

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0043257

 APS ID
 5349

 Authorization ID
 1311419

Applicant and Facility Information								
Applicant Name	New Freedom Borough Authority	Facility Name	New Freedom Borough WWTP					
Applicant Address	49 E High Street	Facility Address	12 N Main Street					
	New Freedom, PA 17349-9665	<u></u>	Railroad, PA 17355					
Applicant Contact	John Smith	Facility Contact	John Smith					
Applicant Phone	(717) 235-2337	Facility Phone	(717) 235-2337					
Client ID	87475	Site ID	448222					
Ch 94 Load Status	Not Overloaded	Municipality	New Freedom Borough					
Connection Status	No Limitations	County	York					
Date Application Rece	eived April 7, 2020	EPA Waived?	No					
Date Application Acce	epted	If No, Reason	Major Facility, Significant CB Discharge					
Purpose of Application	n NPDES Permit Renewal.							

Summary of Review

New Freedom Borough Authority (NFBA) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on September 29, 2015 and became effective on October 1, 2015. The permit expired on September 30, 2020 but the terms and conditions of the permit have been administratively extended since that time. The permit was amended on October 22, 2015 to rephrase one of Part C conditions (pertaining to solids management).

Sludge use and disposal description and location(s): Sludges are treated onsite via aerobic diesters (3), gravity thickener and belt filter press (2) prior to being hauled off site for either landfill disposal (Modern Landfill) or land application under PAG083573.

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		ginsu Kim Jinsu Kim / Environmental Engineering Specialist	December 11, 2021
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	December 14, 2021
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	December 14, 2021

Outfall No. 001			Design Flow (MGD)	2.25	
Latitude 39°	45' 50"		Longitude	76° 42' 13"	
Quad Name G	len Rock		Quad Code	2032	
Wastewater Desc	ription:	Sewage Effluent			
Receiving Waters	South	Branch Codorus Creek	Stream Code	08093	
NHD Com ID	5747	5055	RMI	19.94	
Drainage Area	3.0 sc	լ. mi.	Yield (cfs/mi²)		
Q ₇₋₁₀ Flow (cfs)	0.498		Q ₇₋₁₀ Basis	StreamStats	
Elevation (ft)	693		Slope (ft/ft)		
Watershed No.	7-H		Chapter 93 Class.	WWF	
Existing Use			Existing Use Qualifier		
Exceptions to Use			Exceptions to Criteria		
Assessment Statu	S	Impaired			
Cause(s) of Impai	rment	NUTRIENTS			
Source(s) of Impa	irment	MUNICIPAL POINT SOU	RCE DISCHARGES		
TMDL Status		Final	Name South Brand	ch Codorus Creek	
Nearest Downstre	am Publi	c Water Supply Intake	York Water Company		
PWS Waters	South B	ranch Codorus Creek	Flow at Intake (cfs)		
PWS RMI 0.35			Distance from Outfall (mi)	19.59	

Drainage Area

The discharge is to South Branch Codorus Creek at RM 19.94. A drainage area upstream of the point of discharge is estimated to be 3.0 sq.mi. according to USGS StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

USGS StreamStats produced a Q7-10 flow 0.498 cfs at the point of discharge.

South Branch Codorus Creek

Under 25 Pa Code §93.9o, South Branch Codorus Creek from source to UNT from Glen Rock Valley to East Branch Codorus Creek is classified as warm water fishes and supports migratory fishes. No special protection water is impacted by this discharge. DEP's latest integrated water quality report finalized in 2020 indicates that South Branch Codorus Creek near the discharge point is impaired for nutrients as a result of municipal point source discharges. A Total Maximum Daily Load (TMDL) was developed on July 9, 2003 to address siltation and nutrient impairments within the South Branch Codorus Creek watershed. A phosphorus wasteload allocation (WLA) was assigned to this facility. More details of this TMDL WLA will be discussed later in this fact sheet.

Public Water Supply Intake

The fact sheet developed for the last permit renewal indicates that the nearest downstream public water supply intake is York Water Company, located on South Branch Codorus Creek, approximately 20 miles from the discharge. Given the distance, the discharge is not expected to impact the water supply.

Treatment Facility Summary								
Treatment Facility Na	ame: New Freedom STP							
WQM Permit No.	Issuance Date							
6791408	Last issued on 10/28/2019	9						
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
		Sequencing Batch						
Sewage	Secondary	Reactor	Sodium Hypochlorite	2.25				
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal				
7.2	3850	Not Overloaded	Aerobic Digestion	Combination of methods				

NFBA owns and operates a sanitary wastewater treatment facility located at 12 North Main Street Railroad PA 17355. The facility is designed for an annual average design flow of 2.25 MGD and hydraulic design capacity of 7.2 MGD with an organic design capacity of 3,850 lbs/day. The facility serves the areas of New Freedom Borough (47.22%), Shrewsbury Borough (51.95%) and Railroad Borough (0.83%). All sewers are 100% separated. The facility utilizes a Sequencing Batch Reactor (SBR) activated sludge treatment process consisting of screening, SBRs (3), Chlorination, and outfall to South Branch Codorus Creek.

Sludges are treated onsite via aerobic diesters (3), gravity thickener and belt filter press (2) prior to being hauled off site for either landfill disposal (Modern Landfill) or land application under PAG083573.

Ferric Chloride is added for phosphorous removal and Sodium Hypochlorite is used for disinfection. The application reported six (6) commercial and industrial users connected to the sewer system. These users are shown below:

Name	Description	Flow (GPD)	Significant Industrial User?	Categorical Industry?
Johnson Controls, Inc	Industrial air conditioning chiller	4,080	No	No
Crescent Industries, Inc	Plastic injection molding	1,227	No	No
J.J. Hartenstein Mortuary, Inc.	Funeral Home and Residence	120	No	No
Seiling and Jones, Inc.	Architectural plywood and laminate of veneer	764	No	No
Truck Specialties Inc	Truck repair shop	48	No	No
Shrewsbury Wash and Stor,				
Inc.	Car wash and mini storage	3,096	No	No

NFBA is currently not implementing an approved pretreatment program administered by US EPA.

NFBA currently utilizes another outfall (39° 45' 47, -76° 42' 0") discharges stormwater drained from the site (79,337 sq.ft.).

	Compliance History							
Summary of DMRs:	A summary of past 12-month DMR data is presented on the next page.							
Summary of Inspections:	06/17/2021: Brandon Bettinger, DEP Water Quality Specialist, conducted a routine inspection. No violations were noted at the time of inspection.							
	12/23/2019: Austen Randecker, former DEP Water Quality Specialist, conducted a Chesapeake Bay administrative inspection. Other than some minor issues, no violations were noted at the time of inspection.							
	05/16/2019: Austen Randecker conducted a routine inspection. No issues were identified at the time of inspection.							
	04/26/2018: Sheena Ripple, former DEP Water Quality Specialist, conducted a routine inspection. No issues were identified at the time of inspection.							
Other Comments:	There was one effluent violation reported since the last permit reissuance (i.e., fecal coliform 1300 v. 1000 CFU/100 mL August 2020). DEP's database revealed that there is no open violation associated with this facility or permittee.							

Effluent Data

DMR Data for Outfall 001 (from August 1, 2020 to July 31, 2021)

Parameter	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20
Flow (MGD)												
Average Monthly	1.001	1.044	1.09	1.117	1.214	1.063	1.034	1.028	0.921	0.899	0.897	1.002
Flow (MGD)												
Daily Maximum	1.172	1.177	1.225	1.272	1.712	2.046	1.353	2.228	1.262	1.101	0.967	1.505
pH (S.U.)												
Minimum	7.1	7.1	6.9	6.8	7.0	6.8	7.0	7.0	6.9	7.0	7.2	7.3
pH (S.U.)												
Maximum	7.6	7.5	7.5	7.4	7.5	7.4	7.5	7.5	7.5	7.4	7.5	7.5
DO (mg/L)												
Minimum	7.4	7.8	8.0	8.9	9.2	8.9	8.7	8.8	8.2	8.0	7.2	7.4
TRC (mg/L)												
Average Monthly	0.10	0.15	0.15	0.12	0.16	0.14	0.17	0.14	0.18	0.15	0.14	0.12
TRC (mg/L)												
Instantaneous												
Maximum	0.18	0.21	0.33	0.23	0.23	0.21	0.28	0.26	0.25	0.3	0.26	0.23
CBOD5 (lbs/day)												
Average Monthly	< 21	< 21	< 22	< 22	< 24	< 24	< 26	< 24	< 22	< 22	< 22	< 26
CBOD5 (lbs/day)												
Weekly Average	27	< 22	< 26	< 23	< 27	< 28	< 28	< 26	< 23	24	< 23	< 32
CBOD5 (mg/L)			_	_	_	_	_	_	_	_	_	_
Average Monthly	< 3	< 2	< 2	< 2	< 2	< 3	< 3	< 3	< 3	< 3	< 3	< 3
CBOD5 (mg/L)			_	_	_	_	_	_	_	_	_	_
Weekly Average	3	< 2	< 3	< 2	< 2	< 3	4	< 3	< 3	3	< 3	< 3
BOD5 (lbs/day)												
Raw Sewage Influent	4.504		4==0	4=0=	4.500		4.400	4=0=	4.400	4.500		4.400
Average Monthly	1584	1447	1579	1595	1509	1421	1403	1525	1480	1526	1413	1400
BOD5 (lbs/day)												
Raw Sewage Influent	0500	0400	4050	4004	0405	4755	4000	0004	4040	0044	4770	0004
Daily Maximum	2536	2160	1959	1924	2165	1755	1609	2231	1946	2214	1770	2234
BOD5 (mg/L) Raw Sewage Influent												
Average Monthly	191	166	177	172	153	167	170	193	196	204	190	162
TSS (lbs/day)	191	100	1//	112	133	107	170	183	130	204	190	102
Average Monthly	36	32	26	24	26	26	25	35	45	34	38	49
TSS (lbs/day)	30	32	20		20		۷۵	33	40	J 4	30	43
Raw Sewage Influent												
Average Monthly	1818	1529	1754	1556	1319	1367	1481	1617	1712	1227	1600	1605
Average Monthly	1010	1023	1734	1000	1013	1301	1401	1017	1114	1221	1000	1003

Parameter	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20
TSS (lbs/day)							_					
Raw Sewage Influent												
Daily Maximum	2129	2244	3361	1858	1793	1876	1931	2178	2224	1945	1808	2586
TSS (lbs/day)												
Weekly Average	46	45	38	36	34	41	31	48	55	50	47	95
TSS (mg/L)												
Average Monthly	4	4	3	3	3	3	3	4	6	5	5	5
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	219	175	196	168	134	162	178	205	227	164	215	185
TSS (mg/L)												
Weekly Average	6	5	4	4	3.5	5	4	7	8	7	7	9
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	30	19	11	31	9	12	15	> 39	45	47	20	142
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	125	99	23	1203	20	34	34	> 2420	108	225	40	1300
Nitrate-Nitrite (mg/L)												
Average Monthly	2.5	2.9	2.5	2.9	2.6	2.8	3.2	3.1	3.6	3.6	3.6	3.6
Nitrate-Nitrite (lbs)												
Total Monthly	634	754	700	813	806	637	813	762	808	829	800	952
Total Nitrogen (mg/L)												
Average Monthly	< 3.06	< 3.46	< 3.25	< 3.69	< 3.07	< 3.26	< 3.79	< 3.94	< 4.35	< 4.37	< 4.26	4.66
Total Nitrogen (lbs)												
Effluent Net												
Total Monthly	< 785	< 899	< 901	< 1021	< 952	< 757	< 983	< 963	< 971	< 1013	< 951	1253
Total Nitrogen (lbs)												
Total Monthly	< 785	< 899	< 901	< 1021	< 952	< 757	< 983	< 963	< 971	< 1013	< 951	1253
Total Nitrogen (lbs)												
Effluent Net												
Total Annual											< 10112	
Total Nitrogen (lbs)												
Total Annual											< 11812	
Ammonia (lbs/day)												
Average Monthly	< 0.8	< 0.9	< 0.9	< 0.9	< 1	< 0.8	< 0.8	< 0.8	< 0.7	< 0.7	< 0.7	< 0.9
Ammonia (mg/L)	1 .											
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ammonia (lbs)												a-
Total Monthly	< 26	< 26	< 28	< 28	< 31	< 24	< 26	< 25	< 22	< 23	< 22	27
Ammonia (lbs)												
Total Annual											< 333	

