	Q ₇₋₁₀ Basis	StreamStats
Elevation (ft) 1240		Slope (ft/ft)	
Watershed No. 11-D		Chapter 93 Class.	WWF, MF
Existing Use Same	e as Chapter 93 class	Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s) supports	aquatic life	
Cause(s) of Impairment	Not appl.		
Source(s) of Impairment	Not appl.		
TMDL Status	Not appl.	Name	
Background/Ambient Data		Data Source	
pH (SU)	8	WQN 223; median July to Sep	ht
Temperature (°C)	23.3	WQN 223; median July to Sep	
Hardness (mg/L)	96	WQN 223; median historical	
Other:			
Nearest Downstream Publi	c Water Supply Intake	Saxton Municipal Water Author	prity
PWS Waters Juniata	River	Flow at Intake (cfs)	
PWS RMI 42		Distance from Outfall (mi)	36

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX		92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.47(a)(5) 92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

The modeling point nodes utilized for this facility are summarized below.

General Data 1		
(Modeling Point #1)	Input Value	Units
Stream Code	14144	
River Mile Index	1.1	miles
Elevation	1240	feet
Latitude	40.002972	
Longitude	-78.240722	
Drainage Area	0.3	sq miles
Low Flow Yield	0.00437	cfs/sq mile
General Data 2	Input Value	Units
(Modeling Point #2)	πραι ναιάε	Units
Stream Code	14144	
River Mile Index	0	miles
Elevation	1126	feet
Latitude	40.015266	
Longitude	-78.250721	
Drainage Area	0.62	sq miles
Low Flow Yield	0.00437	cfs/sq mile

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH_3 -N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the

stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the following pollutants: copper, lead, zinc, bromide, and chloride

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Applicable monitoring or permit limits for toxics are summarized in Section 6.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WET.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to

regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety (MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. The TMDL components are illustrated using the following equation:

$$\mathsf{TMDL} = \Sigma W \mathsf{LAs} + \Sigma \, \mathsf{LAs} + \mathsf{MOS}$$

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was September 13, 2021.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate

allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30. For facilities that have received Cap Loads in any other form, the Cap Loads will be modified accordingly when the permits are renewed.

Offsets have been incorporated into Cap Loads in several permits issued to date. From this point forward, permits will be issued with the WLAs as Cap Loads and will identify Offsets separately to facilitate nutrient trading activities and compliance with the TMDL.

Based upon the supplement the subject facility has been categorized as a Sector C discharger. The supplement defines Sector C as a non-significant dischargers include sewage facilities (Phase 4 facilities: ≥ 0.2 MGD and < 0.4 MGD and Phase 5 facilities: > 0.002 MGD and < 0.2 MGD), small flow/single residence sewage treatment facilities (≤ 0.002 MGD), and non-significant IW facilities, all of which may be covered by statewide General Permits or may have individual NPDES permits.

At this time, there are approximately 850 Phase 4 and 5 sewage facilities, approximately 715 small flow sewage treatment facilities covered by a statewide General Permit, and approximately 300 non-significant IW facilities.

For Phase 4 sewage facilities (average annual design flow on August 29, $2005 \ge 0.2$ MGD and < 0.4 MGD), a future decision may be made as to the establishment of Cap Loads in permits. Until then, DEP will permit Phase 4 sewage facilities as follows:

1. Renewed or amended permits for facilities that do not increase design flow (compared to the date of the latest prior permit action) will contain monitoring and reporting for TN and TP throughout the permit term at a frequency no less than monthly.

2. Renewed or amended permits that include an increase in design flow will contain Cap Loads based on the lesser of a) existing TN and TP concentrations at current design average annual flow or b) 7,306 lbs/yr TN and 974 lbs/yr TP.

If no data are available to determine existing concentrations for expanding Phase 4 or 5 facilities, default concentrations of 25 mg/l TN and 4 mg/l TP may be used (these are the average estimated concentrations of all non-significant sewage facilities).

DEP will not issue permits to existing Phase 4 and 5 facilities containing Cap Loads unless it is done on a broad scale or unless the facilities are expanding.

For new Phase 4 and 5 sewage discharges, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance, with the exception of small flow and single residence facilities.

