

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0043443

APS ID 17519

Authorization ID 1396205

	Applicant and Fa	acility Information	
Applicant Name	Alexandria Borough & Porter Township Joint Sewer Authority Huntingdon County	Facility Name	Alexandria Borough Porter Township STP
Applicant Address	PO Box 113, 5271 Grange Hall Road	Facility Address	5271 Grange Hall Road
	Alexandria, PA 16611-0113		Alexandria, PA 16611-0113
Applicant Contact	Mike Peters	Facility Contact	John Buskirk
Applicant Phone	(814) 669-9309	Facility Phone	(814) 574-9271
Client ID	66645	Site ID	246212
Ch 94 Load Status	Not Overloaded	Municipality	Porter Township
Connection Status	No Limitations	County	Huntingdon
Date Application Rece	ived May 12, 2022	EPA Waived?	Yes
Date Application Acce	pted May 13, 2022	If No, Reason	

Summary of Review

The Gwin Dobson & Foreman (GD & F) Engineers, Inc., on behalf of the Alexandria Borough Porter Township Joint Sewer Authority Wastewater Treatment Plant, has applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. The permit was reissued on September 8, 2017 and became effective on October 1, 2017. The permit will expire on September 30, 2022.

The facility has an average annual design flow of 0.24 MGD and a hydraulic design capacity of 0.30 MGD. The authorized discharge of treated sewage is from the existing treatment plant located in Porter Township, Huntingdon County into Frankstown Branch Juniata River.

In order of percent contribution, this facility serves 75% of Porter Township, and 25% of Alexandria Borough.

The WQM Part II Permit No. 3103401 issued on July 02, 2003 authorized construction of sewer extension in 5 areas and upgrade of treatment plant; and 3103401 A-1 amendment was issued on 1/25/2012 to upgrade the treatment facility, pump station, headworks, and sludge handling.

Sludge use and disposal description and location(s): N/A due to the sludge is hauled to Sandy Run Landfill by Green ForLife Environmental.

Changes from the previous permit: The E. Coli. monitoring and report requirements will add to the permit.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
Х		Hilaryle Hilary H. Le / Environmental Engineering Specialist	September 2, 2022
Х		/s/ Daniel W. Martin, P.E. / Environmental Engineer Manager	September 19, 2022

Discharge, Receiving	Waters and Water Supply Inform	nation	
Outfall No. 001		Design Flow (MGD)	0.24
Latitude 40° 33'	' 14.06"	Longitude	-78° 5' 40.13"
Quad Name Alexa	andria	Quad Code	
Wastewater Descript	ion: Sewage Effluent		
	Frankstown Branch Juniata River (WWF)	Stream Code	16061
_	65606354	 RMI	4.13 miles
Drainage Area	379 mi. ²	Yield (cfs/mi²)	See comments below
_	See comments below	Q ₇₋₁₀ Basis	See comments below
Elevation (ft)	688	Slope (ft/ft)	
Watershed No.	11-A	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairme	ent		
Source(s) of Impairm	nent		
TMDL Status	none	Name NA	
Background/Ambient pH (SU) Temperature (°F)	: Data 	Data Source	
Hardness (mg/L) Other:	150	WQN0216, median July-Sep,	1964-1987
	Public Water Supply Intake	Mifflintown Borough Municipal	Authority Juniata County
	ıniata River	_ Flow at Intake (cfs)	
PWS RMI 37	7.37 miles	Distance from Outfall (mi)	Approximate 69.0 miles

Changes Since Last Permit Issuance: none

Drainage Area

The discharge is to Frankstown Branch Juniata River at RMI 4.13 miles. A drainage area upstream of the discharge is estimated to be 379 mi.², according to USGS PA StreamStats available at https://streamstats.usgs.gov/ss/.

Stream Flow

Nearest USGS Stream gage is 01556000 on Frankstown Branch Juniata River. Recent stream flow retrievals resulted in a Q_{7-10} , and Q_{30-10} of 31.6 cfs, and 38.1 cfs. These values were obtained from the latest USGS StreamStats report. The drainage area is reported to be 289 mi.² at the gage station. The drainage area at discharge point is found to be 379 mi.² from USGS StreamStats. The flow calculations are shown below:

$$Q_{7-10}$$
 runoff rate = 31.6/289 = 0.11 cfs/mi.²
 Q_{30-10}/Q_{7-10} = 1.36
 Q_{1-10}/Q_{7-10} = 0.64

The drainage area at discharge point is found to be 379 mi.² from USGS StreamStats.

The Q_{7-10} at discharge = 0.11 cfs/mi.² x 379 mi.² = 41.69 cfs

For WQM modelling purposes, 25% of the flow will be used.

 Q_{7-10} model = 41.69 cfs x 0.25 = 10.42 cfs

NPDES Permit Fact Sheet Alexandria Borough Porter Township STP Frankstown Branch Juniata River

25 Pa. Code § 93.9n classifies Frankstown Branch Juniata River as warm water & migratory fishes (WWF & MF) surface water. Based on the 2022 Integrated Report, Frankstown Branch Juniata River-65606354, assessment unit IDs 867 & 16845, is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

Public Water Supply

The nearest downstream public water supply intake is Mifflintown Water Systems in Juniata County at RMI 69.0 miles downstream of the discharge. The discharge will not impact the intake because of the distance, dilution, and effluent limits.