NPDES Permit No. PA0043257

Parameter	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20
TKN (mg/L)												
Average Monthly	< 0.59	< 0.56	< 0.72	< 0.76	< 0.51	< 0.51	0.64	< 0.82	< 0.74	< 0.8	< 0.67	1.09
TKN (lbs)												
Total Monthly	< 151	< 145	< 202	< 208	< 157	< 120	< 170	< 201	< 163	< 184	< 151	302
Total Phosphorus												
(lbs/day)												
Average Monthly	1.8	1.8	1.5	1.6	2.5	2.7	2.3	< 2.4	1.2	< 1.1	1.2	1.4
Total Phosphorus (mg/L)												
Average Monthly	0.2	0.2	0.2	0.2	0.3	0.3	0.3	< 0.3	0.2	< 0.1	0.2	0.2
Total Phosphorus (lbs)												
Effluent Net												
Total Monthly	48.2	54.1	47.6	48.6	77.8	76.7	71.8	< 73.8	36.6	< 33.5	36.7	42.7
Total Phosphorus (lbs)												
Total Monthly	48.2	54.1	47.6	48.6	77.8	76.7	71.8	< 73.8	36.6	< 33.5	36.7	42.7
Total Phosphorus (lbs)												
Effluent Net												
Total Annual											< 693	
Total Phosphorus (lbs)												
Total Annual											< 693	
Total Copper (mg/L)												
Average Monthly	< 0.005	0.007	0.005	0.011	< 0.005	0.010	0.008	0.006	0.007	< 0.005	< 0.005	0.011
Total Copper (mg/L)												
Weekly Average	< 0.005	0.007	0.005	0.011	< 0.005	0.013	0.008	0.006	0.007	< 0.005	< 0.005	0.011

Existing Effluent Limits and Monitoring Requirements

These tables below summarize effluent limits and monitoring requirements specified in the current permit:

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.20	XXX	0.66	1/day	Grab
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
CBOD5	469	751 Wkly Avg	XXX	25	40	50	2/week	24-Hr Composite
Total Suspended Solids	563	844 Wkly Avg	XXX	30	45	60	2/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
Ammonia-Nitrogen May 1 - Oct 31	19	XXX	XXX	1.0	XXX	2.0	2/week	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	56	XXX	XXX	3.0	XXX	6.0	2/week	24-Hr Composite
								24-Hr
Total Phosphorus	18.8	XXX	XXX	1.0	XXX	2.0	2/week	Composite
Total Copper	XXX	XXX	XXX	0.012	0.024	0.030	1/month	24-Hr Composite

Existing Effluent Limits and Monitoring Requirements (continued)

		E	ffluent Limitatio	ns		Monitoring Requirements	
Parameter (1)	Mass Un	its (lbs)	Cor	centrations (m	Minimum ⁽²⁾	Required	
raiameter	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Sample Type
		_		_			24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	2/week	Composite
							24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	2/week	Composite
							24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculation
							24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	Composite
Net Total Nitrogen	Report	41,095	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	5,479	XXX	XXX	XXX	1/month	Calculation

The permittee is authorized to use 1,700 lbs/year as Total Nitrogen (TN) Offsets toward compliance with the Annual Net TN mass load limitations (Cap Loads), in accordance with Part C of this permit. These Offsets may be applied throughout the Compliance Year or during the Truing Period. The application of offsets must be reported to DEP as described in Part C. The Offsets are authorized for the following pollutant load reduction activities:

Connection of 68 on-lot sewage disposal systems to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per connection.

	Development of Effluent Limitations and Monitoring Requirements									
Outfall No.	001	Design Flow (MGD)	2.25							
Latitude	39° 45' 50"	Longitude	76° 42' 13"							
Wastewater D	Wastewater Description: Sewage									

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD5, NH3-N and Dissolved Oxygen (DO)

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. DEP recently updated this model (ver. 1.1) to include the new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. A multiple discharge analysis is needed as there is another POTW discharge (Glen Rock STP PA0020818) located approximately 3 miles downstream from this discharge. The stream designation at Glen Rock STP discharge is however cold-water fishes; therefore, the model will be utilized to reflect this change in stream designation within the South Branch Codorus Creek watershed. The model output indicates that all existing effluent limits for these pollutants are still appropriate. No changes are therefore recommended.

Total Residual Chlorine (TRC)

Since chlorine gas is used for disinfection, TRC effluent levels must be regulated under 25 Pa Code §92a.48(b)(2). DEP's TRC_CALC worksheet has been utilized to develop appropriate permit requirements for TRC. A site-specific study was conducted in 1998 by NFBA. During the study, stream chlorine demand of 0.32 mg/L and discharge chlorine demand of 0.41 mg/L were obtained. DEP's SOP no. BCW-PMT-033 indicates that if site-specific TRC study data is more than 20 years old, the data is still to be used to develop limits for the renewal but the permit will also include a condition in Part C for the permittee to collect a new site-specific study and provide the results with the subsequent permit renewal application. The worksheet indicate that existing effluent limits are still protective of water quality. No changes are therefore recommended.

Toxic Pollutants

DEP utilizes a Toxics Management Spreadsheet to facilitate calculations necessary for completing a reasonable potential analysis and determining WQBELs for toxic pollutants. The worksheet combines the functionality of DEP's Toxics Screening Analysis worksheet and PENTOXSD. The worksheet output shows the existing WQBELs for Total Copper are still protective of water quality; therefore, no changes are recommended. The worksheet also recommends a routine monitoring requirement for Total Arsenic, Total Iron, Dissolved Iron, and Total Zinc. It is therefore recommended that the monitoring requirements for these pollutants be included in the draft permit.

The worksheet recommended WQBELs for Free Cyanide, Total Selenium and Dichlorobromomethane. Further sampling analysis conducted by NFBA showed that free cyanide and total Selenium are not pollutants of concern as these pollutants were not detected in all additional effluent samples. Therefore, the need of permit requirements for free cyanide, total selenium has been ruled out. For Dichlorobromomethane, ten (10) additional samples have been collected and the results of those samples still show effluent contains a detectable amount of this pollutant. Dichlorobromomethane is a chlorine byproduct typically emanated from chlorine used for disinfection. It is recommended that these WQBELs be included in the draft permit in accordance with 40 CFR §122.44(d)(1)(i). Based on the sample results, the facility will be able to meet WQBELs recommended by the worksheet; therefore, these limits will be included in the draft permit without a compliance schedule.

Whole Effluent Toxicity Testing

NFBA is required under 40 CFR §122.21(h)(5)(ii)(A) to conduct WETT and submit the results to DEP. See WETT section of this fact sheet for more details on the results submitted by NFBA.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxygen

The existing minimum DO effluent limit is the current warm water fishery water quality criterion for DO listed in 25 Pa Code §93.7(a). It is recommended that this limit be maintained in the permit to ensure the protection of water quality standards. This approach is consistent with DEP's current Standard Operating Procedure (SOP) no. BPNPSM-PMT-033 and has been applied to other point source dischargers throughout the state.

Total Phosphorus

The current permit includes an annual mass load effluent limit for Total Phosphorus required under the Chesapeake Bay TMDL Watershed Implementation Plan. In addition, the permit also includes average monthly/daily maximum mass load and concentration effluent limits for Total Phosphorus. These limits have been included in the permit consistently for the protection of the local watershed, South Branch Codorus Creek. The following is the rationale for imposing these limits explained in the last fact sheet:

The protection report approved on September 11, 2002 addressed the TMDL for South Branch Codorus Creek that was in the process of being written. Through meetings between DEP's regional office, central office, and Susquehanna River Basin Commission engineers and biologists during the summer of 2002, it was jointly decided that in the interests of TMDL development and implementation for the watershed that New Freedom's effluent limit would be reduced to 1.5 mg/L average monthly in the interim (a level that it could already meet at the time, without any modifications), and 1.0 mg/L average monthly as a final limit, a level that may require chemical addition or process modifications. It was also decided that for waste allocation purposes, New Freedom's mass limits and allocation in the TMDL would be based on 1.5 MGD, a level below the hydraulic design capacity but not expected to be exceeded within the next five years.

The October 29, 2002 permit included interim phosphorus limits of 2.0 mg/L (AML) and final phosphorus limits of 1.5 mg/L (AML). The final limitations were based on the values for New Freedom within a draft TMDL for South Branch Codorus Creek. New Freedom appealed the final phosphorus limits. During a February 5, 2003 meeting, the Department informed New Freedom that it had made an error in basing the final limitations on a basin-wide plan, when the limitations should be based on the localized impact observed downstream from the plant. The Department also indicated during the meeting that the NPDES permit mass loading limit should not exceed the TMDL waste load allocation, but can be more stringent than the allocation.

The Department's March 14, 2003 letter informed New Freedom that the amended permit "will include an interim monthly average total phosphorus concentration limitation of 2.0 mg/L, and a loading limitation based on New Freedom's Chapter 94 2007 flow projection. The interim total phosphorus limitation will be in effect until the Department completes its study (based on prevention of localized impacts). The amended permit will state that upon completion of the study, New Freedom's NPDES permit may be amended to include a new total phosphorus limitation based on the results of the study." The concentration limits in the (revoked) final permit amendment were 2.0 mg/L (AML) and 4.0 mg/L (IMAX), with a mass limit of 20.6 lbs/day based on a 2007 projected flow from the Chapter 94 report.

The Department visited the South Branch Codorus Creek during July 2003, with the intent to determine what effect nutrients may be having on dissolved oxygen levels in the stream. Department biologists felt that stream flows were sufficiently high that an impact would not likely be observed. Based on this evaluation, the biologists felt that imposing limitations on phosphorus less than technology-based standards would be unwarranted at this time. Therefore, the Department agreed

to provide New Freedom with a mass limitation of 37.5 lbs/day (2.0 mg/L x 2.25 MGD x 8.34). New Freedom has concurred with this proposal.

Following a October 28, 2003 meeting, regional office staff learned that the TMDL plan writers and administrators had submitted a final TMDL to EPA, and EPA had approved the TMDL in August 2003. However, the TMDL was not considered final due to the omission of public notification per Chapter 96.7(b). Therefore, the loading cap in the TMDL for phosphorus was not established in the permit at that time.

A letter from EPA Region III, dated February 10, 2004, instructed the Department to promptly publish a revised draft TMDL for South Branch Codorus Creek, following which EPA comments will be considered and the TMDL finalized. The Department was also instructed to issue the final New Freedom permit with a clause authorizing the Department to reopen the permit on the basis of a revised TMDL and with an expiration date of not later than November 1, 2007. However, the average monthly phosphorus limit of 2.0 mg/L is still in place. The TMDL dated July 9, 2003 is currently listed as approved by EPA. It allocates 6853.33 lbs/yr of phosphorus for New Freedom.

The average monthly concentration and average monthly mass limit to be placed in the permit can be calculated:

Average monthly concentration: $6,853.33 \, lbs/yr / (2.25 \, MGD \, x \, 8.34 \, x \, 365) = 1.0 \, mg/L$

Average monthly mass limit: 1.0 mg/L x 2.25 MGD x 8.34 = 18.8 lbs/day

Based on the review, it appears these limits were based on the published wasteload allocation (WLA) developed for this facility as part of the South Branch Codorus Creek TMDL (see below for more detailed information about this TMDL) given that DEP as well as other agencies has previously concluded that effluent phosphorus levels from this facility need to be controlled and regulated to ensure the local water quality protection. The design flow of 2.25 MGD would require NFBA to meet the TMDL-derived concentration and mass limits of 1.0 mg/L and 18.8 lbs/day respectively as shown above. For this renewal, this approach seems appropriate and DEP finds no rationale to relax or remove these limits; therefore, these limits will remain unchanged in the permit in accordance with 40 CFR §122.44(I)(1).

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Influent BOD & TSS Monitoring

As a result of negotiation with EPA, the existing influent monitoring reporting requirement for TSS and BOD5 will be maintained in the draft permit. This requirement has been consistently assigned to all municipal wastewater treatment facilities.

Total Dissolved Solids (TDS)

TDS and its associated solids including Bromide, Chloride, and Sulfate have become statewide pollutants of concern. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- -Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- -Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.

-Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/L.

NFBA reported maximum concentrations of 368 mg/L for TDS, 0.11 mg/L for bromide, and < 0.05 mg/L for 1,4-dioxane. Accordingly, the requirement to monitor for these pollutants is not necessary.

Chesapeake Bay TMDL

In August 2019, DEP finalized Phase 3 Chesapeake Bay Watershed Implementation Plan to provide the plans in place by 2025 to further achieve the nutrient and sediment reduction targets that would ultimately meet U.S EPA's expectations for the Chesapeake Bay TMDL. The Chesapeake Bay TMDL identifies the necessary pollution reductions from major sources of nitrogen, phosphorus and sediment across the Bay jurisdictions and sets pollution limits necessary to meet water quality standards. The Phase 3 WIP is an update to the Pennsylvania's Chesapeake Bay TMDL Strategy (2004), the Chesapeake WIP Phase I (2011) and Phase 2 WIP (2012). The more details on the TMDL are available at www.dep.pa.gov.

As part of the Phase 3 WIP process, a Supplement to the Phase 3 WIP was developed, providing an update on TMDL implementation for point sources and a discussion of adjustments to the permitting strategy as a result of implementation experience. According to this document, NFBA WWTP is a Phase 3 significant discharger located within the Chesapeake Bay watershed. The following Cap Loads specified in the current Supplement to the Phase 3 WIP will be included in the draft permit:

NPDES Permit No.	Phase	Facility	Latest Permit Issuance Date	Permit Expiration Date	Cap Load Compliance Start Date	TN Cap Load (lbs/yr)	TN Offsets Included in Cap Load (lbs/yr)	TP Cap Load (lbs/yr)	TN Delivery Ratio	TP Delivery Ratio
Permit No.	Filase	racility	Date	Date	Start Date	(IDS/yI)	(IDS/yI)	(IDS/yI)	Rallo	Ralio
		New								
		Freedom								
PA0043257	3	Borough	10/22/2015	9/30/2020	10/1/2012	41,095	-	5,479	0.961	0.436

These Cap Loads will continue to be included in the permit. NFBA is currently authorized to use 1,700 lbs/year as Total Nitrogen Offsets toward compliance with the above-referenced Total Nitrogen Cap Loads that were calculated based on the 25 lbs/year per on-lot sewage disposal systems (in EDUs) and the reported 68 on-lot sewage disposal systems that have been connected to the sewer system after January 1, 2003. These offsets will continue to be allowed and will be specified in the permit.

