Northwest Regional Office CLEAN WATER PROGRAM Application Type Facility Type Major / Minor Minor # NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE Application No. PA0038814 APS ID 1009297 Authorization ID 1301665 | Applicant Name | Ellpo | rt Borough Sewer Authority | Facility Name | Ellport Borough STP | | |-----------------------|--------|----------------------------|------------------|-----------------------------|--| | Applicant Address | 313 B | surns Avenue | Facility Address | 313 Burns Avenue | | | | Ellwo | od City, PA 16117-3910 | <u>_</u> | Ellwood City, PA 16117-3910 | | | Applicant Contact | David | Steffler | Facility Contact | Michael Milnes (Operator) | | | Applicant Phone | (724) | 752-1422 | Facility Phone | (724) 752-1422 | | | Client ID | 62947 | 7 | Site ID | 261253 | | | Ch 94 Load Status | Not O | verloaded | Municipality | Ellport Borough | | | Connection Status | No Lii | mitations | County | Lawrence | | | Date Application Rece | ived | January 2, 2020 | EPA Waived? | Yes | | | Date Application Acce | pted | January 21, 2020 | If No, Reason | | | #### **Summary of Review** This is a Publicly Owned Treatment Works (POTW) serving the municipalities of Ellport Borough, Perry Township and Franklin Township in Lawrence County. There are no proposed changes to discharge quality or quantity as part of this permit renewal. There are currently no open violations listed in EFACTS for this permittee (3/29/2022). Sludge use and disposal description and location(s): Sludge is hauled offsite and disposed of at municipal waste landfill operated by Joseph J. Brunner Inc. and located in New Sewickley Township, Beaver County. #### **Public Participation** DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge. | Approve | Deny | Signatures | Date | |---------|------|---|----------------| | Х | | Adam J. Pesek
Adam J. Pesek, E.I.T. / Environmental Engineer | March 29, 2022 | | X | | Justin C. Dickey
Justin C. Dickey, P.E. / Environmental Engineer Manager | April 11, 2022 | | scharge, Receiving V | N ater | s and Water Supply Infor | rmation | | | | | | |------------------------------|---------------|--------------------------|----------------------------|----------------------|--|--|--|--| | Outfall No. 001 | | | Design Flow (MGD) | 0.72 | | | | | | Latitude 40° 51' | 58" | | Longitude | -80º 15' 29" | | | | | | Quad Name Beav | er Fal | ls | Quad Code | 1203 | | | | | | Wastewater Description | on: | Sewage Effluent | | | | | | | | Receiving Waters | Slippe | ry Rock Creek | Stream Code | 34025 | | | | | | NHD Com ID | 12621 | 6417 | RMI | 4.96 | | | | | | Drainage Area 8 | 827 | | Yield (cfs/mi²) | 0.08 | | | | | | Q ₇₋₁₀ Flow (cfs) | 66.04 | | Q ₇₋₁₀ Basis | New Castle TDS Study | | | | | | Elevation (ft) | 800 | | Slope (ft/ft) | 0.0027 | | | | | | Watershed No. | 20-C | | Chapter 93 Class. | WWF | | | | | | Existing Use | | | Existing Use Qualifier | | | | | | | Exceptions to Use | | | Exceptions to Criteria | | | | | | | Assessment Status | | Impaired | | | | | | | | Cause(s) of Impairme | ent | PATHOGENS | | | | | | | | Source(s) of Impairme | ent | SOURCE UNKNOWN | | | | | | | | TMDL Status | | | Name | | | | | | | Background/Ambient | Data | | Data Source | | | | | | | pH (SU) | | 7.0 | Default | | | | | | | Temperature (°C) | | 25 | Default (WWF) | | | | | | | Hardness (mg/L) | | | | | | | | | | Other: NH ₃ -N | | 0.1 | Default66.04 | | | | | | | Nearest Downstream | Publi | c Water Supply Intake | PA American Water Company | / – Ellwood District | | | | | | PWS Waters Co | nnoqı | uenessing Creek | Flow at Intake (cfs) 67 | | | | | | | PWS RMI 0.2 | 25 | | Distance from Outfall (mi) | 4.7 | | | | | #### Changes Since Last Permit Issuance: Other Comments: There are three unauthorized sanitary sewer overflows in the sanitary sewer system. Outfall 002 - Overflow at Pump Station No. 1 for flows exceeding 550 gpm. Outfall 003 – Overflow at Pump Station No. 2. Outfall 004 – Historical bypass of the treatment plant which is normally closed (can be opened by a valve). The bypass is believed to have been removed during the last treatment plant upgrade. | | Tre | atment Facility Summa | ry | | |-----------------------|-------------------------|-----------------------|---------------------|--------------| | Treatment Facility Na | me: Ellport Borough STP | | | | | WQM Permit No. | Issuance Date | | | | | 3777402 | 9/22/1977 | | | | | 3705401 | 3/24/2005 | | | | | | | | | | | | Degree of | | | Avg Annual | | Waste Type | Treatment | Process Type | Disinfection | Flow (MGD) | | Sewage | Secondary | Extended Aeration | Gas Chlorine | 0.72 | | | | | | | | | | | | | | Hydraulic Capacity | Organic Capacity | | | Biosolids | | (MGD) | (lbs/day) | Load Status | Biosolids Treatment | Use/Disposal | | 0.72 | 1000 | Not Overloaded | Aerobic Digestion | Landfill | Changes Since Last Permit Issuance: The 8/22/2019 Inspection Report indicated the permittee should submit a WQM Permit Amendment application for dechlorination equipment that is already installed and removal of comminutor/grinder unit if the permittee is not planning to install them as permitted. No WQM Permit amendment application has been submitted to date. Other Comments: | | Compliance History | |-------------------------|---| | | | | Summary of DMRs: | Only one effluent violation reported for D.O. since the beginning of 2017 | | Summary of Inspections: | CAP approved on July 27, 2020 to address hydraulic overload conditions at Lift Stations #1 and #2 that occurred during wet weather events. The last site inspection occurred on January 21, 2020. The inspection report indicated it was a follow up inspection to the one done in 2019. No major issues reported. A site inspection was conducted on August 22, 2019. The inspection report noted violations noted below: 1. Failure to comply with terms and conditions of a WQM Permit (P. L. 1987, No. 394, Sec 611). Water Quality Management (WQM) Permit 3705401 dated March 24, 2015 approved the construction/modification/operation of 'New Wastewater Treatment Units' which includes a comminutor/grinder sized for a flow rate of 2000-gpm (2.9-MGD). A comminutor/grinder is not installed at the headworks. A Muffin Monster control panel and manual, coarse bar screen are installed at the headworks. 