WQM Permit No.	Issuance Date		Description	
3103401 A-1	1/25/2012	Upgrade of the treatment fac	cility, pump station, headworks, s	sludge handling
3103401	9/26/2003	Construction of sewer extens	sion in 5 areas and upgrade of t	reatment plant
	Degree of			Avg Annua
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Counter Current	Ultraviolet	0.24
lydraulic Capacity	Organic Capacity			Biosolids
.ya.aano oapaony				/5:
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa

Changes Since Last Permit Issuance: none

Per the permit renewal application, the treatment process follows the below train:

Wastewater:

Raw influent from collection system \rightarrow influent pump station \rightarrow pump station meter vault \rightarrow spiral mechanical bar screen with compactor \rightarrow flow distribution box with alum and caustic soda injection \rightarrow final clarifier \rightarrow UV disinfection \rightarrow cascade aerator \rightarrow discharge through outfall 001

Biosolids:

Final clarifier →aerobic sludge digesters → sludge pump → polymer feed → sludge dewatering press → biosolids to landfill

The screenings from mechanical bar screen is placed in dumpster and is landfilled as solid waste. The digester supernatant is mixed with gravity drain line from final clarifier and sent to influent collection system to influent pump station.

The following chemicals are used in the treatment process: Alum for Coagulant, Caustic Soda for pH control, Polymer for Coagulant, and Sodium Hypochlorite (back up) for disinfection.

Per the most recent site inspection on January 14, 2020, the facility consists of the following treatment units:

- 1. One wet well with three pumps
- 2. One fine screen
- 3. Two Schrieber Tanks
- 4. Two UV disinfection train with two online
- 5. Two aerobic digesters
- 6. One rotary sludge press
- 7. Seven blowers with six online

The treated effluent is discharged to Frankstown Branch Juniata River through outfall 001. A process flow diagram is attached in the appendix.

NPDES Permit Fact Sheet Alexandria Borough Porter Township STP Industrial/commercial users:

The renewal application indicated there are no significant or categorical industrial or commercial contributors to this treatment plant. A list of non-significant non-categorical contributors is summarized in the Table below.

Business	Type of Business	Flow-Average GPD
Acco Brands Corp	Manufacturing stationery, Tables, and related products	6,900
Dively's Garage	Mechanic Shop	35
Anders Automotive	Mechanic Shop	35
Galloways' Automotive	Mechanic Shop	35
Dollar General	Retail Store	70
Martin's Gas Station	Service Station	720
Paesano's Italian Restaurant	Restaurant	1,250
Alexandria Borough Authority WWTP	Wastewater Treatment Plant	850
	Total	9,895

Biosolids Management:

Aerobically digested sludge is hauled to San Run Landfill.

The total sewage sludge / biosolids production within the facility for the previous year was 9.8 dry tons.

	Compliance History
Summary of DMRs:	The DMRs reported from July 1, 2021 to June 30, 2022 are summarized in the Table below (Pages # 5, & 6).
Summary of Inspections:	1/5/2022: Mr. Clark, DEP's WQS, conducted a compliance evaluation inspection. The field test results were within permitted limits. There were no violations identified during inspection. The recommendation was to revise the pH and D.O. monthly and weekly averages on the November 2021 DMR.
	1/14/2020: Mr. Clark, DEP's WQS, conducted a compliance evaluation inspection. The field test results were within permitted limits. Effluent appeared clear. There were no violations identified during inspection. The recommendation was to use military time or AM /PM when recording times on log sheets.
	12/21/2018: Mr. Clark, DEP's WQS, conducted a compliance evaluation inspection. The field test results were within permitted limits. Effluent appeared clear. There were no violations identified during inspection. The recommendations were needed to place a thermometer in effluent compositor refrigerator and operators should review Standard Operating Procedure (SOP) & update as necessary.
Other Comments:	There are no open violations against the facility or the permittee.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from July 1, 2021 to June 30, 2022)

Parameter	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21
Flow (MGD)												
Average Monthly	0.041	0.113	0.096	0.093	0.129	0.08	0.063	0.064	0.07	0.128	0.078	0.054
Flow (MGD)												
Daily Maximum	0.055	0.348	0.191	0.147	0.323	0.163	0.221	0.096	0.134	0.372	0.282	0.083
pH (S.U.)												
Minimum	6.98	6.87	6.93	6.93	6.95	7.05	6.69	6.91	6.99	6.95	6.94	6.96
pH (S.U.)												
Maximum	7.38	7.32	7.28	7.27	7.49	7.39	7.36	7.53	7.33	7.37	7.39	7.44
DO (mg/L)												
Minimum	6.17	5.36	6.28	6.81	7.06	7.16	6.71	7.11	6.85	5.86	5.52	5.9
CBOD5 (lbs/day)												
Average Monthly	< 1.0	< 3.0	< 4.0	< 3.0	< 5.0	< 2.0	< 1.0	< 2.0	< 2.0	< 3.0	< 2.0	< 1.0
CBOD5 (lbs/day)												
Weekly Average	< 2.0	< 6.0	9.0	6.0	13	< 3.0	< 2.0	< 2.0	3.0	< 4.0	< 3.0	< 2.0
CBOD5 (mg/L)												
Average Monthly	< 3.0	< 4.0	< 5.0	< 4.0	< 5.0	< 3.0	< 4.0	< 3.0	< 4.0	< 3.0	< 3.0	< 3.0
CBOD5 (mg/L)												
Weekly Average	< 3.0	6.0	10.0	5.0	6.0	3.0	5.0	< 3.0	6.0	< 3.0	4.0	4.0
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	57	78	115	109	162	113	178	113	98	102	60	80
BOD5 (lbs/day)												
Raw Sewage Influent												
Daily Maximum	66	97	154	138	325	149	383	127	111	169	74	108
BOD5 (mg/L)												
Raw Sewage Influent		400	40-	40-	4=0	4	004		004	440	400	4.0=
Average Monthly	155	106	127	135	153	157	281	200	204	110	133	167
TSS (lbs/day)	0.0	0.0	0.0	0.0	4.0	0.0	4.0	0.0	0.0	4.0	0.0	0.0
Average Monthly	< 0.8	< 2.0	2.0	< 2.0	4.0	< 2.0	< 1.0	< 0.8	< 0.8	< 1.0	< 0.9	< 0.8
TSS (lbs/day)												
Raw Sewage Influent	20	25	54	70	48	42	70	42	40	43	2.4	32
Average Monthly	30	25	54	72	48	42	73	42	43	43	34	32
TSS (lbs/day)												
Raw Sewage Influent	38	30	75	126	76	54	180	52	53	74	46	50
Daily Maximum TSS (lbs/day)	38	30	75	120	70	54	160	52	53	/4	40	50
	1.0	6.0	4.0	4.0	6.0	5.0	2.0	1.0	0.0	2.0	-10	< 0.9
Weekly Average	1.0	0.0	4.0	4.0	6.0	5.0	2.0	1.0	0.9	2.0	< 1.0	< 0.9
TSS (mg/L)	< 2.0	< 2.0	3.0	~ 2 N	5.0	< 3.0	< 4.0	< 2.0	< 2.0	< 1.0	< 2.0	< 2.0
Average Monthly	< 2.0	< 2.0	3.0	< 3.0	5.0	< 3.∪	< 4.0	< 2.0	< 2.0	< 1.0	< 2.0	< 2.0