South Branch Codorus Creek TMDL

DEP finalized a TMDL in 2003 to address nutrient and sediment impairments identified within South Branch Codorus Creek watershed. As part of the TMDL implementation, a wasteload allocation (WLA) for Total Phosphorus was developed for two (2) point source discharges within this watershed; Glen Rock STP and New Freedom Borough WWTP. A WLA of 6,855.33 lbs/year was set and was based on the average monthly permitted flow of 1.237 MGD (presumably, that is the design flow at the time when the TMDL was developed).

Both South Branch Codorus Creek TMDL and Chesapeake Bay TMDL established annual mass load effluent limits of Total Phosphorus for this facility. As the Cap Load (5,479 lbs/yr.) from the Chesapeake Bay TMDL is more stringent than the WLA (6,855.33 lbs/yr.) from the South Branch Codorus Creek TMDL, the Cap Load will be included in the permit. The permittee will still be able to purchase credits for any phosphorus loading that is in excess of the Cap Load; but only up to the WLA. This approach has been implemented in the current permit under one of Part C conditions pertaining to Chesapeake Bay Nutrient Requirements as shown below:

New Freedom Borough Authority is included on the South Branch Codorus Creek TMDL, which has a load allocation of 6,853.33 lbs/year for the facility. As indicated in Part A.I.B., the Chesapeake Bay Watershed Implementation Plan is requiring a more stringent Cap Load of 5,479 lbs/year. Therefore, Credits may be purchased for any phosphorus loading that is in excess of the Bay Cap Load – but only up to the TMDL annual load of 6,853.33 lbs/year, which is not to be exceeded (i.e., credits may only be purchased for up to 1,374.33 lbs/year of phosphorus loading).

This condition will continue to be included in the permit under Part C condition for Chesapeake Bay TMDL.

E. Coli Monitoring

DEP's SOP No. BCW-PMT-033 recommends under 25 Pa Code §92a.61 a routine monitoring for E. Coli in all new and reissued permits. Since the facility has the design flow of 2.25 MGD, a monthly monitoring will be included in the permit.

Mass Loading Limitations

All effluent mass loading limits will be based on the formula: design flow x concentration limit x conversion factor of 8.34.

Stormwater Requirements

Stormwater discharges from any POTWs (SIC Code 4952) described in 40 CFR § 122.26(b)(14)(ix) require coverage under an NPDES permit. NFBA currently utilizes one outfall collecting stormwater drained from the property. DEP's standard Part C stormwater requirements and site-specific best management practices (BMPs) will be included in the permit as this is a standard approach for major sewage facilities over 1.0 MGD.

Class A Wild Trout Fishery

A Class A Wild Trout stream is not impacted by this discharge.

Anti-backsliding Requirements

Unless stated otherwise in this fact sheet, all permit requirements proposed in this fact sheet are at least as stringent as those specified in the existing permit.

	Whole Effluent Toxicity (WET)
For Ou	utfall 001, Acute Chronic WET Testing was completed:
	For the permit renewal application (4 tests).
Ш	Quarterly throughout the permit term.
	Quarterly throughout the permit term and a TIE/TRE was conducted.
П	Other:

The dilution series used for the tests was: 100%, 93%, 86%, 43%, and 22%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 86%.

Summary of Four Most Recent Test Results

(NOTE - Enter results into one table, depending on which data analysis method was used).

NOEC/LC50 Data Analysis

	Ceriodaphnia Results (% Effluent)			Pimephale			
Test Date	NOEC Survival	NOEC Reproduction	LC50	NOEC Survival	NOEC Growth	LC50	Pass? *
May 2021	100	100		100	100	2000	Yes
April 2020	100	100		100	100		Yes
April 2019	100	100		100	100		Yes
April 2018	100	100		100	100		Yes

^{*} A "passing" result is that which is greater than or equal to the TIWC value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE – In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests).

☐ YES ⊠ NO

Comments: DEP's WET Analysis Spreadsheet is attached to this fact sheet.

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): **1.0** Chronic Partial Mix Factor (PMFc): **1.0**

1. Determine IWC - Acute (IWCa):

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

 $[(2.25 \text{ MGD x } 1.547) / ((0.498 \text{ cfs x } 1) + (2.25 \text{ MGD x } 1.547))] \times 100 = 87\%$

Is IWCa < 1%? YES NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

Type of Test for Permit Renewal: Chronic

2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

 $[(2.25 \text{ MGD x } 1.547) / ((0.498 \text{ cfs x } 1) + (2.25 \text{ MGD x } 1.547))] \times 100 = 87\%$

3. Determine Dilution Series

(NOTE - check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 94%, 87%, 44%, and 22%.

WET Limits
Has reasonable potential been determined? ☐ YES ☒ NO
Will WET limits be established in the permit? ☐ YES ☒ NO
If WET limits will be established, identify the species and the limit values for the permit (TU).
N/A
If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:
N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Parameter	Mass Units (lbs/day) (1) Concentrations			ions (mg/L)		Minimum ⁽²⁾	Required	
i arameter	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Daily Min	XXX	xxx	xxx	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.20	XXX	0.66	1/day	Grab
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
CBOD5	469	751 Wkly Avg	XXX	25	40 Wkly Avg	50	2/week	24-Hr Composite
Total Suspended Solids	563	844 Wkly Avg	XXX	30	45 Wkly Avg	60	2/week	24-Hr Composite
Fecal Coliform (no./100 mL) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (no./100 mL) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
Ammonia-Nitrogen May 1 - Oct 31	19	XXX	XXX	1.0	XXX	2.0	2/week	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	56	XXX	XXX	3.0	XXX	6.0	2/week	24-Hr Composite
Total Phosphorus	18.8	XXX	XXX	1.0	XXX	2.0	2/week	24-Hr Composite
Total Copper	0.22	0.45	XXX	0.012	0.024	0.030	1/month	24-Hr Composite
Total Arsenic	Report	Report	XXX	Report	Report	XXX	1/month	24-Hr Composite

NPDES Permit No. PA0043257

	Effluent Limitations						Monitoring Requirement	
Parameter	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
Faiametei	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
			3007			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		24-Hr
Total Zinc	Report	Report	XXX	Report	Report	XXX	1/month	Composite
Total Iron	Report	Report	XXX	Report	Report	XXX	1/month	24-Hr Composite
Dissolved Iron	Report	Report	XXX	Report	Report	XXX	1/month	24-Hr Composite
Dichlorobromomethane (ug/L)	0.039	0.055	XXX	2.05	2.92	XXX	1/month	Grab
E. Coli (no./100 mL)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab

Proposed Effluent Limitations and Monitoring Requirements (continued)

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

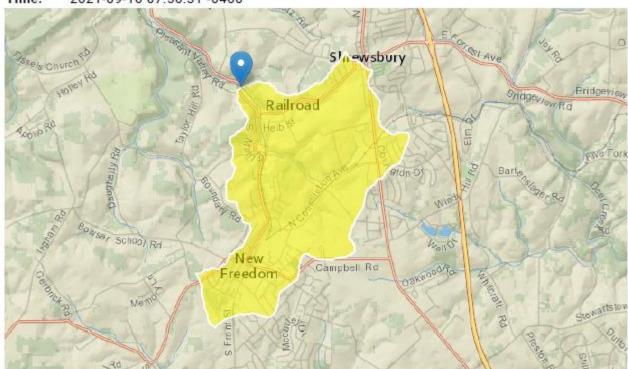
Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

		E	Monitoring Requirements				
Parameter	Mass Unit	s (lbs/day)	Co	ncentrations (m	Minimum	Required	
T dramotor	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	2/week	24-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	24-Hr Composite
Net Total Nitrogen	XXX	41,095	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	XXX	5,479	XXX	XXX	XXX	1/month	Calculation

The permittee is authorized to use 1,700 lbs/year as Total Nitrogen (TN) Offsets toward compliance with the Annual Net TN mass load limitations (Cap Loads), in accordance with Part C of this permit. These Offsets may be applied throughout the Compliance Year or during the Truing Period. The application of offsets must be reported to DEP as described in Part C. The Offsets are authorized for the following pollutant load reduction activities:

• Connection of 68 on-lot sewage disposal systems to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per connection.

9/16/21, 7:57 AM StreamStats


StreamStats Report

Region ID: PA

Workspace ID: PA20210916115610579000

Clicked Point (Latitude, Longitude): 39.76438, -76.70373

Time: 2021-09-16 07:56:31 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	3	square miles
BSLOPD	Mean basin slope measured in degrees	4.4312	degrees
ROCKDEP	Depth to rock	5	feet
URBAN	Percentage of basin with urban development	20.3606	percent

Low-Flow Statistics Parameters [Low Flow Region 1]

https://streamstats.usgs.gov/ss/

9/16/21, 7:57 AM StreamStats

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	3	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	4.4312	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
URBAN	Percent Urban	20.3606	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.999	ft^3/s
30 Day 2 Year Low Flow	1.28	ft^3/s
7 Day 10 Year Low Flow	0.498	ft^3/s
30 Day 10 Year Low Flow	0.651	ft^3/s
90 Day 10 Year Low Flow	0.993	ft^3/s

Low-Flow Statistics Citations

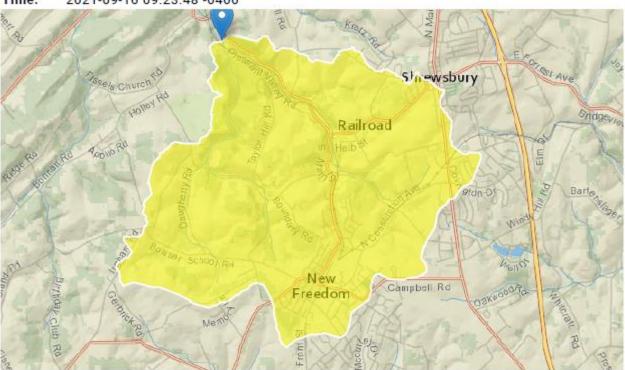
Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

https://streamstats.usgs.gov/ss/ 2/3

9/16/21, 9:50 AM StreamStats


StreamStats Report

Region ID: PA

Workspace ID: PA20210916132327956000

Clicked Point (Latitude, Longitude): 39.77424, -76.72092

Time: 2021-09-16 09:23:48 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	6.98	square miles
BSLOPD	Mean basin slope measured in degrees	5.558	degrees
ROCKDEP	Depth to rock	4.9	feet
URBAN	Percentage of basin with urban development	9.4861	percent

Low-Flow Statistics Parameters [Low Flow Region 1]

9/16/21, 9:50 AM StreamStats

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	6.98	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	5.558	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.9	feet	4.13	5.21
URBAN	Percent Urban	9.4861	percent	0	89

Low-Flow Statistics Flow Report [Low Flow Region 1]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	2.37	ft^3/s	46	46
30 Day 2 Year Low Flow	2.89	ft^3/s	38	38
7 Day 10 Year Low Flow	1.24	ft^3/s	51	51
30 Day 10 Year Low Flow	1.55	ft^3/s	46	46
90 Day 10 Year Low Flow	2.14	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

https://streamstats.usgs.gov/ss/ 2/3

TRC_CALC

1A	В	С	D	E	F	G
2	TRC EVALU	ATION				
3	Input appropri	ate values in	B4:B8 and E4:E7			
4		= Q stream (= CV Daily	
5		= Q discharg			= CV Hourly	
6		= no. sample			= AFC_Partial M	
7			emand of Stream		= CFC_Partial M	
8			emand of Discharge		_	Compliance Time (min)
9		= BAT/BPJ V			_	Compliance Time (min)
			of Safety (FOS)		=Decay Coefficion	, r
10	Source	Reference	AFC Calculations		Reference	CFC Calculations
11	TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.706
	PENTOXSD TRO		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
13 14	PENTOXSD TRG	5.1b	LTA_afc=	0.269	5.1d	LTA_cfc = 0.411
15			Effluent	Limit Cald	culations	
	PENTOXSD TRO	5.1f		L MULT =		
17	PENTOXSD TRO		AVG MON LIMI			BAT/BPJ
18			INST MAX LIMI	T (mg/l) =	0.654	
		/ 040/-/ 1-74	50 t-W + F/450 V-80	* 040/04	#-/ L#AFO 4-11	
	WLA afc		FC_tc)) + [(AFC_Yc*Q		"e(-K"AFG_tc))	•
	LTAMULT afc	•	C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(^0.5\	
	LTA_afc	wla afc*LTA		CVII 2+1)	0.0)	
	ETT_GIO	a_aio Ein				
	WLA_cfc	(.011/e(-k*Cf	C_tc) + [(CFC_Yc*Qs	".011/Qd*	e(-k*CFC tc))	
			C_Yc*Qs*Xs/Qd)]*(1-F			
	LTAMULT_cfc		(cvd^2/no_samples+1		N(cvd^2/no_san	nples+1)^0.5)
	LTA_cfc	wla_cfc*LTA	MULT_cfc			
		EVD/0 200**	N//audA0/a	14)40 5) 4	O EN M/accident	complex (4))
	AML MULT		N((cvd^2/no_samples			_samples+1))
	AVG MON LIMIT	_	J,MIN(LTA_afc,LTA_c	_		
	INST MAX LIMIT	1.5"((av_moi	n_limit/AML_MULT)/L1	IAMULI_	aicj	