2. Failure to apply for and/or obtain a WQM Permit for the construction of sewage or industrial waste facilities. A chemical feed system has been installed to apply sodium bisulfite to treatment plant effluent, for the purpose of de-chlorination, without applying for a WQM Permit amendment. | Other Comments: The Department will request a WQM Permit application be submitted when the draft permit is sent out. ## **Compliance History** ## DMR Data for Outfall 001 (from February 1, 2021 to January 31, 2022) | Parameter | JAN-22 | DEC-21 | NOV-21 | OCT-21 | SEP-21 | AUG-21 | JUL-21 | JUN-21 | MAY-21 | APR-21 | MAR-21 | FEB-21 | |--|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Flow (MGD) | | | | | | | | | | | | | | Average Monthly | 0.438 | 0.477 | 0.350 | 0.378 | 0.308 | 0.347 | 0.396 | 0.295 | 0.496 | 0.353 | 0.610 | 0.411 | | Flow (MGD) | | | | | | | | | | | | | | Weekly Average | 0.886 | 0.855 | 0.554 | 1.312 | 0.467 | 1.168 | 0.998 | 0.399 | 1.715 | 0.488 | 2.268 | 0.585 | | pH (S.U.) | | | | | | | | | | | | | | Minimum | 6.94 | 6.96 | 7.00 | 7.00 | 7.15 | 7.11 | 7.04 | 7.06 | 6.97 | 6.98 | 6.86 | 6.98 | | pH (S.U.) | | | | | | | | | | | | | | Maximum | 7.36 | 7.66 | 7.59 | 7.67 | 7.43 | 7.34 | 7.38 | 7.37 | 7.46 | 7.41 | 7.85 | 7.23 | | DO (mg/L) | | | | | | | | | | | | | | Minimum | 5.94 | 5.52 | 5.64 | 5.70 | 5.50 | 5.12 | 5.07 | 5.28 | 6.47 | 6.16 | 6.73 | 7.73 | | TRC (mg/L) | | | | | | | | | | | | | | Average Monthly | 0.36 | 0.38 | 0.38 |
0.38 | 0.10 | 0.15 | 0.11 | 0.18 | 0.46 | 0.45 | 0.40 | 0.46 | | TRC (mg/L) | | | | | | | | | | | | | | Instantaneous | | | | | | | | | | | | | | Maximum | 0.50 | 0.50 | 0.50 | 0.50 | 0.20 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | | CBOD5 (lbs/day) | | | | | | | | | | | | | | Average Monthly | 20.1 | 27.6 | 18.6 | 34.8 | 25.8 | 21.4 | 28.2 | 19.9 | 22.9 | 23.9 | 34.1 | 21.5 | | CBOD5 (lbs/day) | | | | | | | | | | | | | | Weekly Average | 25.5 | 35.0 | 22.4 | 44.4 | 33.1 | 24.3 | 33.3 | 21.6 | 27.7 | 31.2 | 46.2 | 32.8 | | CBOD5 (mg/L) | | 0.04 | 0.40 | | 40.00 | - 40- | | 0.40 | | | 0.70 | | | Average Monthly | 5.52 | 6.94 | 6.40 | 11.05 | 10.06 | 7.425 | 8.55 | 8.12 | 5.55 | 8.125 | 6.72 | 6.30 | | CBOD5 (mg/L) | | | | | 40.0 | 0.40 | 40.4 | | 0.70 | 400 | 0.40 | | | Weekly Average | 7.0 | 8.80 | 7.70 | 14.1 | 12.9 | 8.40 | 10.1 | 8.80 | 6.70 | 10.6 | 9.10 | 7.90 | | BOD5 (lbs/day) | | | | | | | | | | | | | | Influent
br/> Average | 770 5 | 4004.0 | 000.7 | 4044.0 | 057.4 | 004.0 | 000.0 | 044.0 | 007.0 | 050.7 | 4404.4 | 770.0 | | Monthly | 773.5 | 1004.8 | 829.7 | 1244.2 | 857.4 | 894.6 | 936.2 | 611.6 | 967.9 | 853.7 | 1434.4 | 770.3 | | BOD5 (lbs/day) Influent
br/> Weekly | | | | | | | | | | | | | | Average | 1099.5 | 1551.4 | 1164.6 | 1626.7 | 1068.5 | 1198.1 | 1079.9 | 819.2 | 1154.1 | 912.6 | 1638.1 | 884.3 | | BOD5 (mg/L) | 1099.5 | 1331.4 | 1104.0 | 1020.7 | 1000.5 | 1190.1 | 1079.9 | 019.2 | 1134.1 | 912.0 | 1030.1 | 004.5 | | Influent
br/> Average | | | | | | | | | | | | | | Monthly | 211.75 | 252.6 | 284.25 | 394.7 | 333.8 | 309.25 | 283.5 | 248.6 | 234.0 | 290.0 | 282.0 | 224.75 | | TSS (lbs/day) | 211.73 | 202.0 | 204.20 | 334.1 | 555.0 | 303.23 | 200.0 | 240.0 | 254.0 | 230.0 | 202.0 | 224.13 | | Average Monthly | 3.65 | 15.9 | 9.48 | 29.9 | 17.4 | 13.0 | 28.8 | 16.7 | 11.3 | 8.83 | 7.12 | 7.53 | | TSS (lbs/day) | 3.03 | 13.3 | 3.40 | 23.3 | 17.4 | 13.0 | 20.0 | 10.7 | 11.5 | 0.00 | 1.14 | 1.55 | | Influent
br/> Average | | | | | | | | | | | | | | Monthly | 633.7 | 805.1 | 932.6 | 1149.8 | 927.3 | 828.4 | 828.9 | 588.5 | 785.9 | 720.5 | 1188.4 | 690.6 | | IVIOLITIIIY | 000.7 | 000.1 | 302.0 | 1149.0 | 321.3 | 020.4 | 020.9 | 500.5 | 100.9 | 120.0 | 1100.4 | 0.060 | # NPDES Permit Fact Sheet Ellport Borough STP ## NPDES Permit No. PA0038814 | TSS (lbs/day) | | | | | | | | | | | | | |--|--------|--------|--------|--------|--------|--------|-------|-------|-------|--------|--------|--------| | Influent
br/> Daily
Maximum | 1044.7 | 1615.4 | 1205.5 | 1292.5 | 1299.7 | 1099.7 | 990.7 | 770.0 | 864.5 | 1000.9 | 1592.3 | 867.2 | | TSS (lbs/day) | | | | | | | | 11010 | 30 | | .002.0 | 001.12 | | Weekly Average | 3.65 | 31.8 | 20.4 | 34.6 | 28.2 | 26.0 | 42.9 | 24.6 | 16.5 | 23.5 | 10.1 | 7.53 | | TSS (mg/L) | | | | | | | | | | | | | | Average Monthly | 1.0 | 4.0 | 3.25 | 9.50 | 6.80 | 4.50 | 8.75 | 6.80 | 2.75 | 3.0 | 1.40 | 1.0 | | TSS (mg/L)
Influent
br/> Average | | | | | | | | | | | | | | Monthly | 173.5 | 202.4 | 319.5 | 364.7 | 361.0 | 286.25 | 251.0 | 239.2 | 190.0 | 277.75 | 233.6 | 201.5 | | TSS (mg/L)
Weekly Average | 1.0 | 8.0 | 7.0 | 11.0 | 11.0 | 9.00 | 13.0 | 10.0 | 4.0 | 8.0 | 2.0 | 1.0 | | Fecal Coliform
(CFU/100 ml)
Geometric Mean | 2.39 | 1.24 | 5.02 | 6.47 | 9.12 | 13.6 | 11.0 | 15.7 | 2.21 | 7.135 | 2.93 | 3.08 | | Fecal Coliform | 2.39 | 1.24 | 5.02 | 0.47 | 9.12 | 13.0 | 11.0 | 15.7 | 2.21 | 7.133 | 2.93 | 3.00 | | (CFU/100 ml) | | | | | | | | | | | | | | Instantaneous
Maximum | 11.0 | 3.0 | 10.0 | 16.0 | 36.0 | 22.0 | 62.5 | 39.0 | 12.0 | 24.0 | 9.0 | 10.0 | | Total Nitrogen | | | | | | | | | | | | | | (lbs/day)
Average Quarterly | | 29.7 | | | 48.0 | | | 28.2 | | | 51.3 | | | Total Nitrogen (mg/L) | | | | | | | | | | | | | | Average Quarterly | | 7.27 | | | 16.6 | | | 11.5 | | | 10.1 | | | Ammonia (lbs/day) Average Monthly | 8.80 | 32.8 | 35.7 | 25.6 | 33.0 | 35.4 | 34.2 | 28.7 | 8.76 | 4.41 | 1.78 | 1.66 | | Ammonia (mg/L) | 0.00 | 02.0 | 30.7 | 20.0 | 00.0 | 00.1 | 01.2 | 20 | 0.7 0 | | 11.70 | 1.00 | | Average Monthly | 2.41 | 8.27 | 12.2 | 8.15 | 12.8 | 12.2 | 10.38 | 11.6 | 2.12 | 1.50 | 0.35 | 0.485 | | Total Phosphorus | | | | | | | | | | | | | | (lbs/day)
Average Quarterly | | 8.23 | | | 11.3 | | | 16.2 | | | 7.58 | | | Total Phosphorus | | 0.20 | | | 11.0 | | | 10.2 | | | 7.00 | | | (mg/L) | | | | | | | | | | | | | | Average Quarterly | | 2.07 | | | 3.93 | | | 6.61 | | | 1.49 | | | | Develop | ment of Effluent Limitations | | |--------------|-----------------------------|------------------------------|-----------------| | Outfall No. | 001 | Design Flow (MGD) | 0.72 | | Latitude | 40° 51' 58.00" | Longitude | -80° 15' 29.00" | | Wastewater D | escription: Sewage Effluent | | | #### **Technology-Based Limitations** The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable: | Pollutant | Limit (mg/l) | SBC | Federal Regulation | State Regulation | |-------------------------|---------------------|-----------------|--------------------|------------------| | CBOD ₅ | 25 | Average Monthly | 133.102(a)(4)(i) | 92a.47(a)(1) | | CBOD5 | 40 | Average Weekly | 133.102(a)(4)(ii) | 92a.47(a)(2) | | Total Suspended | 30 | Average Monthly | 133.102(b)(1) | 92a.47(a)(1) | | Solids | 45 | Average Weekly | 133.102(b)(2) | 92a.47(a)(2) | | рН | 6.0 – 9.0 S.U. | Min – Max | 133.102(c) | 95.2(1) | | Fecal Coliform | | | | | | (5/1 – 9/30) | 200 / 100 ml | Geo Mean | - | 92a.47(a)(4) | | Fecal Coliform | | | | | | (5/1 – 9/30) | 1,000 / 100 ml | IMAX | - | 92a.47(a)(4) | | Fecal Coliform | | | | | | (10/1 - 4/30) | 2,000 / 100 ml | Geo Mean | - | 92a.47(a)(5) | | Fecal Coliform | | | | | | (10/1 – 4/30) | 10,000 / 100 ml | IMAX | - | 92a.47(a)(5) | | Total Residual Chlorine | 0.5 | Average Monthly | - | 92a.48(b)(2) | | E. Coli | Report (No./100 ml) | IMAX | - | 92a.61 | Comments: Monitoring for E. coli will be placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits." #### **Water Quality-Based Limitations** The following limitations were determined through water quality modeling (output files attached): | Parameter | Limit (mg/l) | SBC | Model | |------------------|--------------|-----------------|--| | Ammonia Nitrogen | 21 | Average Monthly | WQM 7.0 Version 1.0b (Previous Modeling) | Comments: Monitoring for ammonia nitrogen will be placed in the permit during the wintertime period because the standard season multiplier of "3" is well above the threshold value of 25 mg/l discussed in the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits." ### **Best Professional Judgment (BPJ) Limitations** Comments: A dissolved oxygen daily minimum limit of 4.0 mg/l and a TRC IMAX limit of 1.6 is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits." #### **Other Considerations** Comments: Monitoring for influent BOD₅ and influent TSS is placed in the permit in accordance with the Department's SOP entitled "New and Reissuance Individual Sewage NPDES Permit Applications." Monitoring for total nitrogen and total phosphorus is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits." #### **Anti-Backsliding** ### **Proposed Effluent Limitations and Monitoring Requirements** The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ. Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date. | | | | Effluent L | imitations | | | Monitoring Re | quirements | |---|---------------------|---------------------|------------------|---------------------|-------------------|---------------------|--------------------------|-------------------| | Parameter | Mass Units | (lbs/day) (1) | | Concentrat | ions (mg/L) | | Minimum (2) | Required | | Farameter | Average
Monthly | Weekly
Average | Minimum | Average
Monthly | Weekly
Average | Instant.
Maximum | Measurement
Frequency | Sample
Type | | Flow (MGD) | Report | Report
Daily Max | XXX | XXX | XXX | XXX | Continuous | Measured | | pH (S.U.) | XXX | XXX | 6.0
Daily Min | XXX | 9.0
Daily Max | XXX | 1/day | Grab | | DO | XXX | XXX | 5.0
Daily Min | XXX | XXX | XXX | 1/day | Grab | | TRC | XXX | XXX | XXX | 0.5 | XXX | 1.6 | 1/day | Grab | | CBOD5 | 150 | 240 | XXX | 25 | 40 | 50 | 1/week | 8-Hr
Composite | | BOD5 Raw Sewage Influent | Report | Report
Daily Max | XXX | Report | XXX | XXX | 1/week | 8-Hr
Composite | | TSS
Raw Sewage Influent | Report | Report
Daily Max | XXX | Report | XXX | XXX | 1/week | 8-Hr
Composite | | TSS | 180 | 270 | XXX | 30 | 45 | 60 | 1/week | 8-Hr
Composite | | Fecal Coliform (No./100 ml)
Oct 1 - Apr 30 | XXX | XXX | XXX | 2000
Geo Mean | XXX | 10000 | 1/week | Grab | | Fecal Coliform (No./100 ml)
May 1 - Sep 30 | XXX | XXX | XXX | 200
Geo Mean | XXX | 1000 | 1/week | Grab | | E. Coli (No./100 ml) | XXX | XXX | XXX | XXX | XXX | Report | 1/quarter | Grab | | Total Nitrogen | Report
Avg Qrtly | XXX | XXX | Report
Avg Qrtly | XXX | XXX | 1/quarter | 8-Hr
Composite | | Ammonia
Nov 1 - Apr 30 | Report | XXX | XXX | Report | XXX | XXX | 1/month | 8-Hr
Composite | | Ammonia
May 1 - Oct 31 | 126 | XXX | XXX | 21 | XXX | 42 | 1/week | 8-Hr
Composite | | Total Phosphorus |
Report
Avg Qrtly | XXX | XXX | Report
Avg Qrtly | XXX | XXX | 1/quarter | 8-Hr
Composite | Compliance Sampling Location: Outfall 001 (after disinfection) ## Input Data WQM 7.0 | | SWP
Basir | 107000000 | | Stre | eam Name | | RMI | Ele | evation
(ft) | Drainage
Area
(sq mi) | Slop
(ft/ft | Wit | PWS
hdrawal
mgd) | Apply
FC | |--------------------------|--------------|-----------------------|----------------------|-------------------------|-------------------------|------------------|---------------------------------|--------------|-----------------|-----------------------------|-------------------|---------------------|------------------------|-------------| | | 20C | 340 | 025 CONN | OQUENE | ESSING CR | EEK | 4.9 | 60 | 800.00 | 827.0 | 0.00 | 000 | 0.00 | ~ | | | | | | | St | ream Dat | a | | | | | | | | | Design
Cond. | LFY | Trib
Flow | Stream
Flow | Rch
Trav
Time | Rch
Velocity | WD
Ratio | Rch
Width | Rch
Depth | | <u>Tributary</u>
pp ph | 1 | <u>Stre</u>
Temp | <u>am</u>
pH | | | Cona. | (cfsm) | (cfs) | (cfs) | (days) | (fps) | | (ft) | (ft) | (°C |) | | (°C) | | | | ଇ7-10
ඛ1-10
ඛ30-10 | 0.080 | 66.04
0.00
0.00 | 0.00
0.00
0.00 | 0.000
0.000
0.000 | 0.000
0.000
0.000 | 0.0 | 0.00 | 0.0 | 00 2 | 5.00 7 | 7.00 | 0.00 | 0.00 | | | | | Discharge Data | | | | | | | | | | | | | | | | | Name | Per | mit Number | Existing
Disc | Permitt
Disc
Flow
(mgd | Dis
Flo | sc Res | erve Te
ctor | isc
emp
PC) | Disc
pH | | | | | | Ellpo | rt Boro SA | PA | 0038814 | 0.7200 | 0.000 | 0.0 | 0000 | 0.000 | 20.00 | 7.20 | | | | | | | | | Pa | arameter l | Data | | | | | | | | | | | | 1 | Paramete | r Name | | | Trib
Conc | Stream
Conc | Fate
Coef | | | | | | | | | | urumoto | , ridino | (m | g/L) (r | mg/L) | (mg/L) | (1/days) | | | | | | | _ | | CBOD5 | | | : | 25.00 | 2.00 | 0.00 | 1.50 | | | | | | | | | Dissolved | Oxygen | | | 4.00 | 7.54 | 0.00 | 0.00 | | | | | | | | | NH3-N | | | ; | 25.00 | 0.10 | 0.00 | 0.70 | | | | | ## Input Data WQM 7.0 | | SWP
Basir | 1077120000 | | Stre | eam Name | | RMI | Ele | evation
(ft) | Drainage
Area
(sq mi) | Slope
(ft/ft) | PW
Withd
(mg | rawal | Apply
FC | |--------------------------|--------------|----------------------|----------------------|-------------------------|-----------------------|-------------|---------------------------------|--------------|-----------------|----------------------------------|------------------|----------------------|----------------|-------------| | | 20C | 340 | 025 CONN | IOQUENE | ESSING CR | EEK | 1.6 | 40 | 770.00 | 836.00 | 0.0000 | 00 | 0.00 | ~ | | 3: | | | | | St | ream Dat | a | | | | | | | | | Design
Cond. | LFY | Trib
Flow | Stream
Flow | Rch
Trav
Time | Rch
Velocity | WD
Ratio | Rch
Width | Rch
Depth | | <u>Tributary</u>
np pH | T | <u>Strean</u>
emp | <u>n</u>
pH | | | Cona. | (cfsm) | (cfs) | (cfs) | (days) | (fps) | | (ft) | (ft) | (°C | () | (| °C) | | | | ଇ7-10
ଇ1-10