NPDES Permit Fact Sheet

NPDES Permit No. PA0043443

Alexandria Borough Porter Township STP

TOO (")	I CI I OWIIS	inp ori		T	I	I	ı	I	ı	ı	I	1
TSS (mg/L)												
Raw Sewage Influent	00	00	0.4	0.5	40	50	440	70	00	47	00	00
Average Monthly	80	36	61	95	46	56	110	73	88	47	68	66
TSS (mg/L)	4.0	2.0	5 0	5 0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	4.0
Weekly Average	4.0	3.0	5.0	5.0	9.0	6.0	6.0	3.0	2.0	2.0	2.0	4.0
Fecal Coliform												
(No./100 ml) Geometric Mean	< 23	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.0	< 1.0	< 2.0	< 3.0	13	7.0
Fecal Coliform	< 23	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.0	< 1.0	< 2.0	< 3.0	13	7.0
(No./100 ml)												
Instantaneous												
Maximum	387.3	3.1	1.0	3.0	2.0	< 1.0	14.5	< 1.0	3.0	73.3	95.9	33.6
Nitrate-Nitrite (mg/L)	307.3	0.1	1.0	3.0	2.0	<u> </u>	14.0	V 1.0	3.0	70.0	33.3	33.0
Average Monthly	< 2.02	< 1.2	< 1.2	< 1.384	< 1.2	< 1.2	< 3.855	< 16.1	< 8.976	< 4.666	< 2.039	< 0.8
Nitrate-Nitrite (lbs)	\ Z.0Z	\ 1.Z	< 1.Z	₹ 1.004	\ 1.Z	\ 1.Z	< 0.000	V 10.1	< 0.570	₹ 4.000	< 2.000	\ 0.0
Total Monthly	< 20	< 32	< 30	< 36	< 36	< 26	< 46.0	< 239	< 136	< 131	< 29	< 24
Total Nitrogen (mg/L)	120	102	1 00	100	100	120	10.0	1200	1100	101	120	121
Average Monthly	< 2.779	< 3.903	< 1.99	< 4.123	< 4.688	< 3.451	< 7.05	< 16.72	< 9.476	< 5.205	< 3.734	< 2.0
Total Nitrogen (lbs)												
Total Monthly ` ´	< 27	< 117	< 48	< 100	< 123	< 69	< 95	< 249	< 143	< 145	< 52	< 47
Total Nitrogen (lbs)												
Total Annual										< 853		
Ammonia (mg/L)												
Average Monthly	< 0.105	< 2.021	0.585	2.11	2.743	1.826	2.689	< 0.1	< 0.1	< 0.1	1.438	< 0.6
Ammonia (lbs)												
Total Monthly	< 1.0	< 67	13	51	58	35	41	< 2.0	< 1.0	< 3.0	18	< 18
Ammonia (lbs)												
Total Annual										< 358		
TKN (mg/L)												
Average Monthly	< 0.764	2.703	< 0.79	2.739	3.488	< 2.251	3.195	< 0.62	< 0.5	< 0.539	< 1.695	< 0.7
TKN (lbs)												
Total Monthly	< 8.0	85	< 18	64	88	< 43	49	< 10	< 7.0	< 14	< 23	< 23
Total Phosphorus												
(mg/L)	4.00	4 =0		4.070		4.070			4.00		0.40	
Average Monthly	4.03	1.73	1.614	1.078	1.386	1.273	3.96	3.85	4.68	2.311	3.46	2.0
Total Phosphorus (lbs)	40	20	07	00	20	0.4	- 4	F-7	00	F0	50	04
Total Monthly	40	36	37	26	30	24	54	57	69	52	53	61
Total Phosphorus (lbs)										700		
Total Annual										706		
UV Dosage												
(mjoules/cm²)	205	61	150	240	0.5	200	150	65	200	22	62	10
Daily Minimum	285	61	150	240	0.5	300	150	65	300	22	63	18

	Development of Effluent Limitations					
Outfall No.	001	Design Flow (MGD)	0.24			
Latitude	40° 33' 14.06"	Longitude	-78° 5' 40.13"			
Wastewater D	Description: Sewage Effluent	_				

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments:

Water Quality-Based Limitations

WQM 7.0 version 1.1 is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and D.O. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃-N and compares calculated instream D.O. concentrations to D.O. water quality criteria. Since WQM 7.0 assumes immediate and complete mix between the discharge and stream flow, Q₇₋₁₀ was adjusted, as shown on page 2, to examine allowable wasteload allocations under appropriate mixing conditions. The model was utilized for this permit renewal by using adjusted Q₇₋₁₀ and current background water quality levels of the river.

