

Application Type Renewal Facility Type Non-Municipal Minor Major / Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0041564 Application No. APS ID Authorization ID

1038496

1354153

Applicant and Facility Information

Applicant Name	Jones Estates PA LLC	Facility Name Pine Valley Estates
Applicant Address	2310 S Miami Boulevard Suite 238	Facility Address High Acres Road
	Durham, NC 27703-5798	Harmony, PA 16037
Applicant Contact	Tracey Repa, Asset Support Analyst	Operator Contact John Foris-Integrated Environmental Services
Applicant Phone	(414) 788-2786	Operator Phone 412-415-9145
Applicant E Mail	trepa@rentstackhouse.com	Operator E Mailjmforis@gmail.com
Client ID	354413	Site ID262125
Municipality	Lancaster Township	County Butler
Ch 94 Load Status	Not Overloaded	Connection Status No Limitations
SIC Code	6515	SIC Code4952
SIC Description	Fin, Ins & Real Est-Mob Home Site Operators	SIC Description Trans. & Utilities - Sewerage Systems
Date Application Re	ceived April 23, 2021	EPA Waived? Yes
Date Application Ac	cepted July 26, 2021	If No, Reason
Purpose of Applicat	on NPDES permit renewal	

Summary of Review

One open Safe Drinking Water NOV for other significant violations. There are 9 open violations in WMS under the NWRO SDW Program as of 10/10/2023. The applicant will be notified of the open violations in the Draft Permit Cover Letter and given an opportunity to address the violations prior to issuance of the final permit.

Facility Director: Jason Freed, E Mail Address: jason@rentstackhouse.com, Telephone: 915-225-9614,

E Coli annual monitoring proposed. Removal of the discharge chlorine demand from the chlorine evaluation and adjusting the chloring demand of the stream has significantly reduced the TRC limitations. With de-chlorination present the self-monitoring reports show continuing compliance.

1.211-dry tons sludge removed prior to renewal submission.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania

Approve	Deny	Signatures	Date
\checkmark		William H. Mentzer	
Λ		William H. Mentzer, P.E. Environmental Engineering Specialist	October 2, 2023
X		Chad W. Yurisic Chad W. Yurisic, P.E. Environmental Engineer Manager	10/10/2023