This facility is subject to Sector C monitoring requirements. Monitoring shall be at least 1x/month.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected*. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost

of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1 Conventional Pollutants and Disinfection

	Permit Limitation		East Providence Township MA, PA0038733			
Parameter	Required by ¹ :	Recommendation				
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).			
	TDEI	Effluent Limit:	Effluent limits may range from $pH = 6.0$ to 9.0			
pH (S.U.)	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).			
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).			
Dissolved	BPJ	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.			
Oxygen	BFJ	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.			
		Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-3).			
		Effluent Limit:	Effluent limits shall not exceed 79 lbs/day and 25 mg/l as an average monthly.			
CBOD	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.			
		Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-3).			
		Effluent Limit:	Effluent limits shall not exceed 95 lbs/day and 30 mg/l as an average monthly.			
TSS	TBEL	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBEI is more stringent than TBEL, TBEL will apply.		
		Monitoring:	The monitoring frequency is 1/day. The facility will be required to record the UV intensity.			
1.5.7		Effluent Limit:	No effluent requirements.			
UV disinfection	SOP	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised January 10, 2019), the facility will be required to have routine monitoring for UV transmittance, UV dosage, or UV intensity.			
		Monitoring:	The monitoring frequency shall be 1x/wk as a grab sample (Table 6-3).			
Fecal Coliform	TBEL	Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.			
Comorm		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter $92a.47(a)(4)$ and $92a.47(a)(5)$.			
		Monitoring:	The monitoring frequency shall be 1x/quarter as a grab sample (SOP).			
	COD: Chanter	Effluent Limit:	No effluent requirements.			
E. Coli	SOP; Chapter 92a.61	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli.			
Notes:						

2 Monitoring frequency based on flow rate of 0.38 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.2 Nitrogen Species and Phosphorus

			East Providence Township MA, PA0038733
Parameter	Permit Limitation Required by ¹ :		Recommendation
	· · ·	Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample
Ammonia- Nitrogen	WQBEL	Effluent Limit:	During the months of May 1 to October 31, effluent limits shall not exceed 4.5 lbs/day and 1.5 mg/l as an average monthly. During the months of November 1 to April 30, effluent limits shall not exceed 14 lbs/day and 4.5 mg/l as an average monthly.
		Rationale:	Water quality modeling recommends effluent limits
		Monitoring:	The monitoring frequency shall be 1x/mo as a 24-hr composite sample
Nitrate-	Chesapeake Bay	Effluent Limit:	No effluent requirements.
Nitrite as N TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/mo.	
		Monitoring:	The monitoring frequency shall be 1x/mo as a calculation
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/mo.
		Monitoring:	The monitoring frequency shall be 1x/mo as a 24-hr composite sample
TKN	Chesapeake Bay	Effluent Limit:	No effluent requirements.
	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/mo.
		Monitoring:	The monitoring frequency shall be 1x/mo as a 24-hr composite sample
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.
Phosphorus	TMDL Rationale:		Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/mo.
Notes:			

2 Monitoring frequency based on flow rate of 0.38 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.3 Toxics

Discussions with Maggie Weitzel occurred on June 16, 2022. The current NPDES permit included monitoring for toxics on a monthly basis. The consultant claims that there were eDMR issue which did not include entries for this data. A separate Excel sheet summarized data for toxics for 2020, 2021 and the first few months of 2022. Monitoring for TDS, chloride, bromide, and sulfate have been eliminated by both EPA and DEP Central Office. Maximum copper and zinc results from the sampling were 0.0316 mg/l and 0.41 mg/l, respectively. The values reported on the NPDES were 0.0121 mg/l for copper and 0.21 mg/l for zinc.

The values in the separate Excel were larger than those reported in the NPDES application. For modeling, the values in the NPDES application were used. DEP recommends collection of additional samples for further review. The NPDES permit may be reopened in 2 years to evaluate total copper, total lead, and total zinc for permit limits.

Consultation with DEP Central Office determined that the toxics did not populate in eDMR since the current permit had a generic start date as Completion of Construction. This effective date should have been entered in DEP computer system when construction was completed.