Ammonia (NH₃-N):

NH₃-N calculations were based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH₃-N criteria used in the attached computer model of the stream:

*	Discharge pH	7.0	(Default per 391-2000-007)
*	Discharge Temperature	25°C	(Default per 391-2000-007)
*	Stream pH	7.0	(Default per 391-2000-006)
*	Stream Temperature	20°C	(Default for WWF per 391-2000-003)
*	Background NH ₃ -N	0 mg/L	(Assumed since no nearby upstream WWTPs)

Regarding NH₃-N limits, the attached computer printout of the WQM 7.0 stream model (version 1.1) indicates that a limit of 25.0 mg/L NH₃-N as a monthly average (AML) and 50.0 mg/L NH₃-N instantaneous maximum (IMAX) are necessary to protect the aquatic life from toxicity effects. Recent DMR data show that the plant is discharging NH₃-N well below 25.0 mg/l year-round. Therefore, no NH₃-N limits are proposed in this renewal permit.

Dissolved Oxygen (D.O.):

The D.O. goal is 6.0 mg/L. However, a minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. It is recommended that this limit be maintained in the proposed permit to ensure the protection of water quality standards. This approach is consistent with DEP's current Standard Operating Procedure (SOP) No. BCW-PMT-033, version 1.9 revised March 22, 2021, and has been applied to other point source dischargers throughout the state.

NPDES Permit Fact Sheet

Alexandria Borough Porter Township STP

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model (ver. 1.1) indicates that a monthly average limit (AML) of 25.0 mg/L, 40.0 mg/L average weekly limit (AWL), & 50.0 mg/L IMAX will remain in the proposed permit. Recent DMRs and inspection reports show that the facility has typically been achieving concentrations below this limit. Mass limits are calculated as follows:

NPDES Permit No. PA0043443

Average monthly mass limit: $25.0 \text{ mg/L} \times 0.24 \text{ MGD} \times 8.34 = 50.04 (50.0) \text{ lbs/day}$ Average weekly mass limit: $40.0 \text{ mg/L} \times 0.24 \text{ MGD} \times 8.34 = 80.06 (80.0) \text{ lbs/day}$

The average monthly and average weekly mass loadings were calculated as 50.04 lbs/day and 80.06 lbs/day. These values are rounded down to 50.0 lbs/day and 80.0 lbs/day. The minimum monitoring frequency will remain the same as 1/week.

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml, and 25 Pa. Code § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml.

E. Coli:

As recommended by DEP's SOP No. BCW-PMT-033, version 1.9 revised March 22, 2021, a routine monitoring for E. Coli will be included in the permit under 25 Pa. Code § 92a.61. This requirement applies to all sewage dischargers greater than 0.002 MGD in their new and reissued permits. A monitoring frequency of 1/quarter will be included in the permit to be consistent with the recommendation from this SOP.

pH:

The effluent discharge pH should remain above 6.0 and below 9.0 standard units (S.U.) according to 25 Pa. Code § 95.2(1).

Toxics:

The data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003) and DEP's SOP No. BCW-PMT-033. Spreadsheet results are attached to this fact sheet. The Toxics Management Spreadsheet uses the following logic:

- a. Establish average monthly and IMAX limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Pollutant testing results on the current (2021) application were reviewed in comparison with DEP's Toxic Management Spreadsheet, version 1.3, March 2021, output recommends no routine monitoring requirements. Therefore, no monitoring requirements are added in the proposed permit.

UV:

The UV system monitor and report the UV light dosage (mJoules/cm²) will remain in the proposed permit.

Total Suspended Solids (TSS):

The existing limits of 30.0 mg/L average monthly, 45.0 mg/L average weekly, and 60.0 mg/L IMAX, which were agreed to during settlement negotiations, will remain in the proposed permit. Mass limits are calculated as follows:

Average monthly mass limit: $30.0 \text{ mg/L} \times 0.240 \text{ MGD} \times 8.34 = 60.05 (60.0) \text{ lbs/day}$ Average weekly mass limit: $45.0 \text{ mg/L} \times 0.24 \text{ MGD} \times 8.34 = 90.07 (90.0) \text{ lbs/day}$

NPDES Permit Fact Sheet
Alexandria Borough Porter Township STP
The table below summarizes the influent/effluent testing results submitted along with the application.

ge Value
g/L
o./100mL
g/L
g/L
ng/L
mg/L
g/L
mg/L
mg/L
mg/L
mg/L
ng/L
g/L
mg/L
g/L
g/L
ng/L

Chesapeake Bay Strategy:

The Department formulated a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). Sewage discharges have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases I, II, and III) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6.0 mg/L TN and 0.8 mg/L TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. Phase IV (0.2 -0.4 MGD) will be required to monitor and report TN and TP during permit renewal monthly and Phase V (below 0.2 MGD) will monitor during current permit renewal once a year. However, any facility in Phases IV and V that undergoes expansion is subjected to cap load right away. This plant is classified as a phase V, will be required to monitor and report for Total Phosphorus, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen, and Total Nitrogen.

Additionally, according to SOP for establishing effluent limitation for individual sewage, monitoring frequency for nutrients should be equivalent to conventional pollutants in Table 6-3 of DEP's *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) ("Permit Writer's Manual") where the facility discharges to nutrient-impaired waters, or a lesser frequency for discharges to waters not impaired for nutrients. Quarterly monitoring frequency is required for this discharge since the receiving stream is not nutrient impaired. These requirements will remain in the proposed permit.

Influent BOD₅ and TSS Monitoring:

The permit will include influent BOD₅ and TSS monitoring at the same frequency as is done for effluent in order to implement 25 Pa. Code § 94.12 and assess percent removal requirements, per DEP policy.

