

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonFacility Type
Municipal
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0043036

APS ID 1033448

Authorization ID 1345163

	Applicant and Facility Information										
Applicant Name	PA Conference Association of Seventh Day Adventists Inc.	Facility Name	Laurel Lake Camp & Retreat Center								
Applicant Address	76 Lodge Road	Facility Address	76 Lodge Road								
	Rossiter, PA 15772-6720		Rossiter, PA 15772-6720								
Applicant Contact Applicant Phone	Ezequiel Perez (Manager) (814) 938-9300 (laurellake@paconference.org)	Facility Contact Facility Phone									
Client ID	45112	Site ID	269								
Ch 94 Load Status	Not Overloaded	Municipality	Banks Township								
Connection Status		County	Indiana								
Date Application Rece	eived February 11, 2021	EPA Waived?	Yes								
Date Application Acce	epted March 15, 2021	If No, Reason									

Summary of Review

This is a non-municipal STP serving a church camp and retreat center. The facility does not receive hauled in waste.

No changes to discharge quality or quantity are proposed as part of this NPDES Permit renewal.

According to eDMRs and inspection reports, flows are in the range of 350 gallons/day most of the year except for occasional spikes in the summer when camps are going on and flows peak, which is way below the design loading of 10,500 gallons/day.

There are currently 26 open violations listed in EFACTS for this client (3/19/2024)

Sludge use and disposal description and location(s): Sludge is hauled offsite for further processing at a WWTP.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		Adam J. Pesek Adam J. Pesek, E.I.T. / Project Manager	March 19, 2024
Х		Vacant / Environmental Engineer Manager	Okay to Draft JCD 3/25/2024

Discharge, Receiving Waters and Water Su	oply Information
<u> </u>	•
Outfall No. 001	Design Flow (MGD) 0.0105
Latitude 40° 51' 27"	Longitude -78° 53' 29"
Quad Name Rochester Mills	Quad Code 01214
Wastewater Description: Sewage Effluen	t
Receiving Waters Straight Run	Stream Code 47606
NHD Com ID <u>123853469</u>	RMI <u>2.75</u>
Drainage Area 0.91	Yield (cfs/mi²) 0.0607
Q ₇₋₁₀ Flow (cfs) <u>0.0553</u>	Q ₇₋₁₀ Basis USGS Streamstats
Elevation (ft) 1695	Slope (ft/ft)
Watershed No. 17-D	Chapter 93 Class. HQ-CWF
Existing Use	Existing Use Qualifier
Exceptions to Use None	Exceptions to Criteria None
Assessment Status Attaining Use(s	
Cause(s) of Impairment	
Source(s) of Impairment	
TMDL Status	Name
Background/Ambient Data	Data Source
pH (SU) 7.0	
Temperature (°C) 20	Default (CWF)
Hardness (mg/L)	Dolatik (OWY)
Other:	
Nearest Downstream Public Water Supply In	ntake Kittanning Suburban Joint Water Authority
PWS Waters Allegheny River	Flow at Intake (cfs) 2070
PWS RMI 48.4	Distance from Outfall (mi)

Changes Since Last Permit Issuance: Streamflow was updated due to new information.

Other Comments:

	Tr	eatment Facility Summa	ry	
Treatment Facility Na	me: Laurel Lake Camp ST	P		
WQM Permit No.	Issuance Date			
3277405 A-1	5/4/2007			
		1		
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Chlorine Disinfection	
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.0105	201	Not Overloaded	Aerated Sludge Holding	Other WWTP

Changes Since Last Permit Issuance:

Other Comments:

	Compliance History
Summary of DMRs:	There have been 16 effluent violations reported since the beginning of 2019. One for TRC, two for CBOD5, one for D.O., seven for ammonia nitrogen, and five for fecal coliform.
Summary of Inspections:	Last site inspection was conducted on 2/6/2020. The inspection report did not report any violations.

Other Comments: An NOV was issued 12/28/2023 for failure to pay the Chapter 302 Operator Certification Service Fee. NOVs were also issued for failure to pay the 2022 and 2023 NPDES Permit Annual Fee.