East Providence Township MA, PA0038733									
Parameter	Permit Limitation Required by ¹ :		Recommendation						
		Monitoring:	The monitoring frequency shall be 1x/mo as a 24-hr composite sample						
Total		Effluent Limit:	No effluent limit						
Copper	WQBEL	Rationale:	While Toxics Management Spreadsheet recommends limits, monitoring has been recommended to collect additional samples. Pending favorable results, monitoring may be reduced or eliminated in future renewals						
		Monitoring:	The monitoring frequency shall be 1x/mo as a 24-hr composite sample						
Total Lead	WQBEL	Effluent Limit:	No effluent limit						
	WQDEL	Rationale:	Toxics Management Spreadsheet recommends monitoring. Pending favorable results, monitoring may be reduced or eliminated in future renewals						
		Monitoring:	The monitoring frequency shall be 1x/mo as a 24-hr composite sample						
		Effluent Limit:	No effluent limit						
Total Zinc	WQBEL	Rationale:	While Toxics Management Spreadsheet recommends limits, monitoring has been recommended to collect additional samples. Pending favorable results, monitoring may be reduced or eliminated in future renewals						
Notes:									
1 The NPDES	s permit was limited b	v (a) anti-Back	sliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other						
	requency based on f								

Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.3.1 Implementation of Regulation- Chapter 92a.61

Chapter 92a.61 provides provisions to DEP to monitor for pollutants that may have an impact on the quality of waters of the Commonwealth. Based upon DEP policy directives issued on March 22, 2021 and in conjunction with EPA's 2017 Triennial Review, monitoring for E. Coli shall be required.

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

	Changes in Permit Monitoring or Effluent	Quality
Parameter	Existing Permit	Draft Permit
Ammonia-Nitrogen	April 30, effluent limits shall not exceed 19 lbs/day and 6.0 mg/l as an average monthly.	During the months of May 1 to October 31, effluent limits shall not exceed 4.5 lbs/day and 1.5 mg/l as an average monthly. During the months of November 1 to April 30, effluent limits shall not exceed 14 lbs/day and 4.5 mg/l as an average monthly. Based upon the 12 months of DMR from May 2021 to April 2022, the facility should be able to meet the reduced effluent limits
Nitrate-Nitrogen as N, TKN, and Total Phosphorus	Monitoring is required 1x/wk	Monitoring shall be at least 1x/month
E. Coli	No monitoring or effluent limits	Due to the EPA Triennial Review, E. Coli shall be monitored 1x/quarter.
Total Lead	No monitoring or effluent limits	Monitoring shall be at least 1x/month
TDS, sulfate, chloride, and bromide	Monitoring is required 1x/month	EPA and DEP Central Office has directed that no further sample collection for these parameters is needed. Monitoring has been eliminated.

Changes in Permit Monitoring or Effluent Quality

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PARTA - EFFLUENT LIN	PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS							
I. A. For Outfall 00	1, Latitude, 10.25", Longitude78° 14' 28.00", River Mile Index1.1, Stream Code14144							
Receiving Waters	Receiving Waters: Unnamed Tributary to Tub Mill Run (WWF)							
Type of Effluent:	Sewage Effluent							

1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Effluent Limitations						quirements
Parameter	Mass Units (Ibs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	xxx	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	xxx	xxx	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	79	127	xxx	25.0	40.0	50	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	xxx	1/week	24-Hr Composite
Total Suspended Solids	95	145	xxx	30.0	45.0	60	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2000 Geo Mean	xxx	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	xxx	XXX	Report Daily Max	XXX	1/quarter	Grab
Ultraviolet light intensity (mW/cm ²)	xxx	xxx	Report	xxx	xxx	xxx	1/day	Metered

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent Lir	nitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrations (mg/L)			Minimum ⁽²⁾	Required
Farameter	Average	Weekly	Instantaneous	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
								24-Hr
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Nitrate-Nitrite as N (Total	Report							
Load, lbs) (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Nitrogen	XXX	XXX	xxx	Report	xxx	xxx	1/month	Calculation
Total Nitrogen (Total Load,	Report							
lbs) (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	14	XXX	XXX	4.5	XXX	9	1/week	Composite
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	4.5	XXX	XXX	1.5	XXX	3	1/week	Composite
Ammonia-Nitrogen (Total	Report							
Load, lbs) (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
								24-Hr
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Total Kjeldahl Nitrogen (Total	Report							
Load, lbs) (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	6.3	XXX	XXX	2.0	XXX	4	1/month	Composite
Total Phosphorus (Total Load,	Report							
lbs) (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
	- ·		1000					24-Hr
Copper, Total	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
Land Table	Desert	2004	2004	Denet	2004	2004	4 / H	24-Hr
Lead, Total	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
Zine Total	Depart	VVV	~~~~	Depart	VVV	VVV	1/month	24-Hr
Zinc, Total	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- SBR Batch Discharge Condition
- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems

WQM for Windows Model (see Attachment) Toxics Management Spreadsheet (see Attachment) TRC Model Spreadsheet (see Attachment) Temperature Model Spreadsheet (see Attachment)	
Toxics Management Spreadsheet (see Attachment) TRC Model Spreadsheet (see Attachment) Temperature Model Spreadsheet (see Attachment)	
TRC Model Spreadsheet (see Attachment) Temperature Model Spreadsheet (see Attachment)	
Temperature Model Spreadsheet (see Attachment)	
I I I I I I I I I I I I I I I I I I I	
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.	
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001,	10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.	
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 1	1/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97	
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 12/97.	, 362-2183-004,
Pennsylvania CSO Policy, 385-2000-011, 9/08.	
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.	
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Po 2000-002, 4/97.	Ilution Act, 391-
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.	
Implementation Guidance Design Conditions, 391-2000-006, 9/97.	
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dis and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.	ssolved Oxygen
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Indust 391-2000-008, 10/1997.	trial Discharges,
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges t and Impoundments, 391-2000-010, 3/99.	to Lakes, Ponds,
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allo for Toxics, Version 2.0, 391-2000-011, 5/2004.	ocation Program
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Structure Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.	eams, Drainage
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.	
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.	
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2	2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.	Total Dissolved
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Dis Hardness, 391-2000-021, 3/99.	0 0
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in th of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/	
Design Stream Flows, 391-2000-023, 9/98.	
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of and Other Discharge Characteristics, 391-2000-024, 10/98.	of Variation (CV)
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.	
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4	/07.
SOP: New and Reissuance Sewage Individual NPDES Permit Applications, rev 2/3/20	
Other:	

Attachment A

Stream Stats/Gauge Data

14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued

[Latitude and Longitude in decimal degrees; mi², square miles]

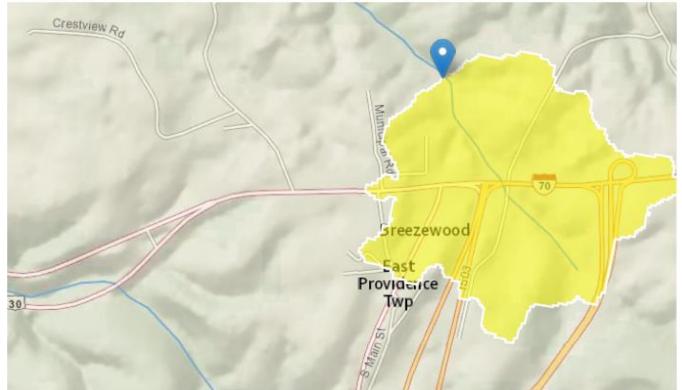
Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01561000	Brush Creek at Gapsville, Pa.	39.956	-78.254	36.8	Ν
01562000	Raystown Branch Juniata River at Saxton, Pa.	40.216	-78.265	756	N
01562500	Great Trough Creek near Marklesburg, Pa.	40.350	-78.130	84.6	N
01563200	Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa.	40.429	-77.991	960	Y
01563500	Juniata River at Mapleton Depot, Pa.	40.392	-77.935	2,030	Y
01564500	Aughwick Creek near Three Springs, Pa.	40.213	-77.925	205	N
01565000	Kishacoquillas Creek at Reedsville, Pa.	40.655	-77.583	164	N
01565700	Little Lost Creek at Oakland Mills, Pa.	40.605	-77.311	6.52	N
01566000	Tuscarora Creek near Port Royal, Pa.	40.515	-77.419	214	N
01566500	Cocolamus Creek near Millerstown, Pa.	40.566	-77.118	57.2	N
01567000	Juniata River at Newport, Pa.	40.478	-77.129	3,354	Y
01567500	Bixler Run near Loysville, Pa.	40.371	-77.402	15.0	N
01568000	Sherman Creek at Shermans Dale, Pa.	40.323	-77.169	207	N
01568500	Clark Creek near Carsonville, Pa.	40.460	-76.751	22.5	LF
01569000	Stony Creek nr Dauphin, Pa.	40.380	-76.907	33.2	N
01569800	Letort Spring Run near Carlisle, Pa.	40.235	-77.139	21.6	N
01570000	Conodoguinet Creek near Hogestown, Pa.	40.252	-77.021	470	LF
01570500	Susquehanna River at Harrisburg, Pa.	40.255	-76.886	24,100	Y
01571000	Paxton Creek near Penbrook, Pa.	40.308	-76.850	11.2	N
01571500	Yellow Breeches Creek near Camp Hill, Pa.	40.225	-76.898	213	N
01572000	Lower Little Swatara Creek at Pine Grove. Pa.	40.538	-76.377	34.3	N
01572025	Swatara Creek near Pine Grove, Pa.	40.533	-76.402	116	N
01572190	Swatara Creek near Inwood. Pa.	40.479	-76.531	167	N
01573000	Swatara Creek at Harper Tavern, Pa.	40.403	-76.577	337	N
01573086	Beck Creek near Cleona, Pa.	40.323	-76.483	7.87	N
01573160	Quittapahilla Creek near Bellegrove, Pa.	40.343	-76.562	74.2	N
01573500	Manada Creek at Manada Gap, Pa.	40.397	-76,709	13.5	N
01573560	Swatara Creek near Hershey, Pa.	40.298	-76.668	483	N
01574000	West Conewago Creek near Manchester, Pa.	40.082	-76,720	510	N
01574500	Codorus Creek at Spring Grove, Pa.	39.879	-76.853	75.5	Y
01575000	South Branch Codorus Creek near York, Pa.	39.921	-76.749	117	Y
01575500	Codorus Creek near York. Pa	39.946	-76.755	222	Ŷ
01576000	Susquehanna River at Marietta, Pa.	40.055	-76.531	25,990	Ŷ
01576085	Little Conestoga Creek near Churchtown, Pa.	40.145	-75.989	5.82	N
01576500	Conestoga River at Lancaster, Pa.	40.050	-76.277	324	N
01576754	Conestoga River at Conestoga, Pa.	39.946	-76.368	470	N
01578310	Susquehanna River at Conowingo, Md.	39.658	-76.174	27,100	Y
01578400	Bowery Run near Quarryville, Pa.	39.895	-76.114	5.98	N
01580000	Deer Creek at Rocks, Md.	39.630	-76.403	94.4	N
01581500	Bynum Run at Bel Air, Md.	39.541	-76.330	8.52	N
01581500	Winters Run near Benson, Md.	39.541	-76.373	34.8	N
01582000	Little Falls at Blue Mount, Md.	39.520	-76.620	52.9	N
01582500	Gunpowder Falls at Glencoe, Md.	39.004	-76.636	160	Y
01582500	Slade Run near Glyndon, Md.		-76.795		
		39.495		2.09	N N
01583100	Piney Run at Dover, Md.	39.521	-76.767	12.3	N