Total Dissolved Solids (TDS):

Total Dissolved Solids and its major constituents including Bromide, Chloride, and Sulfate have become statewide pollutants of concern and threats to DEP's mission to prevent violations of water quality standards. The requirement to monitor these pollutants is necessary under the following DEP Central Office directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1.0 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.

The facility has no record of monitoring these pollutants. However, the application shows a maximum influent concentration of 466.0 mg/L for TDS. The effluent concentration is not expected to exceed 1,000 mg/L. No monitoring is necessary.

Best Professional Judgment (BPJ) Limitations

Total Phosphorus:

The discharge is into a stream segment of Frankstown Branch Juniata River. DEP's Phosphorus guidance mentions that "(a) Phosphorus controls for waste discharges to streams shall be established, under subsection (b) whenever the Department determines that instream phosphorus, alone or in combination with other pollutants or instream conditions, contribute to impairment of designated uses as defined in Chapter 93 (relating to water quality standards). No determination made under this subsection shall constitute a final Department action with respect to any person until a specific treatment or control requirement is imposed under subsection (b)." Since Juniata Sub-basin doesn't have instream phosphorus related impairment, local Phosphorus limit is not necessary at this time. This determination may be re-evaluated in next permit term if regulation demands.

Total Residual Chlorine:

The application data indicated Sodium Hypochlorite is available as backup disinfection in case UV malfunction. The permittee will be required to report TRC when in use. A Part C, Item IV- Total Residual Chlorine (TRC) condition for reporting requirement is appropriate with a minimum monitoring frequency of 1/day. The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns at the discharge point. The Instantaneous Maximum (IMAX) limit will be 1.6 mg/l.

Biosolids Management:

Digested Sludge is sent out periodically to the drying beds.

Stormwater:

There is no stormwater outfall associated with this facility.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303d Listed Streams:

The discharge is not located on a 303d listed stream segment. The stream segment that receive the discharge is listed as attaining its used for aquatic life and fish consumption.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

WQM 7.0:

The following data were used in the attached computer model (WQM 7.0) of the stream:

•	Discharge pH	7.0 ((Default per 391-2000-007)
•	Discharge Temperature	25°C (Default per 391-2000-007)
•	Stream pH	7.0 (Default per 391-2000-006)

Stream Temperature
 20 °C
 (Default for WWF per 391-2000-003)

Background NH3-N
 Stream Hardness
 0 mg/L
 (Assumed since no nearby upstream WWTPs)
 (WQN 216, median July-Sep 1964-1987)

The following two nodes were used in modeling:

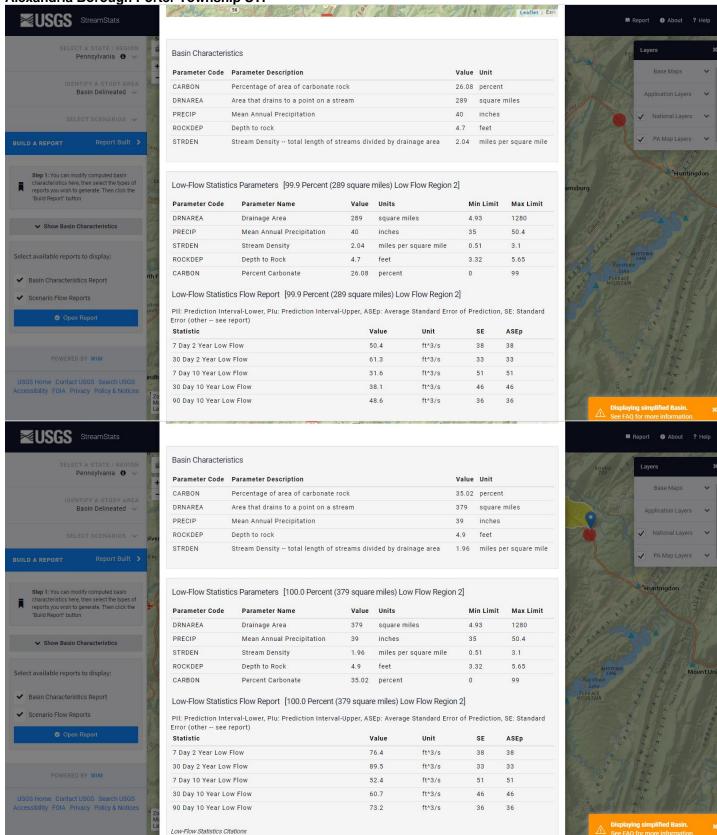
Node 1: Outfall 001 at Frankstown Branch Juniata River (16061)

Elevation: 688 ft (USGS)

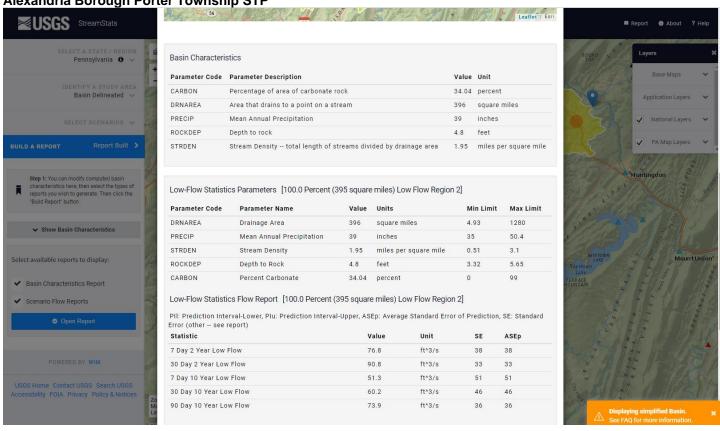
Drainage Area: 379 mi.² (StreamStats)
River Mile Index: 4.13 (PA DEP eMapPA)

