

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0038814

APS ID 1009297

Authorization ID 1301665

Applicant Name	Ellpo	rt Borough Sewer Authority	Facility Name	Ellport Borough STP	
Applicant Address	313 B	surns Avenue	Facility Address	313 Burns Avenue	
	Ellwo	od City, PA 16117-3910	<u>_</u>	Ellwood City, PA 16117-3910	
Applicant Contact	David	Steffler	Facility Contact	Michael Milnes (Operator)	
Applicant Phone	(724)	752-1422	Facility Phone	(724) 752-1422	
Client ID	62947	7	Site ID	261253	
Ch 94 Load Status	Not O	verloaded	Municipality	Ellport Borough	
Connection Status	No Lii	mitations	County	Lawrence	
Date Application Rece	ived	January 2, 2020	EPA Waived?	Yes	
Date Application Acce	pted	January 21, 2020	If No, Reason		

Summary of Review

This is a Publicly Owned Treatment Works (POTW) serving the municipalities of Ellport Borough, Perry Township and Franklin Township in Lawrence County.

There are no proposed changes to discharge quality or quantity as part of this permit renewal.

There are currently no open violations listed in EFACTS for this permittee (3/29/2022).

Sludge use and disposal description and location(s): Sludge is hauled offsite and disposed of at municipal waste landfill operated by Joseph J. Brunner Inc. and located in New Sewickley Township, Beaver County.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Adam J. Pesek Adam J. Pesek, E.I.T. / Environmental Engineer	March 29, 2022
X		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	April 11, 2022

scharge, Receiving V	N ater	s and Water Supply Infor	rmation					
Outfall No. 001			Design Flow (MGD)	0.72				
Latitude 40° 51'	58"		Longitude	-80º 15' 29"				
Quad Name Beav	er Fal	ls	Quad Code	1203				
Wastewater Description	on:	Sewage Effluent						
Receiving Waters	Slippe	ry Rock Creek	Stream Code	34025				
NHD Com ID	12621	6417	RMI	4.96				
Drainage Area 8	827		Yield (cfs/mi²)	0.08				
Q ₇₋₁₀ Flow (cfs)	66.04		Q ₇₋₁₀ Basis	New Castle TDS Study				
Elevation (ft)	800		Slope (ft/ft)	0.0027				
Watershed No.	20-C		Chapter 93 Class.	WWF				
Existing Use			Existing Use Qualifier					
Exceptions to Use			Exceptions to Criteria					
Assessment Status		Impaired						
Cause(s) of Impairme	ent	PATHOGENS						
Source(s) of Impairme	ent	SOURCE UNKNOWN						
TMDL Status			Name					
Background/Ambient	Data		Data Source					
pH (SU)		7.0	Default					
Temperature (°C)		25	Default (WWF)					
Hardness (mg/L)								
Other: NH ₃ -N		0.1	Default66.04					
Nearest Downstream	Publi	c Water Supply Intake	PA American Water Company	/ – Ellwood District				
PWS Waters Co	nnoqı	uenessing Creek	Flow at Intake (cfs) 67					
PWS RMI 0.2	25		Distance from Outfall (mi)	4.7				

Changes Since Last Permit Issuance:

Other Comments: There are three unauthorized sanitary sewer overflows in the sanitary sewer system.

Outfall 002 - Overflow at Pump Station No. 1 for flows exceeding 550 gpm.

Outfall 003 – Overflow at Pump Station No. 2.

Outfall 004 – Historical bypass of the treatment plant which is normally closed (can be opened by a valve). The bypass is believed to have been removed during the last treatment plant upgrade.

	Tre	atment Facility Summa	ry	
Treatment Facility Na	me: Ellport Borough STP			
WQM Permit No.	Issuance Date			
3777402	9/22/1977			
3705401	3/24/2005			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Extended Aeration	Gas Chlorine	0.72
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.72	1000	Not Overloaded	Aerobic Digestion	Landfill

Changes Since Last Permit Issuance: The 8/22/2019 Inspection Report indicated the permittee should submit a WQM Permit Amendment application for dechlorination equipment that is already installed and removal of comminutor/grinder unit if the permittee is not planning to install them as permitted. No WQM Permit amendment application has been submitted to date.

Other Comments:

	Compliance History
Summary of DMRs:	Only one effluent violation reported for D.O. since the beginning of 2017
Summary of Inspections:	CAP approved on July 27, 2020 to address hydraulic overload conditions at Lift Stations #1 and #2 that occurred during wet weather events. The last site inspection occurred on January 21, 2020. The inspection report indicated it was a follow up inspection to the one done in 2019. No major issues reported. A site inspection was conducted on August 22, 2019. The inspection report noted violations noted below: 1. Failure to comply with terms and conditions of a WQM Permit (P. L. 1987, No. 394, Sec 611). Water Quality Management (WQM) Permit 3705401 dated March 24, 2015 approved the construction/modification/operation of 'New Wastewater Treatment Units' which includes a comminutor/grinder sized for a flow rate of 2000-gpm (2.9-MGD). A comminutor/grinder is not installed at the headworks. A Muffin Monster control panel and manual, coarse bar screen are installed at the headworks. 2. Failure to apply for and/or obtain a WQM Permit for the construction of sewage or industrial waste facilities. A chemical feed system has been installed to apply sodium bisulfite to treatment plant effluent, for the purpose of de-chlorination, without applying for a WQM Permit amendment.