ଇ30-10 | 0.080 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.000
0.000
0.000 | 0.000 | 0.0 | 0.00 | 0. | 00 2 | 5.00 7. | 00 | 0.00 | 0.00 | | | | | | | | Di | scharge l | Data | | | | | | | | | | | | Name | Per | rmit Number | Disc | Permitt
Disc
Flow
(mgd | Di: | sc Res | Dis
serve Ter
actor
(°0 | np | Disc
pH | | | | | | Ellwo | od City | PA | 0026832 | 3.3000 | 0.000 | 00 0. | 0000 | 0.000 | 20.00 | 6.70 | | | | | | | | | Pa | arameter l | Data | | | | | | | | | | | |] | Paramete | r Name | | | Trib
Conc | Stream
Conc | Fate
Coef | | | | | | | | | * | | ng questioners source | (m | ng/L) (r | mg/L) | (mg/L) | (1/days) | | | | | | | | | CBOD5 | | | | 25.00 | 2.00 | 0.00 | 1.50 | | | | | | | | | Dissolved | Oxygen | | | 4.00 | 7.54 | 0.00 | 0.00 | | | | | | | | | NH3-N | | | | 25.00 | 0.10 | 0.00 | 0.70 | | | | | ## Input Data WQM 7.0 | | | | | | 6,414,647 | | | 001000 | | | | | | | |--------------------------|--------------|----------------------|----------------------|-------------------------|-----------------|-------------|---------------------------------|--------------|-----------------|----------------------------------|------------------|---------------------|----------------|-----------| | | SWP
Basin | | | Stre | eam Name | | RMI | | evation
(ft) | Drainage
Area
(sq mi) | Slope
(ft/ft) | PV
Witho
(m | Irawal | App
FC | | | 20C | 340 | 25 CONN | IOQUENE | ESSING CR | EEK | 0.0 | 10 | 745.00 | 838.00 | 0.0000 | 0 | 0.00 | ✓ | | | | | | | St | ream Dat | a | | | | | | | | | Design
Cond. | LFY | Trib
Flow | Stream
Flow | Rch
Trav
Time | Rch
Velocity | WD
Ratio | Rch
Width | Rch
Depth | n Ten | <u>Tributary</u>
np pH | Те | <u>Strear</u>
mp | <u>n</u>
pH | | | Conu. | (cfsm) | (cfs) | (cfs) | (days) | (fps) | | (ft) | (ft) | (°C | ;) | (° | C) | | | | Q7-10
Q1-10
Q30-10 | 0.080 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.000
0.000
0.000 | 0.000 | 0.0 | 0.00 | 0.0 | 00 2 | 5.00 7. | 00 | 0.00 | 0.00 | | | | | | | | Di | scharge I | Data | | | | | |] | | | | | | Name | Per | rmit Number | Disc | Permitt
Disc
Flow
(mgd | Dis
Flo | sc Res | Dis
serve Ten
actor
(°C | np | Disc
pH | | | | | | | | | | 0.0000 | 0.00 | 00 0.0 | 0000 | 0.000 | 0.00 | 7.00 | | | | | | | | | Pa | arameter l | Data | | | | | | | | | | | | 3000 | Paramete | r Name | C | onc (| Trib
Conc | Stream
Conc | Fate
Coef | | | | | | | _ | | | | | (m | g/L) (i | mg/L) | (mg/L) | (1/days) | | _ | | | | | | | CBOD5 | | | | 25.00 | 2.00 | 0.00 | 1.50 | | | | | | | | | Dissolved | Oxygen | | | 3.00 | 8.24 | 0.00 | 0.00 | | | | | | | | | NH3-N | | | ; | 25.00 | 0.00 | 0.00 | 0.70 | | | | | # WQM 7.0 Hydrodynamic Outputs | | SW | P Basin | Strea | m Code | | | | Stream | <u>Name</u> | | | | |-------|----------------|-------------|-----------------------|--------------------------|----------------|-------|--------|--------------|-------------|-----------------------|------------------|----------------| | | | 20C | 3- | 4025 | | | CONNO | QUENES | SSING CF | REEK | | | | RMI | Stream
Flow | PWS
With | Net
Stream
Flow | Disc
Analysis
Flow | Reach
Slope | Depth | Width | W/D
Ratio | Velocity | Reach
Trav
Time | Analysis
Temp | Analysis
pH | | | (cfs) | (cfs) | (cfs) | (cfs) | (ft/ft) | (ft) | (ft) | | (fps) | (days) | (°C) | | | Q7-1 | 0 Flow | | | | | | | | | | | | | 4.960 | 66.04 | 0.00 | 66.04 | 1.1138 | 0.00171 | 1.087 | 141.86 | 130.54 | 0.44 | 0.466 | 24.92 | 7.00 | | 1.640 | 66.76 | 0.00 | 66.76 | 6.2189 | 0.00290 | 1.095 | 142.05 | 129.69 | 0.47 | 0.212 | 24.57 | 6.97 | | Q1-1 | 0 Flow | | | | | | | | | | | | | 4.960 | 42.27 | 0.00 | 42.27 | 1.1138 | 0.00171 | NA | NA | NA | 0.34 | 0.595 | 24.87 | 7.00 | | 1.640 | 42.73 | 0.00 | 42.73 | 6.2189 | 0.00290 | NA | NA | NA | 0.38 | 0.266 | 24.36 | 6.96 | | Q30- | 10 Flow | , | | | | | | | | | | | | 4.960 | 89.81 | 0.00 | 89.81 | 1.1138 | 0.00171 | NA | NA | NA | 0.52 | 0.393 | 24.94 | 7.00 | | 1.640 | 90.79 | 0.00 | 90.79 | 6.2189 | 0.00290 | NA | NA | NA | 0.55 | 0.181 | 24.68 | 6.98 | ## **WQM 7.0 Modeling Specifications** | Parameters | Both | Use Inputted Q1-10 and Q30-10 Flows | ✓ | |--------------------|--------|-------------------------------------|---| | WLA Method | EMPR | Use Inputted W/D Ratio | | | Q1-10/Q7-10 Ratio | 0.64 | Use Inputted Reach Travel Times | | | Q30-10/Q7-10 Ratio | 1.36 | Temperature Adjust Kr | ✓ | | D.O. Saturation | 90.00% | Use Balanced Technology | ✓ | | D.O. Goal | 5 | | | Monday, March 28, 2022 Version 1.1 Page 1 of 1 ## WQM 7.0 Wasteload Allocations | SWP Basin | Stream Code | Stream Name | |-----------|-------------|-----------------------| | 20C | 34025 | CONNOQUENESSING CREEK | | RMI | Discharge Name | Baseline
Criterion
(mg/L) | Baseline
WLA
(mg/L) | Multiple
Criterion
(mg/L) | Multiple
WLA
(mg/L) | Critical
Reach | Percent
Reduction | |---------|-------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|-------------------|----------------------| | 4.96 | D Ellport Boro SA | 11.15 | 50 | 11.15 | 50 | 0 | 0 | | 1.64 | Ellwood City | 12.01 | 50 | 12.07 | 50 | 0 | 0 | | IH3-N (| Chronic Allocati | ons | | | | | | | | | | | | | | | | RMI | Discharge Name | Baseline
Criterion
(mg/L) | Baseline
WLA
(mg/L) | Multiple
Criterion
(mg/L) | Multiple
WLA
(mg/L) | Critical
Reach | Percent
Reduction | | RMI | Discharge Name | Criterion | WLA | Criterion | WLA | | | #### **Dissolved Oxygen Allocations** | | | | <u>CBC</u> | DD5 | <u>NH</u> | <u>3-N</u> | Dissolved | d Oxygen | Critical | Percent | |----|------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------|-----------| | | RMI | Discharge Name | Baseline
(mg/L) | Multiple
(mg/L) | Baseline
(mg/L) | Multiple
(mg/L) | Baseline
(mg/L) | Multiple
(mg/L) | Reach | Reduction | | 90 | 4.96 | Ellport Boro SA | 25 | 25 | 22.1 | 22.1 | 4 | 4 | 0 | 0 | | | 1.64 | Ellwood City | 25 | 25 | 21.72 | 21.72 | 4 | 4 | 0 | 0 | Monday, March 28, 2022 Page 1 of 1 ## WQM 7.0 D.O.Simulation | SWP Basin S | tream Code
34025 | | CONN | Stream Name OQUENESSING CREE | < | |---|--|---|--
--|--| | RMI
4.960
Reach Width (ft) | Total Discharge
0.72
Reach De | 0
pth (ft) |) <u>Ana</u> | lysis Temperature (°C)
24.917
Reach WDRatio | Analysis pH 7.003 Reach Velocity (fps) | | 141.862 | 1.08 | | р | 130.539
each NH3-N (mg/L) | 0.436 | | Reach CBOD5 (mg/L)
2.38 | <u>Reach Kc (</u>
0.18 | | <u>r</u> | 0.46 | <u>Reach Kn (1/days)</u>
1.022 | | Reach DO (mg/L) | Reach Kr (| | | Kr Equation | Reach DO Goal (mg/L) | | 7.481 | 3.90 | 7 | | Tsivoglou | 5 | | Reach Travel Time (days) | | Culturate | Daniela | | | | 0.466 | TravTime
(days) | Subreach
CBOD5
(mg/L) | NH3-N
(mg/L) | D.O.