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.2
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	² 1971-2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.3
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.8
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.6
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.6
01551500	21963-2008	46	520	578	1,020	678	1,330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.6
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.3
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.7
01553500	21968-2008	41	760	838	1,440	1,000	1,850	1,470
01553500	³ 1941–1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.2
01554000	² 1981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	31939-1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.6
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.6
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.7
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.8
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	73.7
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931-1958	28	9.3	10.5	15.0	12.4	17.8	15.8
01559700	1963-1978	16	.1	.1	.2	.1	.3	.2
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.2
01561000	1932-1958	27	.4	.5	1.6	.8	2.5	1.7
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.5
01562500	1931-1957	27	1.1	1.6	3.8	2.3	5.4	3.7
01563200	21974-2008	35	_	_	_	112	266	129
01563200	³ 1948–1972	25	10.3	28.2	86.1	64.5	113	95.5
01563500	² 1974–2008	35	384	415	519	441	580	493
01563500	³ 1939–1972	34	153	242	343	278	399	333
01564500	1940-2008	69	3.6	4.2	10.0	6.2	14.4	10.6


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20220601151826923000

 Clicked Point (Latitude, Longitude):
 40.00295, -78.24068

 Time:
 2022-06-01 11:18:46 -0400

East Providence Township MA PA0038733 Modeling Point #1 June 2022

Collapse All

Basin Characteristics Parameter Code **Parameter Description** Value Unit CARBON Percentage of area of carbonate rock 0 percent DRNAREA Area that drains to a point on a stream 0.3 square miles PRECIP Mean Annual Precipitation 37 inches ROCKDEP Depth to rock 3 feet

Parameter Code	Parameter Description	Value	Unit
STRDEN	Stream Density total length of streams divided by drainage area	2.02	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.3	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	37	inches	35	50.4
STRDEN	Stream Density	2.02	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	3	feet	3.32	5.65
CARBON	Percent Carbonate	0	percent	0	99