Summary of Review

Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

	Discharge, Receiving wat	ers and Water Supply Informat	ion
	001		0.02
Outfall No.	001	Design Flow (MGD)	0.02
Latitude DP	40° 49' 5.00"	Longitude DP	80° 8' 57.50"
Latitude NHD	40° 49' 6.30"	Longitude NHD	<u>80° 9' 3.11"</u>
Quad Name	Zelienople	Quad Code	1204
Wastewater Descr	ription: Treated domestic sewage	ge	
Receiving Waters	Unnamed Tributary of Doe Rur	n Stream Code	34902
NHD Com ID	126223489	RMI	0.54
Drainage Area	0.12	Yield (cfs/mi ²)	0.05
Q ₇₋₁₀ Flow (cfs)	0.005	Q ₇₋₁₀ Basis	Buffalo Creek nr Freepor
Elevation (ft)	1038	Slope (ft/ft)	0.03
Watershed No.	20-C	Chapter 93 Class.	WWF
Existing Use	statewide	Existing Use Qualifier	none
Exceptions to Use		Exceptions to Criteria	none
Comments		nt monitoring point. NHD is the st	ream confluence
Assessment Statu Cause(s) of Impair Source(s) of Impai	rment		
Cause(s) of Impair	rment	Name	
Cause(s) of Impair Source(s) of Impai TMDL Status	rment		
Cause(s) of Impair Source(s) of Impai TMDL Status Background/Ambie	rmentirment	Data Source	
Cause(s) of Impair Source(s) of Impai TMDL Status Background/Ambie pH (SU)	rment irment ent Data7.0	Data Source 1/25/93 stream sample	
Cause(s) of Impair Source(s) of Impair TMDL Status Background/Ambie pH (SU) Temperature (°C)	rmentirment	Data Source	
Cause(s) of Impair Source(s) of Impai TMDL Status Background/Ambie pH (SU)	rment irment ent Data7.0	Data Source 1/25/93 stream sample	
Cause(s) of Impair Source(s) of Impair TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) Other: NH ₃ -N	rment irment ent Data 	Data Source 1/25/93 stream sample Default 1/25/93 stream sample	
Cause(s) of Impair Source(s) of Impair TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) Other: NH ₃ -N	rment irment ent Data 7.0 25 0.16 am Public Water Supply Intake	Data Source 1/25/93 stream sample Default 1/25/93 stream sample PA American	
Cause(s) of Impair Source(s) of Impair TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) Other: NH ₃ -N Nearest Downstrea PWS Waters	rment irment ent Data	Data Source 1/25/93 stream sample Default 1/25/93 stream sample PA American Flow at Intake (cfs)	<u>NA</u>
Cause(s) of Impair Source(s) of Impair TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) Other: NH ₃ -N	rment irment ent Data 7.0 25 0.16 am Public Water Supply Intake	Data Source 1/25/93 stream sample Default 1/25/93 stream sample PA American	<u>NA</u> 19.19
Cause(s) of Impair Source(s) of Impair TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) Other: NH ₃ -N Nearest Downstrea PWS Waters PWS RMI	rment irment ent Data	Data Source 1/25/93 stream sample Default 1/25/93 stream sample PA American Flow at Intake (cfs)	
Cause(s) of Impair Source(s) of Impair TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) Other: NH ₃ -N Nearest Downstrea PWS Waters PWS RMI Changes Since La	rment irment ent Data 	Data Source 1/25/93 stream sample Default 1/25/93 stream sample PA American Flow at Intake (cfs)	19.19
Cause(s) of Impair Source(s) of Impair TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) Other: NH ₃ -N Nearest Downstrea PWS Waters PWS RMI Changes Since La Former Nearest De	rment irment irment irment irment irment <u>7.0</u> <u>25</u> <u>0.16</u> am Public Water Supply Intake <u>Connoquenessing Creek</u> <u>0.1</u> ast Permit Issuance	Data Source 1/25/93 stream sample Default 1/25/93 stream sample PA American Flow at Intake (cfs) Distance from Outfall (mi)	19.19
Cause(s) of Impair Source(s) of Impair TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) Other: NH ₃ -N Nearest Downstrea PWS Waters PWS RMI Changes Since La Former Nearest De	rment irment irm	Data Source 1/25/93 stream sample Default 1/25/93 stream sample PA American Flow at Intake (cfs) Distance from Outfall (mi) Beaver Falls Municipal Author	19.19 prity @ Eastvale NA
Cause(s) of Impair Source(s) of Impair TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) Other: NH ₃ -N Nearest Downstrea PWS Waters PWS RMI Changes Since La Former Nearest Do PWS Waters	rment irment irm	Data Source 1/25/93 stream sample Default 1/25/93 stream sample PA American Flow at Intake (cfs) Distance from Outfall (mi) Beaver Falls Municipal Author Flow at Intake (cfs) Distance from Outfall (mi)	<u>19.19</u> <u>ority @ Eastvale</u> <u>NA</u> <u>10</u>

Other Comments: none

	Tre	atment Facility Summa	ry	
reatment Facility Na	me: Pine Valley Estates			
WQM Permit No.	Issuance Date			
1073408 T-3	8/18/1997			
	Degree of		1	
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Secondary With Phosphorus			
Sewage	Reduction	Activated Sludge	Hypochlorite	0.02
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
0.02	52.6	Not Overloaded	Holding	Other WWTP

Changes Since Last Permit Issuance: none

Other Comments: Treatment is comminution, 20,000-gallon aeration tank, clarification, twin intermittent 30X30-foot sand filter, chlorination with a 1,309-gallon contact tank, de-chlorination and 6,000-gallon aerated sludge holding tank.

Used Chemicals

Soda ash for pH and alkalinity control Ferric Chloride for phosphorus control

Compliance History

DMR Data for Outfall 001 (from August 1, 2022 to July 31, 2023)