(mg/L) | | | | 0.047 | 2.36 | 0.44 | 7.51 | | | | 0.093 | 2.33 | 0.42 | 7.53 | | | | 0.140 | 2.31 | 0.40 | 7.54 | | | | 0.186 | 2.28 | 0.38 | 7.54 | | | | 0.233 | 2.26 | 0.37 | 7.54 | | | | 0.279 | 2.23 | 0.35 | 7.54 | | | | 0.326 | 2.21 | 0.33 | 7.54 | | | | 0.373 | 2.19 | 0.32 | 7.54 | | | | 0.419 | 2.16 | 0.30 | 7.54 | | | | 0.110 | | | | | | | 0.466 | 2.14 | 0.29 | 7.54 | | | <u>RMI</u> | 0.466
Total Discharge | 2.14
Flow (mgd | | lysis Temperature (°C) | Analysis pH | | 1.640 | 0.466 Total Discharge 4.02 | 2.14
Flow (mgd | | lysis Temperature (°C)
24.574 | 6.973 | | 1.640
Reach Width (ft) | 0.466 Total Discharge 4.02 Reach De | 2.14
Flow (mgd
0
pth (ft) | | lysis Temperature (°C)
24.574
Reach WDRatio | 6.973
Reach Velocity (fps) | | 1.640
<u>Reach Width (ft)</u>
142.048 | 0.466 Total Discharge 4.02 Reach De 1.09 | 2.14 Flow (mgd pth (ft) | <u>) Ana</u> | lysis Temperature (°C)
24.574 | 6.973 Reach Velocity (fps) 0.469 | | 1.640
Reach Width (ft) | 0.466 Total Discharge 4.02 Reach De | 2.14
Flow (mgd
0
pth (ft)
5
1/days) | <u>) Ana</u> | lysis Temperature (°C)
24.574
Reach WDRatio
129.693 | 6.973
Reach Velocity (fps) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) | Total Discharge 4.02 Reach De 1.09 Reach Kc to 0.69 Reach Kr (| 2.14
2.14
2.16 (mgd
0
pth (ft)
5
1/days)
2
1/days) | <u>) Ana</u> | lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 <u>Reach Width (ft)</u> 142.048 <u>Reach CBOD5 (mg/L)</u> 3.74 | Total Discharge 4.02 Reach De 1.09 Reach Kc to | 2.14
2.14
2.16 (mgd
0
pth (ft)
5
1/days)
2
1/days) | <u>) Ana</u> | lysis Temperature (°C)
24.574
Reach WDRatio
129.693
each NH3-N (mg/L)
1.79 | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 | | 1.640 <u>Reach Width (ft)</u> 142.048 <u>Reach CBOD5 (mg/L)</u> 3.74 <u>Reach DO (mg/L)</u> | Total Discharge 4.02 Reach De 1.09 Reach Kc to 0.69 Reach Kr (| 2.14
2.14
2.16 (mgd
0
pth (ft)
5
1/days)
2
1/days) |) <u>Ana</u> | lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days) | Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) | 2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) | Ana Results NH3-N (mg/L) | lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days) | Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) | 2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) 3.67 | Ana Results NH3-N (mg/L) 1.75 | lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days) | Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 | 2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 | Results NH3-N (mg/L) 1.75 1.71 | lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days) | 0.466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 | 2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 3.54 | Results
NH3-N
(mg/L)
1.75
1.71
1.68 | lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days) | 0.466 Total Discharge 4.02 Reach De 1.09 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 | 2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 | Results
NH3-N
(mg/L)
1.75
1.71
1.68
1.64 | lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days) | 7.0466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 0.106 | 2.14 Flow (mgd pth (ft) 1/days) 2 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 3.41 | Results
NH3-N
(mg/L)
1.75
1.71
1.68
1.64
1.61 | lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 6.99 | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days) | 7.466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 0.106 0.127 | 2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 3.41 3.35 | Results
NH3-N
(mg/L)
1.75
1.71
1.68
1.64
1.61
1.57 | lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 6.99 6.96 | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days) | 7.466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 0.106 0.127 0.149 | 2.14 Flow (mgd pth (ft) 1/days) 2 1/days) 4 Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 3.41 3.35 3.29 | Results
NH3-N
(mg/L)
1.75
1.71
1.68
1.64
1.61
1.57
1.54 | Dysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 6.99 6.96 6.94 | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days) | 7.466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 0.106 0.127 0.149 0.170 | 2.14 Flow (mgd pth (ft) 1/days) 2 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 3.41 3.35 3.29 3.23 | Results
NH3-N
(mg/L)
1.75
1.71
1.68
1.64
1.61
1.57
1.54
1.51 | Dysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 6.99 6.96 6.94 6.93 | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | | 1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days) | 7.466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 0.106 0.127 0.149 | 2.14 Flow (mgd pth (ft) 1/days) 2 1/days) 4 Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 3.41 3.35 3.29 | Results
NH3-N
(mg/L)
1.75
1.71
1.68
1.64
1.61
1.57
1.54 | Dysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 6.99 6.96 6.94 | 6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L) | Version 1.1 ## **WQM 7.0 Effluent Limits** | | | <u>am Code</u>
34025 | C | <u>Stream Name</u>
ONNOQUENESSING | | | | |-------|-----------------|-------------------------|-----------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------| | RMI | Name | Permit
Number | Disc
Flow
(mgd) | Parameter | Effl. Limit
30-day Ave.
(mg/L) | Effl. Limit
Maximum
(mg/L) | Effl. Limit
Minimum
(mg/L) | | 4.960 | Ellport Boro SA | PA0038814 | 0.720 | CBOD5 | 25 | | | | | | | | NH3-N | 22.1 | 44.2 | | | | | | | Dissolved Oxygen | | | 4 | | RMI | Name | Permit
Number | Disc
Flow
(mgd) | Parameter | Effl. Limit
30-day Ave.