Low-Flow Statistics Disclaimers [Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.00609	ft^3/s
30 Day 2 Year Low Flow	0.0108	ft^3/s
7 Day 10 Year Low Flow	0.00131	ft^3/s
30 Day 10 Year Low Flow	0.00253	ft^3/s
90 Day 10 Year Low Flow	0.00631	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-

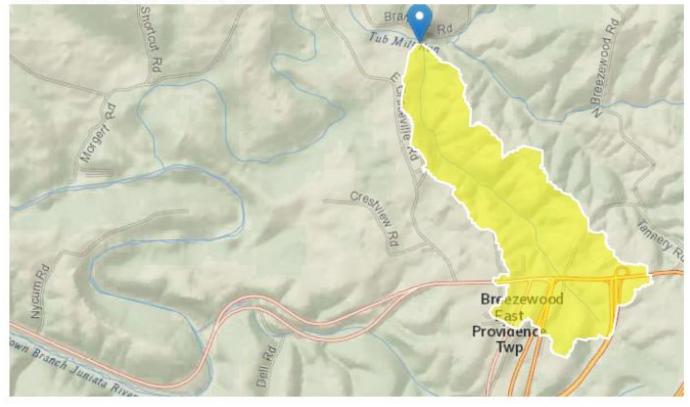
5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.9.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.0


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20220601152224620000

 Clicked Point (Latitude, Longitude):
 40.01514, -78.25047

 Time:
 2022-06-01 11:22:46 -0400

East Providence PA0038733 Modeling Point #2 June 2022

Collapse All

> Basin Characteristics

Parameter Description	Value	Unit
Percentage of area of carbonate rock	0	percent
Area that drains to a point on a stream	0.62	square miles
Mean Annual Precipitation	37	inches
Depth to rock	3	feet
	Area that drains to a point on a stream Mean Annual Precipitation	Percentage of area of carbonate rock0Area that drains to a point on a stream0.62Mean Annual Precipitation37

Parameter Code	Parameter Description	Value	Unit
STRDEN	Stream Density total length of streams divided by drainage area	2.75	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.62	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	37	inches	35	50.4
STRDEN	Stream Density	2.75	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	3	feet	3.32	5.65
CARBON	Percent Carbonate	0	percent	0	99

Low-Flow Statistics Disclaimers [Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0102	ft^3/s
30 Day 2 Year Low Flow	0.0182	ft^3/s
7 Day 10 Year Low Flow	0.00223	ft^3/s
30 Day 10 Year Low Flow	0.00431	ft^3/s
90 Day 10 Year Low Flow	0.0105	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-

5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.9.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.0

Attachment B WQM 7.0 Modeling Output Values Toxics Management Spreadsheet Output Values

		<u>1 Code</u> 144					
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.100	East Providence	PA0038733	0.380	CBOD5	25		
				NH3-N	1.77	3.54	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Reach Reduction

0

0

RMI

Discharge Name

1.10 East Providence

		am Code 14144			<u>ream Name</u> I4 to Tub Mill	Run	
NH3-N	Acute Allocatio	ıs					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.10	00 East Providence	14.47	14.5	14.47	14.5	0	0
NH3-N	Chronic Allocat	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.10	00 East Providence	1.76	1.77	1.76	1.77	0	0

(mg/L) (mg/L) (mg/L) (mg/L)

25

25

Baseline Multiple Baseline Multiple Baseline Multiple

1.77

1.77

(mg/L) (mg/L)

5

5

Version 1.1

NPDES Permit Fact Sheet East Providence Township STP

	SWP Basir			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrav (mgd)	val	Apply FC
	11D	141	44 Trib 14	4144 to Ti	ub Mill Run		1.10	00 12	40.00	0.30	0.00000		0.00	✓
					St	tream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>]</u> Temp	<u>Fributary</u> pH	Tem	<u>Stream</u> p p	σΗ	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(ºC)		(°C))		
Q7-10 Q1-10 Q30-10	0.004	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	23	.30 8.0	0 (D.00	0.00	
							Data							
			Name	Per	rmit Numbe	Disc	Permitte Disc Flow (mgd)	Flow	Rese Fac		p p	sc H		
		East F	Providence	e PA	0038733	0.380	0.380	0 0.380	00 00	.000 20	0.00	7.15		
					P	arameter l	Data							
			F	Paramete	r Name				tream Conc	Fate Coef				
	_					(m	g/L) (n	ng/L) (I	mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				