Other Comments: The Department will request a WQM Permit application be submitted when the draft permit is sent out.

Compliance History

DMR Data for Outfall 001 (from February 1, 2021 to January 31, 2022)

Parameter	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21
Flow (MGD)												
Average Monthly	0.438	0.477	0.350	0.378	0.308	0.347	0.396	0.295	0.496	0.353	0.610	0.411
Flow (MGD)												
Weekly Average	0.886	0.855	0.554	1.312	0.467	1.168	0.998	0.399	1.715	0.488	2.268	0.585
pH (S.U.)												
Minimum	6.94	6.96	7.00	7.00	7.15	7.11	7.04	7.06	6.97	6.98	6.86	6.98
pH (S.U.)												
Maximum	7.36	7.66	7.59	7.67	7.43	7.34	7.38	7.37	7.46	7.41	7.85	7.23
DO (mg/L)												
Minimum	5.94	5.52	5.64	5.70	5.50	5.12	5.07	5.28	6.47	6.16	6.73	7.73
TRC (mg/L)												
Average Monthly	0.36	0.38	0.38	0.38	0.10	0.15	0.11	0.18	0.46	0.45	0.40	0.46
TRC (mg/L)												
Instantaneous												
Maximum	0.50	0.50	0.50	0.50	0.20	0.50	0.50	0.50	0.50	0.50	0.50	0.50
CBOD5 (lbs/day)												
Average Monthly	20.1	27.6	18.6	34.8	25.8	21.4	28.2	19.9	22.9	23.9	34.1	21.5
CBOD5 (lbs/day)												
Weekly Average	25.5	35.0	22.4	44.4	33.1	24.3	33.3	21.6	27.7	31.2	46.2	32.8
CBOD5 (mg/L)		0.04	0.40		40.00	- 40-		0.40			0.70	
Average Monthly	5.52	6.94	6.40	11.05	10.06	7.425	8.55	8.12	5.55	8.125	6.72	6.30
CBOD5 (mg/L)					40.0	0.40	40.4		0.70	400	0.40	
Weekly Average	7.0	8.80	7.70	14.1	12.9	8.40	10.1	8.80	6.70	10.6	9.10	7.90
BOD5 (lbs/day)												
Influent br/> Average	770 5	4004.0	000.7	4044.0	057.4	004.0	000.0	044.0	007.0	050.7	4404.4	770.0
Monthly	773.5	1004.8	829.7	1244.2	857.4	894.6	936.2	611.6	967.9	853.7	1434.4	770.3
BOD5 (lbs/day) Influent br/> Weekly												
Average	1099.5	1551.4	1164.6	1626.7	1068.5	1198.1	1079.9	819.2	1154.1	912.6	1638.1	884.3
BOD5 (mg/L)	1099.5	1331.4	1104.0	1020.7	1000.5	1190.1	1079.9	019.2	1134.1	912.0	1030.1	004.5
Influent br/> Average												
Monthly	211.75	252.6	284.25	394.7	333.8	309.25	283.5	248.6	234.0	290.0	282.0	224.75
TSS (lbs/day)	211.73	202.0	204.20	334.1	555.0	303.23	200.0	240.0	254.0	230.0	202.0	224.13
Average Monthly	3.65	15.9	9.48	29.9	17.4	13.0	28.8	16.7	11.3	8.83	7.12	7.53
TSS (lbs/day)	3.03	13.3	3.40	23.3	17.4	13.0	20.0	10.7	11.5	0.00	1.14	1.55
Influent br/> Average												
Monthly	633.7	805.1	932.6	1149.8	927.3	828.4	828.9	588.5	785.9	720.5	1188.4	690.6
IVIOLITIIIY	000.7	000.1	302.0	1149.0	321.3	020.4	020.9	500.5	100.9	120.0	1100.4	0.060

NPDES Permit Fact Sheet Ellport Borough STP

NPDES Permit No. PA0038814

TSS (lbs/day)												
Influent br/> Daily Maximum	1044.7	1615.4	1205.5	1292.5	1299.7	1099.7	990.7	770.0	864.5	1000.9	1592.3	867.2
TSS (lbs/day)								11010	30		.002.0	001.12
Weekly Average	3.65	31.8	20.4	34.6	28.2	26.0	42.9	24.6	16.5	23.5	10.1	7.53
TSS (mg/L)												
Average Monthly	1.0	4.0	3.25	9.50	6.80	4.50	8.75	6.80	2.75	3.0	1.40	1.0
TSS (mg/L) Influent br/> Average												
Monthly	173.5	202.4	319.5	364.7	361.0	286.25	251.0	239.2	190.0	277.75	233.6	201.5
TSS (mg/L) Weekly Average	1.0	8.0	7.0	11.0	11.0	9.00	13.0	10.0	4.0	8.0	2.0	1.0
Fecal Coliform (CFU/100 ml) Geometric Mean	2.39	1.24	5.02	6.47	9.12	13.6	11.0	15.7	2.21	7.135	2.93	3.08
Fecal Coliform	2.39	1.24	5.02	0.47	9.12	13.0	11.0	15.7	2.21	7.133	2.93	3.00
(CFU/100 ml)												
Instantaneous Maximum	11.0	3.0	10.0	16.0	36.0	22.0	62.5	39.0	12.0	24.0	9.0	10.0
Total Nitrogen												
(lbs/day) Average Quarterly		29.7			48.0			28.2			51.3	
Total Nitrogen (mg/L)												
Average Quarterly		7.27			16.6			11.5			10.1	
Ammonia (lbs/day) Average Monthly	8.80	32.8	35.7	25.6	33.0	35.4	34.2	28.7	8.76	4.41	1.78	1.66
Ammonia (mg/L)	0.00	02.0	30.7	20.0	00.0	00.1	01.2	20	0.7 0		11.70	1.00
Average Monthly	2.41	8.27	12.2	8.15	12.8	12.2	10.38	11.6	2.12	1.50	0.35	0.485
Total Phosphorus												
(lbs/day) Average Quarterly		8.23			11.3			16.2			7.58	
Total Phosphorus		0.20			11.0			10.2			7.00	
(mg/L)												
Average Quarterly		2.07			3.93			6.61			1.49	

	Develop	ment of Effluent Limitations	
Outfall No.	001	Design Flow (MGD)	0.72
Latitude	40° 51' 58.00"	Longitude	-80° 15' 29.00"
Wastewater D	escription: Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX	-	92a.61

Comments: Monitoring for E. coli will be placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen	21	Average Monthly	WQM 7.0 Version 1.0b (Previous Modeling)

Comments: Monitoring for ammonia nitrogen will be placed in the permit during the wintertime period because the standard season multiplier of "3" is well above the threshold value of 25 mg/l discussed in the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Best Professional Judgment (BPJ) Limitations

Comments: A dissolved oxygen daily minimum limit of 4.0 mg/l and a TRC IMAX limit of 1.6 is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Other Considerations

Comments: Monitoring for influent BOD₅ and influent TSS is placed in the permit in accordance with the Department's SOP entitled "New and Reissuance Individual Sewage NPDES Permit Applications."

Monitoring for total nitrogen and total phosphorus is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Anti-Backsliding

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	150	240	XXX	25	40	50	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
TSS	180	270	XXX	30	45	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Total Nitrogen	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	8-Hr Composite
Ammonia Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite
Ammonia May 1 - Oct 31	126	XXX	XXX	21	XXX	42	1/week	8-Hr Composite
Total Phosphorus	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	8-Hr Composite

Compliance Sampling Location: Outfall 001 (after disinfection)

Input Data WQM 7.0

	SWP Basir	107000000		Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slop (ft/ft	Wit	PWS hdrawal mgd)	Apply FC
	20C	340	025 CONN	OQUENE	ESSING CR	EEK	4.9	60	800.00	827.0	0.00	000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> pp ph	1	<u>Stre</u> Temp	<u>am</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
ଇ7-10 ඛ1-10 ඛ30-10	0.080	66.04 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	5.00 7	7.00	0.00	0.00	
		Discharge Data												
			Name	Per	mit Number	Existing Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	erve Te ctor	isc emp PC)	Disc pH		
		Ellpo	rt Boro SA	PA	0038814	0.7200	0.000	0.0	0000	0.000	20.00	7.20		
					Pa	arameter l	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				urumoto	, ridino	(m	g/L) (r	mg/L)	(mg/L)	(1/days)				
	_		CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N			;	25.00	0.10	0.00	0.70				

Input Data WQM 7.0

	SWP Basir	1077120000		Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	20C	340	025 CONN	IOQUENE	ESSING CR	EEK	1.6	40	770.00	836.00	0.0000	00	0.00	~
3:					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> np pH	T	<u>Strean</u> emp	<u>n</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()	(°C)		
ଇ7-10 ଇ1-10 ଇ30-10	0.080	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	5.00 7.	00	0.00	0.00	
					Di	scharge l	Data							
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Di:	sc Res	Dis serve Ter actor (°0	np	Disc pH		
		Ellwo	od City	PA	0026832	3.3000	0.000	00 0.	0000	0.000	20.00	6.70		
					Pa	arameter l	Data							
]	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			*		ng questioners source	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N				25.00	0.10	0.00	0.70				

Input Data WQM 7.0

					6,414,647			001000						
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PV Witho (m	Irawal	App FC
	20C	340	25 CONN	IOQUENE	ESSING CR	EEK	0.0	10	745.00	838.00	0.0000	0	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	<u>Tributary</u> np pH	Те	<u>Strear</u> mp	<u>n</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°	C)		
Q7-10 Q1-10 Q30-10	0.080	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 7.	00	0.00	0.00	
					Di	scharge I	Data]	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	Dis serve Ten actor (°C	np	Disc pH		
						0.0000	0.00	00 0.0	0000	0.000	0.00	7.00		
					Pa	arameter l	Data							
			3000	Paramete	r Name	C	onc (Trib Conc	Stream Conc	Fate Coef				
	_					(m	g/L) (i	mg/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			;	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		20C	3-	4025			CONNO	QUENES	SSING CF	REEK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
4.960	66.04	0.00	66.04	1.1138	0.00171	1.087	141.86	130.54	0.44	0.466	24.92	7.00
1.640	66.76	0.00	66.76	6.2189	0.00290	1.095	142.05	129.69	0.47	0.212	24.57	6.97
Q1-1	0 Flow											
4.960	42.27	0.00	42.27	1.1138	0.00171	NA	NA	NA	0.34	0.595	24.87	7.00
1.640	42.73	0.00	42.73	6.2189	0.00290	NA	NA	NA	0.38	0.266	24.36	6.96
Q30-	10 Flow	,										
4.960	89.81	0.00	89.81	1.1138	0.00171	NA	NA	NA	0.52	0.393	24.94	7.00
1.640	90.79	0.00	90.79	6.2189	0.00290	NA	NA	NA	0.55	0.181	24.68	6.98

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Monday, March 28, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20C	34025	CONNOQUENESSING CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
4.96	D Ellport Boro SA	11.15	50	11.15	50	0	0
1.64	Ellwood City	12.01	50	12.07	50	0	0
IH3-N (Chronic Allocati	ons					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
RMI	Discharge Name	Criterion	WLA	Criterion	WLA		

Dissolved Oxygen Allocations

			<u>CBC</u>	DD5	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
90	4.96	Ellport Boro SA	25	25	22.1	22.1	4	4	0	0
	1.64	Ellwood City	25	25	21.72	21.72	4	4	0	0

Monday, March 28, 2022

Page 1 of 1

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code 34025		CONN	Stream Name OQUENESSING CREE	<
RMI 4.960 Reach Width (ft)	Total Discharge 0.72 Reach De	0 pth (ft)) <u>Ana</u>	lysis Temperature (°C) 24.917 Reach WDRatio	Analysis pH 7.003 Reach Velocity (fps)
141.862	1.08		р	130.539 each NH3-N (mg/L)	0.436
Reach CBOD5 (mg/L) 2.38	<u>Reach Kc (</u> 0.18		<u>r</u>	0.46	<u>Reach Kn (1/days)</u> 1.022
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.481	3.90	7		Tsivoglou	5
Reach Travel Time (days)		Culturate	Daniela		
0.466	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.047	2.36	0.44	7.51	
	0.093	2.33	0.42	7.53	
	0.140	2.31	0.40	7.54	
	0.186	2.28	0.38	7.54	
	0.233	2.26	0.37	7.54	
	0.279	2.23	0.35	7.54	
	0.326	2.21	0.33	7.54	
	0.373	2.19	0.32	7.54	
	0.419	2.16	0.30	7.54	
	0.110				
	0.466	2.14	0.29	7.54	
<u>RMI</u>	0.466 Total Discharge	2.14 Flow (mgd		lysis Temperature (°C)	Analysis pH
1.640	0.466 Total Discharge 4.02	2.14 Flow (mgd		lysis Temperature (°C) 24.574	6.973
1.640 Reach Width (ft)	0.466 Total Discharge 4.02 Reach De	2.14 Flow (mgd 0 pth (ft)		lysis Temperature (°C) 24.574 Reach WDRatio	6.973 Reach Velocity (fps)
1.640 <u>Reach Width (ft)</u> 142.048	0.466 Total Discharge 4.02 Reach De 1.09	2.14 Flow (mgd pth (ft)	<u>) Ana</u>	lysis Temperature (°C) 24.574	6.973 Reach Velocity (fps) 0.469
1.640 Reach Width (ft)	0.466 Total Discharge 4.02 Reach De	2.14 Flow (mgd 0 pth (ft) 5 1/days)	<u>) Ana</u>	lysis Temperature (°C) 24.574 Reach WDRatio 129.693	6.973 Reach Velocity (fps)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L)	Total Discharge 4.02 Reach De 1.09 Reach Kc to 0.69 Reach Kr (2.14 2.14 2.16 (mgd 0 pth (ft) 5 1/days) 2 1/days)	<u>) Ana</u>	lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 <u>Reach Width (ft)</u> 142.048 <u>Reach CBOD5 (mg/L)</u> 3.74	Total Discharge 4.02 Reach De 1.09 Reach Kc to	2.14 2.14 2.16 (mgd 0 pth (ft) 5 1/days) 2 1/days)	<u>) Ana</u>	lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995
1.640 <u>Reach Width (ft)</u> 142.048 <u>Reach CBOD5 (mg/L)</u> 3.74 <u>Reach DO (mg/L)</u>	Total Discharge 4.02 Reach De 1.09 Reach Kc to 0.69 Reach Kr (2.14 2.14 2.16 (mgd 0 pth (ft) 5 1/days) 2 1/days)) <u>Ana</u>	lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days)	Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days)	2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L)	Ana Results NH3-N (mg/L)	lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L)	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days)	Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days)	2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) 3.67	Ana Results NH3-N (mg/L) 1.75	lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days)	Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042	2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) 3.67 3.60	Results NH3-N (mg/L) 1.75 1.71	lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days)	0.466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064	2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 3.54	Results NH3-N (mg/L) 1.75 1.71 1.68	lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days)	0.466 Total Discharge 4.02 Reach De 1.09 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085	2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48	Results NH3-N (mg/L) 1.75 1.71 1.68 1.64	lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days)	7.0466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 0.106	2.14 Flow (mgd pth (ft) 1/days) 2 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 3.41	Results NH3-N (mg/L) 1.75 1.71 1.68 1.64 1.61	lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 6.99	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days)	7.466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 0.106 0.127	2.14 Flow (mgd pth (ft) 1/days) 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 3.41 3.35	Results NH3-N (mg/L) 1.75 1.71 1.68 1.64 1.61 1.57	lysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 6.99 6.96	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days)	7.466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 0.106 0.127 0.149	2.14 Flow (mgd pth (ft) 1/days) 2 1/days) 4 Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 3.41 3.35 3.29	Results NH3-N (mg/L) 1.75 1.71 1.68 1.64 1.61 1.57 1.54	Dysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 6.99 6.96 6.94	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days)	7.466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 0.106 0.127 0.149 0.170	2.14 Flow (mgd pth (ft) 1/days) 2 1/days) Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 3.41 3.35 3.29 3.23	Results NH3-N (mg/L) 1.75 1.71 1.68 1.64 1.61 1.57 1.54 1.51	Dysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 6.99 6.96 6.94 6.93	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)
1.640 Reach Width (ft) 142.048 Reach CBOD5 (mg/L) 3.74 Reach DO (mg/L) 7.292 Reach Travel Time (days)	7.466 Total Discharge 4.02 Reach De 1.09 Reach Kc (0.69 Reach Kr (7.08 TravTime (days) 0.021 0.042 0.064 0.085 0.106 0.127 0.149	2.14 Flow (mgd pth (ft) 1/days) 2 1/days) 4 Subreach CBOD5 (mg/L) 3.67 3.60 3.54 3.48 3.41 3.35 3.29	Results NH3-N (mg/L) 1.75 1.71 1.68 1.64 1.61 1.57 1.54	Dysis Temperature (°C) 24.574 Reach WDRatio 129.693 each NH3-N (mg/L) 1.79 Kr Equation Tsivoglou D.O. (mg/L) 7.20 7.13 7.07 7.02 6.99 6.96 6.94	6.973 Reach Velocity (fps) 0.469 Reach Kn (1/days) 0.995 Reach DO Goal (mg/L)

Version 1.1

WQM 7.0 Effluent Limits

		<u>am Code</u> 34025	C	<u>Stream Name</u> ONNOQUENESSING			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
4.960	Ellport Boro SA	PA0038814	0.720	CBOD5	25		
				NH3-N	22.1	44.2	
				Dissolved Oxygen			4
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.640	Ellwood City	PA0026832	3.300	CBOD5	25		
				NH3-N	21.72	43.44	
				Dissolved Oxygen			4

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discharge Stream		
Facility:	Ellport Boro STP	NPDES Permit No.: PA0038814	Outfall No.: 001
Evaluation Ty	/pe: Major Sewage / Industrial Waste	Wastewater Description: Treated Domest	ic Sewage

	Discharge Characteristics										
Design Flow	Hardness (mg/l)*	pH (SU)*	F	artial Mix Fa	Complete Mix Times (min)						
(MGD)*	nardiless (ilig/i)	рп (50)	AFC	CFC	CRL	Q ₇₋₁₀	Q _h				
0.72	100	7.2									

				0 if left blank		0.5 if left blank		0 if left blank		1 if left blank			
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		520									
7	Chloride (PWS)	mg/L		190									
Group	Bromide	mg/L	<	0.5									
Ϊ́ο	Sulfate (PWS)	mg/L		61									
3,000	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L											
	Total Beryllium	μg/L							,				
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L											
	Hexavalent Chromium	μg/L									i		
	Total Cobalt	μg/L											
1	Total Copper	μg/L											
0 2	Free Cyanide	μg/L											
Group 2	Total Cyanide	μg/L											
Ö	Dissolved Iron	μg/L											
1	Total Iron	μg/L						,					
	Total Lead	μg/L											
	Total Manganese	μg/L											
	Total Mercury	μg/L											
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	μg/L											
	Total Molybdenum	μg/L											
	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
1	Benzene	μg/L	<										
1	Bromoform	μg/L	<										

1	0 1 7 7 17 17 11									
	Carbon Tetrachloride	μg/L	<							
	Chlorobenzene	μg/L								
	Chlorodibromomethane	μg/L	<							
	Chloroethane	μg/L	<							
	2-Chloroethyl Vinyl Ether	μg/L	<							
	Chloroform	μg/L	<							
	Dichlorobromomethane	μg/L	<							
	1,1-Dichloroethane	μg/L	<							
က	1,2-Dichloroethane	μg/L	<							
Group	1,1-Dichloroethylene	μg/L	<							
ē	1,2-Dichloropropane	μg/L	<							
اق	1,3-Dichloropropylene	μg/L	<							
	1,4-Dioxane	μg/L	<							
	Ethylbenzene	μg/L	<					Î		
	Methyl Bromide	μg/L	<							
	Methyl Chloride	μg/L	<							
	Methylene Chloride	μg/L	<							
	1,1,2,2-Tetrachloroethane	μg/L	<							
	Tetrachloroethylene	μg/L	<							
	Toluene	μg/L	<							
	1,2-trans-Dichloroethylene	µg/L	<							
	1,1,1-Trichloroethane	µg/L	<							
	1,1,2-Trichloroethane	µg/L	<							
	Trichloroethylene	µg/L	<							
	Vinyl Chloride	µg/L	<							
	2-Chlorophenol	µg/L	<			-			-	
	2,4-Dichlorophenol	µg/L	<							
	2,4-Dimethylphenol	µg/L	<							
	4,6-Dinitro-o-Cresol		<							
4		μg/L	<							
흑	2,4-Dinitrophenol	μg/L	<							
Group	2-Nitrophenol 4-Nitrophenol	μg/L	<							
اق	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	μg/L	<							
	p-Chloro-m-Cresol	μg/L	<		2 6 2				6	
	Pentachlorophenol	μg/L	<							
	Phenol	μg/L								
\vdash	2,4,6-Trichlorophenol	μg/L	<							
	Acenaphthene	μg/L	<							
	Acenaphthylene	μg/L	<							
	Anthracene	μg/L	<							
	Benzidine	μg/L	<							
	Benzo(a) Anthracene	μg/L	<							
	Benzo(a)Pyrene	μg/L	<				5			
	3,4-Benzofluoranthene	μg/L	<							
	Benzo(ghi)Perylene	μg/L	<							
	Benzo(k)Fluoranthene	μg/L	<							
	Bis(2-Chloroethoxy)Methane	μg/L	<							
	Bis(2-Chloroethyl)Ether	μg/L	<							
	Bis(2-Chloroisopropyl)Ether	μg/L	<							
	Bis(2-Ethylhexyl)Phthalate	μg/L	<							
	4-Bromophenyl Phenyl Ether	μg/L	<							
	Butyl Benzyl Phthalate	μg/L	<							
	2-Chloronaphthalene	μg/L	<							
	4-Chlorophenyl Phenyl Ether	μg/L	<							
	Chrysene	μg/L	<							
	Dibenzo(a,h)Anthrancene	μg/L	<							
	1,2-Dichlorobenzene	μg/L	<							
	1,3-Dichlorobenzene	μg/L	<							
2	1,4-Dichlorobenzene	μg/L	<							
함	3,3-Dichlorobenzidine	μg/L	<							
Group	Diethyl Phthalate	μg/L	<							
اقا	Dimethyl Phthalate	μg/L	<							
	Di-n-Butyl Phthalate	μg/L	<							
	2,4-Dinitrotoluene	μg/L	<							

	2,6-Dinitrotoluene	uall	<						
	Di-n-Octyl Phthalate	μg/L μg/L	\ \						
			<		-+-	-			
	1,2-Diphenylhydrazine	μg/L	-						
	Fluoranthene	μg/L	<		-				
	Fluorene	μg/L	<						
	Hexachlorobenzene	μg/L	<						
	Hexachlorobutadiene	μg/L	<						
	Hexachlorocyclopentadiene	μg/L	<						
	Hexachloroethane	μg/L	<						
	Indeno(1,2,3-cd)Pyrene	μg/L	<						
	Isophorone	μg/L	<						
	Naphthalene	μg/L	٧						
	Nitrobenzene	μg/L	<						
	n-Nitrosodimethylamine	μg/L	<						
	n-Nitrosodi-n-Propylamine	μg/L	<						
	n-Nitrosodiphenylamine	μg/L	<						
	Phenanthrene	μg/L	<			7			
	Pyrene	μg/L	<		-+-				
	1,2,4-Trichlorobenzene	µg/L	<			- 14 1			
	Aldrin	μg/L	/						
			_						
	alpha-BHC	μg/L	<						
	beta-BHC	μg/L	<						
	gamma-BHC	μg/L	<		200				
	delta BHC	μg/L	<						
	Chlordane	μg/L	<						
	4,4-DDT	μg/L	<						
	4,4-DDE	μg/L	٧						
	4,4-DDD	μg/L	٧						
	Dieldrin	μg/L	<						
	alpha-Endosulfan	μg/L	<						
	beta-Endosulfan	μg/L	<						
9	Endosulfan Sulfate	μg/L	<						
Group (Endrin	μg/L	<						
3,0	Endrin Aldehyde	μg/L	<						
0	Heptachlor	μg/L	<						
	Heptachlor Epoxide	μg/L	<						
	PCB-1016	μg/L	<		-				
	pe records (Control of		\ \						
	PCB-1221	μg/L							
	PCB-1232	μg/L	<						
	PCB-1242	μg/L	<						
	PCB-1248	μg/L	<						
	PCB-1254	μg/L	<						
	PCB-1260	μg/L	٧						
	PCBs, Total	μg/L	<						
	Toxaphene	μg/L	٧						
	2,3,7,8-TCDD	ng/L	٧						
	Gross Alpha	pCi/L							
	Total Beta	pCi/L	٧						
d	Radium 226/228	pCi/L	<						
Group	Total Strontium	μg/L	<						
O	Total Uranium	µg/L	<						
	Osmotic Pressure	mOs/kg							
		J Jring							
			_						
			_						

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Ellport Boro STP, NPDES Permit No. PA0038814, Outfall 001

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Ellport Boro STP, NPDES Permit No. PA0038814, Outfall 001

	Results		RETURN	TO INPUTS) (:	SAVE AS PD	F (PRINT		I () Inputs	O Results	O Limits	
Hydro	dynamics												
10													
RMI	Stream Flow (cfs)	PWS Withdra (cfs)		Net Stream Flow (cfs)		ge Analysis w (cfs)	Slope (ft/ft)	Depth (f	t) Width (f	t) W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
.96	66.04			66.04	1	.114	0.003	1.088	138.38	7 127.149	0.446	0.646	437.31
).25	67.00	1.547		65.453									
RMI	Stream Flow (cfs)	PWS Withdra (cfs)	2000 174100	Net Stream Flow (cfs)		ge Analysis w (cfs)	Slope (ft/ft)	Depth (f	t) Width (f	t) W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
1.96	289.40			289.40	1	.114	0.003	2.073	138.38	7 66.747	1.013	0.284	170.669
).25	293.075	1.547		291.53									
	Pollutants		Otream	Stream T									
Total D	issolved Solid		Conc		rib Conc (µg/L)			VQ Obj (µg/L)	VLA (µg/L)		Co	omments	
			(10/1)	CV 0		Coef 0	(µg/L) N/A	(µg/L) V	N/A		Co	omments	
(Chloride (PWS	5)	0 0	0 0		Coef 0	(µg/L) N/A N/A	(µg/L) V N/A N/A	N/A N/A		Co	omments	
(Chloride (PWS Sulfate (PWS	5)	0 0 0	CV 0 0 0		Coef 0	(µg/L) N/A	(µg/L) V	N/A		Co	omments	
(Chloride (PWS Sulfate (PWS	5)	0 0 0	0 0		Coef 0	(µg/L) N/A N/A N/A	(µg/L) V N/A N/A	N/A N/A N/A	100	Co Analysis pH:	7.00	
(Chloride (PWS Sulfate (PWS	CCT (r	0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(µg/L)	Coef 0 0 0 0 1 1 Fate	(µg/L) N/A N/A N/A Analysi	N/A N/A N/A N/A N/A S Hardness	N/A N/A N/A	100	Analysis pH:		
✓ CF	Chloride (PWS Sulfate (PWS FC Pollutants issolved Solid	CCT (r	min): ### Conc	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: [Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(µg/L) N/A N/A N/A Analysi WQC (µg/L) N/A	(µg/L) V N/A N/A N/A N/A S Hardness VQ Obj (µg/L) N/A	N/A N/A N/A s (mg/l): [VLA (µg/L)	100	Analysis pH:	7.00	
CF	Chloride (PWS Sulfate (PWS FC Pollutants issolved Solid Chloride (PWS	CCT (r s (PWS)	(uall) 0 0 0 0 min): ### Stream Conc (uall) 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: [Coef 0	(µg/L) N/A N/A N/A N/A Analysi WQC V (µg/L) N/A N/A	(µg/L) V N/A N/A N/A N/A S Hardness VQ Obj (µg/L) N/A N/A	N/A N/A N/A N/A N/A s (mg/l): VLA (µg/L) N/A N/A	100	Analysis pH:	7.00	
CF	Chloride (PWS Sulfate (PWS FC Pollutants issolved Solid	CCT (r s (PWS)	min): ### Conc	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: [Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(µg/L) N/A N/A N/A Analysi WQC (µg/L) N/A	(µg/L) V N/A N/A N/A N/A S Hardness VQ Obj (µg/L) N/A	N/A N/A N/A s (mg/l): [VLA (µg/L)	100	Analysis pH:	7.00	
CF	Chloride (PWS Sulfate (PWS FC Pollutants issolved Solid Chloride (PWS Sulfate (PWS	CCT (r s (PWS)	0 0 0 0 min): ### Siteam Conc (ug/l) 0 0 0 0 0	CV	PMF: [Coef 0	(µg/L) N/A N/A N/A Analysi WQC V (µg/L) N/A N/A N/A	(µg/L) V N/A N/A N/A N/A S Hardness VQ Obj (µg/L) N/A N/A	N/A N/A N/A N/A s (mg/l): VLA (µg/L) N/A N/A N/A	100]	Analysis pH:	7.00	PWS PMF: 1

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	30,576,133	WQC applied at RMI 0.25 with a design stream flow of 67 cfs
Chloride (PWS)	0	0		0	250,000	250,000	15,288,067	WQC applied at RMI 0.25 with a design stream flow of 67 cfs
Sulfate (PWS)	0	0		0	250,000	250,000	15,288,067	WQC applied at RMI 0.25 with a design stream flow of 67 cfs

 ✓ CRL
 CCT (min):
 ######
 PMF:
 1
 Analysis Hardness (mg/l):
 N/A
 Analysis pH:
 N/A

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

							_		
	Mass	Mass Limits		Concentration Limits					
Pollutants	AML (lbs/dav)	MDL (lbs/dav)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments			
Total Dissolved Solids (PWS)	30,576	mg/L	Discharge Conc ≤ 10% WQBEL			
Chloride (PWS)	15,288	mg/L	Discharge Conc ≤ 10% WQBEL			
Bromide	N/A	N/A	No WQS			
Sulfate (PWS)	15,288	mg/L	Discharge Conc ≤ 10% WQBEL			

Model Results 3/28/2022 Page 6

TRC_CALC (1)

TRC EVALUA	ATION								
Input appropria	ate values in	A3:A9 and D3:D9							
66.04	= Q stream (cfs)	0.5	= CV Daily					
0.72	= Q discharg	e (MGD)	0.5	= CV Hourly					
30	no. sample	8	0.185	= AFC_Partial Mix Factor					
0.3	= Chlorine D	emand of Stream	1	1 = CFC_Partial Mix Factor					
C	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)				
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)					
C	= % Factor o	of Safety (FOS)		=Decay Coeffic	cient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =	3.518	1.3.2.iii	WLA cfc = 18.450				
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1b	LTA_afc=	1.311	5.1d	LTA_cfc = 10.726				
Source		Efflue	nt Limit Calcu	lations					
PENTOXSD TRG	5.1f		AML MULT =						
PENTOXSD TRG	5.1g	AVG MON I	_IMIT (mg/l) =	0.500	BAT/BPJ				
		INSI MAXI	_I M IT (mg/l) =	1.635					
WLA afc	+ Xd + (AFC EXP((0.5*LN	FC_tc)) + [(AFC_Yc*Qs*.019/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10/ (cvh^2+1))-2.326*LN(cvh^2	0)	_tc))					
LTA_afc	wla_afc*LTA	MULT_afc							
WLA_cfc	85.0	FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10		to))					
LTAMULT_cfc		(cvd^2/no_samples+1))-2.32	26*LN(cvd^2/i	no_samples+1) <i>*</i>	0.5)				
LTA_cfc	wla_cfc*LTA	MULT_cfc							
AML MULT	AL DESCRIPTION OF STREET	N((cvd^2/no_samples+1)^0	stated of the state of the stat	d^2/no_samples	s+1))				
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)*Al							
INST MAX LIMIT	1.5*((av_mor	1_limit/AML_MULT)/LTAMUL	.T_afc)						

Ellport Borougnh STP Ellport Borough, Lawrence County NPDES# PA0038814

Ave (10^pH min

<u>Date</u>	pH min	pH max	10^ -pH min 10^ -pH max & pH max) -Log (Ave pH)
Jul-19	6.90	7.20	1.26E-07 6.31E-08 9.45E-08 7.0
Aug-19	6.98	7.18	1.05E-07 6.61E-08 8.54E-08 7.1
Sep-19	6.98	7.23	1.05E-07 5.89E-08 8.18E-08 7.1
Jul-20	7.06	7.69	8.71E-08 2.04E-08 5.38E-08 7.3
Aug-20	6.97	7.64	1.07E-07 2.29E-08 6.5E-08 7.2
Sep-20	6.99	7.50	1.02E-07 3.16E-08 6.7E-08 7.2
Jul-21	7.04	7.38	9.12E-08 4.17E-08 6.64E-08 7.2
Aug-20	7.11	7.34	1.07E-07 2.29E-08 6.5E-08 7.2
Sep-20	7.15	7.43	1.02E-07 3.16E-08 6.7E-08 7.2
			Median: 7.2