(mg/L) | Effl. Limit
Maximum
(mg/L) | Effl. Limit
Minimum
(mg/L) | | 1.640 | Ellwood City | PA0026832 | 3.300 | CBOD5 | 25 | | | | | | | | NH3-N | 21.72 | 43.44 | | | | | | |
Dissolved Oxygen | | | 4 | Toxics Management Spreadsheet Version 1.3, March 2021 # **Discharge Information** | Instructions | Discharge Stream | | | |---------------|--------------------------------------|--|------------------| | Facility: | Ellport Boro STP | NPDES Permit No.: PA0038814 | Outfall No.: 001 | | Evaluation Ty | /pe: Major Sewage / Industrial Waste | Wastewater Description: Treated Domest | ic Sewage | | | Discharge Characteristics | | | | | | | | | | | |-------------|---------------------------|----------|-----|---------------|--------------------------|-------------------|----------------|--|--|--|--| | Design Flow | Hardness (mg/l)* | pH (SU)* | F | artial Mix Fa | Complete Mix Times (min) | | | | | | | | (MGD)* | nardiless (ilig/i) | рп (50) | AFC | CFC | CRL | Q ₇₋₁₀ | Q _h | | | | | | 0.72 | 100 | 7.2 | | | | | | | | | | | | | | | 0 if left blank | | 0.5 if left blank | | 0 if left blank | | 1 if left blank | | | | |---------|---------------------------------|-------|----|---------------------|--------------|-------------------|-------------|-----------------|---------------|-----------------|-----|------------------|----------------| | | Discharge Pollutant | Units | Ma | x Discharge
Conc | Trib
Conc | Stream
Conc | Daily
CV | Hourly
CV | Strea
m CV | Fate
Coeff | FOS | Criteri
a Mod | Chem
Transl | | | Total Dissolved Solids (PWS) | mg/L | | 520 | | | | | | | | | | | 7 | Chloride (PWS) | mg/L | | 190 | | | | | | | | | | | Group | Bromide | mg/L | < | 0.5 | | | | | | | | | | | Ϊ́ο | Sulfate (PWS) | mg/L | | 61 | | | | | | | | | | | 3,000 | Fluoride (PWS) | mg/L | | | | | | | | | | | | | | Total Aluminum | μg/L | | | | | | | | | | | | | | Total Antimony | μg/L | | | | | | | | | | | | | | Total Arsenic | μg/L | | | | | | | | | | | | | | Total Barium | μg/L | | | | | | | | | | | | | | Total Beryllium | μg/L | | | | | | | , | | | | | | | Total Boron | μg/L | | | | | | | | | | | | | | Total Cadmium | μg/L | | | | | | | | | | | | | | Total Chromium (III) | μg/L | | | | | | | | | | | | | | Hexavalent Chromium | μg/L | | | | | | | | | i | | | | | Total Cobalt | μg/L | | | | | | | | | | | | | 1 | Total Copper | μg/L | | | | | | | | | | | | | 0 2 | Free Cyanide | μg/L | | | | | | | | | | | | | Group 2 | Total Cyanide | μg/L | | | | | | | | | | | | | Ö | Dissolved Iron | μg/L | | | | | | | | | | | | | 1 | Total Iron | μg/L | | | | | | , | | | | | | | | Total Lead | μg/L | | | | | | | | | | | | | | Total Manganese | μg/L | | | | | | | | | | | | | | Total Mercury | μg/L | | | | | | | | | | | | | | Total Nickel | μg/L | | | | | | | | | | | | | | Total Phenols (Phenolics) (PWS) | μg/L | | | | | | | | | | | | | | Total Selenium | μg/L | | | | | | | | | | | | | | Total Silver | μg/L | | | | | | | | | | | | | | Total Thallium | μg/L | | | | | | | | | | | | | | Total Zinc | μg/L | | | | | | | | | | | | | | Total Molybdenum | μg/L | | | | | | | | | | | | | | Acrolein | μg/L | < | | | | | | | | | | | | | Acrylamide | μg/L | < | | | | | | | | | | | | | Acrylonitrile | μg/L | < | | | | | | | | | | | | 1 | Benzene | μg/L | < | | | | | | | | | | | | 1 | Bromoform | μg/L | < | | | | | | | | | | | | 1 | 0 1 7 7 17 17 11 | | | | | | | | | | |----------|---|------|---|--|-------|---|---|---|---|--| | | Carbon Tetrachloride | μg/L | < | | | | | | | | | | Chlorobenzene | μg/L | | | | | | | | | | | Chlorodibromomethane | μg/L | < | | | | | | | | | | Chloroethane | μg/L | < | | | | | | | | | | 2-Chloroethyl Vinyl Ether | μg/L | < | | | | | | | | | | Chloroform | μg/L | < | | | | | | | | | | Dichlorobromomethane | μg/L | < | | | | | | | | | | 1,1-Dichloroethane | μg/L | < | | | | | | | | | က | 1,2-Dichloroethane | μg/L | < | | | | | | | | | Group | 1,1-Dichloroethylene | μg/L | < | | | | | | | | | ē | 1,2-Dichloropropane | μg/L | < | | | | | | | | | اق | 1,3-Dichloropropylene | μg/L | < | | | | | | | | | | 1,4-Dioxane | μg/L | < | | | | | | | | | | Ethylbenzene | μg/L | < | | | | | Î | | | | | Methyl Bromide | μg/L | < | | | | | | | | | | Methyl Chloride | μg/L | < | | | | | | | | | | Methylene Chloride | μg/L | < | | | | | | | | | | 1,1,2,2-Tetrachloroethane | μg/L | < | | | | | | | | | | Tetrachloroethylene | μg/L | < | | | | | | | | | | Toluene | μg/L | < | | | | | | | | | | 1,2-trans-Dichloroethylene | µg/L | < | | | | | | | | | | 1,1,1-Trichloroethane | µg/L | < | | | | | | | | | | 1,1,2-Trichloroethane | µg/L | < | | | | | | | | | | Trichloroethylene | µg/L | < | | | | | | | | | | Vinyl Chloride | µg/L | < | | | | | | | | | | 2-Chlorophenol | µg/L | < | | | - | | | - | | | | 2,4-Dichlorophenol | µg/L | < | | | | | | | | | | 2,4-Dimethylphenol | µg/L | < | | | | | | | | | | 4,6-Dinitro-o-Cresol | | < | | | | | | | | | 4 | | μg/L | < | | | | | | | | | 흑 | 2,4-Dinitrophenol | μg/L | < | | | | | | | | | Group | 2-Nitrophenol
4-Nitrophenol | μg/L | < | | | | | | | | | اق | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | μg/L | < | | | | | | | | | | p-Chloro-m-Cresol | μg/L | < | | 2 6 2 | | | | 6 | | | | Pentachlorophenol | μg/L | < | | | | | | | | | | Phenol | μg/L | | | | | | | | | | \vdash | 2,4,6-Trichlorophenol | μg/L | < | | | | | | | | | | Acenaphthene | μg/L | < | | | | | | | | | | Acenaphthylene | μg/L | < | | | | | | | | | | Anthracene | μg/L | < | | | | | | | | | | Benzidine | μg/L | < | | | | | | | | | | Benzo(a) Anthracene | μg/L | < | | | | | | | | | | Benzo(a)Pyrene | μg/L | < | | | | 5 | | | | | | 3,4-Benzofluoranthene | μg/L | < | | | | | | | | | | Benzo(ghi)Perylene | μg/L | < | | | | | | | | | | Benzo(k)Fluoranthene | μg/L | < | | | | | | | | | | Bis(2-Chloroethoxy)Methane | μg/L | < | | | | | | | | | | Bis(2-Chloroethyl)Ether | μg/L | < | | | | | | | | | | Bis(2-Chloroisopropyl)Ether | μg/L | < | | | | | | | | | | Bis(2-Ethylhexyl)Phthalate | μg/L | < | | | | | | | | | | 4-Bromophenyl Phenyl Ether | μg/L | < | | | | | | | | | | Butyl Benzyl Phthalate | μg/L | < | | | | | | | | | | 2-Chloronaphthalene | μg/L | < | | | | | | | | | | 4-Chlorophenyl Phenyl Ether | μg/L | < | | | | | | | | | | Chrysene | μg/L | < | | | | | | | | | | Dibenzo(a,h)Anthrancene | μg/L | < | | | | | | | | | | 1,2-Dichlorobenzene | μg/L | < | | | | | | | | | | 1,3-Dichlorobenzene | μg/L | < | | | | | | | | | 2 | 1,4-Dichlorobenzene | μg/L | < | | | | | | | | | 함 | 3,3-Dichlorobenzidine | μg/L | < | | | | | | | | | Group | Diethyl Phthalate | μg/L | < | | | | | | | | | اقا | Dimethyl Phthalate | μg/L | < | | | | | | | | | | Di-n-Butyl Phthalate | μg/L | < | | | | | | | | | | 2,4-Dinitrotoluene | μg/L | < | 2,6-Dinitrotoluene | uall | < | | | | | | | |---------|---------------------------|--------------|--------|--|-----|--------|--|--|--| | | Di-n-Octyl Phthalate | μg/L