25.00

0.00

0.00

0.70

Input Data WQM 7.0

NH3-N

NPDES Permit Fact Sheet East Providence Township STP

Input Data WQM 7.0

	SWF Basi			Stre	eam Name		RMI	Elevat (ft)	ion	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	11D	141	144 Trib 14	4144 to Tu	ıb Mill Run		0.00	0 112	26.00	0.62	0.00000	0.0	
					S	tream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> ıp pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(ºC))	(°C)	
Q7-10 Q1-10 Q30-10	0.004	0.00 0.00 0.00		0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	23	3.30 8.	00	0.00 0.0	0
					D	ischarge [Data						
						Existing	Dormitte	d Decign		Die	n Di	e.e.	

Name	e Permit Number	Disc	Permitted Disc Flow (mgd)	Des Dis Flo (mo	sc Res ow Fa	erve T ctor	Disc emp (°C)	Disc pH
		0.0000	0.0000	0.0	0000 0	0.000	0.00	7.00
	Pa	rameter D	ata					
	Parameter Name	Dis Co			Stream Conc	Fate Coef		
		(mg	g/L) (mg	/L)	(mg/L)	(1/days)		
CBOD5	5	2	5.00	2.00	0.00	1.50		
Dissolv	ed Oxygen		3.00	8.24	0.00	0.00)	
NH3-N		2	5.00	0.00	0.00	0.70		

<u>RMI</u> 1.100	<u>Total Discharge</u> 0.380	Flow (mgd	A			
1.100	0.380) <u>Anal</u>	ysis Temperature	(°C)	Analysis pH
)		20.007		7.151
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio		Reach Velocity (fps)
5.244	0.493	3		10.646		0.228
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	1/da <u>ys)</u>	R	each NH3-N (mg/L	.)	Reach Kn (1/days)
24.95	1.500 <u>Reach Kr (1</u>			1.77		0.700
Reach DO (mg/L)		Kr Equation		Reach DO Goal (mg/L)		
5.007	29.87	7		Owens		5
Reach Travel Time (days)		Subreach	Results			
0.295	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.029	23.87	1.73	6.25		
	0.059	22.84	1.69	6.82		
	0.088	21.85	1.66	7.10		
	0.118	20.91	1.63	7.26		
	0.147	20.00	1.59	7.37		
	0.177	19.14	1.56	7.46		
	0.206	18.31	1.53	7.53		
	0.236	17.52	1.50	7.60		
	0.265	16.76	1.47	7.67		
	0.295	16.03	1.44	7.73		

WQM 7.0 D.O.Simulation

	SW	SWP Basin Stream Code				Stream Name								
	11D		11D 14144				Trib 14144 to Tub Mill Run							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
Q7-1	Q7-10 Flow													
1.100	0.00	0.00	0.00	.5879	0.01963	.493	5.24	10.65	0.23	0.295	20.01	7.15		
Q1-1	0 Flow													
1.100	0.00	0.00	0.00	.5879	0.01963	NA	NA	NA	0.23	0.295	20.01	7.15		
Q30-	10 Flow													
1.100	0.00	0.00	0.00	.5879	0.01963	NA	NA	NA	0.23	0.295	20.01	7.15		

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.96	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Discharge Information