Compliance History

DMR Data for Outfall 001 (from November 1, 2022 to October 31, 2023)

Parameter	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22
Flow (MGD)				0.00500								
Average Monthly	0.0010	0.0006	0.0045	0	0.0043	0.0007	0.0004					
pH (S.U.)												
Minimum	6.7	6.7	6.7	6.4	6.2	7.1	7.1					
pH (S.U.)												
Maximum	7.0	7.1	7.2	7.5	7.8	7.4	7.9					
DO (mg/L)												
Minimum [']	6.8	6.8	6.9	6.1	7.0	7.2	8.5					
TRC (mg/L)												
Average Monthly	0.14	0.12	0.13	0.14	0.28	0.186	0.27					
TRC (mg/L)												
Instantaneous												
Maximum	0.2	0.17	0.25	0.22	0.96	0.34	0.81					
CBOD5 (mg/L)												
Average Monthly	< 3.0	< 3.0	< 3.0	< 3.0	< 4.1	< 3.0	< 4.54					
CBOD5 (mg/L)												
Instantaneous												
Maximum	< 3.0	< 3.0	< 3.0	< 3.0	5.19	< 3.0	6.07					
TSS (mg/L)												
Average Monthly	8.0	< 1.8	2.0	< 2.4	20.0	6.2	< 1.8					
TSS (mg/L)												
Instantaneous												
Maximum	12.4	2.0	2.0	2.8	22.0	9.6	< 2.0					
Fecal Coliform		-			_							
(CFU/100 ml)												
Average Monthly	6.0	4.0	< 1.0	< 1.0	3.0	< 1.0	< 1.0					
Fecal Coliform												
(CFU/100 ml)												
Înstantaneous												
Maximum	34.5	17.3	1.0	1.0	4.1	< 1.0	< 1.0					
Total Nitrogen (mg/L)												
Daily Maximum /											< 0.5	
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.004	< 0.1	< 0.1	< 0.1					
Ammonia (mg/L)			-		-		-					
Instantaneous												
Maximum	< 0.1	< 0.1	< 0.1	0.1299	< 0.1	< 0.1	< 0.1					
Total Phosphorus			-		-		-					
(mg/L)												
Daily Maximum											5.48	

	Develop	ment of Effluent Limitations	
Outfall No.	001	Design Flow (MGD)	0.0105
Latitude	40° 51' 27.00"	Longitude	-78° 53' 29.00"
Wastewater D	Description: Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX	-	92a.61

Comments: Monitoring for E. Coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
CBOD ₅	15.0	Average Monthly	Previous WQAM 6.3 modeling
Ammonia Nitrogen	3.0	Average Monthly	Previous WQAM 6.3 modeling
Dissolved Oxygen	5.0	Daily Minimum	Previous WQAM 6.3 modeling
Total Residual Chlorine	0.3	Average Monthly	TRC Spreadsheet
Total Residual Chlorine	1.0	IMAX	TRC Spreadsheet

Comments: WQM 7.0 modeling and the TRC Spreadsheet conducted for this renewal (attached) did not calculate more stringent effluent limits for this renewal.

A seasonal multiplier of "3" was applied to the ammonia nitrogen effluent limit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Best Professional Judgment (BPJ) Limitations

Comments: Monitoring for total nitrogen and total phosphors was placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Anti-Backsliding

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Monitoring Red	quirements				
Parameter	Mass Units	(lbs/day) (1)		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.3	XXX	1.0	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	15.0	XXX	30	2/month	Grab
Total Suspended Solids	XXX	XXX	XXX	25.0	XXX	50	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab

Compliance Sampling Location: Outfall 001 (after disinfection)

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI		ation ft)	Drainage Area (sq mi)	Slo (ft/		PWS Withdrav (mgd)	wal	Apply FC
	17D	476	306 STRA	GHT RUI	V		2.75	50 1	695.00	0.9	1 0.00	0000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pł	+	Temp	Stream	ρН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.061	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00	7.00	0.	.00	0.00	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res / Fa	erve Te ctor	oisc emp °C)	Dis pH			
		Laure	el Lake C&I	R PAG	0043036	0.010	5 0.000	0.00	000	0.000	20.00	7	7.10		
					Pa	rameter									
			1	⊃aramete	r Name				Stream Conc	Fate Coef					
						(m	ıg/L) (m	ng/L) ((mg/L)	(1/days)					
			CBOD5				25.00	2.00	0.00	1.50					
			Dissolved	Oxygen			4.00	8.24	0.00	0.00					
			NH3-N				25.00	0.10	0.00	0.70					