μg/L | \
\ | | | | | | | | | | | < | | -+- | - | | | | | | 1,2-Diphenylhydrazine | μg/L | - | | | | | | | | | Fluoranthene | μg/L | < | | - | | | | | | | Fluorene | μg/L | < | | | | | | | | | Hexachlorobenzene | μg/L | < | | | | | | | | | Hexachlorobutadiene | μg/L | < | | | | | | | | | Hexachlorocyclopentadiene | μg/L | < | | | | | | | | | Hexachloroethane | μg/L | < | | | | | | | | | Indeno(1,2,3-cd)Pyrene | μg/L | < | | | | | | | | | Isophorone | μg/L | < | | | | | | | | | Naphthalene | μg/L | ٧ | | | | | | | | | Nitrobenzene | μg/L | < | | | | | | | | | n-Nitrosodimethylamine | μg/L | < | | | | | | | | | n-Nitrosodi-n-Propylamine | μg/L | < | | | | | | | | | n-Nitrosodiphenylamine | μg/L | < | | | | | | | | | Phenanthrene | μg/L | < | | | 7 | | | | | | Pyrene | μg/L | < | | -+- | | | | | | | 1,2,4-Trichlorobenzene | µg/L | < | | | - 14 1 | | | | | | Aldrin | μg/L | / | | | | | | | | | | | _ | | | | | | | | | alpha-BHC | μg/L | < | | | | | | | | | beta-BHC | μg/L | < | | | | | | | | | gamma-BHC | μg/L | < | | 200 | | | | | | | delta BHC | μg/L | < | | | | | | | | | Chlordane | μg/L | < | | | | | | | | | 4,4-DDT | μg/L | < | | | | | | | | | 4,4-DDE | μg/L | ٧ | | | | | | | | | 4,4-DDD | μg/L | ٧ | | | | | | | | | Dieldrin | μg/L | < | | | | | | | | | alpha-Endosulfan | μg/L | < | | | | | | | | | beta-Endosulfan | μg/L | < | | | | | | | | 9 | Endosulfan Sulfate | μg/L | < | | | | | | | | Group (| Endrin | μg/L | < | | | | | | | | 3,0 | Endrin Aldehyde | μg/L | < | | | | | | | | 0 | Heptachlor | μg/L | < | | | | | | | | | Heptachlor Epoxide | μg/L | < | | | | | | | | | PCB-1016 | μg/L | < | | - | | | | | | | pe records (Control of | | \
\ | | | | | | | | | PCB-1221 | μg/L | | | | | | | | | | PCB-1232 | μg/L | < | | | | | | | | | PCB-1242 | μg/L | < | | | | | | | | | PCB-1248 | μg/L | < | | | | | | | | | PCB-1254 | μg/L | < | | | | | | | | | PCB-1260 | μg/L | ٧ | | | | | | | | | PCBs, Total | μg/L | < | | | | | | | | | Toxaphene | μg/L | ٧ | | | | | | | | | 2,3,7,8-TCDD | ng/L | ٧ | | | | | | | | | Gross Alpha | pCi/L | | | | | | | | | | Total Beta | pCi/L | ٧ | | | | | | | | d | Radium 226/228 | pCi/L | < | | | | | | | | Group | Total Strontium | μg/L | < | | | | | | | | O | Total Uranium | µg/L | < | | | | | | | | | Osmotic Pressure | mOs/kg | | | | | | | | | | | J Jring | _ | | | | | | | | | | | _ | Toxics Management Spreadsheet Version 1.3, March 2021 #### Stream / Surface Water Information Ellport Boro STP, NPDES Permit No. PA0038814, Outfall 001 Toxics Management Spreadsheet Version 1.3, March 2021 ## **Model Results** #### Ellport Boro STP, NPDES Permit No. PA0038814, Outfall 001 | | Results | | RETURN | TO INPUTS |) (: | SAVE AS PD | F (| PRINT | | I () Inputs | O Results | O Limits | | |---------|--|----------------------
--|--|--------------------|--|--|---|--|--------------|--------------------|----------|-------------------------| | Hydro | dynamics | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | RMI | Stream
Flow (cfs) | PWS Withdra
(cfs) | | Net Stream
Flow (cfs) | | ge Analysis
w (cfs) | Slope (ft/ft) | Depth (f | t) Width (f | t) W/D Ratio | Velocity
(fps) | Time | Complete Mix Time (min) | | .96 | 66.04 | | | 66.04 | 1 | .114 | 0.003 | 1.088 | 138.38 | 7 127.149 | 0.446 | 0.646 | 437.31 | |).25 | 67.00 | 1.547 | | 65.453 | RMI | Stream
Flow (cfs) | PWS Withdra
(cfs) | 2000 174100 | Net Stream
Flow (cfs) | | ge Analysis
w (cfs) | Slope (ft/ft) | Depth (f | t) Width (f | t) W/D Ratio | Velocity
(fps) | Time | Complete Mix Time (min) | | 1.96 | 289.40 | | | 289.40 | 1 | .114 | 0.003 | 2.073 | 138.38 | 7 66.747 | 1.013 | 0.284 | 170.669 | |).25 | 293.075 | 1.547 | | 291.53 | | | | | | | | | | | | Pollutants | | Otream | Stream T | | | | | | | | | | | Total D | issolved Solid | | Conc | | rib Conc
(µg/L) | | | VQ Obj
(µg/L) | VLA (µg/L) | | Co | omments | | | | | | (10/1) | CV
0 | | Coef 0 | (µg/L)
N/A | (µg/L) V | N/A | | Co | omments | | | (| Chloride (PWS | 5) | 0 0 | 0
0 | | Coef 0 | (µg/L)
N/A
N/A | (µg/L) V
N/A
N/A | N/A
N/A | | Co | omments | | | (| Chloride (PWS
Sulfate (PWS | 5) | 0 0 0 | CV 0 0 0 | | Coef 0 | (µg/L)
N/A | (µg/L) V | N/A | | Co | omments | | | (| Chloride (PWS
Sulfate (PWS | 5) | 0 0 0 | 0
0 | | Coef 0 | (µg/L)
N/A
N/A
N/A | (µg/L) V
N/A
N/A | N/A
N/A
N/A | 100 | Co
Analysis pH: | 7.00 | | | (| Chloride (PWS
Sulfate (PWS | CCT (r | 0 0 0 | CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | (µg/L) | Coef 0 0 0 0 1 1 Fate | (µg/L) N/A N/A N/A Analysi | N/A
N/A
N/A
N/A
N/A
S Hardness | N/A
N/A
N/A | 100 | Analysis pH: | | | | ✓ CF | Chloride (PWS Sulfate (PWS FC Pollutants issolved Solid | CCT (r | min): ### Conc | CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | PMF: [| Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | (µg/L) N/A N/A N/A Analysi WQC (µg/L) N/A | (µg/L) V N/A N/A N/A N/A S Hardness VQ Obj (µg/L) N/A | N/A
N/A
N/A
s (mg/l): [
VLA (µg/L) | 100 | Analysis pH: | 7.00 | | | CF | Chloride (PWS Sulfate (PWS FC Pollutants issolved Solid Chloride (PWS | CCT (r
s (PWS) | (uall)
0
0
0
0
min): ###
Stream
Conc
(uall)