Parameter	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22
Flow (MGD)												
Average Monthly	0.0053	0.011	0.01125	0.009	0.0095	0.011	0.01125	0.01125	0.0105	0.0105	0.0105	0.0063
Flow (MGD)												
Daily Maximum	0.0077	0.013	0.0125	0.0095	0.0107	0.013	0.0125	0.0125	0.012	0.012	0.012	0.0077
pH (S.U.)												
Instantaneous												
Minimum	7.09	7.32	7.36	7.09	7.31	7.32	7.36	7.09	6.97	7.31	7.26	6.99
pH (S.U.)												
Instantaneous												
Maximum	7.75	7.46	7.62	7.56	7.47	7.46	7.62	7.47	7.45	7.86	7.83	7.47
DO (mg/L)												
Instantaneous												
Minimum	6.04	5.91	6.14	5.95	5.79	5.91	6.04	6.26	6.31	6.56	6.11	6.31
TRC (mg/L)												
Average Monthly	0.03	0.0075	0.03	0.015	0.03	0.015	0.03	0.021	0.005	0.008	0.005	0.018
TRC (mg/L)												
Instantaneous												
Maximum	0.04	0.01	0.04	0.02	0.04	0.02	0.04	0.024	0.01	0.01	0.01	0.027
CBOD5 (mg/L)												
Average Monthly	2.1	3.5	2.0	7.325	2.0	2.0	5.8	3.1	4.4	2.6	3.55	9.7
TSS (mg/L)												
Average Monthly	5.0	5.0	7.0	8.5	5.0	5.0	5.0	5.0	5.0	5.0	6.5	< 5.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	13.15	3.16	1.41	1.0	1.0	1.0	1.0	1.0	1.0	1	< 1	< 1
Fecal Coliform												
(No./100 ml)												
Instantaneous		_	-									
Maximum	173	5	2	1.0	1.0	1.0	1.0	1.0	1.0	1	< 1	< 1
Total Nitrogen (mg/L)			46.4	4.0-	10.00	46.4		<i></i>	46 -		o -	00.04
Average Monthly	6.10	5.5	13.4	1.05	18.38	13.4	3.10	8.4	16.5	15.27	2.5	29.31
Ammonia (mg/L)						• -						
Average Monthly	0.35	5.5	0.25	0.4	0.3	0.7	1.4	0.3	0.1	0.2	0.4	0.45
Total Phosphorus												
(mg/L)												
Average Monthly	0.40	0.745	0.2	0.2	0.8	0.3	0.39	0.1	0.4	0.1	< 0.03	4.5

Compliance History

Effluent Violations for Outfall 001, from: September 1, 2022 To: July 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Ammonia	06/30/23	Avg Mo	5.5	ma/L	1.5	ma/L

Summary of Inspections: NA

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.02
Latitude	40° 49' 5.00"		Longitude	-80º 8' 57.50"
Wastewater D	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO	4	Daily minimum		BPJ
E Coli	Report			BPJ
Phosphorus	Report			BPJ
Nitrogen	Report			BPJ

Comments: E Coli monitoring proposed.

Water Quality-Based Limitations

A Sewerage Program "Reasonable Potential Analysis" determined the following parameters were candidates for limitations: Flow, CBOD5, ammonia, chlorine, and dissolved oxygen.

The following limitations were determined through water quality modeling (output files attached):

Para	meter		Limit (mg/	l)	SBC		Model	
Parameter	Period	Minimum	Average	Maximum		Minimum	Average	Maxium
CBOD5			25.0	50.0			25.0	50.0
Ammonia	Summer		1.5	3.0			1.48	2.96
	Winter		4.5	9,0				
DO		5.0				5.0		
TRC			0.04	0.12			0.037	0.121

Comments:

CBOD5, Ammonia and DO requirements through WQM7.7, TRC requirements through the statewide TRC spreadsheet.

The regional TRC spreadsheet was run in 2003 with a 0.4-mg/L stream chlorine demand and a 0.3-mg/L discharge chlorine demand.

Limit verification was with the statewide chlorine spreadsheet without a discharge chlorine demand. Without the discharge chlorine demand factor *and a lower stream chlorine demand*, the chlorine limit drops to 0.04-mg/L. The current 12-month self-monitoring report summary shows compliance with the revised chlorine requirements.

Best Professional Judgment (BPJ) Limitations

Comments:

A total phosphorus limit of 2 mg/l as an average monthly is being retained (originated from TSI survey on Hereford Manor Lake and also as a tributary to the Connoquenessing Creek).

Total nitrogen monitoring is being continued in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

The downstream reservoir is Hereford Manor Lake owned and operated by the Pa Fish & Boat Commission. It is currently drained. The lake future is unknown.

Anti-Backsliding

Not applicable

	<u>SWP Basin</u> 20C	<u>Stream Code</u> 34902		<u>Stream Nam</u> Trib 34902 to Do	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.540	Pine Valley	PA0041564	0.020	CBOD5	25		
				NH3-N	1.48	2.96	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

<u>SWP Basin</u> St 20C	ream Code 34902		Tril	<u>Stream Name</u> b 34902 to Doe Run	
RMI	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	<u>Analysis pH</u>
0.540	0.020	D		25.000	7.305
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
1.834	0.320	D		5.724	0.063
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
21.26	1.461			1.25	1.029
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)
5.413	31.41	6		Owens	5
<u>Reach Travel Time (days)</u> 0.525	Tra∨Time (days) 0.053 0.105 0.158 0.210 0.263 0.315 0.368 0.420 0.473 0.525	Subreact CBOD5 (mg/L) 19.31 17.53 15.92 14.45 13.12 11.91 10.82 9.82 8.92 8.10	Results NH3-N (mg/L) 1.19 1.12 1.07 1.01 0.96 0.91 0.86 0.81 0.77 0.73	D.O. (mg/L) 6.24 6.54 6.72 6.87 7.00 7.12 7.12 7.12 7.12 7.12 7.12	

WQM 7.0 D.O.Simulation

	SWP Basin S 20C		<u>m Code</u> 1902			ream Name .902 to Doe R	un		
NH3-N	Acute Allocat	ion	S						
RMI	Discharge Na	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	l
0.5	40 Pine Valley		7.71	8.66	7.71	8.66	0	0	
NH3-N	Chronic Alloc	atic	ons						
NH3-N RMI	Chronic Alloc Discharge Nan		DNS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
RMI			Baseline Criterion	WLA	Criterion	WLA		1 010 0110	-
RMI 0.5	Discharge Nan	ne	Baseline Criterion (mg/L) 1.19	WLA (mg/L)	Criterion (mg/L)	WĹA (mg/L)	Reach	Reduction	7
RMI 0.5	Discharge Nan 40 Pine Valley	ne	Baseline Criterion (mg/L) 1.19	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L) 1.48	Reach	Reduction 0	Percent

1.48 1.48 5 5

0

0

25 25

0.54 Pine Valley

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	85.00%	Use Balanced Technology	✓
D.O. Goal	5		

			_									
	SM	/P Basin	Strea	am Code				Stream	Name			
		20C	3	4902			Trib	34902 to	Doe Ru	n		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.540	0.01	0.00	0.01	.0309	0.04059	.32	1.83	5.72	0.06	0.525	25.00	7.30
Q1-1	0 Flow											
0.540	0.00	0.00	0.00	.0309	0.04059	NA	NA	NA	0.06	0.543	25.00	7.33
Q30-	10 Flov	v										
0.540	0.01	0.00	0.01	.0309	0.04059	NA	NA	NA	0.06	0.509	25.00	7.28

WQM 7.0 Hydrodynamic Outputs

					646319 			18 8 8 8						
	SWP Basin	Strea Coo		Stre	am Nam	e	RMI	Elevat (ft)	Ar		Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	20C	349	902 Trib 34	4902 to Do	be Run		0.000) 92	2.28	3.10	0.00000)	0.00	\checkmark
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	<u>tary</u> pH	Ter	<u>Strean</u> np	рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°(C)		
27-10	0.050	0.00		0.000	0.000		0.00	0.00	25.00	7.0	0	0.00	0.00	
Q1-10		0.00		0.000	0.000									
230-10		0.00	0.00	0.000	0.000									
						Discharge I	Data							
			Name	Per	mit Numt	Existing Disc ber Flow (mgd)	Permitted Disc Flow (mgd)	l Design Disc Flow (mgd)	Reserve Factor	Disc Tem (°C)	p)isc pH		
		1				0.000	0 0.0000	0.000	0.000	(0.00	7.00		
						Parameter	Data							
				Paramete	r Name		isc Tr onc Co		eam Fai onc Co					
					Hame	(m	ıg/L) (mg	ŋ/L) (m	g/L) (1/da	ays)				

25.00

3.00

25.00

2.00

8.24

0.00

0.00

0.00

0.00

1.50

0.00

0.70

Input Data WQM 7.0

CBOD5

NH3-N

Dissolved Oxygen

	SWP Basin	Strea Coc		Stre	eam Nam	e	RMI	Elevat (ft)		rainage Area sq mi)	Slope (ft/ft)	PV Withc (m	Irawal	Appl FC
	20C	349	02 Trib 34	4902 to D	oe Run		0.54	. 0 10:	38.00	0.12	0.00000)	0.00	V
					:	Stream Dat	ta							
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	<u>Tri</u> Temp (°C)	i <u>butary</u> pH	Ter (%	2020	n pH	
Q7-10 Q1-10 Q30-10	0.050	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000		0.00	0.00	25.0	0 7.0	0	0.00	0.00	
						Discharge	Data]	
			Name	Per	mit Numb	Existing Disc ber Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserv Facto		p)isc pH		
		Pine '	Valley	PA	0041564	0.020	0 0.020	0 0.020	0 0.0	00 2	5.00	7.40		
						Parameter	Data							
				Paramete	r Name	C	onc C	onc C	onc	Fate Coef /days)				

25.00

4.00

25.00

0.00

0.00

0.00

1.50

0.00

0.70

2.00

7.54

0.10

Input Data WQM 7.0

CBOD5

NH3-N

Dissolved Oxygen

Copy of TRC_CALC.xls

input appropria	ite values in A	3:A9 and D3:D9							
0.006	= Q stream (cf:	S)	0.5	= CV Daily					
0.02	= Q discharge	(MGD)	0.5	= CV Hourly					
30	= no. samples		1	= AFC_Partial M	lix Factor				
0.3	= Chlorine Den	nand of Stream	1	= CFC_Partial M	lix Factor				
0	= Chlorine Der	nand of Discharge	15	= AFC_Criteria	Compliance Time (min)				
0.5	= BAT/BPJ Val	ue	720	= CFC_Criteria	Compliance Time (min)				
0	= % Factor of			=Decay Coeffic	· · /				
Source	Reference	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.071				
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1b	LTA_afc=	0.030	5.1d	$LTA_cfc = 0.041$				
Source	I	Efflue	nt Limit Calcu	lations					
PENTOXSD TRG		5.1f AML MULT = 1.231							
PENTOXSD TRG	5.1g		.IMIT (mg/l) =		AFC				
			.IMIT (mg/l) =	0.121					
WLA afc	• •	;_tc)) + [(AFC_Yc*Qs*.019/ Yc*Qs*Xs/Qd)]*(1-FOS/10	•	_tc))					
LTAMULT afc	-	vh^2+1))-2.326*LN(cvh^2	•						
LTA_afc	wla_afc*LTAM	<i>,,,</i> (.,,						
				tc))					
WLA_cfc	• •	;_tc) + [(CFC_Yc*Qs*.011/(_Yc*Qs*Xs/Qd)]*(1-FOS/10	•						
_	+ Xd + (CFC_		0)		0.5)				
_ LTAMULT_cfc	+ Xd + (CFC_	Yc*Qs*Xs/Qd)]*(1-FOS/10 vd^2/no_samples+1))-2.32	0)		0.5)				
LTAMULT_cfc LTA_cfc AML MULT	+ Xd + (CFC_ EXP((0.5*LN(c wla_cfc*LTAM EXP(2.326*LN	Yc*Qs*Xs/Qd)]*(1-FOS/10 vd^2/no_samples+1))-2.32 ULT_cfc ((cvd^2/no_samples+1)^0.	0) :6*LN(cvd^2/i 5)-0.5*LN(cvd	no_samples+1)^					
WLA_CfC LTAMULT_cfc LTA_CfC AML MULT AVG MON LIMIT INST MAX LIMIT	+ Xd + (CFC_ EXP((0.5*LN(c wla_cfc*LTAM EXP(2.326*LN MIN(BAT_BPJ	Yc*Qs*Xs/Qd)]*(1-FOS/10 vd^2/no_samples+1))-2.32 ULT_cfc	0) :6*LN(cvd^2/r 5)-0.5*LN(cvd ML_MULT)	no_samples+1)^					

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

			Monitoring Requirements					
Parameter	Mass Units	; (Ibs/day) ⁽¹⁾		Concenti	ations (mg/L	Minimum ⁽²⁾ Measurement Frequency	Required Sample Type	
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximu m	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	xxx	XXX	xxx	XXX	2/week	Measured
pH (S.U.)	xxx	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	xxx	xxx	5.0 Daily Min	xxx	xxx	XXX	1/day	Grab
TRC	ХХХ	ХХХ	ххх	0.04	xxx	0.12	1/day	Grab
CBOD5	ХХХ	ХХХ	XXX	25.0	xxx	50.0	2/month	8-Hr Composite
TSS	xxx	xxx	XXX	30.0	xxx	60.0	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	ХХХ	ХХХ	ХХХ	XXX	XXX	Report	1/year	Grab
Total Nitrogen	ХХХ	ХХХ	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	ХХХ	ХХХ	XXX	4.5	xxx	9.0	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	ХХХ	ХХХ	XXX	1.5	xxx	3	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	2.0	xxx	4	2/month	8-Hr Composite

Outfall 001, Effective Period:	Permit Effective Date through	Permit Expiration Date
	i ennit Enective Date through	I CITIL Expitation Date.

Compliance Sampling Location: Outfall001 after disinfection