	SWP Basir		Str	eam Name		RMI	Elevat		Drainage Area (sq mi)	Slope (ft/ft)	PW: Withdr (mg	awal	Apply FC
	07H	8093 SOL	JTH BRANG	CH CODOR	US CREEK	19.94	10 69	93.00	3.00	0.00000		0.00	✓
				St	tream Data	1							
Design Cond.	LFY	Trib Stream Flow Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Ter	<u>Stream</u> np	рН	
Cond.	(cfsm)	(cfs) (cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	()		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.5 0.00 0.0 0.00 0.0	0.000	0.000	20.0	0.00	0.00	25	5.00 7.0	00	0.00	0.00	
				D	ischarge D	ata							
		Name	. Pe	rmit Numbe	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac		np p	isc oH		
		New Freedom	STP PA	0043257	2.2500	2.250	0 2.250	0 0	0.000 2	25.00	7.00		
				P	arameter D)ata							
			Paramete	r Name	Dis Co			onc	Fate Coef				
					(mg	g/L) (m	ng/L) (m	ng/L)	(1/days)		.		
		CBOD5			2	5.00	2.00	0.00	1.50				
		Dissolve	ed Oxygen			5.00	8.24	0.00	0.00				
		NH3-N				1.00	0.00	0.00	0.70				

	SWP Basir			Stre	eam Name		RMI	Eleva (f		Drainage Area (sq mi)	Slope (ft/ft)	Withd	VS Irawal gd)	Apply FC
	07H	808	93 SOUT	H BRANC	H CODOR	US CREEK	18.75	50 6	803.00	6.9	8 0.0000	00	0.00	✓
					St	ream Data	1							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pl	l Te	<u>Strear</u> emp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	1.24 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	5.00 7	7.00	0.00	0.00	
					D	ischarge D)ata]	
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	erve Te	isc emp (C)	Disc pH		
						0.0000	0.000	0.00	00 (0.000	0.00	7.00		
					P	arameter D)ata							
				Paramete	r Name	Dis Co			tream Conc	Fate Coef				
				aramete	rvairie	(mg	g/L) (m	ng/L) (mg/L)	(1/days)				
		(CBOD5			2	25.00	2.00	0.00	1.50		_		
		ı	Dissolved	Oxygen			3.00	8.24	0.00	0.00				
		1	NH3-N			2	25.00	0.00	0.00	0.70				

	SWP Basir		Strea	am Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	07H	8093 SOI	JTH BRANCH	H CODOR	US CREEK	16.25	50 5	32.00	16.29	0.00000		0.00	v
				St	ream Data	a							
Design Cond.	LFY	Trib Stream Flow Flow		Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ten	<u>Strean</u> np	n pH	
Conu.	(cfsm)	(cfs) (cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	()		
Q7-10 Q1-10 Q30-10	0.100	0.00 2.5 0.00 0.0 0.00 0.0	0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00 7.0	00	0.00	0.00	
				Di	ischarge [)ata							
		Name	Perm	nit Number	Disc	Permitte Disc Flow (mgd)	Flow	Res Fa	Dis- erve Tem ctor (°C	ip p	isc oH		
		Glen Rock ST	P PAO	020818	0.6000	0.600	0.600	00 (0.000 2	5.00	7.00		
				Pa	arameter [
			Parameter	Name		one C	Conc (Conc	Fate Coef				
	-				(m	g/L) (n	ng/L) (r	ng/L)	(1/days)				
		CBOD5			2	25.00	2.00	0.00	1.50				
		Dissolve	ed Oxygen			5.00	8.24	0.00	0.00				
		NH3-N				8.00	0.00	0.00	0.70				

					ınp	ut Data	i vv Qiv	1 7.0						
	SWF Basi			Stre	eam Name		RMI		ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	07H	8	093 SOUT	H BRANC	CH CODOR	US CREEK	K 15.93	0 4	523.00	18.20	0.00000)	0.00	✓
					S	tream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Ter	<u>Strean</u> mp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	2	0.00 7.	00	0.00	0.00	
					D	ischarge [Data]	
			Name	Per	rmit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res / Fa	Dis erve Ten ctor (°C	np)isc pH		
						0.0000	0.000	0.00	00	0.000	0.00	7.00		
					P	arameter [Data							
				Paramete	r Name	Di: Co			tream Conc	Fate Coef				
			,	diamete	- recinc	(m	g/L) (m	ng/L) (mg/L)	(1/days)		_		
			CBOD5			-	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

SW	P Basin	Strea	m Code				Stream	Name			
	07H	8	093		so	UTH BR	ANCH C	ODORUS	CREEK		
Stream Flow	PWS With	Net Stream Flow		Reach Slope	Depth	Width	W/D Ratio	Velocity	Trav	Analysis Temp	Analysis pH
(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
) Flow											
0.50	0.00	0.50	3.4808	0.01432	.621	16.43	26.46	0.39	0.186	25.00	7.00
1.24	0.00	1.24	3.4808	0.00538	.629	22.82	36.26	0.33	0.465	25.00	7.00
2.52	0.00	2.52	4.409	0.00533	.673	30.46	45.24	0.34	0.058	24.08	7.00
) Flow											
0.32	0.00	0.32	3.4808	0.01432	NA	NA	NA	0.38	0.191	25.00	7.00
0.79	0.00	0.79	3.4808	0.00538	NA	NA	NA	0.31	0.491	25.00	7.00
1.61	0.00	1.61	4.409	0.00533	NA	NA	NA	0.31	0.063	24.32	7.00
10 Flow											
0.68	0.00	0.68	3.4808	0.01432	NA	NA	NA	0.40	0.182	25.00	7.00
1.69	0.00	1.69	3.4808	0.00538	NA	NA	NA	0.35	0.442	25.00	7.00
3.43	0.00	3.43	4.409	0.00533	NA	NA	NA	0.36	0.054	23.89	7.00
	Stream Flow (cfs) O Flow 0.50 1.24 2.52 O Flow 0.32 0.79 1.81 10 Flow 0.68 1.69	Flow With (cfs) (cfs) 0 Flow	Stream PWS Net Stream Flow (cfs) (cfs) (cfs) (cfs) O Flow 0.50 0.00 0.50 1.24 0.00 1.24 2.52 0.00 2.52 O Flow 0.32 0.00 0.32 0.79 0.00 0.79 1.61 0.00 1.61 10 Flow 0.68 0.00 0.68 1.69 0.00 1.69	Stream PWS Stream Analysis Flow (cfs) (cfs) (cfs) Flow (cfs)	Stream PWS Net Stream Analysis Slope Flow (cfs) (cfs	Stream PWS Net Disc Reach Plow (cfs) (Stream Flow Flow Cofs Net Stream Flow Stream Flow Flow Cofs Cofs	Stream Flow PWS With Stream Analysis Slope Depth Plow (cfs) Width Plow (cfs) Mode (Flow (cfs) Disc Flow (cfs) Reach (ft) Depth (ft) Width (ft) Width (ft) 0 Flow 0.50 0.00 0.50 3.4808 0.01432 .621 16.43 26.46 1.24 0.00 1.24 3.4808 0.00538 .629 22.82 36.26 2.52 0.00 2.52 4.409 0.00533 .673 30.46 45.24 0 Flow 0.32 0.00 0.32 3.4808 0.01432 NA NA NA 0.79 0.00 0.79 3.4808 0.00538 NA NA NA 1.61 0.00 1.61 4.409 0.00533 NA NA NA 10 Flow 0.68 0.00 0.68 3.4808 0.01432 NA NA NA 1.69 0.00 0.68 3.4808 0.00538 NA NA NA	Stream Flow PWS Net Stream Analysis Slope Flow (cfs) (Stream Flow With Stream Flow (cfs)	Stream Flow With Stream Flow (cfs) Net (cfs) Slope Flow (cfs) Net (c

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Nam	<u>e</u>	
07H	8093		SOUTH BE	RANCH CODO	RUS CRE	EK
RMI 19.940	Total Discharge)) Ana	ysis Temperat 25.000		Analysis pH 7.000
Reach Width (ft)	Reach De			Reach WDRa	atio	Reach Velocity (fps)
16.427 Reach CBOD5 (mg/L)	0.62 Reach Kc (26.461 each NH3-N (r	/L)	0.390 Reach Kn (1/days)
22.12	1.480			0.87	HQ/L)	1.029
Reach DO (mg/L)	Reach Kr (Kr Equation	1	Reach DO Goal (mg/L)
5.408	59.78	•		Tsivoglou	_	5
Reach Travel Time (days)				_		
0.186	TravTime	Subreach CBOD5	NH3-N	D.O.		
5.155	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.019	21.37	0.86	6.68		
	0.037	20.64	0.84	7.12		
	0.056	19.93	0.83	7.28		
	0.075	19.25	0.81	7.36		
	0.093	18.60	0.79	7.41		
	0.112	17.96	0.78	7.45		
	0.130	17.35	0.76	7.48		
	0.149	16.76	0.75	7.51		
	0.168	16.19	0.74	7.54		
	0.186	15.64	0.72	7.54		
- Chill	T. 15: 1	5				
<u>RMI</u> 18.750	Total Discharge 2.25) Ana	lysis Temperat 25.000	ture (°C)	Analysis pH 7.000
Reach Width (ft)	Reach De			Reach WDRa	tio	Reach Velocity (fps)
22.820	0.62			38.263	100	0.329
Reach CBOD5 (mg/L)	Reach Kc (R	each NH3-N (r	mg/L)	Reach Kn (1/days)
13.49	1.40		_	0.61		1.029
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	1	Reach DO Goal (mg/L)
7.649	18.91	6		Tsivoglou		5
Reach Travel Time (days)		Subreach				
0.465	TravTime (days)	(mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
	0.046	12.43	0.58	6.93		
	0.093	11.44	0.55	6.72		
	0.139	10.54	0.53	6.71		
	0.186	9.70	0.50	6.78		
	0.232	8.94	0.48	6.88		
	0.279	8.23	0.46	6.99		
	0.325	7.58	0.44	7.09		
	0.372	6.98	0.42	7.19		
	0.418	6.43	0.40	7.28		
	0.418 0.465	5.92	0.40	7.28		

WQM 7.0 D.O.Simulation

tream Code			Stream Name		
8093		SOUTH BE	RANCH CODOR	RUS CREI	EK
_	_	i) Ana		ire (°C)	Analysis pH
					7.000
				10	Reach Velocity (fps)
	-	_			0.338
	•	E		ıg/L)	Reach Kn (1/days)
					0.958
					Reach DO Goal (mg/L)
18.84	1		Tsivoglou		5
	Subreach	Results			
TravTime	CBOD5	NH3-N	D.O.		
(days)	(mg/L)	(mg/L)	(mg/L)		
0.006	7.68	1.23	7.21		
0.012	7.61	1.22	7.21		
0.017	7.54	1.21	7.21		
0.023	7.46	1.21	7.22		
0.029	7.39	1.20	7.22		
0.035	7.32	1.19	7.23		
0.041	7.26	1.19	7.23		
0.046	7.19	1.18	7.24		
0.052	7.12	1.17	7.25		
0.058	7.05	1.17	7.26		
	8093 Total Discharge 2.856 Reach De 0.673 Reach Kc.(1.355 Reach Kr.(18.84 TravTime (days) 0.006 0.012 0.017 0.023 0.029 0.035 0.041 0.046 0.052	8093 Total Discharge Flow (mgd 2.850 Reach Depth (ft) 0.673 Reach Kc (1/days) 1.352 Reach Kr (1/days) 18.841 TravTime (CBOD5 (mg/L)) 0.006 7.68 0.012 7.61 0.017 7.54 0.023 7.46 0.029 7.39 0.035 7.32 0.041 7.26 0.046 7.19 0.052 7.12	Total Discharge Flow (mgd) Anal 2.850 Reach Depth (ft) 0.673 Reach Kc (1/days) 1.352 Reach Kr (1/days) 18.841 Subreach Results CBOD5 NH3-N (mg/L) N	Total Discharge Flow (mgd) Analysis Temperature 2.850 24.076 Reach Depth (ft) Reach WDRate 0.673 45.240 Reach Kc (1/days) Reach NH3-N (moderate of the content of the	Total Discharge Flow (mgd) Analysis Temperature (°C) 2.850 24.076 Reach Depth (ft) Reach WDRatio 45.240 Reach Kc (1/days) Reach NH3-N (mg/L) 1.352 1.23 Reach Kr (1/days) Kr Equation 18.841 Tsivoglou