Tuesday, March 12, 2024 Version 1.1 Page 1 of 2

Input Data WQM 7.0

	SWP Stream Basin Code			Stream Name			RMI		evation (ft)	Drainage Area (sq mi)		ope :/ft)	PW Withdr (mg	awal	Apply FC
	17D	476	306 STRA	GHT RUI	٧		2.20	00	1670.00	2.5	5 0.0	0000		0.00	✓
S.					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip pl	Н	Temp	Stream	рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.061	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 20	0.00	7.00	0.	.00	0.00	
	Ĩ	Discharge Data													
			Name	Per	mit Numbe	Existing Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res	erve T ctor	Disc emp °C)	Dis pH			
		lat				0.000	0.000	0.0	0000	0.000	25.00) 7	7.00		
					Pa	arameter	Data								
			1	⊃aramete	r Name			Trib Conc	Stream Conc	Fate Coef					
					0.0550000000	(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)					
			CBOD5				25.00	2.00	0.00	1.50	I S				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00					
			NH3-N				25.00	0.00	0.00	0.70					

Tuesday, March 12, 2024 Version 1.1 Page 2 of 2

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		17D	4	7606			S	TRAIGH	IT RUN			
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
	(015)	(013)	(013)	(013)	(11/11)	(IL)	(11)		(ips)	(uays)	(0)	
Q7-1	0 Flow											
2.750	0.06	0.00	0.06	.0162	0.00861	.331	4.22	12.75	0.05	0.656	20.00	7.02
Q1-1	0 Flow											
2.750	0.04	0.00	0.04	.0162	0.00861	NA	NA	NA	0.04	0.788	20.00	7.03
Q30-	10 Flow	,										
2.750	0.08	0.00	0.08	.0162	0.00861	NA	NA	NA	0.06	0.572	20.00	7.02

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	•
D.O. Saturation	90.00%	Use Balanced Technology	•
D.O. Goal	6		

Tuesday, March 12, 2024 Version 1.1 Page 1 of 1

Reach

0

0

WQM 7.0 Wasteload Allocations

(mg/L)

16.33

(mg/L)

2		<u>m Code</u> 7606			<u>eam Name</u> RAIGHT RUN			
NH3-N A	acute Allocation	S Baseline Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical Reach	Percent Reduction	

2.750 Laurel Lake C&R

NH3-N	Chronic Allocat	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.75	i0 Laurel Lake C&R	1.88	10.09	1.88	10.09	0	0

(mg/L)

Criterion

(mg/L)

16.33

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
2.	.75 Laurel Lake C&R	25	25	10.09	10.09	4	4	0	0

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code 47606			Stream Name STRAIGHT RUN		
RMI 2.750 Reach Width (ft) 4.219 Reach CBOD5 (mg/L) 7.23	Total Discharge 0.01 Reach Dep 0.33 Reach Kc (1.033	1 oth (ft) 1 1/days) 3) <u>Ana</u>	lysis Temperatur 20.000 Reach WDRatio 12.753 each NH3-N (mo	e (°C)	Analysis pH 7.021 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.700
Reach DO (mg/L) 7.279	Reach Kr (* 22.93	<u>Kr (1/days)</u> <u>Kr Equation</u> .933 Owens			Reach DO Goal (mg/L) 6	
Reach Travel Time (days) 0.656	TravTime (days) 0.066 0.131 0.197 0.263 0.328 0.394 0.459 0.525 0.591 0.656	Subreach CBOD5 (mg/L) 6.75 6.31 5.90 5.51 5.15 4.81 4.50 4.20 3.93 3.67	Results NH3-N (mg/L) 2.26 2.16 2.06 1.97 1.88 1.80 1.72 1.64 1.57	D.O. (mg/L) 8.13 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24		

Tuesday, March 12, 2024 Version 1.1 Page 1 of 1

WQM 7.0 Effluent Limits

	SWP Basin Stream 17D 476			<u>Stream Name</u> STRAIGHT RU			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.750	Laurel Lake C&R	PA0043036	0.010	CBOD5	25		**
				NH3-N	10.09	20.18	
				Dissolved Oxygen			4

1A	В	С	D	Е	F	G
2	TRC EVALU	ATION		Laurel	Lake Camp	& Retreat Center
3	ACTUAL CONTRACT CONTR	summa disease and an artist and a second	B4:B8 and E4:E7			
4		= Q stream (1626		= CV Daily	
5		= Q discharg		1,000,000	= CV Hourly	
6		= no. sample			= AFC_Partial N	
7	171017		emand of Stream	(1)	= CFC_Partial N	PARTINED RESPONDENCE AND RESPONDE
8			emand of Discharge		49 - 22	Compliance Time (min)
9	600000000	= BAT/BPJ V	0100, V(2007000)	9507 1500		Compliance Time (min)
40			of Safety (FOS)	U	=Decay Coeffic	
10	Source TRC	Reference	AFC Calculations	4.405	Reference	CFC Calculations
11	PENTOXSD TRG	1.3.2.iii 5.1a	WLA afc = LTAMULT afc =	600 T0000000	1.3.2.iii 5.1c	WLA cfc = 1.070 LTAMULT cfc = 0.581
100000000000000000000000000000000000000	PENTOXSD TRG		LTAMOLT arc =	536 26000000	5.1d	LTA cfc = 0.622
14	I LINIONSD INC	3.15	LIA_aic-	0.412	J. 14	ETA_CIC = 0.022
15	Source		Effluent	Limit Cal	culations	
16	PENTOXSD TRG	5.1f	AM	L MULT =	1.231	
17	PENTOXSD TRG	5.1g	AVG MON LIMI	T (mg/l) =	0.500	BAT/BPJ
18			INST MAX LIMI	T (mg/l) =	1.635	
	WLA afc	(.019/e(-k*A	FC_tc)) + [(AFC_Yc*Q	s*.019/Q	d*e(-k*AFC_tc)).	
		(7)	C_Yc*Qs*Xs/Qd)]*(1-F	(5.5)		
	LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2+1)	^0.5)	
	LTA_afc	wla_afc*LTA	IVIUL I_ATC			
	WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)					
	LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.326*L	₋N(cvd^2/no_sar	mples+1)^0.5)
	LTA_cfc	wla_cfc*LTA	MULT_cfc			
	AML MULT	EXP(2.326*L	N((cvd^2/no_samples	+1)^0.5)-	0.5*LN(cvd^2/nc	o_samples+1))
	AVG MON LIMIT	MIN(BAT_BF	J,MIN(LTA_afc,LTA_c	cfc)*AML_	MULT)	2200
	INST MAX LIMIT	1.5*((av_mo	n_limit/AML_MULT)/L	TAMULT_	afc)	

Laurel Lake Camp & Retreat Center

Banks Township, Indiana County

PA0043036 Discharge pH

Outfall 001

<u>Date</u>	<u>pH min</u>	pH max	10^ -pH min	10^ -pH max	& pH max)	-Log (Ave pH)
Jul-21	7.0	8.0	1E-07	1E-08	5.5E-08	7.3
Aug-21	6.9	7.3	1.26E-07	5.01E-08	8.8E-08	7.1
Sep-21	6.7	7.8	2E-07	1.58E-08	1.08E-07	7.0
Jul-22	6.9	7.3	1.26E-07	5.01E-08	8.8E-08	7.1
Aug-22	6.9	7.1	1.26E-07	7.94E-08	1.03E-07	7.0
Sep-22	6.9	7.4	1.26E-07	3.98E-08	8.29E-08	7.1
Jul-23	6.4	7.5	3.98E-07	3.16E-08	2.15E-07	6.7
Aug-23	6.7	7.2	2E-07	6.31E-08	1.31E-07	6.9
Sep-23	6.7	7.1	2E-07	7.94E-08	1.39E-07	6.9
					Median:	7.1

Approve	Deny	Signatures	Date
Х		Adam J. Pesek Adam J. Pesek, E.I.T. / Project Manager	March 19, 2024
Х		Vacant / Environmental Engineer Manager	Okay to Draft JCD 3/25/2024