0 | CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | PMF: [| Coef 0 | (µg/L) N/A N/A N/A N/A Analysi WQC V (µg/L) N/A N/A | (µg/L) V N/A N/A N/A N/A S Hardness VQ Obj (µg/L) N/A N/A | N/A N/A N/A N/A N/A s (mg/l): VLA (µg/L) N/A N/A | 100 | Analysis pH: | 7.00 | | | CF | Chloride (PWS Sulfate (PWS FC Pollutants issolved Solid | CCT (r
s (PWS) | min): ### Conc | CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | PMF: [| Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | (µg/L) N/A N/A N/A Analysi WQC (µg/L) N/A | (µg/L) V N/A N/A N/A N/A S Hardness VQ Obj (µg/L) N/A | N/A
N/A
N/A
s (mg/l): [
VLA (µg/L) | 100 | Analysis pH: | 7.00 | | | CF | Chloride (PWS
Sulfate (PWS
FC
Pollutants
issolved Solid
Chloride (PWS
Sulfate (PWS | CCT (r
s (PWS) | 0 0 0 0 min): ### Siteam Conc (ug/l) 0 0 0 0 0 | CV | PMF: [| Coef 0 | (µg/L) N/A N/A N/A Analysi WQC V (µg/L) N/A N/A N/A | (µg/L) V N/A N/A N/A N/A S Hardness VQ Obj (µg/L) N/A N/A | N/A N/A N/A N/A s (mg/l): VLA (µg/L) N/A N/A N/A | 100] | Analysis pH: | 7.00 | PWS PMF: 1 | | Pollutants | Conc | Stream
CV | Trib Conc
(µg/L) | Fate
Coef | WQC
(µg/L) | WQ Obj
(µg/L) | WLA (µg/L) | Comments | |------------------------------|------|--------------|---------------------|--------------|---------------|------------------|------------|---| | Total Dissolved Solids (PWS) | 0 | 0 | | 0 | 500,000 | 500,000 | 30,576,133 | WQC applied at RMI 0.25 with a design stream flow of 67 cfs | | Chloride (PWS) | 0 | 0 | | 0 | 250,000 | 250,000 | 15,288,067 | WQC applied at RMI 0.25 with a design stream flow of 67 cfs | | Sulfate (PWS) | 0 | 0 | | 0 | 250,000 | 250,000 | 15,288,067 | WQC applied at RMI 0.25 with a design stream flow of 67 cfs | ✓ CRL CCT (min): ###### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A | Pollutants | Conc | Stream
CV | Trib Conc
(µg/L) | Fate
Coef | WQC
(µg/L) | WQ Obj
(µg/L) | WLA (µg/L) | Comments | |------------------------------|------|--------------|---------------------|--------------|---------------|------------------|------------|----------| | Total Dissolved Solids (PWS) | 0 | 0 | | 0 | N/A | N/A | N/A | | | Chloride (PWS) | 0 | 0 | | 0 | N/A | N/A | N/A | | | Sulfate (PWS) | 0 | 0 | | 0 | N/A | N/A | N/A | | #### ☑ Recommended WQBELs & Monitoring Requirements No. Samples/Month: | | | | | | | | _ | | | |------------|------------------|------------------|-----|----------------------|------|-------|--------------------|----------------|----------| | | Mass | Mass Limits | | Concentration Limits | | | | | | | Pollutants | AML
(lbs/dav) | MDL
(lbs/dav) | AML | MDL | IMAX | Units | Governing
WQBEL | WQBEL
Basis | Comments | #### ☑ Other Pollutants without Limits or Monitoring The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL). | Pollutants | Governing
WQBEL | Units | Comments | | | | |------------------------------|--------------------|-------|----------------------------|--|--|--| | Total Dissolved Solids (PWS) | 30,576 | mg/L | Discharge Conc ≤ 10% WQBEL | | | | | Chloride (PWS) | 15,288 | mg/L | Discharge Conc ≤ 10% WQBEL | | | | | Bromide | N/A | N/A | No WQS | | | | | Sulfate (PWS) | 15,288 | mg/L | Discharge Conc ≤ 10% WQBEL | | | | | | | | | | | | Model Results 3/28/2022 Page 6 ## TRC_CALC (1) | TRC EVALUA | ATION | | | | | | | | | |-----------------|----------------------------|--|--|--------------------------------------|-----------------------|--|--|--|--| | Input appropria | ate values in | A3:A9 and D3:D9 | | | | | | | | | 66.04 | = Q stream (| cfs) | 0.5 | = CV Daily | | | | | | | 0.72 | = Q discharg | e (MGD) | 0.5 | = CV Hourly | | | | | | | 30 | no. sample | 8 | 0.185 | = AFC_Partial Mix Factor | | | | | | | 0.3 | = Chlorine D | emand of Stream | 1 | 1 = CFC_Partial Mix Factor | | | | | | | C | = Chlorine D | emand of Discharge | 15 | = AFC_Criteria | Compliance Time (min) | | | | | | 0.5 | = BAT/BPJ V | alue | 720 | = CFC_Criteria Compliance Time (min) | | | | | | | C | = % Factor o | of Safety (FOS) | | =Decay Coeffic | cient (K) | | | | | | Source | Reference | AFC Calculations | | Reference | CFC Calculations | | | | | | TRC | 1.3.2.iii | WLA afc = | 3.518 | 1.3.2.iii | WLA cfc = 18.450 | | | | | | PENTOXSD TRG | 5.1a | LTAMULT afc = | 0.373 | 5.1c | LTAMULT cfc = 0.581 | | | | | | PENTOXSD TRG | 5.1b | LTA_afc= | 1.311 | 5.1d | LTA_cfc = 10.726 | | | | | | Source | | Efflue | nt Limit Calcu | lations | | | | | | | PENTOXSD TRG | 5.1f | | AML MULT = | | | | | | | | PENTOXSD TRG | 5.1g | AVG MON I | _IMIT (mg/l) = | 0.500 | BAT/BPJ | | | | | | | | INSI MAXI | _I M IT (mg/l) = | 1.635 | | | | | | | WLA afc | + Xd + (AFC
EXP((0.5*LN | FC_tc)) +
[(AFC_Yc*Qs*.019/
C_Yc*Qs*Xs/Qd)]*(1-FOS/10/
(cvh^2+1))-2.326*LN(cvh^2 | 0) | _tc)) | | | | | | | LTA_afc | wla_afc*LTA | MULT_afc | | | | | | | | | WLA_cfc | 85.0 | FC_tc) + [(CFC_Yc*Qs*.011/
C_Yc*Qs*Xs/Qd)]*(1-FOS/10 | | to)) | | | | | | | LTAMULT_cfc | | (cvd^2/no_samples+1))-2.32 | 26*LN(cvd^2/i | no_samples+1) <i>*</i> | 0.5) | | | | | | LTA_cfc | wla_cfc*LTA | MULT_cfc | | | | | | | | | AML MULT | AL DESCRIPTION OF STREET | N((cvd^2/no_samples+1)^0 | stated of the state stat | d^2/no_samples | s+1)) | | | | | | AVG MON LIMIT | | J,MIN(LTA_afc,LTA_cfc)*Al | | | | | | | | | INST MAX LIMIT | 1.5*((av_mor | 1_limit/AML_MULT)/LTAMUL | .T_afc) | | | | | | | | | | | | | | | | | | Ellport Borougnh STP Ellport Borough, Lawrence County NPDES# PA0038814 #### Ave (10^pH min | <u>Date</u> | pH min | pH max | 10^ -pH min 10^ -pH max & pH max) -Log (Ave pH) | |-------------|--------|--------|---| | Jul-19 | 6.90 | 7.20 | 1.26E-07 6.31E-08 9.45E-08 7.0 | | Aug-19 | 6.98 | 7.18 | 1.05E-07 6.61E-08 8.54E-08 7.1 | | Sep-19 | 6.98 | 7.23 | 1.05E-07 5.89E-08 8.18E-08 7.1 | | Jul-20 | 7.06 | 7.69 | 8.71E-08 2.04E-08 5.38E-08 7.3 | | Aug-20 | 6.97 | 7.64 | 1.07E-07 2.29E-08 6.5E-08 7.2 | | Sep-20 | 6.99 | 7.50 | 1.02E-07 3.16E-08 6.7E-08 7.2 | | Jul-21 | 7.04 | 7.38 | 9.12E-08 4.17E-08 6.64E-08 7.2 | | Aug-20 | 7.11 | 7.34 | 1.07E-07 2.29E-08 6.5E-08 7.2 | | Sep-20 | 7.15 | 7.43 | 1.02E-07 3.16E-08 6.7E-08 7.2 | | | | | Median: 7.2 |