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
07H	8093	SOUTH BRANCH CODORUS CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
19.940	New Freedom ST	11.07	2	11.07	2	0	0
18.750	0	NA	NA	11.07	NA	NA	NA
16.250	Glen Rock STP	12.66	16	11.72	16	0	0
H3-N C	Chronic Allocati	ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
RMI		Baseline Criterion	WLA	Criterion	WĽA		
RMI	Discharge Name	Baseline Criterion (mg/L)	WLA	Criterion (mg/L)	WĽA	Reach	Reduction

Dissolved Oxygen Allocations

		CBC	DD5	NH	3-N	Dissolve	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
19.94	New Freedom STP	25	25	1	1	5	5	0	0
18.75		NA	NA	NA	NA	NA	NA	NA	NA
16.25	Glen Rock STP	25	25	7.3	7.3	5	5	0	0

WQM 7.0 Modeling Specifications

Parameters		Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method		EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	•	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Rat	io	1.36	Temperature Adjust Kr	~
D.O. Saturation		90.00%	Use Balanced Technology	✓
D.O. Goal		5		

WQM 7.0 Effluent Limits

	SWP Basin Stream	Code		Stream Name	<u> </u>		
	07H 80	93	SOL	TH BRANCH CODO	RUS CREEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
19.940	New Freedom STP	PA0043257	2.250	CBOD5	25		
				NH3-N	1	2	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
16.250	Glen Rock STP	PA0020818	0.600	CBOD5	25		
				NH3-N	7.3	14.6	
				Dissolved Oxygen			5

-	DEP Whole I	Effluent Tox	icity (WET) Analysis	Spreadshee	t
Type of Test	Chro	onic		Facility Nar	me
Species Test		odaphnia		r donity real	
Endpoint		roduction	N	ew Freedom V	VWTP
TIWC (decim					
No. Per Repli	cate 1			Permit No	
TST b value	0.75			PA004325	7
TST alpha va	lue 0.2				
		letion Date			letion Date
Replicate	5/1/2	2018	Replicate	4/30/	2019
No.	Control	TIWC	No.	Control	TIWC
1	32	32	1	8	22
2	28	36	2	29	26
3	34	27	3	18	22
4	29	30	4	28	31
5	14	34	5	31	27
6	27	34	6	20	31
7	35	33	7	28	31
8	0	39	8	30	37
9	27	35	9		
-				31	34
10	29	30	10	31	35
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	25.500	33.000	Mean	25.400	29.600
Std Dev.	10.659	3.432	Std Dev.	7.662	5.211
# Replicates	10	10	# Replicates	10	10
T-Test Result	5.0	435	T-Test Result	4.3	006
Deg. of Freed		6	Deg. of Freed		7
Critical T Valu		847	Critical T Valu		633
Pass or Fail		SS	Pass or Fail		SS
Fass of Fall	T.A.	33	Fass of Fall	T.A.	133
	T+ C	latina Data		T4 C	leties Dete
		letion Date	1		letion Date
Replicate		2020	Replicate		2021
No.	Control	TIWC	No.	Control	TIWC
1	21	20	1	33	33
2	20	18	2	29	19
3	20	24	3	23	36
4	19	17	4	29	33
5	16	21	5	23	25
6	20	20	6	20	35
7	6	20	7	24	38
8	16	19	8	29	28
9	21	23	9	30	29
10	18	20	10	32	28
11			11		
12			12		
13			13		
14			14		
15			15		
	47.70	00.000		07.000	00 400
Mean	17.700	20.200	Mean	27.200	30.400
Std Dev.	4.498	2.098	Std Dev.	4.387	5.739
# Replicates	10	10	# Replicates	10	10
T-Test Result	5.5	125	T-Test Result	4.7	859
Deg. of Freed	om 1	7	Deg. of Freed	om 1	5
Critical T Valu	e 0.8	633	Critical T Valu	e 0.8	662
Pass or Fail	PA	SS	Pass or Fail	PA	SS

	DEP Whole I	Effluent Toxi	city (WET) Analysis	Snreadshee	t .
			on, (1121 / Allalysis)		
Type of Test Species Test		onic iodaphnia	_	Facility Na	me
Endpoint	Sun	vival	N	ew Freedom \	WWTP
TIWC (decim		3			
No. Per Repl TST b value	icate 1 0.75			Permit No PA004325	
TST alpha va		,		1 7004020	,,
		oletion Date 2018			letion Date /2019
Replicate No.	Control	TIWC	Replicate No.	Control	TIWC
1	1	1	1 [1	1
2	1	1	2	1	1
3	1	1	3	1	1
4	1	1	4	1	1
5	0	1	5	1	1
6	1	1	6	1	1
7	1	1	7	1	1
8	0	1	8	1	1
9	1	1	9	1	1
10	1	1	10	1	1
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	0.800	1.000	Mean	1.000	1.000
Std Dev.	0.422	0.000	Std Dev.	0.000	0.000
# Replicates	10	10	# Replicates	10	10
T-Test Result Deg. of Freed Critical T Valu	lom Je	iee	T-Test Result Deg. of Freedo Critical T Valu	e	ice.
Deg. of Freed	lom Je	ASS	Deg. of Freedo	e	ss
Deg. of Freed Critical T Valu	lom Je PA		Deg. of Freedo Critical T Valu	e PA	
Deg. of Freed Critical T Valu Pass or Fail	om je PA Test Comp	ASS pletion Date //2020	Deg. of Freedo Critical T Valu Pass or Fail	e PA Test Comp	ASS pletion Date 2021
Deg. of Freed Critical T Valu	om je PA Test Comp	oletion Date	Deg. of Freedo Critical T Valu	e PA Test Comp	oletion Date
Deg. of Freed Critical T Valu Pass or Fail Replicate	PA Test Comp	oletion Date /2020	Deg. of Freedo Critical T Valu Pass or Fail Replicate	PA Test Comp 5/4/	oletion Date 2021
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	Test Comp 4/28	oletion Date /2020 TIWC	Deg. of Freedo Critical T Valu Pass or Fail Replicate No.	PA Test Comp 5/4/ Control	oletion Date 2021 TIWC
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	Test Comp 4/28 Control	oletion Date /2020 TIWC	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1	Test Comp 5/4/ Control	oletion Date 2021 TIWC
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	Test Comp 4/28 Control	oletion Date /2020 TIWC 1	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1	Test Comp 5/4/ Control 1	oletion Date 2021 TIWC
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 4/28 Control 1 1 1 1	72020 TIWC 1 1 1 1 1	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 5/4/ Control 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 4/28 Control 1 1 1 1 1	72020 TIWC 1 1 1 1 1 1	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 5/4/ Control 1 1 1 1 1	0letion Date 2021 TIWC 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 4/28 Control 1 1 1 1 1 1 1	7000 Date 7000 D	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 5/4/ Control 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1	7000 Date 7000 D	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 5/4/ Control 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1	Diletion Date /2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1	7000 Date 7000 D	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 5/4/ Control 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1	Diletion Date /2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1	Diletion Date /2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1	Diletion Date /2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1	Diletion Date /2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1	Diletion Date /2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dietion Date //2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Diletion Date /2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0.000	Diletion Date //2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0.000	Diletion Date /2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Diletion Date //2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Diletion Date //2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Diletion Date //2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp 4/28 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Diletion Date //2020 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	Test Comp 5/4/ Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0.000 10 0 0 0	Deletion Date 2021 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

ı	DEP Whole	e Effluent Tox	icity (WET) Analysis	Spreadshee	t
Type of Test	C	hronic	_	Facility Na	me
Species Test		mephales		r active real	ille
Endpoint	Si	urvival	N	ew Freedom V	WWTP
TIWC (decim		86			
No. Per Repli TST b value) 75		Permit No PA004325	
TST alpha va		75 25		FA004320	n
	Test Con	mpletion Date		Test Comp	oletion Date
Replicate	5/	1/2018	Replicate	4/30/	/2019
No.	Control	TIWC	No.	Control	TIWC
1	1	0.9	1	1	0.8
2	1	0.9	2	0.9	1
3	1	0.8	3	1	0.4
4	1	0.8	4	1	0.6
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	1.000	0.850	Mean	0.975	0.700
Std Dev.	0.000	0.058	Std Dev.	0.050	0.700
# Replicates	4	0.058	# Replicates	4	U.258 4
# Replicates	7	-	# Replicates	4	-
T-Test Result	10	0.5088	T-Test Result	1.0	047
Deg. of Freed		3	Deg. of Freed		
Critical T Valu					3
		_	•		3 649
Pass or Fail	ie 0).7649 PASS	Critical T Valu Pass or Fail	ie 0.7	3 649 ASS
	ie 0	.7649	Critical T Valu	ie 0.7	649
	ie O	.7649	Critical T Valu	e 0.7 PA	649
	Test Con	0.7649 PASS inpletion Date 28/2020	Critical T Valu	e 0.7 PA Test Comp	649 ASS
Pass or Fail	ie 0 I Test Con	0.7649 PASS inpletion Date	Critical T Valu Pass or Fail	e 0.7 PA Test Comp	649 ASS oletion Date
Pass or Fail Replicate No. 1	Test Con 4/2 Control	npletion Date 28/2020 TIWC	Critical T Valu Pass or Fail Replicate No. 1	Test Comp 5/4/ Control 0.8	oletion Date 2021 TIWC
Replicate No. 1	Test Con 4/2 Control 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1	Critical T Valu Pass or Fail Replicate No. 1	Test Comp 5/4// Control 0.8 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8
Replicate No. 1 2 3	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Replicate No. 1 2 3 4	Test Con 4/2 Control 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1	Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 5/4// Control 0.8 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8
Replicate No. 1 2 3 4 5	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Replicate No. 1 2 3 4 5	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Replicate No. 1 2 3 4 5 6 7	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Replicate No. 1 2 3 4 5 6 7	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Replicate No. 1 2 3 4 5 6 7 8	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Con 4/2 Control 0.9 1 0.9	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Con 4/2 Control 0.9 1	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 5/4// Control 0.8 0.7 0.7	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Con 4/2 Control 0.9 1 0.9 1	1.000	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 5/4/. Control 0.8 0.7 1	0.850
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Con 4/2 Control 0.9 1 0.9 1	0.7649 PASS mpletion Date 28/2020 TIWC 1 1 1	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 5/4/. Control 0.8 0.7 1	849 ASS oletion Date 2021 TIWC 0.9 0.8 0.9
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Con 4/2 Control 0.9 1 0.9 1	1.000 0.000	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	0.800 0.141	0.850 0.058
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Con 4/2 Control 0.9 1 0.9 1 0.950 0.058 4	1.000 0.000	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.800 0.800 0.141 4	0.850 0.058
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Con 4/2 Control 0.9 1 0.9 1 0.950 0.058 4	1.000 0.000 4	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	De 0.7 PA Test Comp 5/4// Control 0.8 0.7 0.7 1 0.800 0.141 4 7.4	0.850 0.058 4.85
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Con 4/2 Control 0.9 1 0.9 1 0.9 1 0.9	1.000 0.000 4	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.800 0.141 4	0.850 0.058 4
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Con 4/2 Control 0.9 1 0.9 1 0.9 1 0.9	1.000 0.000 4	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.800 0.141 4	0.850 0.058 0.058 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80

ı	DEP Who	le Effluent Tox	cicity (WET) Analysis §	preadshee	t
Type of Test Species Test		Chronic Cimephales		Facility Nar	me
Endpoint	G	rowth	Ne	w Freedom V	VWTP
TIWC (decima		.86		Permit No	
No. Per Repli TST b value		0 .75		PA004325	
TST alpha va		.25			
		mpletion Date			letion Date
Replicate		/1/2018	Replicate		2019
No. 1	Control 0.383	0.362	No. 1 1 □	Control 0.275	0.327
2	0.363	0.353	1 2	0.275	0.327
3	0.463	0.348	3	0.328	0.210
4	0.426	0.41	4	0.308	0.409
5	0.120	5.11	i i	0.000	0.100
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
	0.409	0.368	Mana	0.291	0.283
Mean Std Dev.	0.409	0.028	Mean Std Dev.	0.291	0.283
# Replicates	U.U45 4	U.U28 4	# Replicates	4	U.1U0 4
# Replicates	7	•	# Replicates	7	7
T-Test Result		2.8064	T-Test Result	1.1	819
Deg. of Freed		5	Deg. of Freedo		4
Critical T Valu		0.7267	Critical T Value		407
Pass or Fail		PASS	Pass or Fail	PA	SS
	Test Co	mpletion Date		Test Comp	letion Date
Replicate	4/	28/2020	Replicate	5/4/2	2021
No.	Control	TIWC	No.	Control	TIWC
1	0.391	0.48	1	0.34	0.348
2	0.408	0.501	2	0.295	0.371
3	0.382	0.378	3	0.287	0.418
4	0.361	0.389	4	0.379	0.335
5 6			5 6		
7			- ° -		
8		+	- 6 -		
9			i i		
10			10		
11			1 11		
12			12		
13			13		
14			14		
15			15		
			_		
Mean	0.386	0.437	Mean	0.325	0.368
Std Dev.	0.020	0.063	Std Dev.	0.043	0.037
# Replicates	4	4	# Replicates	4	4
		4 0045			004
T-Test Result		4.6046	T-Test Result		064
Deg. of Freed		4	Deg. of Freedo Critical T Value		5
Critical T Valu Pass or Fail		0.7407 PASS	Pass or Fail		267 . SS
1 035 OF Fall		. 7100	i daa Ui Fail	I'A	