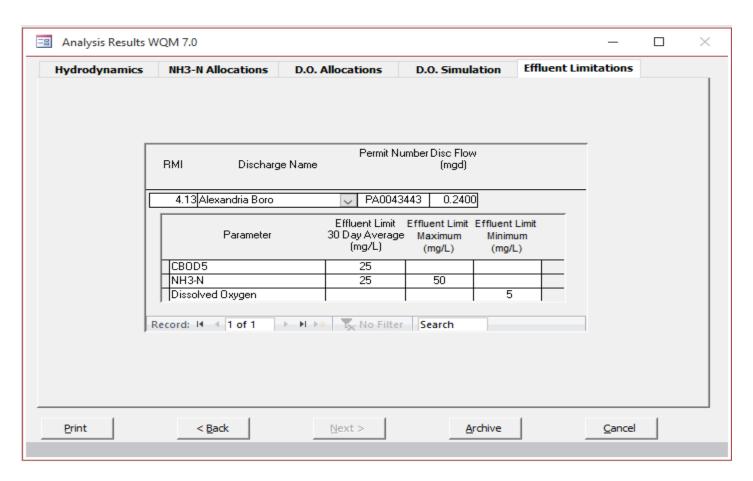
Low Flow Yield: 0.11 cfs/mi²
Discharge Flow: 0.24 MGD
Q7-10: 10.42 cfs

Node 2: At the confluence with Little Juniata River (15664)

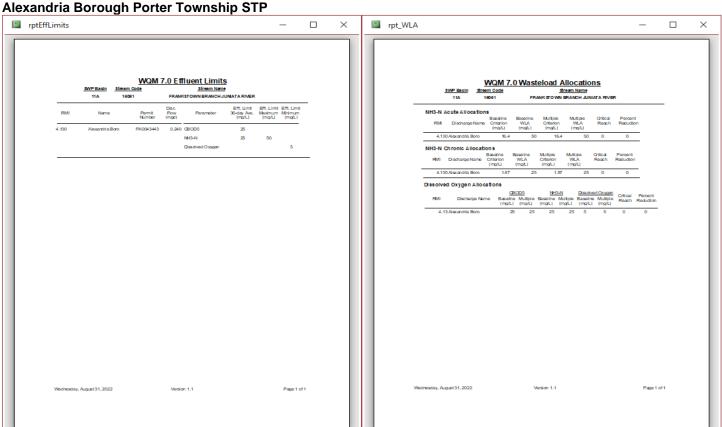

Elevation: 662 ft (USGS)

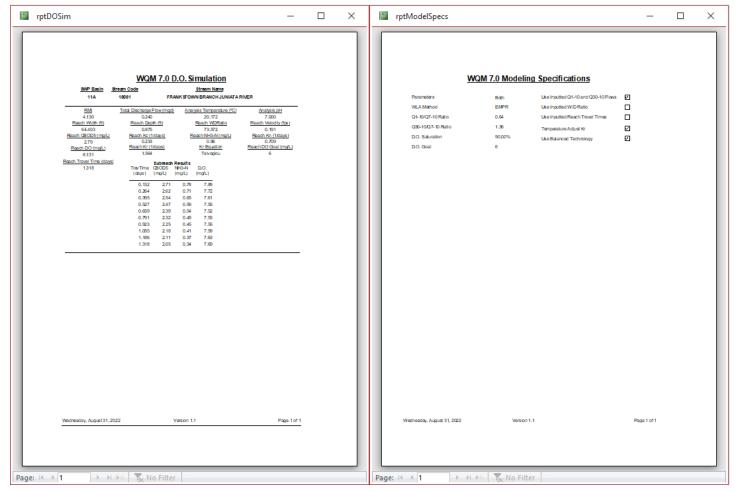
Drainage Area: 396 mi.² (StreamStats)
River Mile Index: 0.001 (PA DEP eMapPA)