Toxics Management Spreadsheet
Version 1.3, March 2021

Inst	tructions D	ischarge Stream														
Fac	ility: Eas	t Providence					NPDES Permit No.: PA0038733 Outfall No.: 001									
Eva	luation Type		/ Indust	rial W	laste		Wastewater Description: Sewage effluent									
LVa	iuauon type	Major Sewage	-													
					Discha	arge	Cha	racteris	tics							
De	sign Flow					_		al Mix Fa		PMFs)		Com	plete Mi	x Times	(min)	
	(MGD)*	Hardness (mg/l)*	рн ((SU)*	AF	С		CFC	THE	1	CRL	Q	7-10	0	2 _h	
	0.38	100	7.	.15												
			-		•		•			-		-				
						(0 if let	ft blank	0.5 if le	eft blank	() if left blan	nk	1 if lef	t blank	
	Disch	arge Pollutant	Units	Max	Discharge Conc		rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl	
	Total Dissolv	ed Solids (PWS)	mg/L													
p 1	Chloride (PW		mg/L		968											
Group	Bromide		mg/L		0.122											
อั	Sulfate (PWS		mg/L													
	Fluoride (PW Total Aluminu		mg/L													
	Total Aluminu Total Antimor		μg/L μg/L			-										
	Total Arsenic	µg/L														
	Total Barium		µg/L													
	Total Berylliu	m	µg/L													
	Total Boron		µg/L													
	Total Cadmiu		µg/L													
	Total Chromi		µg/L													
	Hexavalent C Total Cobalt	hromium	µg/L			_										
	Total Copper		µg/L mg/L	$\left \right $	0.0121											
2	Free Cyanide		µg/L		0.0121											
Group	Total Cyanide		µg/L													
50	Dissolved Iro		µg/L													
-	Total Iron		µg/L													
	Total Lead		mg/L		0.000538											
	Total Mangar		µg/L													
	Total Mercury Total Nickel	/	µg/L													
		(Phenolics) (PWS)	μg/L μg/L													
	Total Seleniu		µg/L													
	Total Silver		µg/L													
	Total Thalliun	n	µg/L													
	Total Zinc		mg/L		0.21											
	Total Molybd	enum	µg/L													
	Acrolein		µg/L	<												
	Acrylamide Acrylonitrile		μg/L μg/L	<												
	Benzene		µg/L µg/L	<												
	Bromoform		µg/L	<												
	Carbon Tetra	chloride	µg/L	<												
	Chlorobenzer		µg/L													
	Chlorodibrom		µg/L	<												
	Chloroethane		µg/L	<												
	2-Chloroethyl	Vinyl Ether	µg/L	<												

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

East Providence, NPDES Permit No. PA0038733, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Tributary 14144 to Tub Mill Run

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	014144	1.1	1240	0.3			Yes
End of Reach 1	014144	0	1126	0.62			Yes

Statewide Criteria
 Great Lakes Criteria

ORSANCO Criteria

Q 7-10

Location	RMI LFY		LFY Flow (cfs)		W/D	Width	Depth	Velocit	Travel	Tributary		Stream		Analysis	
Location	IXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	1.1	0.0043										96	8		
End of Reach 1	0	0.0043										96	8		

No. Reaches to Model: ____1

Q_h

ſ	Location	RMI	LFY	Flow (cfs)		W/D	Width	Depth	Velocit	Travel	Tributary		Stream		Analysis	
	Location	IXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time	Hardness	pН	Hardness	pН	Hardness	pН
[Point of Discharge	1.1														
- [End of Reach 1	0														

Stream / Surface Water Information

6/16/2022

pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

NPDES Permit No. PA0038733

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

East Providence, NPDES Permit No. PA0038733, Outfall 001

Instructions Results	RETURN	TO INPU	тя) (з	SAVE AS	PDF	PRINT	т) () <i>А</i>	All () Inputs () Results () Limits
Hydrodynamics								
Wasteload Allocations								
	CCT (min): 0.0	000	PMF:	1	Apol	lysis Hardnes	oo (ma/l);	99.991 Analysis pH: 7.15
		00	FINE.	1		iysis naturies	ss (mg/i).	
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	13.438	14.0	14.0	Chem Translator of 0.96 applied
Total Lead	0	0		0	64.575	81.6	81.8	Chem Translator of 0.791 applied
Total Zinc	0	0		0	117.172	120	120	Chem Translator of 0.978 applied
☑ CFC		000	PMF:	1		alysis Hardne	ess (mg/l):	99.991 Analysis pH: 7.15
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.955	9.33	9.35	Chem Translator of 0.96 applied
Total Lead	0	0		0	2.516	3.18	3.19	Chem Translator of 0.791 applied
Total Zinc	0	0		0	118.130	120	120	Chem Translator of 0.986 applied
☑ THH	CCT (min): 0.0	000	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
☑ CRL	CCT (min): 0.0	001	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Chloride (PWS)			(1-3/		(1-3)	(= 5 - 7	N/A	

Model Results

6/16/2022

Page 5

Total Copper	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML	MDL	AML	MDL	IMAX	Units	Governing	WQBEL	Comments
1 ondtants	(lbs/day)	(lbs/day)		INDL		Onits	WQBEL	Basis	Commenta
Total Copper	0.03	44.5	0.009	14.0	14.0	mg/L	0.009	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	Report	Report	Report	Report	Report	mg/L	0.003	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	0.38	381	0.12	120	120	mg/L	0.12	AFC	Discharge Conc ≥ 50% WQBEL (RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS

6/16/2022