WET Summary and Evaluation

Facility Name Permit No. Design Flow (MGD) Q₇₋₁₀ Flow (cfs)

PMF_a PMF_c

PA0043257	
2.25	
0.498	
1	
1	

New Freedom WWTP

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date				
Species	Endpoint	5/1/18	4/30/19	4/28/20	5/4/21	
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)			
		Test Date Test Date Test Date Test Date			
Species	Endpoint	5/1/18	4/30/19	4/28/20	5/4/21
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date				
Species	Endpoint	5/1/18	4/30/19	4/28/20	5/4/21	
Pimephales	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)			
		Test Date Test Date Test Date Test Date			
Species	Endpoint	5/1/18	4/30/19	4/28/20	5/4/21
Pimephales	Growth	PASS	PASS	PASS	PASS

Reasonable Potential? NO

Permit Recommendations

Chronic Test Type

87 % Effluent TIWC

Dilution Series 22, 44, 87, 94, 100 % Effluent

Permit Limit None

Permit Limit Species

Total Maximum Daily Load (TMDL) South Branch Codorus Creek Watershed York County

Pennsylvania Department of Environmental Protection Central Office Office of Water Management

July 9, 2003

Summary of the South Branch Codorus Creek TMDL

- The impaired segment of the South Branch Codorus Creek addressed by this TMDL is located in York County. The watershed covers approximately 72 square miles. The creek flows from the Pennsylvania/Maryland border to its confluence with Codorus Creek just southwest of the City of York. The protected use of the watershed is aquatic life. The aquatic life designation for the main stem South Branch Codorus Creek is warm water fishes, with the tributaries also designated as warm water fishes. For the purposes of developing this TMDL, two subbasins were delineated within the South Branch Codorus Creek subwatershed.
- 2. The TMDL for the South Branch segment was developed to address use impairments caused by siltation and nutrients. The main stem of South Branch Codorus Creek was placed on Pennsylvania's 303(d) list in 1996. A total of 16 miles were listed as impaired due to agriculture. The cause code indicates excess amounts of nutrients and suspended solids to be a problem. In 1999, as part of Pa. DEP's Unassessed Waters Program, an additional 15 miles were added to the year 2000 305(b) report. In order to ensure attainment and maintenance of water quality standards in the South Branch Codorus Creek for the 1996 listed segment, mean annual loadings of total phosphorus and sediment for subbasin 1 will need to be limited to 16,367.00 lbs/yr and 13,773,460.00 lbs/yr respectively. Mean annual loadings of total phosphorus and sediment for subbasin 2 will need to be limited to 13,493.61 lbs/yr and 11,355,391.80 lbs/yr respectively.

The major components of the South Branch Codorus Creek TMDL are summarized below:

Subbasin 1 Components	Total Phosphorus (lbs/yr)	Sediment (lbs/yr)
TMDL (Total Maximum Daily Load)	16,367.00	13,773,460.00
WLA (Wasteload Allocation)	3,650.00	0.00
MOS (Margin of Safety)	1,636.70	1,377,346.00
LA (Load Allocation)	11,080.30	12,396,114.00

Subbasin 2 Components	Total Phosphorus (lbs/yr)	Sediment (lbs/yr)
TMDL (Total Maximum Daily Load)	13,493.61	11,355,391.80
WLA (Wasteload Allocation)	6,853.33	0.00
MOS (Margin of Safety)	1,349.36	1,135,539.18
LA (Load Allocation)	5,290.92	10,219,852.62

3. Mean annual total phosphorus and sediment loading for subbasin 1 is estimated to be 33,852.94 lbs/yr and 29,141,794.00 lbs/yr respectively. Mean annual total phosphorus and sediment loading for subbasin 2 is estimated to be 24,269.89 lbs/yr and 17,753,092.40 lbs/yr respectively. To meet the TMDL, the phosphorus and sediment loading for subbasin 1 will require a 52 percent and 53 percent

- reduction respectively. To meet the TMDL, the phosphorus and sediment loading for subbasin 2 will require a 44 percent and 36 percent reduction respectively.
- 4. There are two point sources of total phosphorus to address in this TMDL. Load Allocations (LA) for phosphorus and sediment were made to the following nonpoint sources: hay and pasture lands, croplands, coniferous forest, mixed forest, deciduous forest, developed areas, stream banks, groundwater and septic systems.
- 5. For subbasin 1, the phosphorus and sediment TMDL includes a nonpoint source LA of 11,080.30 lbs/yr and 12,308,514.00 respectively. For subbasin 2, the phosphorus and sediment TMDL includes a nonpoint source LA of 5,290.92 lbs/yr and 10,219,852.62 respectively. Sources receiving allocations are hay/pasture, cropland, developed lands, and stream banks. Phosphorus and sediment loadings from all other sources were maintained at their existing levels. Allocations of phosphorus and sediment to all nonpoint sources in the TMDL segment are summarized below:

Load Allocations for Sources of Phosphorus and Sediment							
Pollutant Current Loading (lbs/yr) Load Allocation (lbs/yr) % Reduction							
Subbasin 1	Subbasin 1						
Phosphorus	33,852.94	11,080.30	67				
Sediment	29,141,794.00	12,396,114.00	58				
Subbasin 2							
Phosphorus	24,269.89	5,290.92	78				
Sediment	17,753,092.40	10,219,852.62	42				

- 6. Ten percent of the South Branch Codorus Creek phosphorus and sediment TMDL was set-aside as a margin of safety (MOS). The MOS is that portion of the pollutant loading that is reserved to account for any uncertainty in the data and computational methodology used for the analysis. For subbasin 1, the MOS for the phosphorus and sediment TMDL was set at 1,636.70 lbs/yr and 1,377,346.00 lbs/yr respectively. For subbasin 2, the MOS for the phosphorus and sediment TMDL was set at 1,349.36 lbs/yr and 1,135,539.18 lbs/yr respectively.
- 7. The continuous simulation model used for developing the South Branch Codorus Creek TMDL considers seasonal variation through a number of mechanisms. Daily time steps are used for weather data and water balance calculations. The model requires specification of the growing season and hours of daylight for each month. The model also considers the months of the year when manure is applied to the land. The combination of these actions accounts for seasonal variability.

Targeted TMDL values were then used as the basis for load allocations and reductions in the South Branch Codorus Creek subbasins, using the following two equations:

- 1. TMDL = WLA + LA + MOS
- 2. LA = ALA + LNR

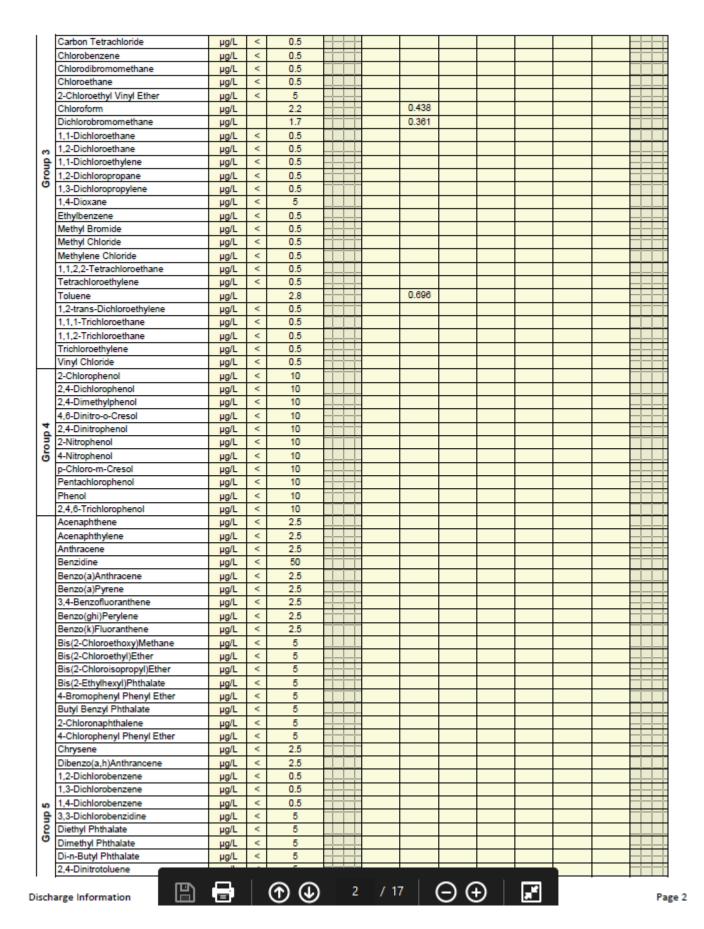
where:

TMDL = Total Maximum Daily Load WLA = Waste Load Allocation (point sources) LA = Load Allocation (nonpoint sources) ALA = Adjusted Load Allocation LNR = Loads not Reduced

C. Waste Load Allocation

There are two point sources in the watershed that discharge nutrients into the South Branch Codorus Creek. Both discharges are wastewater treatment plants associated with the towns of Glen Rock and New Freedom. Glen Rock has an average annual loading for phosphorus of 1,754.00 lbs/yr, with a permit limit (WLA) of 3,650.00 lbs/yr, based on its National Pollutant Discharge Elimination System (NPDES) permit requirements. The Glen Rock permit allows an average monthly mass loading limit of 10 lbs/day. New Freedom has an average annual loading for phosphorus of 5,031.80 lbs/yr. The WLA for New Freedom is set at 6,853.33 lbs/yr, based on the average monthly permitted flow of 1.237 million gallons per day. Table 7 shows the WLA information associated with both wastewater treatment plants.

Table 7. Waste Load Allocations (WLA) for the South Branch Codorus Creek Subbasins				
	Phospho	rus Load (lbs/yr)		
Permitted Discharges	Existing (Calculated from December 1999 thru June 1999 DMRs) (Used in AVGWLF)	TMDL WLA (Used in EMPR Scenario)		
Subbasin 1				
Glen Rock PA0020818	1,754.00	3,650.00		
Subbasin 2				
New Freedom PA0043257	5,031.80	6,853.33		


Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discharge	Stream				
Facility: N	ew Freedom	Borough W	NTP	NPDES Permit No.:	PA0043257	Outfall No.: 001
Evaluation Typ	e: Major	Sewage / Inc	dustrial Waste	Wastewater Descrip	tion: Sewage	

			Discharge	Characterist	tics						
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	5)	Complete Mix	x Times (min)			
(MGD)*	naruness (mg/l)	рп (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh			
2.25	145	7	7								

						0 If le	ft blank	0.5 lf le	ft blank	0) if left blan	k	1 If left	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	1	rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		368	Ц	Ш								
7	Chloride (PWS)	mg/L		120	H	\Box	-							
l E	Bromide	mg/L		0.11	\mathbf{H}	$\overline{}$								
Group	Sulfate (PWS)	mg/L		21	H	\top								
-	Fluoride (PWS)	mg/L			Ħ	T								
	Total Aluminum	μg/L		12	Ц	П		0.108						
	Total Antimony	μg/L	<	1	H	\Box	-							
	Total Arsenic	μg/L		2	H	$\overline{}$		0.346						
	Total Barium	μg/L		1	H			0.125						
	Total Beryllium	μg/L	<	1	Ħ	\sqcap								
	Total Boron	μg/L		120	\Box			0.16						
	Total Cadmium	μg/L	<	0.2	H	\Box								
	Total Chromium (III)	μg/L		1	H	+								
	Hexavalent Chromium	μg/L	<	0.25	Ħ	+								
	Total Cobalt	μg/L	<	1		\Box								
	Total Copper	μg/L		12		\Box		0.233						
2	Free Cyanide	μg/L	<	0.5	H	-								
Group	Total Cyanide	μg/L	<	4	H	-								
5	Dissolved Iron	μg/L		170	Ħ	\forall		0.035						
	Total Iron	μg/L		400				0.072						
	Total Lead	μg/L	<	1	II.	\Box								
	Total Manganese	µg/L		51	H	+	-	0.158						
	Total Mercury	μg/L	<	0.2	H	77								
	Total Nickel	μg/L		4	Ħ	\forall								
	Total Phenols (Phenolics) (PWS)	μg/L		22				0.214						
	Total Selenium	μg/L	<	1	H	\Box		0.53						
	Total Silver	µg/L		0.3	H			0.247						
	Total Thallium	μg/L	<	1	Ħ	\forall								
	Total Zinc	μg/L		26	\Box	$\dashv \dashv$		0.069						
	Total Molybdenum	µg/L		1.3				0.912						
	Acrolein	μg/L	<	2										
	Acrylamide	μg/L	<		H									
	Acrylonitrile	μg/L	<	2	H									
	Benzene	μg/L	<	0.5										
	Bromoform	μg/L		1.1				0.495						

	2,6-Dinitrotoluene	μg/L	<	5	\Box		_					
	Di-n-Octyl Phthalate	µg/L	<	5	H	=	#					
	1,2-Diphenylhydrazine	µg/L	<	5	H	=	+					
ŀ	Fluoranthene		· ·	2.5	Н	-	+	_				
ŀ		μg/L		2.5	Ħ	=	7	_				
	Fluorene	µg/L	<		Ħ		\Rightarrow					
	Hexachlorobenzene	μg/L	<	5			4					
	Hexachlorobutadiene	μg/L	<	0.5	Ц	_	4					
	Hexachlorocyclopentadiene	µg/L	<	5	Ц	_	4					
L	Hexachloroethane	μg/L	<	5	H	_	4					
ı	Indeno(1,2,3-cd)Pyrene	μg/L	<	2.5	\dashv							
l	Isophorone	μg/L	٧	5	\exists		\exists					
	Naphthalene	μg/L	٧	0.5	П	T	T					
ı	Nitrobenzene	μg/L	<	5								
ı	n-Nitrosodimethylamine	µg/L	<	5			耳					
	n-Nitrosodi-n-Propylamine	μg/L	<	5	Ħ		_					
	n-Nitrosodiphenylamine	µg/L	<	5	H		=					
ŀ	Phenanthrene	µg/L	<	2.5	Ħ	=	+					
ŀ	Pyrene		· ·	2.5	H	-	-					
ŀ	*	μg/L			Ħ	=	\Rightarrow					
\dashv	1,2,4-Trichlorobenzene	μg/L	<	0.5								
ļ	Aldrin	μg/L	<									
ļ	alpha-BHC	μg/L	<									
-[beta-BHC	μg/L	<		Ш							
ĺ	gamma-BHC	μg/L	٧									
1	delta BHC	μg/L	<		H							
Ī	Chlordane	μg/L	٧		H	-	7					
ı	4.4-DDT	μg/L	<		Ħ	7	Ħ					H
	4.4-DDE	μg/L	<		Н		+					
	4.4-DDD	µg/L	<		Ħ	T	T					
ŀ	Dieldrin	μg/L	<									
ŀ	alpha-Endosulfan		· ·		H	٥	#	-				
	beta-Endosulfan	μg/L	<		H	4	+	-				
		μg/L			Н	\dashv	+					\square
ì	Endosulfan Sulfate	μg/L	<		H	4	4					
	Endrin	μg/L	<		H	=	=					
5	Endrin Aldehyde	μg/L	<		Ħ		\Rightarrow					
	Heptachlor	μg/L	<									
	Heptachlor Epoxide	μg/L	٧									
	PCB-1016	μg/L	٧		Ц	_	4					
	PCB-1221	μg/L	<		H	4	4					
ı	PCB-1232	µg/L	<		H	=	7					
ı	PCB-1242	μg/L	<		Ħ	=	7					
ı	PCB-1248	μg/L	<		H		\dashv					
	PCB-1254	µg/L	<		Ħ	=	\dashv					
	PCB-1260	µg/L	<		Ħ		Ŧ					
ŀ			<				-	_				
-	PCBs, Total	μg/L	_		H							
	Toxaphene	μg/L	<									
	2,3,7,8-TCDD	ng/L	<									
	Gross Alpha	pCi/L										
	Total Beta	pCi/L	٧									
}[Radium 226/228 Total Strontium Total Uranium	pCi/L	<									
<u> </u>	Total Strontium	μg/L	<									
' [Total Uranium	μg/L	<									
	Osmotic Pressure	mOs/kg										
7												
ŀ					H							
ŀ												
ŀ												
ŀ												
-												
-												
- 1					Ц							
ŀ											 	
					Ħ							

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

New Freedom Borough WWTP, NPDES Permit No. PA0043257, Outfall 001

Instructions Disch	arge Str	eam														
Receiving Surface W	ater Name:	South Bran	ch Codorus	Creek			No. Rea	aches to I	Model:	1		×	tewide Criteri			
Location	Stream Cod	ie* RMI	Elevat	DA (mi	²) " SI	ope (ft/ft)		Withdraw MGD)		y Fish eria*			SANCO Crite			
Point of Discharge	008093	19.94	4 693	3					Y	es						
End of Reach 1	008093	18.7	5 603	6.98					Y	es						
Q 7-10 Location	RMI	LFY (cfs/mi ²)*	Flow Stream	(cfs)	W/D Ratio	Width (ft)	Depth (ft)	Velocit y (fps)	Time	Шаг	Tributa	ary pH	Stream Hardness*	m pH*	Analys Hardness	is pH
Point of Discharge	19.94	0.1	0.498	modaly	20	(it)	(11)	y (ips)	(days)	T I GI	uness	Pil	102.7	7	Hardness	PIT
End of Reach 1	18.75	0.1	1.24							-			102.7			
Q _h										-						
Location	RMI	LFY	Flow	(cfs)	W/D		Depth	Velocit	Time		Tributa	iry	Stream	m	Analys	is
Location	KWII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Har	dness	pН	Hardness	pН	Hardness	pН
Point of Discharge	19.94													Ť		
End of Reach 1	18.75															

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results						New Fre	edom Boroug	gh WWTP, NPDES Permit No. PA0043257, Outfall 001
Instructions Results	RETURN	TO INPU	тѕ) (SAVE AS	PDF)	PRINT	г) 🖲 А	All Inputs Results Limits
☐ Hydrodynamics								
✓ Wasteload Allocations								
☑ AFC ccī	Γ (min): 0.	057	PMF:	1	Ana	lysis Hardne	ss (mg/l):	139.71 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	857	
Total Antimony	0	0		0	1,100	1,100	1,257	
Total Arsenic	0	0		0	340	340	389	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	24,005	
Total Boron	0	0		0	8,100	8,100	9,259	
Total Cadmium	0	0		0	2.787	3.0	3.43	Chem Translator of 0.93 applied
Total Chromium (III)	0	0		0	749.246	2,371	2,710	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0 -		0	16	16.3	18.6	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	109	
Total Copper	0	0		0	18.416	19.2	21.9	Chem Translator of 0.98 applied
Free Cyanide	0	0		0	22	22.0	25.1	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	92.759	125	143	Chem Translator of 0.742 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	1.88	Chem Translator of 0.85 applied
Total Nickel	0	0		0	621.320	623	712	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	5.717	6.73	7.69	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	74.3	
Total Zinc	0	0		0	155.559	159	182	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	3.43	

odel Results 12/10/2021 Page 5

					255	255	740	
Acrylonitrile	0	0		0	650	650	743	
Benzene	0	0		0	640	640	732	
Bromoform	0	0		0	1,800	1,800	2,058	
Carbon Tetrachloride	0	0		0	2,800	2,800	3,201	
Chlorobenzene	0	0		0	1,200	1,200	1,372	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	20,575	
Chloroform	0	0		0	1,900	1,900	2,172	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	15,000	15,000	17,146	
1,1-Dichloroethylene	0	0		0	7,500	7,500	8,573	
1,2-Dichloropropane	0	0		0	11,000	11,000	12,574	
1,3-Dichloropropylene	0	0		0	310	310	354	
Ethylbenzene	0	0		0	2,900	2,900	3,315	
Methyl Bromide	0	0		0	550	550	629	
Methyl Chloride	0	0		0	28.000	28.000	32.006	
Methylene Chloride	0	0		0	12,000	12.000	13,717	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1.000	1,143	
Tetrachloroethylene	0	0	 	0	700	700	800	
Toluene	0	0	 	0	1,700	1.700	1,943	
1,2-trans-Dichloroethylene	0	0		0	6,800	6.800	7,773	
1,1,1-Trichloroethane	0	0		0	3.000	3.000	3,429	
1,1,2-Trichloroethane	0	0		0	3,400	3,400	3,886	
Trichloroethylene	0	0	++++	0	2,300	2,300	2,629	
<u> </u>					-		-	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	560	560	640	
2,4-Dichlorophenol	0	0		0	1,700	1,700	1,943	
2,4-Dimethylphenol	0	0		0	660	660	754	
4,6-Dinitro-o-Cresol	0	0		0	80	80.0	91.4	
2,4-Dinitrophenol	0	0		0	660	660	754	
2-Nitrophenol	0	0		0	8,000	8,000	9,145	
4-Nitrophenol	0	0		0	2,300	2,300	2,629	
p-Chloro-m-Cresol	0	0		0	160	160	183	
Pentachlorophenol	0	0		0	8.723	8.72	9.97	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	460	460	526	
Acenaphthene	0	0		0	83	83.0	94.9	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	343	
Benzo(a)Anthracene	0	0		0	0.5	0.5	0.57	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	34,292	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4.500	4.500	5.144	
4-Bromophenyl Phenyl Ether	0	0		0	270	270	309	
	0	0		0		140	160	
Butyl Benzyl Phthalate	U	U		U	140	140	100	

odel Results 12/10/2021 Page 6

2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	937	
1,3-Dichlorobenzene	0	0	0	350	350	400	
1,4-Dichlorobenzene	0	0	0	730	730	834	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	4,572	
Dimethyl Phthalate	0	0	0	2,500	2,500	2,858	
Di-n-Butyl Phthalate	0	0	0	110	110	126	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	1,829	
2,6-Dinitrotoluene	0	0	0	990	990	1,132	
1,2-Diphenylhydrazine	0	0	0	15	15.0	17.1	
Fluoranthene	0	0	0	200	200	229	
Fluorene	0	0	- 0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	11.4	
Hexachlorocyclopentadiene	0	0	0	5	5.0	5.72	
Hexachloroethane	0	0	0	60	60.0	68.6	
Indeno(1,2,3-cd)Pyrene	0	0	- 0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	11,431	
Naphthalene	0	0	0	140	140	160	
Nitrobenzene	0	0	0	4,000	4,000	4,572	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	19,432	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	343	
Phenanthrene	0	0	0	5	5.0	5.72	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	149	

[-	CFC	CCT (min):	0.057	PMF:	1	Analysis Hardness (mg/l):	139.71	Analysis pH:	7.00	
----	-----	------------	-------	------	---	---------------------------	--------	--------------	------	--

	sueam							
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
Politiants	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEX (pg/E)	Confinents
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	251	
Total Arsenic	0	0		0	150	150	171	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	4,687	
Total Boron	0	0		0	1,600	1,600	1,829	
Total Cadmium	0	0		0	0.310	0.35	0.4	Chem Translator of 0.895 applied
Total Chromium (III)	0	0		0	97.462	113	130	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	11.9	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	21.7	
Total Copper	0	0		0	11.918	12.4	14.2	Chem Translator of 0.98 applied

lodel Results 12/10/2021 Page 7

Free Cyanide	0	0		0	5.2	5.2	5.94	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0	+	0	1,500	1.500	1.715	WQC = 30 day average; PMF = 1
Total Lead	0	0	 	0	3.615	4.87	5.57	Chem Translator of 0.742 applied
	0	0		0	3.015 N/A	4.87 N/A	9.97 N/A	Chem Translator of 0.742 applied
Total Manganese		_		_				0, 7, 1, 1005, 11,
Total Mercury Total Nickel	0	0	\cdots	0	0.770 69.009	0.91 69.2	1.04 79.1	Chem Translator of 0.85 applied
	_	_		_				Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	5.7	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	14.9	
Total Zinc	0	0		0	156.831	159	182	Chem Translator of 0.988 applied
Acrolein	0	0		0	3	3.0	3.43	
Acrylonitrile	0	0		0	130	130	149	
Benzene	0	0		. 0	130	130	149	
Bromoform	0	0		0	370	370	423	
Carbon Tetrachloride	0	0		0	560	560	640	
Chlorobenzene	0	0		0	240	240	274	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	4,001	
Chloroform	0	0		0	390	390	446	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	3,544	
1,1-Dichloroethylene	0	0		0	1,500	1,500	1,715	
1,2-Dichloropropane	0	0		0	2,200	2,200	2,515	
1,3-Dichloropropylene	0	0		0	61	61.0	69.7	
Ethylbenzene	0	0		0	580	580	663	
Methyl Bromide	0	0		0	110	110	126	
Methyl Chloride	0	0		0	5,500	5,500	6,287	
Methylene Chloride	0	0		0	2.400	2.400	2.743	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	240	
Tetrachloroethylene	0	0		0	140	140	160	
Toluene	0	0		0	330	330	377	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	1,600	
1.1.1-Trichloroethane	0	0		0	610	610	697	
1,1,2-Trichloroethane	0	0		0	680	680	777	
Trichloroethylene	0	0		0	450	450	514	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	126	
2,4-Dichlorophenol	0	0		0	340	340	389	
2,4-Dimethylphenol	0	0		ő	130	130	149	
4.6-Dinitro-o-Cresol	0	0		0	16	16.0	18.3	
2,4-Dinitrophenol	0	0		0	130	130	149	
2-Nitrophenol	0	0		0	1.600	1.600	1.829	
4-Nitrophenol	0	0		0	470	470	537	
4-Nitrophenoi	U	U			4/0	4/0	557	

10del Results 12/10/2021 Page 8

p-Chloro-m-Cresol	0	0	0	500	500	572	
Pentachlorophenol	0	0	0	6.693	6.69	7.65	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	104	
Acenaphthene	0	0	0	17	17.0	19.4	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	67.4	
Benzo(a)Anthracene	0	0	0	0.1	0.1	0.11	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	6,858	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	1,040	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	61.7	
Butyl Benzyl Phthalate	0	0	0	35	35.0	40.0	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	183	
1,3-Dichlorobenzene	0	0	0	69	69.0	78.9	
1,4-Dichlorobenzene	0	0	0	150	150	171	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	914	
Dimethyl Phthalate	0	0	0	500	500	572	
Di-n-Butyl Phthalate	0	0	0	21	21.0	24.0	
2,4-Dinitrotoluene	0	0	0	320	320	366	
2,6-Dinitrotoluene	0	0	0	200	200	229	
1,2-Diphenylhydrazine	0	0	0	3	3.0	3.43	
Fluoranthene	0	0	0	40	40.0	45.7	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	2.29	
Hexachlorocyclopentadiene	0	0	0	1	1.0	1.14	
Hexachloroethane	0	0	0	12	12.0	13.7	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	2,400	
Naphthalene	0	0	0	43	43.0	49.2	
Nitrobenzene	0	0	0	810	810	926	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	3,886	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	67.4	
Phenanthrene	0	0	0	1	1.0	1.14	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	29.7	
							1

odel Results 12/10/2021 Page!