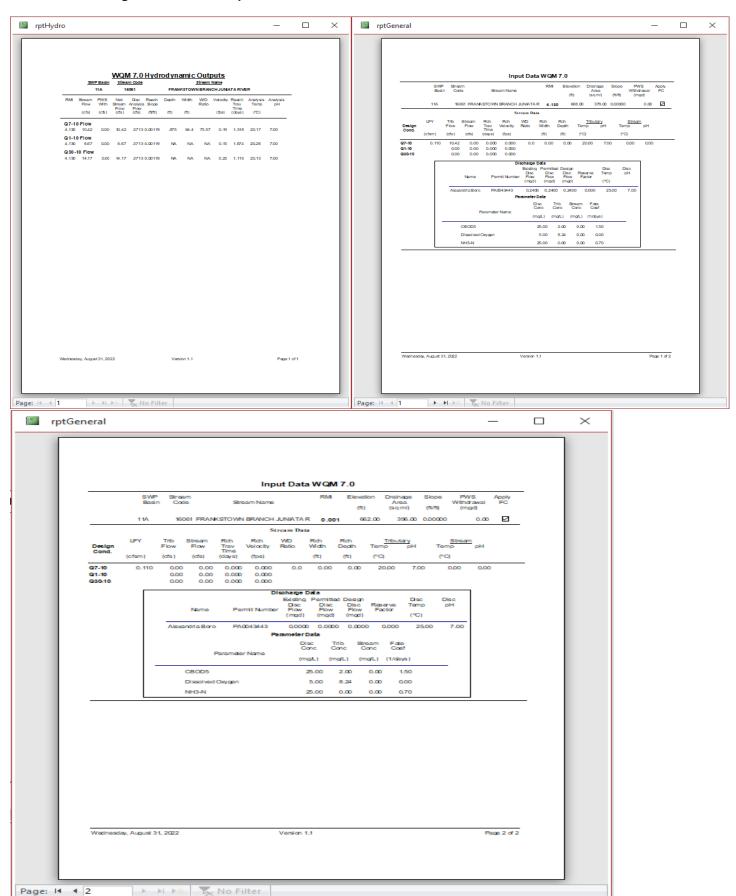

Low Flow Yield: 0.11 cfs/mi.² Discharge Flow: 0.00 MGD


NPDES Permit No. PA0043443

Alexandria Borough Porter Township STP


Alexandria Borough Porter Township STP


→ → → * No Filter


Page: I ← 4 1

Page: I ← ◆ 1

→ → → * T_× No Filter

Alexandria Bor	ough i one	TOWNSHIP OTT			
TRC EVAL	UATION				
Input appropria	ate values ir	1 A3:A9 and D3:D9			
41.69	= Q stream	n (cfs)	0.5	= CV Daily	
0.24	= Q discha	rge (MGD)	0.5	= CV Hourly	
30	= no. samp	oles	1	= AFC_Partia	al Mix Factor
0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	al Mix Factor
0	= Chlorine	Demand of Discharge	15	= AFC_Crite	ria Compliance Time (min)
0.5	= BAT/BPJ	l Value	720	= CFC_Crite	ria Compliance Time (min)
0	= % Facto	r of Safety (FOS)		=Decay Coef	ficient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 34.932
PENTOXSD TRO		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRO	5.1b	LTA_afc=	13.354	5.1d	LTA_cfc = 20.308
Source	5.45		nt Limit Calcu		
PENTOXSD TRO			AML MULT =		DAT/DD I
PENTOXSD TRO	5.1g		.IMIT (mg/l) = .IMIT (mg/l) =		BAT/BPJ
		INSTWAXL	.iwiri (ing/i) –	1.055	
WLA afc		'AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1-		e(-k*AFC_tc))	
LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2			
LTA_afc	wla_afc*LTA				
WLA_cfc		CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-		(-k*CFC_tc))	
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.3	326*LN(cvd^2	2/no_samples+1	1)^0.5)
LTA_cfc	wla_cfc*LTA	MULT_cfc			
AML MULT	EXP(2.326*L	.N((cvd^2/no_samples+1)^	0.5)-0.5*LN(c	vd^2/no_sampl	es+1))
AVG MON LIMIT	MIN(BAT_B	PJ,MIN(LTA_afc,LTA_cfc)*	AML_MULT)		
INST MAX LIMIT	1.5*((av_m	on_limit/AML_MULT)/L1	FAMULT_afe	c)	

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

150

8.38

0.24

Instructions	Discharge Stream							
Facility: Ale	exandria Borough			NPDES Pen	mit No.: PA0	043443	Outfall	No.: 001
Evaluation Type	c: Custom / Additi	ves		Wastewater	Description:	Minor Sewa	ge	
			Discharge	Characterist	tics			
Design Flow	Hardness (mg/l)t	-U (CII)*	F	artial Mix Fa	ctors (PMFs	5)	Complete Mix	x Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh

				() If le	t blank	0.5 M le	ff blank	() If left blan	k	1 If lef	t blank
Discharge Pollutant	Units	Ма	Max Discharge Conc		rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	I	Chem Transl
Total Copper	μg/L		3.8		Щ								
Total Lead	μg/L		0.328		П								
Total Zinc	μg/L		37.6		П								
					П								
					П								
					П								
					П								
					\Box								
					\Box								

lanagement Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Alexandria Borough, NPDES Permit No. PA0043443, Outfall 001

Instructions Discharge Stream																			
Receiving Surface W		No. Rea	aches to	Model:	1	_				atewide Criter eat Lakes Cri									
Location	Stream Cod	de* RM	Elevat		DA (n	ni²)*	Slope (ft/ft)		Withdrav MGD)	val Apply Crite					O OF	RSANCO Crite	eria		
Point of Discharge	016061	4.1	3 688	3	37	9				Ye	25								
End of Reach 1	016061	0.0	01 662	2	39	6				Ye	25								
Q 7-10	LEY Flow (cfs)							Depth	Velocit	Time	L		Tribu		•	Strea		Analys	
			Stream	In	butary	Rat	tio (ft)	(ft)	y (fps)	(days)	- '	Han	dness	1	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	4.13	0.11		\sqcup							_	\perp		Ц		150	7		
End of Reach 1	0.001	0.11												Ш					
Qh																			
Location	RMI	LFY	Flow	(cfs))	W/	D Width	Depth	Velocit	Time			Tribu	uta	ry	Strea	m	Analys	sis
Location	RMI	(cfs/mi ²)	Stream	Tri	butary	Rat	tio (ft)	(ft)	y (fps)	(days)	1	Han	dness	5 T	pН	Hardness	pН	Hardness	pН
Point of Discharge	4.13																		
End of Reach 1	0.001				\top									П					

Stream / Surface Water Information 8/31/2022 Page 2

Total Copper

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Alexandria Borough, NPDES Permit No. PA0043443, Outfall 001

Instructions Results	RETURN TO IN	PUTS (SAVE AS	PDF	PRINT	「	ll () Inputs	() Results	○ Limits
☐ Hydrodynamics									
✓ Wasteload Allocations									
☑ AFC C	CCT (min): 15	PMF:	0.183	Ana	lysis Hardne	ss (mg/l):	150	Analysis pH:	7.02
Pollutants	Conc C\		Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	mments
Total Copper	0 0		0	19.692	20.5	441		Chem Transla	ator of 0.96 applied
Total Lead	0 0		0	100.129	137	2,941			tor of 0.732 applied
Total Zinc	0 0		0	165.218	169	3,632		Chem Translat	tor of 0.978 applied
☑ CFC G	CCT (min): ######	PMF:	1		alysis Hardne	ss (mg/l):	150	Analysis pH:	7.00
Pollutants	Conc C\		Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	mments
Total Copper	0 0		0	12.664	13.2	1,494		Chem Transla	ator of 0.96 applied
Total Lead	0 0		0	3.902	5.33	604		Chem Translat	tor of 0.732 applied
Total Zinc	0 0		0	166.569	169	19,138		Chem Translat	tor of 0.986 applied
✓ THH C	CCT (min): ######	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc C\		Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	mments
Total Copper	0 0		0	N/A	N/A	N/A			
Total Lead	0 0		0	N/A	N/A	N/A			
Total Zinc	0 0		0	N/A	N/A	N/A			
⊘ CRL C	CCT (min): ######	PMF:	1		alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc Stree		Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	mments
Total Copper	0 0		0	N/A	N/A	N/A			

Total Lead	0	0			0	N/A	N/A	N/A	
Total Zinc	0	0	П	П	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	ition Limits		1		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Governing WQBEL	Units	Comments
283	μg/L	Discharge Conc ≤ 10% WQBEL
604	μg/L	Discharge Conc ≤ 10% WQBEL
2,328	μg/L	Discharge Conc ≤ 10% WQBEL
	283 604	WQBEL Units 283 μg/L 604 μg/L

Model Results 8/31/2022 Page 4

1 1
· · · · · · · · · · · · · · · · · · ·

Model Results 8/31/2022 Page 5

Existing Effluent Limitations and Monitoring Requirements

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)	Minimum (2)	Required	
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	xxx	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD₅	50	80	XXX	25.0	40.0	50	1/week	24-Hr Composite
BOD₅ Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	60	90	XXX	30.0	45.0	60	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	1/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
UV Dosage (mJoules/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded

Chesapeake Bay Tributary Strategy

		Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units (lbs)			Concentrat	Minimum	Required			
	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
								24-Hr	
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	1/week	Composite	
								24-Hr	
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite	
								24-Hr	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation	
								24-Hr	
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	1/week	Composite	

Proposed Effluent Limitations and Monitoring Requirements

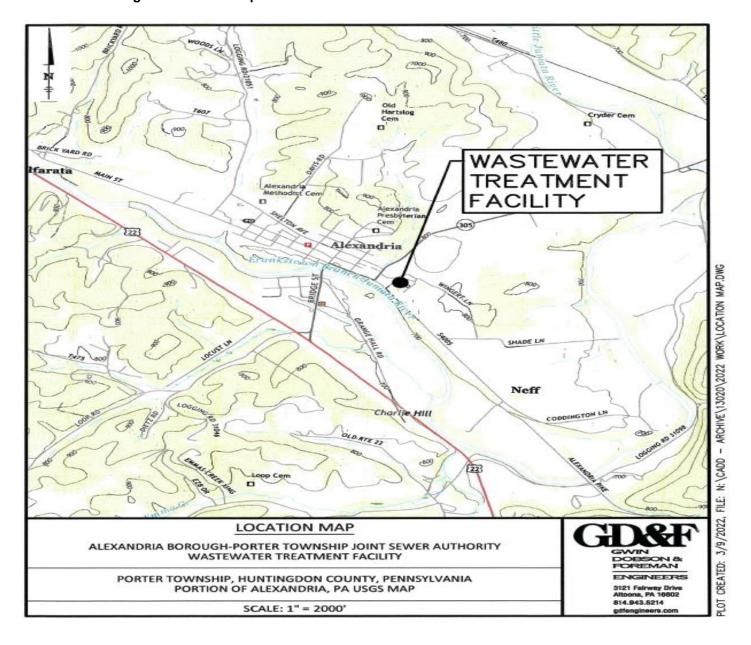
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

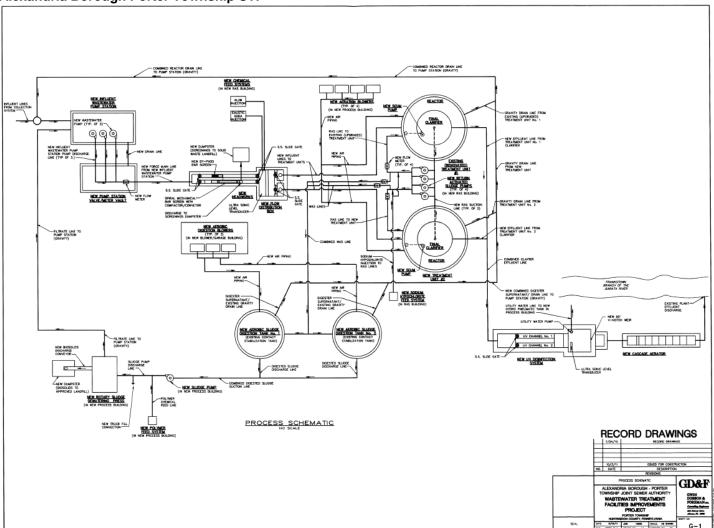
Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Monitoring Requirements					
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD₅	50.0	80.0 Wkly Avg	XXX	25.0	40.0	50.0	1/week	24-Hr Composite
BOD ₅ Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	24-Hr Composite
_		90.0		·				24-Hr
TSS TSS	60.0	Wkly Avg	XXX	30.0	45.0	60.0	1/week	Composite 24-Hr
Raw Sewage Influent Fecal Coliform (No./100 ml)	Report	Report	XXX	Report 200	XXX	XXX	1/week	Composite
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1,000	1/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
UV Dosage (mJoules/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded

Compliance Sampling Location:

Other Comments:


Proposed Effluent Limitations and Monitoring Requirements


The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units (lbs)			Concentra	Minimum	Required			
	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement San	Sample Type	
								24-Hr	
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	1/week	Composite	
								24-Hr	
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite	
								24-Hr	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation	
								24-Hr	
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	1/week	Composite	

Compliance Sampling Location:					
Other Comments:					

	Tools and References Used to Develop Permit
\square	WOM for Windows Madel for a Musel word
$\overline{\mathbb{X}}$	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004,
	12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
\boxtimes	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\boxtimes	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other: