

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0038920

 APS ID
 28391

 Authorization ID
 1336587

Applicant and Facility Information

Applicant Name	Burnham Borough Authority		Facility Name	Burnham Borough STP
Applicant Address	200 1st Avenue		Facility Address	80 Railroad Street
	Burnha	m, PA 17009-1640		Burnham, PA 17009
Applicant Contact	Robert Knepp		Facility Contact	David Rheinholder
Applicant Phone	(717) 248-2692		Facility Phone	(717) 248-6351
Client ID	62129		Site ID	251524
Ch 94 Load Status	Not Overloaded		Municipality	Burnham Borough
Connection Status	No Limitations		County	Mifflin
Date Application Receiv	ved	December 15, 2020	EPA Waived?	No
Date Application Accep	ted	December 30, 2020	If No, Reason	, DEP Discretion
Purpose of Application		NPDES permit renewal for dis	charge of treated sewage	

Summary of Review

1.0 General Discussion

This factsheet supports the renewal of an existing NPDES permit for discharge of treated domestic wastewater from Burnham Borough Authority (Authority) wastewater treatment plant. The Authority owns, operates, and maintains the wastewater treatment plant located in Burnham Borough, Mifflin County. The facility receives flows from Burnham Borough and portion Derry Township There are 3 pump stations within the collection system located at Beech Street, Logan Boulevard and Orchard Grove Avenue. The last combined sewer overflow in the collection system was eliminated in 2014. The facility is sequential Batch Reactor with a design annual average flow of 0.64 MGD, hydraulic design of capacity of 0.90MGD and an organic design capacity of 1,140lbs/day. The facility discharges to Kishacoquillas Creek which is designated for High-Quality cold-water fishes and migratory fishes. The existing NPDES permit was issued on March 23, 2016 with an expiration date of March 30, 2021. The facility is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Digested sludge is dewatered using reed beds. Reeds beds are cleaned periodically to removed solids to a landfill. Liquid sludge is hauled out as needed by license hauler.

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request

Approve	Deny	Signatures	Date
х		J. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	January 4, 2022
х		Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	January 16, 2022

Summary of Review

or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to Existing Permit

Quarterly monitoring of E.Coli has been added to the permit

1.4 Existing Limit and Monitoring Requirements

	DISCHARGE LIMITATIONS									
	Ma	ass Units Ibs	/day	Concentrations mg/l						
Discharge Parameter	Average Monthly	Average Weekly	Maximum Daily	Average Monthly	Average Weekly	Maximum Daily	Inst. Maximum	Monitoring Frequency	Sample Type	
Flow (mgd)	Monitor & Report	xxx	Monitor & Report	xxx	XXX	xxx	xxx	continuous	measured	
pH (S.U.)	xxx	xxx	xxx		From 6.0	1/day	Grab			
D.O.	xxx	xxx	ххх	M	inimum of	1/day	Grab			
TRC	xxx	xxx	XXX	0.5	xxx	XXX	1.6	1/day	Grab	
TSS	160	240	ххх	30	45	XXX	60	1/week	24-hour comp	
CBOD₅	133	200	XXX	25	40	XXX	50	1/week	24-hour comp	
NH ₃ -N (5/1 to 10/31)	70	xxx	XXX	14	xxx	ххх	XXX	1/week	24-hour comp	
NH ₃ -N (11/1 to 4/30)	Report	xxx	ххх	Report	xxx	ххх	XXX	1/week	24-hour comp	
Total Phos.	Report	xxx	ххх	Report	XXX	ххх	4.0	2/week	24-hour comp	
Fecal Col. (5/1 to 9/30)	XXX	xxx	ххх	200	xxx	1000	XXX	1/week	Grab	
Fecal Col. (10/1 to 4/30)	xxx	xxx	xxx	2000	xxx	10000	XXX	1/week	Grab	

Summary of Review

1.4.1 Chesapeake Bay Permit Requirements

ual Minimu oort XXX XX XXX	Concentrations num Monthly Average X Report X Report	(mg/l) Maximum XXX XXX	Minimum Measurement Frequency 2/week 2/Week	Required Sample Type 24-hr Comp 24-hr Comp
ual Minimu oort XXX XX XXX	num Monthly Average X Report X Report	Maximum XXX XXX	Minimum Measurement Frequency 2/week 2/Week	Required Sample Type 24-hr Comp 24-hr Comp
oort XXX XX XXX	X Report X Report	xxx xxx	2/week 2/Week	24-hr Comp 24-hr Comp
x xxx	X Report	xxx	2/Week	24-hr Comp
x xxx	X Report	xxx	2/Week	24-hr Comp
oort XXX	X Report	xxx	1/Month	Calculate
oort XXX	X Report	xxx	2/week	24-hr Comp
9 XXX	x xxx	xxx	1/Month	Calculate
	x xxx	xxx	1/Month	Calculate
	oort XX 9 XX 9 XX	oort XXX Report 9 XXX XXX 0 XXX XXX	oort XXX Report XXX 9 XXX XXX XXX 0 XXX XXX XXX	portXXXReportXXX2/week9XXXXXXXXX1/Month9XXXXXXXXX1/Month

.5 Discharge, Receiving Waters and Water Supply Info	ormation				
Outfall No.001Latitude40° 37' 46.39"Quad Name	Design Flow (MGD) Longitude Quad Code	.64 -77º 33' 48.42"			
Receiving WatersKishacoquillas Creek (HQ-CWF)NHD Com ID66204601Drainage Area174Q7-10 Flow (cfs)19.66Elevation (ft)495Watershed No.12-AExisting Use	Stream Code RMI Yield (cfs/mi ²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	12429 3.749 0.113 USGS Gage Station HQ-CWF			
Source(s) of Impairment TMDL Status	Name				
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:	Data Source				
Nearest Downstream Public Water Supply Intake PWS Waters PWS RMI	Mifflintown Municipal Authority Flow at Intake (cfs) Distance from Outfall (mi)	13			

Changes Since Last Permit Issuance: None

1.5.1 Water Supply Intake:

The nearest downstream public water supply intake is about 13 miles downstream by Mifflintown Municipal Authority on Juniata River in Mifflintown, Juniata County

Kishacoquillas Creek (12429) From Discharge to Juniata River	(RMI 3.749 – 0.00)	3.749 mi
Juniata River (11414) Juniata River to intake	(RMI 46.56 – 37.26)	<u>9.30 mi</u>
		13.53 mi

Because of distance and dilution, the discharge is not expected to have an effect on the water supply.

2.0 Treatment Facility Summary									
Treatment Facility Na	me: Burnham STP								
WQM Permit No.	Issuance Date								
4487402 12-1	11/13/2012								
4487402 11-1	02/22/2012								
	Degree of			Avg Annual Flow					
Waste Type	Treatment	Process Type	Disinfection	(MGD)					
Sewage	Secondary	Sequencing Batch Reactor	Chlorine	0.64					
	· · · · · · · · · · · · · · · · · · ·								
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
				Reed bed/disposal					
0.9	1,140	Not Overloaded	Aerobic digestion	offsite					

Changes Since Last Permit Issuance: None

2.1 Treatment Facility Description

The treatment facility consists of fine screen with comminutor bypass, influent pump chamber with 3 pumps, grit removal unit, 2 SBR units with 2 post Equalization tanks, 2 chlorine contact tanks for disinfection and 2 aerobic tanks for digestion with 3 reed beds.

2.2 Treatment Chemicals

- Sodium Hypochlorite for disinfection.
- Delpac.
- Soda ash for alkalinity or pH adjustment as needed

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from November 1, 2020 to October 31, 2021)

Parameter	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20
Flow (MGD)												
Average Monthly	0.381	0.945	0.393	0.381	0.301	0.313	0.296	0.425	0.409	0.347	0.436	0.276
Flow (MGD)												
Daily Maximum	0.793	3.336	1.470	0.973	0.778	0.626	0.526	1.185	1.508	0.786	2.268	0.0970
pH (S.U.)												
Minimum	7.3	6.9	7.4	7.2	7.5	7.6	7.1	7.2	7.4	7.5	7.0	7.0
pH (S.U.)												
Maximum	7.9	7.9	7.9	8.0	8.0	7.9	7.9	8.1	8.1	8.1	8.5	7.8
DO (mg/L)												
Minimum	8.2	5.8	7.8	7.3	8.6	9.0	8.9	7.8	10.9	8.9	9.3	9.1
TRC (mg/L)												
Average Monthly	0.5	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.5	0.3	0.03
TRC (mg/L)												
Instant. Maximum	0.8	0.7	0.7	0.7	0.6	0.7	0.8	0.8	1.1	0.9	0.8	0.05
CBOD5 (lbs/day)												
Average Monthly	< 8.3	< 84.5	< 15.3	< 12.9	9.7	< 11.9	13.4	< 18.5	23.3	< 20.4	40.3	46.4
CBOD5 (lbs/day)												
Weekly Average	9.8	< 269.0	37.8	26.7	17.8	18.4	17.6	22.0	40.0	27.6	60.8	94.9
CBOD5 (mg/L)												
Average Monthly	< 3.4	< 5.4	< 3.3	< 4.7	4.5	< 4.4	5.8	< 6.2	7.5	< 8.0	14.7	17.5
CBOD5 (mg/L)												
Weekly Average	4.8	9.7	4.0	9.5	8.1	6.9	6.9	9.9	10.3	12.7	25.4	41.1
BOD5 (lbs/day)												
Raw Sewage Influent												
 Ave. Monthly	387.2	739	< 960	405	547	365	421	423	462	430	673	447
BOD5 (mg/L)												
Raw Sewage Influent			100			100	100	100			0.5.4	
<pre> Ave. Monthly</pre>	147	72	< 138	146	224	129	162	120	145	149	254	145
TSS (lbs/day)												
Average Monthly	7.1	308.2	45.0	10.5	< 14.0	14.5	< 16.2	< 15.5	26.3	19.1	47.3	60.1
TSS (lbs/day)												
Raw Sewage Influent	007.7	757	4400	40.4	500	007	000		504	004	700	000
<pre><pre>> Ave. Monthly</pre></pre>	327.7	/5/	1162	424	562	637	392	441	534	384	783	690
TSS (lbs/day)	0.7	4404.0	450.0	45.0	01.0	05.0	00.0		50.0	00.4	00.4	00.0
vveekly Average	8.7	1124.0	152.0	15.8	21.9	25.6	32.6	41.1	59.8	26.1	98.1	93.3
ISS (mg/L)		47.0					7.0	F 4	40.4	7 -	40.0	00.0
Average Monthly	2.9	17.0	6.1	3.8	< 6.6	6.2	< 1.0	< 5.1	10.4	1.5	18.9	20.0

TSS (mg/L)												
Raw Sewage Influent												
 http://www.working.com/	122.8	70	167	147	231	209	146	128	151	132	276	146
TSS (mg/L)												
Weekly Average	3.2	40.4	12.4	5.6	10.8	12.4	12.8	14.4	29.5	10.4	49.2	40.4
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	31	45	29	< 4	15	4	28	113	53	11	480	151
Fecal Coliform												
(CFU/100 ml)												
Instant. Maximum	641	1011	99	40	46	69	291	7945	1102	34	9678	295
Nitrate-Nitrite (mg/L)												
Average Monthly	< 2.1	< 3.0	< 2.8	2.5	1.6	1.5	3.7	5.2	5.5	2.5	2.1	1.4
Nitrate-Nitrite (lbs)												
Total Monthly	< 220.0	< 1072.1	< 327.3	235.2	108.8	142.6	297.1	500.5	418.8	210.7	203.9	139.5
Total Nitrogen (mg/L)												
Average Monthly	< 3.0	< 4.2	< 3.8	< 4.0	3.0	< 3.1	6.9	10.0	9.7	4.1	8.7	5.8
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	< 300	< 1447	< 429	< 360	210	< 261	524	972	775	347	764	492
Total Nitrogen (lbs)												
Total Monthly	< 299.9	< 1447.4	< 429.2	< 360.3	210.2	< 261	524	972.2	775.2	346.5	763.5	491.6
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual		< 7014										
Total Nitrogen (lbs)												
Total Annual		< 7014										
Ammonia (Ibs/day)												
Average Monthly	< 1.3	< 3.0	1.8	2.5	2.3	< 2.7	6.8	13.1	11.2	11.2	3.3	3.4
Ammonia (mg/L)												
Average Monthly	< 0.5	< 0.4	0.6	0.9	1.0	< 1.2	2.9	4.3	3.5	0.7	1.2	1.2
Ammonia (lbs)												
Total Monthly	< 39.6	< 90.3	56.6	76.3	69.0	< 83.7	203.3	407.4	312.8	58.4	103.3	103.1
Ammonia (lbs)												
Total Annual		< 1658										
TKN (mg/L)												
Average Monthly	< 1.0	1.2	< 1.0	< 1.4	1.5	< 1.7	3.2	4.8	4.1	1.7	6.6	4.4
TKN (lbs)												
Total Monthly	< 79.9	375.3	< 101.8	< 123	101.3	< 117.8	221.1	462.6	346.3	135.8	559.6	352.1
Total Phosphorus												
(mg/L) Ave. Monthly	0.5	0.8	1.1	1.0	0.8	0.8	1.2	1.9	2.1	1.8	1.7	1.2
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	47	238	109	85	52	61	84	245	158	139	134	95

NPDES Permit Fact Sheet Swatara Township STP

Total Phosphorus (lbs)												
Total Monthly	46.9	237.8	108.6	84.5	52.4	60.9	84.3	244.7	157.9	138.8	133.6	95.2
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual		1475										
Total Phosphorus (lbs)												
Total Annual		1475										

3.2 Effluent Violations for Outfall 001, from: December 1, 2020 To: October 31, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TRC	02/28/21	Avg Mo	0.6	mg/L	0.5	mg/L
CBOD5	09/30/21	Wkly Avg	< 269.0	lbs/day	200.0	lbs/day
TSS	09/30/21	Avg Mo	308.2	lbs/day	160.0	lbs/day
TSS	09/30/21	Wkly Avg	1124.0	lbs/day	240.0	lbs/day
TSS	12/31/20	Wkly Avg	49.2	mg/L	45.0	mg/L
Fecal Coliform	09/30/21	IMAX	1011	CFU/100 ml	1000	CFU/100 ml

3.3 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met most of the time. TRC, CBOD5, Fecal Coliform and TSS effluent violations were noted on DMRs during the period reviewed and presented in section 3.2 above. The violations appear to be operation related. The violations recorded on 09/30/21 were attributed to extremely high flows to the facility from Hurricane Ida

3.4 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. A couple of operational violations were identified during plant inspections and recommendations were made to address them. No effluent violations were found during plant inspections. A notice of violation (NOV) was sent on 1/29/21 for a series of effluent violations in 2020. The response to the NOV attributed the violations to malfunctioning of SBR # 2 decanter. The decanter has since been repaired and functioning well.

4.0 Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	.64
Latitude	40º 37' 46.45"	Longitude	-77º 33' 48.23"
Wastewater De	escription: Sewage Effluent		

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

4.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass based limits are expressed in pounds per day and are calculated as follows: Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.4 Water Quality-Based Limitations

4.4.1 Receiving Stream

The receiving stream is, Kishacoquillas Creek. According to 25 PA § 93.9n, from the Main Stem, Yeagertown/Burnham Railroad Bridge to SR 2005 (Mill Road) Bridge at Mount Rock the creek is protected for High-Quality Cold-Water Fishes (HQ-CWF) and Migratory Fishes (MF). It is located in Drainage List N and State Watershed 12-A. It has been assigned stream code 12429. The segment of the creek that receives discharge from this facility is attaining its designated uses.

4.4.2 Stream flows

The Technical Support Document for Water Quality-Based Toxics Control (TSD) (EPA, 1991) and the Pennsylvania Water Quality Standards PA WQS) recommend the flow conditions for use in calculating water quality-based effluent limits (WQBELs) using steady-state modeling. The TSD and the PA WQS state that WQBELs intended to protect aquatic life uses should be based on the lowest seven-day average flow rate expected to occur once every ten years (Q₇₋₁₀) for chronic criteria and the lowest one-day average flow rate expected to occur once every ten years (Q₁₋₁₀) for acute criteria. However,

because the chronic criterion for ammonia is a 30-day average concentration not to be exceeded more than once every three years, EPA has used the Q_{30-10} for the chronic ammonia criterion instead of the Q_{7-10} . The Q_{30-10} is a biologically-based design flow intended to ensure an excursion frequency of once every three years for a 30-day average flow rate. These flows were determined by correlating with the yield of nearby USGS gauging station No 01565000 on Kishacoquillas Creek near Reedsville, PA. The Q_{7-10} and drainage area of the gage 18.6cfs and 164 sq.mi respectively. The yield at the gage are:

- Q₇₋₁₀ =(18.6)/(164) = 0.113 cfs/sq.mi.
- Q₃₀₋₁₀ / Q₇₋₁₀ = 1.09
- $Q_{1-10}/Q_{7-10} = 0.95$

The drainage area at the discharge point was found from streamstats calculation to be 174sq.mi. The design streamflow (Q_{7-10}) at the discharge point is calculated as:

Q₇₋₁₀=(0.113)(174) = 19.66cfs

4.4.3 NH₃N Calculations

 NH_3N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH_3N criteria used in the attached computer model of the stream:

- STP pH = 7.2 (DMR Median July-Sept)
- STP Temperature = 25 ° C (default)
- Stream pH = 8.15 (Previous fact sheet)
- Stream Temperature = 19 ° C (Previous factsheet)
- Background NH₃-N = 0.0 (default)

4.4.4 CBOD₅

Brown Township STP and Burnham Borough STP discharges were modeled together due to their proximity to each other. The attached results of the WQM 7.0 stream model presented in attachment B indicates that for the and Burnham Borough STP discharge, a monthly average limit of 25 mg/l CBOD5 is required to protect the water quality of the stream. This is consistent with the existing permit and facility is meeting the limit. Therefore, an average monthly limit (AML) of 25 mg/l, average weekly limit (AWL) of 40mg/l and IMAX of 50mg/l will remain in the permit. Mass limits are calculated using the equation presented in section 4.3.

<u>4.4.5 NH₃-N</u>

The attached results of the WQM 7.0 stream model (attachment B) also indicates a summer monthly average limit of 16.49 mg/l of NH3-N is necessary to protect the aquatic life from toxicity effects. However, the existing summer average monthly limit of 14 mg/l and monitoring for winter months will remain in the permit due to anti-backsliding restrictions. Mass limits are calculated using the equation presented in section 4.3.

4.4.6 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.4.7 Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/I AML in the existing permit which was based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) will remain in the permit. In addition, an AWL of 45mg/I per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) is added to the permit. Mass-based limits are calculated based on the equation presented in section 4.3.

4.4.8 Phosphorus

The existing monitoring requirement and instantaneous maximum limit requirement to control phosphorus loading will be carried over in the renewed permit.

4.4.9 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

As outlined in the current Phase 3 WIP and the current supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals.

This facility falls in phase 3 of the strategy and is required to meet a total maximum annual Total Nitrogen Cap load of 11,689 lbs/year based on a design annual wasteflow of 0.64 MGD and 6 mg/l total nitrogen and a TP cap load of 1,559 lbs/year based on annual wasteflow of 0.64 MGD and 0.8 mg/l total phosphorus. The facility is in compliance with the bay cap load requirements.

4.4.10 Total Residual Chlorine

The attached results of TRC calculation presented in attachment C utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached result indicates that a technology limit of 0.5 mg/l and 1.6mg/l IMAX would be needed to prevent toxicity concerns. This is consistent with the existing permit. The facility has no problem meeting the limits.

4.4.11 Toxics

The facility treats mainly domestic sewage, there are no parameters of concern associated with this discharge.

4.4.12 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.13 Stormwater

There is no stormwater outfall associated with this facility.

4.4.14 Industrial Users

The wastewater treatment plant does not receive wastewater from any significant industrial users.

4.4.15 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.64 MGD and the facility receives no flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

4.4.16 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. Quarterly monitoring of E. Coli is required in the permit following DEP recommendation of 1/quarter monitoring of E. Coli at a minimum for this type of facility.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The facility discharge to a stream segment designated as High-Quality Waters. The discharge is not expected to impact the stream negatively. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

The discharge is into a stream segment which is identified as Class A Wild Trout Stream by PA Fish and Boat Commission. The discharge is not expected to the stream negatively.

5.4 303d Listed Streams

The discharge is not located on a 303d listed stream segment.

5.5 Special Permit Conditions

The permit contains the following special conditions:

• Stormwater Prohibition, Approval Contingencies, Solids Management, Restriction on receipt of hauled in waste under certain conditions, and chlorine minimization.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Baramatar	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			5.0					
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
00000	100.0		2004		10.0			24-Hr
CBOD5	133.0	200.0	XXX	25.0	40.0	50	1/week	Composite
BOD5		2007	2000			2004	4/	24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
700	400.0	0.40.0	~~~~	00.0	45.0	00	41	24-Hr
155	160.0	240.0	XXX	30.0	45.0	60	1/Week	Composite
155 Deve Generate leftwart	Denert	XXXX	XXXX	Denert	~~~~	N/V/V	4 /	24-Hr
Raw Sewage Influent	Report	***	***	Report	XXX	***	1/week	Composite
Fecal Collform (No./100 ml)	VVV	VVV	VVV	2000 Cae Meen	VVV	10000	1/wook	Croh
Eccel Coliform (No. (100 ml)	^^^		^^^		~~~	10000	1/week	Glab
May 1 Son 20	VVV	vvv	vvv	200 Goo Moon	vvv	1000	1/wook	Grah
May 1 - Sep 30	^^^		^^^	Geo Mean	~~~	1000	1/week	Glab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
								24-Hr
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	2/week	Composite
	Report							
Nitrate-Nitrite (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	2/week	Calculation

Outfall 001. Continued	from Permit Effective Date through Permit Expiration Date)
	······································

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen	XXX	XXX	xxx	Report	XXX	xxx	1/month	Calculation
Total Nitrogen (lbs)	Report Total Mo	XXX	xxx	XXX	XXX	xxx	1/month	Calculation
Ammonia Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	xxx	2/week	24-Hr Composite
Ammonia May 1 - Oct 31	70.0	XXX	XXX	14.0	XXX	28.0	2/week	24-Hr Composite
Ammonia (lbs)	Report Total Mo	XXX	xxx	XXX	XXX	xxx	1/month	Calculation
TKN	xxx	XXX	xxx	Report	xxx	xxx	2/week	24-Hr Composite
TKN (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	xxx	2/week	Calculation
Total Phosphorus	ххх	XXX	XXX	Report	XXX	4	2/week	24-Hr Composite
Total Phosphorus (lbs)	Report Total Mo	XXX	xxx	XXX	XXX	xxx	2/week	Calculation

Compliance Sampling Location: Outfall 001

6.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Paramatar	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Faranieler	Monthly	Annual	Monthly	Monthly	Maximum	Instant. Maximum	Measurement	Sample
Total Nitrogen (lbs)	wontiny	11680	wontiny	Average	Maximum	IVIAXIIIIUIII	riequency	туре
Effluent Net	xxx	Total Annual	XXX	xxx	xxx	xxx	1/year	Calculation
		Report						
Total Nitrogen (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
		Report						
Ammonia (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs)		1559						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
		Report						
Total Phosphorus (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation

Compliance Sampling Location: Outfall 001

	7.0 Tools and References Used to Develop Permit
\square	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment
\boxtimes	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment
\square	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\boxtimes	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
\square	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
\square	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\square	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\square	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing effluent limitation for individual sewage permit.
	Other:

8.0 Attachments

A. Topographical Map

B. WQM Model Results

	SWP Basin	Stream Code		Stream Name	9		
	12A	12429		KISHACOQUILLAS	CREEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Lim Minimum (mg/L)
6.934	Brown Twp	PA0028088	0.600	CBOD5	25		
				NH3-N	9.82	19.64	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Lim Minimum (m.g/L)
3.749	Burnham Bor	o PA0038920	0.640	CBOD5	25		
				NH3-N	16.49	32.98	
				Dissolved Oxygen			5

Sunday, December 19, 2021

Version 1.1

Page 1 of 1

	SW Bas	P Streamin Co	am de	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slo (ft/	pe F Witi ft) (1	PWS hdrawal mgd)	Apply FC
	12A	12	429 KISHA	COQUIL	AS CREEK	¢	6.9	34	577.00	68.	53 0.00	0000	0.00	V
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary pppp	н	Stre Temp	am pH	
07.40	(ctsm)	(cts)	(cts)	(days)	(tps)		(11)	(11)	(*0	,) 	0.45	(*C)		
27-10 21-10 230-10	0.113	0.00	0.00	0.000	0.000	0.0	0.00	0.0	U 1	9.00	8.15	0.00	0.00	
					D	scharge	Data							
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	g Permitt Disc Flow (mgd)	ed Desi Dis Flo) (mg	ign c Res w Fa pd)	erve T ctor	Disc emp (°C)	Disc pH		
		Brow	m Twp	PA	028088	0.60	0 0.600	0.0	000	0.000	25.00	7.00		
					Pa	rameter	Data							
				_		0	lisc 1 Cano (Trib Conc	Stream Conc	Fate Coef				
			,	Paramete	rName	(r	ng/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Sunday, December 19, 2021

Version 1.1

Page 1 of 3

	SW	P Stre	am				RM	Eleva	ation D	rainage	Slope	PWS		Apply
	Bas	sin Co	de	Stre	am Name			(f	()	Area (sq mi)	(ħ/ħ)	Withdra (mgd	wal)	FC
	12A	12	429 KISHA	COQUILI	LAS CREEK	(3.7	49 4	95.00	174.00	0.00000		0.00	¥.
	LFY	Trib	Stream	Rch	Rch	wD	Rch	Rch	т	ributary		Stream		
Design Cond.	(cfsm)	Flow (cfs)	Flow (cfs)	Trav Time (days)	Velocity (fps)	Ratio	Width (ft)	Depth (ft)	Temp (°C)	pH	Temp (°C))	pН	
Q7-10 Q1-10	0.113	0.00	0.00	0.000	0.000	0.0	0.00	0.00	19.	00 8.15	i 0.	.00	0.00	
450-10		0.00	0.00	0.000	0.000	scharge	Data							
			Name	Per	mit Number	Existing Disc r Flow	Permitt Disc Flow	ed Desig Disc Flow	Reser	Disc ve Temp or	Dis pH	c ł		
		Burn	ham Boro	PA	038920	0.640	0 0.64	0 0.64	00 0.0	000 25	.00 7	7.20		
					Pa	rameter	Data							
					News	C	lisc 1 Cano (Trib S Conc (tream Conc	Fate Coef				
				ranamete	riname	(n	ng/L) (r	ng/L) (mg/L) (1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

l

	1	SWP Basin	Strea Coo	am de	Stre	sam Name		RM	Eleva (ft	ation ()	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	12	А	12	429 KISHA	COQUILI	LAS CREEK	(3.54	47 4	90.00	184.00	0.00000	0.00	. 2
	LFY		Trib	Stream	Rch	St: Rch	vD WD	Rch	Rch	1	ributary	<u>s</u>	Stream	
Design Cond.	(cfsm)	Flow (cfs)	Flow (cfs)	Trav Time (days)	(fps)	Ratio	(ft)	Depth (ft)	Temp (°C)	рН	Temp (°C)	pH	
27-10 21-10 230-10	0.1	113	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	19.	.00 8.18	i 0.	00 0.0	0
	[DI	scharge	Data						
				Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	ed Desigr Disc Flow (mgd)	Rese Fac	Disc rve Temp tor (°C)	Disc pH		
							0.000	0 0.000	0.00	00 0.	.000 25	.00 7	.00	
						Pa	rameter I Di	Data isc 1	rib S	ream	Fate			
					Paramete	rName	C (m	and C	conc (Canc ma/L)	Coef			
		-		CRODS				25.00	2.00	0.00	1.50			
				Dissolved	Oxygen			3.00	8.24	0.00	0.00			
				NH3-N				25.00	0.00	0.00	0.70			

Sunday, December 19, 2021

Version 1.1

Page 3 of 3

	SWP Basin	Strea	m Code		<u>st</u>	ream	Name			
	12A	1	2429		KI SHA C	DQUIL	LASCR	EEK		
NH3-N RMI	Acute Alloc Discharge	ation Name	S Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Mu W	ltiple VLA 1g/L)	Critical Reach	Percent Reductio	n
6.9 3.7	34 Brown Twp 49 Burnham Bo	ro	6.24 4.1	50 50	6.24 5.3		50 50	0 0	0 0	_
NH3-N	Chronic All	ocati	ons							_
RMI	Discharge N	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multi WL (mg	ple .A /L)	Critical Reach	Percent Reduction	
6.9 3.7	34 Brown Twp 49 Burnham Bo	ro	1.06 .79	10.68 17.93	1.08 .95		9.82 16.49	2	8 8	-
RMI	Dischar	ge Narr	ie Baseli (mg/L	CBOD5 ine Multiple L) (mg/L)	<u>NH3-N</u> Baseline Mu (mg/L) (m	ultiple ig/L)	Dissolv Baselin (mg/L)	ed Oxygen e Multiple (m.o/L)	Critical Reach	Percent Reduction
	03 Repurp Turp		(mg/l	L) (mg/L)	(mg/L) (m	g/L)	(mg/L)	(mo/L)	Reach	Reduction
3			:	25 25	9.82	9.82	5	5	0	0
0.	75 Burnham Bo	ro	:	25 25 25 25	9.82 16.49	9.82 16.49	5	5	0 0	0 0
u.	75 Burnham Bo	ro	:	25 25 25 25	9.82 16.49	9.82	5 5	555	0	0

	WQ	M 7.0	D.O.S	imulation		
<u>SWP Basin</u> Str	eam Code			<u>Stream Name</u>		
12A	12429		KI SH	ACOQUILLA & CREEK		
RMI	Total Discharge	Flow (mgd	i) <u>Ana</u>	lysis Temperature (°C)	Analysis pH	
6.934	0.60	0		19.642	7.769	
Reach Width (ft)	Reach De	pth (ft) o		Reach WDRatio 57 320	Reach Velocity (fps) 0.277	
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	teach NH3-N (mg/L)	Reach Kn (1/days)	
4.46	0.70	В	-	1.05	0.681	
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)	
7.896 Readb Travel Time (daw)	12.79			Tsivogou	5	
0.702	TravTime (days)	Subreact CBOD5 (mg/L)	h Results NH3-N (mg/L)	D.O. (mg/L)		
	0.070	4.05	4.00			
	0.070	4.25	0.96	8.24		
	0.211	3.85	0.91	8.24		
	0.281	3.67	0.87	8.24		
	0.351	3.49	0.83	8.24		
	0.421	3.33	0.79	8.24		
	0.562	3.02	0.72	8.24		
	0.632	2.87	0.68	8.24		
	0.702	2.74	0.65	8.24		
<u>RMI</u> 2.740	Total Discharge	Flow (mgd	i) Ana	lysis Temperature (°C) 10.522	Analysis pH	
Reach Width (ft)	Reach De	u oth (ft)		19.533 Reach WDRatio	Reach Velocity (fos)	
66.907	0.88	0		77.828	0.375	
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	teach NH3-N (mg/L)	Reach Kn (1/days)	
3.35 Brock DO (molt)	0.67 Reach Kr (5 1/days)		1.02 Kr Equation	0.675 Reach DO Goal (mg/L)	
8.094	11.87	0		Tsivoglou	5	
Reach Travel Time (days) 0.033	TravTime	Subreact CBOD5	h Results NH3-N	D.O.		
	(days)	(ing/L)	(mg/L)	(mg/r)		
	0.003	3.34	1.02	8.12		
	0.007	3.34	1.01	8.14		
	0.010	3.33	1.01	8.16		
	0.013	3.32	1.01	8.20		
	0.020	3.31	1.00	8.22		
	0.023	3.30	1.00	8.24		
	0.026	3.29	1.00	8.24		
	0.030	3.29	1.00	8.24		
	0.033	3.28	1.00	0.24		
Describer 10, 0001			Manajara 4	1	Deep 1 of 1	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.95	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.09	Temperature Adjust Kr	M
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	5		

Sunday, December 19, 2021

Version 1.1

Page 1 of 1

	<u>sw</u>	P Basin	Strea	m Code				<u>stream</u>	Name			
		12A	1	2429			KISHA	COQUIL	LAS CRE	EK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
6.934	7.74	0.00	7.74	.9282	0.00488	.739	42.34	57.32	0.28	0.702	19.64	7.77
3.749	19.66	0.00	19.66	1.9183	0.00469	.86	66.91	77.83	0.38	0.033	19.53	7.86
Q1-1	0 Flow											
6.934	7.36	0.00	7.36	.9282	0.00488	NA	NA	NA	0.27	0.720	19.67	7.76
3.749	18.68	0.00	18.68	1.9183	0.00469	NA	NA	NA	0.37	0.034	19.56	7.86
Q30-	10 Flow	,										
6.934	8.44	0.00	8.44	.9282	0.00488	NA	NA	NA	0.29	0.672	19.59	7.79
2.740	21.43	0.00	21.43	1,9183	0.00469	NA	NA	NA	0.39	0.031	19.49	7.88

Sunday, December 19, 2021

Version 1.1

Page 1 of 1

C. TRC Calculations

-		U		-	_					
	TRC EVALUATION									
	Input appropriate values in A3:A9 and D3:D9									
	19.66	= Q stream	n (cfs)	0.5	0.5 = CV Daily					
	0.64	= Q discha	arge (MGD)	0.5	= CV Hourly					
	30	= no. sam	oles	1	1 = AFC_Partial Mix Factor					
1	0.3	= Chlorine	Demand of Stream	1	= CFC_Partial Mix Factor					
_	0	= Chlorine	Demand of Discharge	15	= AFC_Criteria Compliance Time (min					
_	0.5	= BAT/BPJ	Value -	720	20 = CFC_Criteria Compliance Time (min					
_	0	= % Facto	r of Safety (FOS)	0 =Decay Coefficient (K)						
	Source	Reference	AFC Calculations		Reference	CFC Calculations				
	TRC	1.3.2.iii	WLA afc =	6.353	1.3.2.iii	WLA cfc = 6.187				
	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581				
	PENTOXSD TRG	DXSD TRG 5.1b LTA_afc=			5.1d	LTA_cfc = 3.597				
i	Source Effluent Limit Calculations									
	PENTOXSD TRG 5.1f AML MULT = 1.231									
	PENTOXSD TRG	ENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ								
	INST MAX LIMIT (mg/l) = 1.635									
	NLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))									
		+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
	LIAMULT afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)								
	LTA_atc	TA_afc wla_afc*LTAMULT_afc								
	WIA ofe									
	MLA_CIC	(.UT1/e(-K*CFC_tc) + [(CFC_Yc*Qs*.UT1/Qd*e(-K*CFC_tc)) + Yd + (CFC_Ya*Oa*Ya/Od)]*(1_FOS/400)								
	I TAMULT of	EXP((0.5*1 N(cvd^2/no_samples+1))-2.326*1 N(cvd^2/no_samples+1)^0.5)								
	LTA cfc	wla cfc*l TAMULT cfc								
	AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^	0.5)-0.5*LN(c	vd^2/no_sampl	es+1))				
	AVG MON LIMIT	MIN(BAT_B	PJ,MIN(LTA_afc,LTA_cfc)*	AML_MULT)						
	INST MAX LIMIT	NST MAX LIMIT 1.5*((av mon limit/AML MULT)/LTAMULT afc)								
i										