⊘ тнн сс	T (min): 0.0	057	PMI	F: [1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Co (µg/L		Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ug/L)	0	(pg/c	,	0	500.000	500,000	N/A	
Chloride (PWS)	0	0			0	250,000	250,000	N/A	
Sulfate (PWS)	0	0			0	250,000	250,000	N/A	
Total Aluminum	0	0			0	N/A	N/A	N/A	
Total Antimony	0	0		-	0	5.6	5.6	6.4	
Total Arsenic	0	0		-	0	10	10.0	11.4	
Total Barium	0	0			0	2,400	2,400	2,743	
Total Boron	0	0			0	3,100	3,100	3.544	
Total Cadmium	0	0		-	0	N/A	3,100 N/A	N/A	
	0	0			0	N/A N/A	N/A N/A	N/A N/A	
Total Chromium (III) Hexavalent Chromium	0	0			0	N/A N/A	N/A N/A	N/A N/A	
Total Cobalt	0	0			0	N/A	N/A	N/A	
Total Copper	0	0		+	0	N/A	N/A	N/A	
Free Cyanide	0	0		-	0	N/A 4	4.0	4.57	
	_	0			_	300	300	343	
Dissolved Iron	0	0			0		N/A	343 N/A	
Total Iron	0	_			0	N/A			
Total Lead	0	0			0	N/A	N/A	N/A	
Total Manganese	0	0			0	1,000	1,000	1,143	
Total Mercury Total Nickel	0	0			0	0.050 610	0.05 610	0.057 697	
	_	_			0				
Total Phenols (Phenolics) (PWS)	0	0			0	5	5.0	N/A	
Total Selenium	0	0 -			0	N/A	N/A	N/A	
Total Silver	0	0			0	N/A	N/A	N/A	
Total Thallium	0	0			0	0.24	0.24	0.27	
Total Zinc	0	0			0	N/A	N/A	N/A	
Acrolein	0	0			0	3	3.0	3.43	
Acrylonitrile	0	0			0	N/A	N/A	N/A	
Benzene	0	0			0	N/A	N/A	N/A	
Bromoform	0	0 .			0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0			0	N/A	N/A	N/A	
Chlorobenzene	0	0			0	100	100.0	114	
Chlorodibromomethane	0	0			0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0 .			0	N/A	N/A	N/A	
Chloroform	0	0			0	N/A	N/A	N/A	
Dichlorobromomethane	0	0			0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0			0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0 -			0	33	33.0	37.7	
1,2-Dichloropropane	0	0			0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0			0	N/A	N/A	N/A	
Ethylbenzene	0	0			0	68	68.0	77.7	

odel Results 12/10/2021 Page 10

Methyl Bromide	0	0		0	100	100.0	114	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0	 	0	N/A	N/A	N/A	
1.1.2.2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	
Toluene	0	0		0	57	57.0	65.2	
1,2-trans-Dichloroethylene	0	0	 	0	100	100.0	114	
1,1,1-Trichloroethane	0	0		0	10,000	10,000	11,431	
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A	
	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	N/A N/A	N/A N/A	N/A N/A	
Vinyl Chloride		0		_	30	30.0	34.3	
2-Chlorophenol	0			0				
2,4-Dichlorophenol	0	0		0	10	10.0	11.4	
2,4-Dimethylphenol	0	0		0	100	100.0	114	
4,8-Dinitro-o-Cresol	0	0		0	2	2.0	2.29	
2,4-Dinitrophenol	0	0		0	10	10.0	11.4	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0		0	4,000	4,000	4,572	
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	70	70.0	80.0	
Anthracene	0	0		0	300	300	343	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	229	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	0.11	
2-Chloronaphthalene	0	0		0	800	800	914	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	1,000	1,000	1,143	
1.3-Dichlorobenzene	0	0		0	7	7.0	8.0	
1.4-Dichlorobenzene	0	0		0	300	300	343	
3.3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	686	
Dimethyl Phthalate	0	0		0	2.000	2.000	2.286	
Di-n-Butyl Phthalate	0	0		0	20	20.0	22.9	
2.4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,4-Dinidoloidene	U	U		U	INA	IWA	INA	

1odel Results

Page 11

0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	20	20.0	22.9	
0	0		0	50	50.0	57.2	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	4	4.0	4.57	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	34	34.0	38.9	
0	0		0	N/A	N/A	N/A	
0	0		0	10	10.0	11.4	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	20	20.0	22.9	
0	0		0	0.07	0.07	0.08	
	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 20 20.0 0 0 0 0 50 50.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 N/A N/A N/A N/A 0 0 0 20 20.0 22.9 0 0 0 50 50.0 57.2 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A N/A 0 0

☑ CRL CC	T (min): 0.6	884	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0 -		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0 -		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0 .		. 0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	

lodel Results 12/10/2021 Page 12

T-4-100				_	B1// B	A1/A	A1/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	0.13	
Benzene	0	0		0	0.58	0.58	1.25	
Bromoform	0	0		0	7	7.0	15.1	
Carbon Tetrachloride	0	0		0	0.4	0.4	0.86	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.8	0.8	1.73	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	12.3	
Dichlorobromomethane	0	0		0	0.95	0.95	2.05	
1,2-Dichloroethane	0	0		0	9.9	9.9	21.4	
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0		0	0.9	0.9	1.94	
1,3-Dichloropropylene	0	0		0	0.27	0.27	0.58	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methyl Bromide	0	0		0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	43.2	
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	0.43	
Tetrachloroethylene	0	0		0	10	10.0	21.6	
Toluene	0	0		0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1.1.1-Trichloroethane	0	0		0	N/A	N/A	N/A	
1.1.2-Trichloroethane	0	0		0	0.55	0.55	1.19	
Trichloroethylene	0	0		0	0.6	0.6	1.3	
Vinyl Chloride	0	0		0	0.02	0.02	0.043	
2-Chlorophenol	0	0	 	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0		0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0		0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0		0	N/A	N/A	N/A	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	0.030	0.03	0.065	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	1.5	1.5	3.24	
Acenaphthene	0	0		0	N/A	N/A	N/A	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	0.0001	0.0001	0.0002	
Benzo(a)Anthracene	0	0		0	0.0001	0.0001	0.0002	
Benzo(a)Pyrene	0	0		0	0.0001	0.0001	0.002	
Denzo(a)r yrene	U	U		U	0.0001	0.0001	0.0002	

ndel Results 12/10/2021 Page 13

3.4-Benzofluoranthene	0	0	0	0.001	0.001	0.002	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.022	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.065	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	0.69	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	0.26	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.0002	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	0.11	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	0.11	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	0.11	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	0.065	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.0002	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.022	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	0.22	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.002	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.002	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.011	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	7.13	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Arsenic	Report	Report	Report	Report	Report	μg/L	11.4	THH	Discharge Conc > 10% WQBEL (no RP)

xdel Results 12/10/2021 Page 14

Total Copper	0.27	0.36	14.2	19.2	19.2	μg/L	14.2	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Dissolved Iron	Report	Report	Report	Report	Report	μg/L	343	THH	Discharge Conc > 10% WQBEL (no RP)
Total Iron	Report	Report	Report	Report	Report	μg/L	1,715	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	159	AFC	Discharge Conc > 10% WQBEL (no RP)
Dichlorobromomethane	0.039	0.055	2.05	2.92	5.13	μg/L	2.05	CRL	Discharge Conc ≥ 50% WQBEL (RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	750	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Barium	2,743	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	1,829	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	0.4	μg/L	Discharge Conc < TQL
Total Chromium (III)	130	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	11.9	μg/L	Discharge Conc < TQL
Total Cobalt	21.7	μg/L	Discharge Conc < TQL
Free Cyanide	4.57	μg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Total Lead	5.57	μg/L	Discharge Conc < TQL
Total Manganese	1,143	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.057	μg/L	Discharge Conc < TQL
Total Nickel	79.1	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Selenium	5.7	μg/L	Discharge Conc < TQL
Total Silver	6.73	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	0.27	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	3.0	μg/L	Discharge Conc < TQL
Acrylonitrile	0.13	μg/L	Discharge Conc < TQL
Benzene	1.25	μg/L	Discharge Conc < TQL
Bromoform	15.1	μg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	0.86	μg/L	Discharge Conc < TQL
Chlorobenzene	114	μg/L	Discharge Conc < TQL
Chlorodibromomethane	1.73	μg/L	Discharge Conc < TQL

odel Results 12/10/2021 Page 15

Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	4,001	μg/L	Discharge Conc < TQL
Chloroform	12.3	μg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	21.4	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	37.7	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	1.94	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	0.58	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	77.7	μg/L	Discharge Conc < TQL
Methyl Bromide	114	μg/L	Discharge Conc < TQL
Methyl Chloride	6,287	μg/L	Discharge Conc < TQL
Methylene Chloride	43.2	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	0.43	μg/L	Discharge Conc < TQL
Tetrachloroethylene	21.6	μg/L	Discharge Conc < TQL
Toluene	65.2	μg/L	Discharge Conc ≤ 25% WQBEL
1,2-trans-Dichloroethylene	114	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	697	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	1.19	μg/L	Discharge Conc < TQL
Trichloroethylene	1.3	μg/L	Discharge Conc < TQL
Vinyl Chloride	0.043	μg/L	Discharge Conc < TQL
2-Chlorophenol	34.3	μg/L	Discharge Conc < TQL
2.4-Dichlorophenol	11.4	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	114	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	2.29	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	11.4	μg/L	Discharge Conc < TQL
2-Nitrophenol	1.829	μg/L	Discharge Conc < TQL
4-Nitrophenol	537	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	160	μg/L	Discharge Conc < TQL
Pentachlorophenol	0.065	μg/L	Discharge Conc < TQL
Phenol	4.572	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	3.24	μg/L	Discharge Conc < TQL
Acenaphthene	19.4	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	343	μg/L	Discharge Conc < TQL
Benzidine	0.0002	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.002	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.0002	μg/L	Discharge Conc < TQL
3.4-Benzofluoranthene	0.002	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	0.002 N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.022	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethoxy)Methane Bis(2-Chloroethyl)Ether	0.065	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	229		Discharge Cond < TQL Discharge Cond < TQL
Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate	0.69	μg/L	Discharge Conc < TQL Discharge Conc < TQL
DIS(Z-Ethylnexyl)Phthalate	0.09	μg/L	Discharge Cond < TQL

del Results Page 16

Page 17

NPDES Permit Fact Sheet New Freedom Borough WWTP

odel Results

4-Bromophenyl Phenyl Ether	61.7	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.11	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	914	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	0.26	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.0002	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	183	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	8.0	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	171	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	0.11	μg/L	Discharge Conc < TQL
Diethyl Phthalate	686	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	572	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	22.9	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	0.11	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	0.11	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.065	μg/L	Discharge Conc < TQL
Fluoranthene	22.9	μg/L	Discharge Conc < TQL
Fluorene	57.2	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.0002	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.022	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	1.14	μg/L	Discharge Conc < TQL
Hexachloroethane	0.22	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.002	μg/L	Discharge Conc < TQL
Isophorone	38.9	μg/L	Discharge Conc < TQL
Naphthalene	49.2	μg/L	Discharge Conc < TQL
Nitrobenzene	11.4	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.002	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.011	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	7.13	μg/L	Discharge Conc < TQL
Phenanthrene	1.14	μg/L	Discharge Conc < TQL
Pyrene	22.9	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	0.08	μg/L	Discharge Conc < TQL

60

	Tools and References Used to Develop Permit
1	WOM (as Windows Madel (as a Australia)
 <u> </u> 	WQM for Windows Model (see Attachment)
<u>]</u> 1	Toxics Management Spreadsheet (see Attachment)
<u>]</u> 1	TRC Model Spreadsheet (see Attachment)
1	Temperature Model Spreadsheet (see Attachment)
 _	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other: