

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0043575

 APS ID
 10178

 Authorization ID
 1405963

Applicant and Facility Information

Applicant Name	Lykens Borough Authority	Facility Name	Lykens STP
Applicant Address	200 Main Street Suite C	Facility Address	Arlington Street
	Lykens, PA 17048-1132		Lykens, PA 17048
Applicant Contact	Kerry Teter	Facility Contact	Nathan Pendal
Applicant Phone	(717) 453-7597	Facility Phone	717-503-5152
Client ID	63975	Site ID	451955
Ch 94 Load Status	Not Overloaded	Municipality	Lykens Borough
Connection Status	No Limitations	County	Dauphin
Date Application Recei	ved August 9, 2022	EPA Waived?	No
Date Application Accep	ted August 23, 2022	If No, Reason	Significant CB Discharge
Purpose of Application	Permit renewal for discharg	ge of treated sewage	

Summary of Review

1.0 General Discussion:

This fact sheet supports the re-issuance of an existing NPDES permit for discharge of treated domestic wastewater from Lykens Borough Wastewater Treatment Plant located in Lykens Borough, Dauphin County. Lykens Borough Authority (Authority) owns, operates, and maintains the wastewater treatment plant. The standard industrial classification (SIC) Code is 4952. The treatment plant serves Lykens Borough (100% of the flow). The sewer collection system is not combined and there are no bypasses or overflows authorized in the collection system. The treatment plant is sequential batch reactor (SBR) with an annual average design capacity of 0.4100 MGD and an organic design capacity of the facility is 684 lbs/day- BOD5. The discharge goes to Wiconisco Creek, which is classified for Warm Water Fishes (WWF). The existing NPDES permit was issued on February 5, 2018 with effective date March 1, 2018 and an expiration date of February 28, 2023. The applicant submitted an administratively completed application to the Department and has been operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Digested sludge is dewatered by belt press and hauled out to landfill for ultimate disposal.

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-

Approve	Deny	Signatures	Date
х		<i>J. Pascal Kwedza</i> J. Pascal Kwedza, P.E. / Environmental Engineer	January 24, 2023
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	February 1, 2024
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	February 1, 2024

Summary of Review

day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

.3 Changes to the existing Permit

• Quarterly monitoring of E. Coli has been added

1.4 Existing Permit limitation and Monitoring Requirements

			Effluent	Limitations			Monitoring Requ	uirements	
Discharge Parameter	Mass Ur	nits (Ibs/day)		Concent	rations (mg	/L)	Minimum	Required	
Discharge i arameter	Monthly Average	Weekly Average	Minimum	Monthly Average	Weekly Average	Instantaneous Maximum	Measurement Frequency	Sample Type	
Flow (mgd)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/Day	Grab	
Dissolved Oxygen	ххх	XXX	5.0	XXX	XXX	XXX	1/Day	Grab	
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/Day	Grab	
TSS	102	153	XXX	30	45	60	1/Week	24-hr comp	
CBOD ₅	85	136	XXX	25	40	50	1/Week	24-hr comp	
Fecal Coliform (5/1 to 9/30) ⁽⁵⁾	XXX	XXX	XXX	200	XXX	1000	1/Week	Grab	
Fecal Coliform (10/1 to 4/30)	XXX	XXX	XXX	2,000	XXX	10000	1/Week	Grab	
Ammonia-Nitrogen Nov 1 - Apr 30	Report	XXX	xxx	Report	XXX	XXX	2/week	24-Hr Composite	
Ammonia-Nitrogen May 1 - Oct 31	36	xxx	xxx	11.5	xxx	23	2/week	24-Hr Composite	

1.4.1 Chesapeake Bay Limits

		Effluent l		Monitoring Requirements			
Discharge	Mass L	oad(lbs)	Con	centrations (mg/l)	Minimum	
Parameter	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Required Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	2/week	24-hr Comp
KjeldahlN	Report	XXX	XXX	Report	XXX	2/Week	24-hr Comp
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/Week	24-hr Comp
Total Nitrogen	Report	Report	XXX	Report	XXX	1/Month	Calculate
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	24-hr Comp
Net Total Nitrogen	Report	7,563	XXX	XXX	XXX	1/Month	Calculate
Net Total Phos.	Report	998	XXX	XXX	XXX	1/Month	Calculate

1.5 Discharge, Receiving Waters and Water Supply In	nformation				
Outfall No. 001	Design Flow (MGD)	.41			
Latitude 40° 34' 8.73"	Longitude	-76° 42' 48.74"			
Quad Name	Quad Code				
Wastewater Description: Sewage Effluent					
		1000-			
Receiving Waters <u>Wiconisco Creek</u>	Stream Code	16895			
NHD Com ID <u>54972815</u>	RMI	27.60			
Drainage Area <u>60</u>	Yield (cfs/mi ²)	0.04			
Q ₇₋₁₀ Flow (cfs) <u>2.4</u>	Q7-10 Basis	USGS Gage Station			
Elevation (ft)	Slope (ft/ft)				
Watershed No. <u>6-C</u>	Chapter 93 Class.	WWF			
Existing Use					
Exceptions to Use	Exceptions to Criteria				
Assessment Status Impaired					
Cause(s) of Impairment <u>Metals, Siltation, pH</u>					
Source(s) of Impairment Abandoned Mine Drainag					
TMDL Status Final	Name Wiconisco C	reek, AMD			
Background/Ambient Data pH (SU) Temperature (°F)	Data Source				
Hardness (mg/L)					
Other:					
Nearest Downstream Public Water Supply Intake	Veolia Water PA				
PWS Waters Susquehanna River	Flow at Intake (cfs)				
PWS RMI	Distance from Outfall (mi) <50				

Changes Since Last Permit Issuance:

Other Comments:

1.5.1 Public Water Supply Intake

The closest water supply intake located downstream from the discharge is Viola Water PA in Susquehanna Twp., Dauphin County. The distance downstream from the discharge to the intake is approximately 50 miles. No impact is expected on the intake as a result of this discharge.

	2.0 Treatment Facility Summary									
Freatment Facility Na	ne: Lykens Borough Autho	rity - STP								
WQM Permit No.	Issuance Date	-								
2292407	11/23/2011									
	Dogroo of									
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)						
Sewage	Secondary	Sequencing Batch Reactor	Gas Chlorine	0.41						
Hydraulic Capacity	Organic Capacity			Biosolids						
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal						
1.575	684	Not Overloaded	Aerobic Digestion	Landfill						

Changes Since Last Permit Issuance: None

2.1 Treatment Facility Details

The treatment plant consists of an influent pump station to pump influent to the headworks (rotary drum fine screen), screened flow goes to the 2 SBR units capable of treating annual average flow of 0.41MGD and Chlorine for disinfection. Alum is added for phosphorus removal, Sludge is wasted to two aerobic digesters. Digested sludge is belt pressed prior to hauling out for ultimate disposal at a landfill.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from December 1, 2022 to November 30, 2023)

Parameter	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22
Flow (MGD)												
Average Monthly	0.177	0.184	0.147	0.132	0.130	0.325	0.153	0.134	0.017	0.017	0.2378	0.2673
Flow (MGD)												
Daily Maximum	0.366	0.352	0.396	0.262	0.209	1.579	0.641	0.873	0.031	0.021	0.513	0.7117
pH (S.U.)												
Minimum	6.1	6.0	6.4	6.4	6.4	6.3	5.1	6.6	6.5	6.2	6.3	6.35
pH (S.U.)												
Maximum	7.3	7.2	7.3	7.4	7.3	7.5	7.9	7.6	7.4	7.3	10.05	7.38
DO (mg/L)												
Minimum	5.3	5.1	5.0	6.1	5.2	5.3	5.4	5.2	7.0	6.9	6.21	6.34
TRC (mg/L)												
Average Monthly	0.27	0.49	0.47	0.5	0.3	0.4	0.23	0.1	0.2	0.3	0.3	0.3
TRC (mg/L)												
Instantaneous												
Maximum	1.0	1.99	1.0	1.6	0.90	1.10	2.20	0.38	0.70	0.60	0.91	0.64
CBOD5 (lbs/day)												
Average Monthly	< 5.7	7.9	4.8	5.4	3	19	7.9	6.2	1	1	12	16
CBOD5 (lbs/day)												
Weekly Average	8.9	13.7	5.4	13.2	4	60	13.6	8.7	2	1	18	32
CBOD5 (mg/L)												
Average Monthly	< 3.3	5.2	4.9	5.4	3.3	10.4	5.7	8.9	7.6	7.5	5.9	5.5
CBOD5 (mg/L)				40.0				40 -	10.1			
Weekly Average	5.2	6.7	5.7	10.6	5.0	11.4	10.4	13.5	12.1	9.1	8.0	7.8
BOD5 (lbs/day)												
Raw Sewage Influent	250	405	113	400	202	570	563	000	21	30	344	474
 Ave. Monthly	356	195	113	108	292	576	563	239	21	30	344	474
BOD5 (lbs/day)												
Raw Sewage Influent	010	270	101	457	494	1047	1000	406	20	43	400	775
 	812	370	131	157	494	1947	1009	400	29	43	420	775
BOD5 (mg/L)												
Raw Sewage Influent Average												
Monthly	196	143	116	109	283	273	549	334	172	231	169	192
TSS (lbs/day)	190	143	110	109	200	213	543	554	172	231	109	192
Average Monthly	26	41	27	16	11	47	25	11	2	2	37	38
Average monuny	20	41	21	10	11	41	20		۷ ک	۷ ک	31	30

TSS (lbs/day) Raw Sewage Influent												
<pre> Average</pre>												
Monthly	345	147	71	41	466	233	1186	158	7	18	288	220
TSS (lbs/day)	0-10	1-17			400	200	1100	100	,	10	200	220
Raw Sewage Influent												
<pre> br/> Daily Maximum</pre>	1068	391	178	57	1076	439	3052	319	12	32	349	447
TSS (lbs/day)	1000	001	110	01	1070	100	0002	010	12	02	0.10	
Weekly Average	65	99	42	22	13	167	66	16	3	2	52	86
TSS (mg/L)												
Average Monthly	13.4	29.8	27.1	16.2	12.0	21.5	20.9	16.1	13.8	15.0	18.0	13.2
TSS (mg/L)												
Raw Sewage Influent												
 http://www.worthly	197	111	70	45	432	192	1262	206	54	140	142	103
TSS (mg/L)												
Weekly Average	21.2	68.0	40.0	20.5	13.6	20.5	57.0	24.7	20	18.0	23.0	24.8
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 63	< 252	31	27	687	7925	> 9438	16471	1716	24	71	11
Fecal Coliform												
(No./100 ml)												
Instant. Maximum	2800	6200	188	45	8800	20000	> 20000	20000	20000	98	9800	63
Nitrate-Nitrite (mg/L)												
Average Monthly	12.85	10.72	8.43	9.55	8.44	10.03	6.86	9.2	9.01	9.53	6.75	4.03
Nitrate-Nitrite (lbs)												
Total Monthly	631	401	272	313	236	714	258	201	33	37	394.0	235
Total Nitrogen (mg/L)		10.05	10 - 1			10.10	0.70	10.00			0.50	
Average Monthly	14.85	13.05	10.71	10.92	10.41	12.12	8.79	12.03	11.41	11.84	8.52	8.08
Total Nitrogen (lbs)												
Effluent Net 	700	400	242	050	202	004	24.2	000	40	40	405	550
Total Monthly	733	489	343	356	292	864	313	262	42	46	495	550
Total Nitrogen (lbs)	700	489	343	250	202	004	212	262	42	46	10.0	550
Total Monthly	733	489	343	356	292	864	313	262	42	40	16.0	550
Total Nitrogen (lbs) Effluent Net 												
Total Annual			< 4452									
			< 4452									
Total Nitrogen (lbs) Total Annual			< 4452									
Ammonia (lbs/day)			< 4402									<u>├</u> ───┤
Average Monthly		< 0.2	< 0.4	< 0.2	< 0.2	< 0.3	< 0.18					
Ammonia (mg/L)		< 0.Z	< 0. 4	< 0.Z	< 0.2	< 0.5	< 0.10					
Average Monthly	< 0.1	< 0.2	< 0.4	< 0.2	< 0.2	< 0.1	< 0.1	0.5	< 0.7	< 0.4	< 0.1	< 2.23
Ammonia (lbs)	< 0.1	< 0.Z	< 0. 4	< 0.Z	<u> </u>	< 0.1	< 0.1	0.0	< 0.1	<u> </u>	<u> </u>	< 2.20
Total Monthly	< 7	< 6	< 11	< 6	< 6	< 8	< 6	10	< 2	< 2	< 6.0	< 189

Ammonia (lbs)												
Total Annual			< 274									
TKN (mg/L)												
Average Monthly	2.00	2.31	2.28	1.36	1.98	2.09	< 2.16	2.82	2.41	2.32	1.77	4.26
TKN (lbs)												
Total Monthly	101	88	72	43	57	148	< 66	60	9	9	101	325
Total Phosphorus												
(mg/L) Average												
Monthly	1.2	1.3	1.4	1.2	1.1	0.8	0.9	1.2	0.6	1.9	1.12	2.8
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	61	49	45	38	33	74	34	26	2	7	67.0	209
Total Phosphorus (lbs)												
Total Monthly	61	49	45	38	33	74	34	26	2	7	67.0	209
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual			944									
Total Phosphorus (lbs)												
Total Annual			944									
Total Aluminum												
(mg/L) Average												
Quarterly			E			0.543			0.375			0.166
Total Iron (mg/L)												
Average Quarterly			E			< 0.100			< 0.200			< 0.1
Total Manganese												
(mg/L) Average												
Quarterly			E			0.034			< 0.020			0.022

3.2 Effluent Violations for Outfall 001, from: January 1, 2023 To: November 30, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
рН	05/31/23	Min	5.1	S.U.	6.0	S.U.
рН	01/31/23	Max	10.05	S.U.	9.0	S.U.
TRC	05/31/23	IMAX	2.20	mg/L	1.63	mg/L
TRC	10/31/23	IMAX	1.99	mg/L	1.63	mg/L
TSS	06/30/23	Wkly Avg	167	lbs/day	153	lbs/day
TSS	05/31/23	Wkly Avg	57.0	mg/L	45.0	mg/L

TSS	10/31/23	Wkly Avg	68.0	mg/L	45.0	mg/L
Fecal Coliform	05/31/23	Geo Mean	> 9438	No./100 ml	200	No./100 ml
Fecal Coliform	04/30/23	Geo Mean	16471	No./100 ml	2000	No./100 ml
Fecal Coliform	06/30/23	Geo Mean	7925	No./100 ml	200	No./100 ml
Fecal Coliform	07/31/23	Geo Mean	687	No./100 ml	200	No./100 ml
Fecal Coliform	06/30/23	IMAX	20000	No./100 ml	1000	No./100 ml
Fecal Coliform	03/31/23	IMAX	20000	No./100 ml	10000	No./100 ml
Fecal Coliform	07/31/23	IMAX	8800	No./100 ml	1000	No./100 ml
Fecal Coliform	05/31/23	IMAX	> 20000	No./100 ml	1000	No./100 ml
Fecal Coliform	04/30/23	IMAX	20000	No./100 ml	10000	No./100 ml

3.3 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicates is not meeting permit limit consistently. Fecal Coliform, PH, TRC and TSS effluent violations were noted on DMRs for several months in 2023 and presented in section 3.2 above. The Department is working on enforcement action. The permit will be drafted, and the cover letter of the draft permit will have the following condition "According to DEP's records, there are unresolved violation(s) at one or more facilities you own or operate. In accordance with DEP's Clean Water Program standard operating procedures, an applicant's compliance history is considered prior to making a final decision on any permit application. Please take the opportunity to address these violations during this draft comment period. DEP may not be able to issue a final permit until the violation(s) are resolved"

3.4 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations were found during plant inspections.

4.0 Development of Effluent Limitations									
Outfall No.	001		Design Flow (MGD)	.41					
Latitude	40° 34' 8.65"		Longitude	-76º 42' 48.66"					
Wastewater D	escription:	Sewage Effluent							

4.1 Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: None

4.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.3.1 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for CBOD₅, NH₃-N and DO in permits. The model simulates mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria and also simulates mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits

4.4 Water Quality-Based Limitations

4.4.1 Receiving Stream

The receiving stream is the Wiconisco Creek. According to 25 PA § 93.9o, Wiconisco Creek is protected for Warm Water Fishes (WWF). It is located in Drainage List m and State Watershed 6-C. It has been assigned stream code 16895. According to the Department's Pennsylvania Integrated Water Quality Monitoring and Assessment Report, this stream is impaired for pH, siltation and metals due to abandoned mine drainage. A TMDL for the effects of Acid Mine Drainage was completed and approved on November 24, 2008 and is discussed further in this report.

4.4.2 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No. 0155500 on Mahantango. The Q_{7-10} and drainage area at the gage are 6.38ft³/s and 164 mi² respectively. The resulting yields are as follows:

 $\begin{array}{rcl} Q_{7\text{-}10} & = & 6.38 \mbox{ cfs} \ /164 \mbox{ sq. mi} = 0.04 \mbox{ cfs/sq.mi} \\ Q_{30\text{-}10} \ /Q_{7\text{-}10} & = & 1.47 \\ Q_{1\text{-}10} \ /Q_{7\text{-}10} & = & 0.74 \end{array}$

The drainage area at the point of discharge taken from previous protection report = 60.0 sq. mi. The design flow is calculated as: $Q_{7-10} = 0.04$ cfs x 60 sq. mi = 2.4cfs

 $NH_{3}N$ calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $NH_{3}N$ criteria used in the attached computer model of the stream:

- STP pH = 7.0 (DMR Median July Sept.)
- STP Temperature = $25 \circ C$ (default)
- Stream pH = 7.0 (Default)
- Stream Temperature = 20 °C (Default)
- Background NH₃-N = 0.0 (Default)

4.4.3 CBOD_{5:}:

Water quality modeling for this discharge was done in conjunction with the Williamstown Borough Authority STP discharge, Washington Township STP's discharge and Elizabethville Borough's discharge due to the proximity of these discharges to each other. The attached results of the WQM 7.0 stream model (attachment B) indicates that for Lykens Borough's discharge with an annual average flow of 0.41 MGD, a monthly average limit of 25 mg/l is needed to protect the water quality of the stream. This limit is consistent with the existing permit limits. DMRs and inspection reports show that the STP has been achieving less than 25 mg/l CBOD₅. Therefore, a limit of 25mg/l monthly average with 40mg/l weekly average and 50 mg/l instantaneous maximum will again be applied for this current permit cycle.

Mass Limits are calculated as follows:

Mass based AML (lb/day) = 25 (mg/L) \times 0.41(mgd) \times 8.34 = 85

Mass based AWL (lb/day) = $40(mg/L) \times 0.41(mgd) \times 8.34 = 136$

<u>4.4.4 NH₃-N</u>

The attached computer printout of the WQM 7.0 stream model (Attachment B) indicates that a summer average monthly limit of 11.5 mg/l NH_3 (rounded) is necessary to protect the aquatic life from toxicity effects. This is consistent with the existing summer limit of 11.5 mg/l for ammonia nitrogen will remain with monitor and report during winter months. The facility's DMR and inspection report indicate the facility is meeting the limits.

Mass based AML (lb/day) for the summer months = $11.5 \text{ (mg/L)} \times 0.41 \text{ (mgd)} \times 8.34 = 39$

4.4.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.4.6 Total Suspended Solids (TSS)

There is no water quality criteria for TSS. A limit of 30 mg/I AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/I per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2)

Mass based AML (lb/day) = $30 \text{ (mg/L)} \times 0.41 \text{ (mgd)} \times 8.34 = 102$

Mass based AWL (lb/day) = $45(mg/L) \times 0.41(mgd) \times 8.34 = 153$

4.4.7 Phosphorus

Currently there is no watershed-wide requirement for phosphorus limitation in the Wiconisco Basin, therefore no phosphorus limitation is required for this discharge other than Chesapeake Bay Annual Total Phosphorus Cap load.

4.4.8 Total Residual Chlorine

The attached TRC model results presented in attachments C utilize the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached results indicate that a technology limit of 0.5 mg/l and 1.63mg/l IMAX would be needed to prevent toxicity concerns. This is consistent with the existing permit. DMR and inspection report indicate the facility has been complying with this limitation.

4.4.9 Toxics

A reasonable potential (RP) analysis was done for pollutants in the discharge. The discharge consists entirely of domestic wastewater with no pollutants of concern that needs further analysis.

4.4.10 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E. coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows \geq 1 MGD, 1/quarter for design flows \geq 0.05 and < 1 MGD and 1/year for design flows of 0.002 and < 0.05 MGD. Your discharge of 0.41MGD requires 1/quarter monitoring as included in the permit.

4.4.11 Chesapeake Bay Strategy

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by DEP based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed

Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

Phase 3 WIP and the supplement to the WIP, indicates renewing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals. This facility falls in phase 3 of the strategy and is required to meet a total maximum annual Total Nitrogen Cap load of 7,488 lbs/year based on a design annual wasteflow of 0.41 MGD and 6 mg/l total nitrogen and a TP cap load of 998 lbs/year based on annual wasteflow of 0.41 MGD and 0.8 mg/l total phosphorus. The facility is complying with the Chesapeake Bay Cap load requirements.

The Department approved a total nitrogen offset of 75lbs of nitrogen based on 3 EDUs at 25lbs/EDU for the Authority. The offsets are for 3 EDUs on-lot disposal systems that have been connected to the sewer conveyance system. These on-lot systems were put into use prior to January 1, 2003 and retired after January 1, 2003. The approved offsets are only for compliance purposes and are not available for trading or selling. The permit will show the base cap load on the effluent page and show the offsets as a foot note with a language indicating the offsets may be applied throughout the compliance year or during the truing period. A complete list of addresses of the dwellings that were served by the retired on-lot systems that are now connected to the sewage conveyance system is on file.

4.4.12 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.13 Stormwater

There is no stormwater outfall associated with this facility.

4.4.14 Industrial Users

This Wastewater Treatment Plant does not receive wastewater from any significant industrial users.

4.4.15 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.41 MGD and the facility receives no flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is located on a 303d listed stream segment as impaired due to Acid Mine Drainage. A TMDL was approved for Wiconisco Creek Watershed which set allowable loadings for iron, manganese, aluminum and acidity in Wiconisco Creek. In addition, allowable loads for sediment and nutrients were set for Little Wiconisco Creek and several unnamed

NPDES Permit Fact Sheet Lykens STP

tributaries. The TMDL does not set allowable loads for nutrients in Wiconsico Creek. The discharge from Lykens predates the TMDL development. Lykens discharge is the only one on the segment, is located close to monitoring point WICO 2.0. The TMDL did not call for load reduction at the monitoring point (WICO 2.0) which is below Lykens discharge. Further downstream at monitoring point WICO 1.0, the creek recovered except for acidity. The existing permit has quarterly monitoring for Total Aluminum, Total Iron and Total Manganese which be continued for the permit cycle to ensure discharge levels are not increasing.

5.5 Special Permit Conditions

The permit contains the following special conditions:

• Stormwater Prohibition, Approval Contingencies, Solids Management and Restriction on receipt of hauled in waste under certain conditions and chlorine minimization requirement.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	XXX	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
DO	ХХХ	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	ххх	xxx	xxx	0.5	XXX	1.63	1/day	Grab
CBOD5	85	136	XXX	25.0	40.0	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	1/week	24-Hr Composite
TSS	102	153	xxx	30.0	45.0	60	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ХХХ	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	xxx	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Nitrate-Nitrite	ххх	xxx	xxx	Report	XXX	xxx	2/week	24-Hr Composite
Nitrate-Nitrite (lbs)	Report Total Mo	XXX	xxx	xxx	XXX	xxx	1/month	Calculation

NPDES Permit Fact Sheet Lykens STP

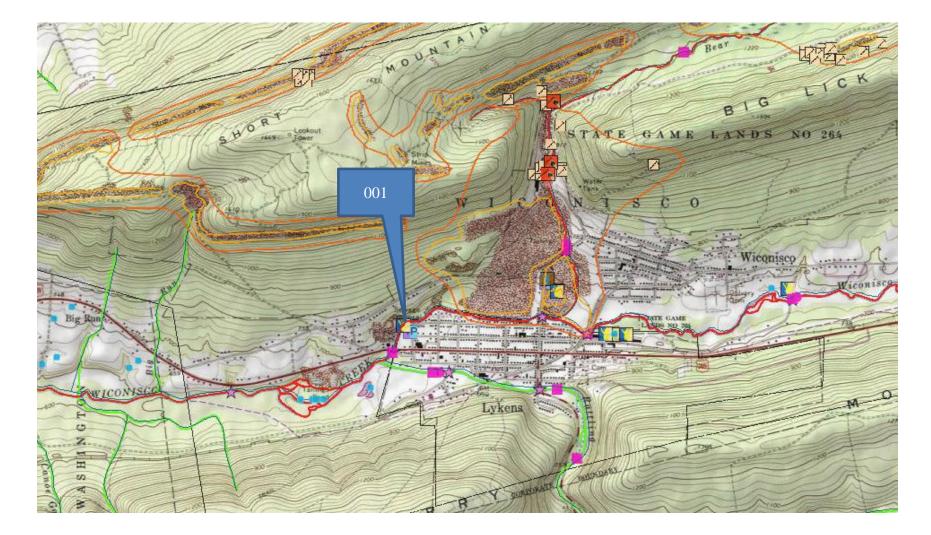
			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen	xxx	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Total Nitrogen (lbs)	Report Total Mo	XXX	xxx	XXX	xxx	ххх	1/month	Calculation
Ammonia Nov 1 - Apr 30	XXX	XXX	xxx	Report	xxx	ххх	2/week	24-Hr Composite
Ammonia May 1 - Oct 31	39	XXX	xxx	11.5	XXX	23	2/week	24-Hr Composite
Ammonia (Ibs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
TKN	XXX	XXX	xxx	Report	xxx	XXX	2/week	24-Hr Composite
TKN (lbs)	Report Total Mo	XXX	xxx	XXX	XXX	XXX	1/month	Calculation
Total Phosphorus	XXX	XXX	XXX	Report	XXX	xxx	2/week	24-Hr Composite
Total Phosphorus (lbs)	Report Total Mo	XXX	xxx	XXX	XXX	XXX	1/month	Calculation
Total Aluminum	XXX	XXX	xxx	Report Avg Qrtly	xxx	ххх	1/quarter	24-Hr Composite
Total Iron	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Total Manganese	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite

Compliance Sampling Location: At Outfall 001

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


		E	Effluent Limitation	IS		Monitoring Re	quirements
Parameter ⁽¹⁾	Mass Ur	nits (Ibs)	Co	ncentrations (mg	g/L)	Minimum ⁽²⁾	Required
	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Sample Type
	Durat	Dent	NA/N	Dent		0/	24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	2/week	Composite 24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	2/week	Composite
							24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/week	Composite
Total Nitrogen	Report	Report	xxx	Report	xxx	1/month	Calculation
							24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	Composite
Net Total Nitrogen*	Report	7,488	XXX	XXX	ххх	1/year	Calculation
Net Total Phosphorus	Report	998	XXX	XXX	XXX	1/year	Calculation

Compliance Sampling Location: At Outfall 001

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
\boxtimes	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
\square	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: Establishing effluent limitations for individual sewage permit
\boxtimes	Other: WIP III and Supplement

8.0 Attachment

A. Topographical MAP

B. WQM Model Results

	SWP Basin Stream	n Code		Stream Name	2		
	06C 168	395		WICONISCO CRI	EEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
32.400	Williamstwn STP	PA0021491	0.450	CBOD5	15.01		
				NH3-N	4.49	8.98	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
27.600	Lykens Boro STP	PA0043575	0.410	CBOD5	25		
				NH3-N	11.82	23.64	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limil Minimum (mg/L)
23.500	Washingtom Twp	PA0086185	0.050	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effi. Limi Minimum (mg/L)
15.950	Elizabethville	PA0037737	0.400	CBOD5	25		
				NH3-N	15.76	31.52	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Wednesday, January 17, 2024

Version 1.1

	SWP Basin	Strea Cod		Stre	am Name		RMI		vation (ft)	Drainag Area (sq m		lope ft/ft)	PWS Withdra (mgo	awal	Apply FC
	06C	168	895 WICO	visco ci	REEK		32.40	00	695.00	2'	1.80 0,	00000		0.00	✓
					Sti	ream Dat	a								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ter	<u>Tributar</u> np	у pH	Tem	<u>Stream</u> p	pН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(ºC)		
Q7-10 Q1-10 Q30-10	0.040	0.00 0.00 0.00	0,00 0,00 0,00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	20.00	7.00		0.00	0.00	
		Discharge Data													
			Name	Pe	rmit Numbei	Disc	Permilt Disc Flow (mgd	Dis Flo	sc Re ow Fi	serve actor	Disc Temp (°C)		isc oH		
		Willia	emstwn ST	P PA	0021491	0.450	0 0.45	00 0.4	4500	0.000	22.0	00	6,80		
					Pa	arameter	Data								
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coet					
				raiailiete	a Manto	(m	ng/L) (mg/L)	(mg/L)	(1/day	rs)		_		
	-		CBOD5				25.00	2.00	0.0	0 1.	.50				
			Dissolved	Oxygen			5,00	8.24	0.0	0 0.	.00				
			NH3-N				25,00	0.00	0.0	0 0.	.70				

Input Data WQM 7.0

.

	SWP Basin	Strea Coc		Stre	eam Name		RMI	E	evation (ft)	Drainage Area (sq mi)		ope V t/ft)	PWS Vithdrawal (mgd)	Apply FC
	06C	168	395 WICO	NISCO C	REEK		27.6	00	645.00	60.	00 0.0	00000	0.00	
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Deptl	n Ten	<u>Tributary</u> np p	н	<u>Si</u> Temp	<u>iream</u> pH	
• • • • •	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.040	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	0.00	7.00	0.0	0.00	
					Dì	scharge l	Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Di Fl	sc Res	erve T ctor	Disc `emp (°C)	Disc pH		
		Lyken	is Boro ST	P PAC	043575	0.4100	0.410	0 0.	4100	0.000	25.00) 7.0	00	
					Pa	rameter I	Data							
			F	arameter	r Name	Di Co		'rib Ionc	Stream Conc	Fate Coef				
						(m	g/L) (n	ng/L)	(mg/L.)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N			2	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basir			Stre	am Name		RMI	Eleva (fi		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrav (mgd)	val	Apply FC
	06C	168	395 WICO	NISCO CI	REEK		23.50)0	80.00	66.00	0.00000		0.00	
					S	tream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Terr	<u>Stream</u> 1p I	рH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C	;)		
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20	0.00 7.0	00	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									

Input Data WQM 7.0

Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Desig Disc Flow (mgd	Rese Fac	erve .	Disc Temp (°C)	Disc pH
Washingtom Twp	PA0086185	0.0500	0.0500	0.05	500 C	0.000	25.00	7.00
	Pa	rameter D	ata					
Barr		Dis Co			Stream Conc	Fate Coef		
Para	meter Name	(mg	J/L) (mg	I/L) ((mg/L)	(1/days)	
CBOD5		2	5.00	2.00	0.00	1.5	0	
Dissolved Oxy	gen		5.00	8.24	0.00	0.0	0	
NH3-N		2	5.00	0.00	0.00	0.7	0	

Version 1.1

Page 3 of 5

	SWF Basi			Stre	am Name		RMI	Elevati (ft)	P	inage \rea q mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	06C	168	895 WICO	NISCO C	REEK		15.95	0 51	8.00	80.49	0.00000	0.00	
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Trib</u> Temp	<u>utary</u> pH	Tem	<u>Stream</u> p pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))	
27-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00) (0.00)
21-10		0.00	0.00	0.000	0.000								
130-10		0.00	0.00	0.000	0.000								
					Di	scharge E)ata						
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)			
		Elizat	oethville	PAC	037737	0.4000	0.4000	0.4000	0.000) 25	.00	7.00	

Parameter Data Disc

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

25.00

5.00

25.00

Trib

Conc

(mg/L)

2.00

8.24

0.00

Stream

Conc

Fate

Coef

1.50

0.00

0.70

(mg/L) (1/days)

0.00

0.00

0.00

Input Data WQM 7.0

Wednesday, January 17, 2024

Version 1.1

Page 4 of 5

	SWP Basin	Strea Cod		Stre	eam Name		RMI	l Ele	evation (ft)	Drainage Area (sq mi)	Slop (ft/ft	Withd	rawal	Apply FC
	06C	168	395 WICO	VISCO CI	REEK		7.4	20	450.00	89.60	0.000	000	0.00	
					St	ream Da	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	<u>Tributary</u> np pH		<u>Strean</u> Temp	n pH	
Conu,	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.040	0.00 0.00 0.00	0.00	0,000 0.000 0.000		0.0	0.00) 0.	00 2	0,00 7.	00	0.00	0.00	
					D	ischarge	Data)	
			Name	Pe	rmit Numbe	Disc) Permil Disc Flov (mgo	c Di w Fl	sc Res	Di serve Tel actor (°	np	Disc pH		
		Daup	hin Meado	ws PA	0080187	0.050	0.08	500 0.	0500	0.000	20.00	7.00		
					P	arameter	Data							
				Paramete	er Name)isc Conc	Trib Conc	Stream Conc	Fate Coef				
				raramote	a riano	(r	ng/L)	(mg/L)	(mg/L)	(1/days)				
			CBOD5				50.00	2.00	0.00) 1.50				
			Dissolved	Oxygen			5.00	8.24	0.0	0.00				
			NH3-N				50.00	0.00	0.0	0.70				

Input Data WQM 7.0

				** • • •								
	<u>sw</u>	<u>P Basin</u>	Strea	<u>m Code</u>			ł	Stream	Name			
		06C	1	6895			WIC	CONISCO	O CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow			an a 2007								
32,400	0.87	0.00	0.87	,6962	0.00197	.577	21.43	37.17	0.13	2,308	20.89	6.90
27.600	2.41	0.00	2.41	1.3304	0.00300	.67	32.56	48.58	0.17	1,464	21.22	6.96
23,500	2.65	0.00	2.65	1.4078	0.00156	.692	35.27	50.98	0.17	2.777	21.22	6.96
15.950	3.23	0.00	3.23	2.0266	0.00151	.722	39.7	55.02	0.18	2.842	21.53	6.97
Q1-1	0 Flow											
32,400	0.65	0.00	0.65	.6962	0.00197	NA	NA	NA	0.12	2.519	21.04	6.88
27.600	1.78	0.00	1.78	1.3304	0.00300	NA	NA	NA	0.15	1.622	21.47	6.95
23.500	1.96	0.00	1.96	1.4078	0.00156	NA	NA	NA	0.15	3.082	21.47	6.95
15.950	2.39	0.00	2.39	2.0266	0.00151	NA	NA	NA	0.17	3,133	21.82	6.96
Q30-	10 Flow	1										
32.400	1.29	0.00	1.29	.6962	0.00197	NA	NA	NA	0.14	2.026	20.70	6.92
27.600	3.54	0.00	3.54	1.3304	0.00300	NA	NA	NA	0.20	1.262	20.94	6.97
23.500	3,89	0.00	3,89	1.4078	0.00156	NA	NA	NA	0.19	2.391	20.93	6.97
15.950	4.74	0.00	4.74	2,0266	0.00151	NA	NA	NA	0.21	2.466	21.19	6.97

WQM 7.0 Hydrodynamic Outputs

Wednesday, January 17, 2024

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.74	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.47	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Wednesday, January 17, 2024

Version 1.1

		0 4			n 1.	nom Name		
	SWP Basin	<u>Strea</u>	<u>ım Code</u>		<u>su</u>	eam Name		
	06C	1	6895		WICO	VISCO CREE	к	
H3-N	Acute Alloc	ation	S					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
32.40	00 Williamstwn	STP	16.87	32.56	16.87	32.56	0	0
27,60	0 Lykens Boro	STP	15.03	50	15.52	50	0	0
23.5	00 Washingtom	Тwp	16.5	50	15.47	50	0	0
15,9	50 Elizabethville	•	15.39	50	14.89	50	0	0
NH3-N	Chronic All	ocati	ons					
RMI	Discharge N	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
32.4	00 Williamstwn	STP	1.86	5.28	1.86	5.28	0	0
27.6	00 Lykens Bord	STP	1.8	11.82	1.8	11.82	0	0
23.5	00 Washingtom	Twp	1,88	25	1.8	25	0	0
20.0								

Dissolved Oxygen Allocations

		CBC	<u>)D5</u>	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
32.40	32.40 Williamstwn STP		15.01	4.49	4.49	5	5	0	0	
27.60	Lykens Boro STP	25	25	11.82	11.82	5	5	0	0	
23.50	23.50 Washingtom Twp		25	25	25	5	5	0	0	
15.95	Elizabethville	25	25	15.76	15.76	5	5	0	0	

Wednesday, January 17, 2024

Version 1.1

<u>SWP Basin</u> Str	ream Code			Stream Name			
06C	16895		Wi	CONISCO CREEK			
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperature (°C)	Analysis pH		
32.400	0.450			20.887	6.900 Reach Velocity (fps)		
Reach Width (ft)	Reach Der	oth (ft)		Reach WDRatio			
21.429	0.57	,		37.171	0.127		
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	<u>1/days)</u>	<u>R</u>	<u>each NH3-N (mg/L)</u>	Reach Kn (1/days)		
7.77	0.565			1.99	0.749		
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)		
6.805	2.433	3		Tsivoglou	5		
Reach Travel Time (days) 2.308	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)			
	0.231	6.78	1.67	5.53			
	0.462	5.92	1.41	5.12			
	0.692	5.17	1.18	5.16			
	0.923	4.51	1.00	5.41			
	1.154	3.94	0.84	5.76			
	1.385	3.44	0.71	6.12			
	1.615	3.00	0.59	6.48			
	1.846	2.62	0.50	6.80			
	2.077	2.29	0.42	7.10			
	2,308	2.00	0.35	7.36			
	2,000	2.00		1.00			
<u></u>	Total Discharge			lysis Temperature (°C)	<u>Analysis pH</u>		
<u>RMI</u> 27.600		Flow (mgd			<u>Analysis pH</u> 6.955		
	Total Discharge	Flow (mgd		lysis Temperature (°C)			
27.600	<u>Total Discharge</u> 0.86 <u>Reach De</u> 0.67	<u>Flow (mgd</u> 0 <u>pth (ft)</u> 0	<u>) Ana</u>	lysis Temperature (°C) 21.221 <u>Reach WDRatio</u> 48.580	6.955 <u>Reach Velocity (fps)</u> 0.171		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u>	<u>Total Discharge</u> 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u>	Flow (mgd D pth (ft) D 1/days)	<u>) Ana</u>	lysis Temperature (°C) 21.221 <u>Reach WDRatio</u> 48.580 leach NH3-N (mg/L)	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90	<u>Total Discharge</u> 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u> 0.67	Flow (mgd) p <u>th (ft)</u>) 1/days) 5	<u>) Ana</u>	lysis Temperature (°C) 21.221 <u>Reach WDRatio</u> 48,580 (each NH3-N (mg/L) 2.15	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u>	<u>Total Discharge</u> 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u>	Flow (mgd) pth (ft)) 1/days) 5 1/days)	<u>) Ana</u>	lysis Temperature (°C) 21.221 <u>Reach WDRatio</u> 48.580 leach NH3-N (mg/L)	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320	<u>Total Discharge</u> 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u> 0.67 <u>Reach Kc (</u> 5.02 TravTime	Flow (mgd o pth (ft) o 1/days) 5 1/days) 7 Subreact CBOD5) <u>Ana</u> E n Results NH3-N	lysis Temperature (°C) 21.221 Reach WDRatio 48.580 (each NH3-N (mg/L) 2.15 Kr Equation Tsivoglou D.O.	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days)</u>	<u>Total Discharge</u> 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u> 0.67 <u>Reach Kr (</u> 5.02 TravTime (days)	Flow (mgd) pth (ft)) 1/days) 55 1/days) 7 Subreact CBOD5 (mg/L)) <u>Ana</u> Results NH3-N (mg/L)	Ivsis Temperature (°C) 21.221 Reach WDRatio 48.580 (each NH3-N (mg/L) 2.15 <u>Kr Equation</u> Tsivoglou D.O. (mg/L)	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days)</u>	Total Discharge 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u> 0.67 <u>Reach Kr (</u> 5.02 TravTime (days) 0.146	Flow (mgd) pth (ft)) 1/days) 55 1/days) 7 Subreact CBOD5 (mg/L) 5.32) <u>Ana</u> Results NH3-N (mg/L) 1.92	Ivsis Temperature (°C) 21.221 Reach WDRatio 48.580 teach NH3-N (mg/L) 2.15 Kr Equation Tsivoglou D.O. (mg/L) 6.82	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days)</u>	Total Discharge 0.86 Reach De 0.67 Reach Kc (0.67 Reach Kr (5.02 TravTime (days) 0.146 0.293	Flow (mgd) pth (ft)) 1/days) 5 1/days) 7 Subreact CBOD5 (mg/L) 5.32 4.79) <u>Ana</u> Results NH3-N (mg/L) 1.92 1.72	Ivsis Temperature (°C) 21.221 Reach WDRatio 48.580 (each NH3-N (mg/L) 2.15 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.82 6.71	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days)</u>	<u>Total Discharge</u> 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u> 0.67 <u>Reach Kr (</u> 5.02 TravTime (days) 0.146 0.293 0.439	Flow (mgd) pth (ft)) 1/days) 5 1/days) 7 Subreact CBOD5 (mg/L) 5.32 4.79 4.32) <u>Ana</u> Results NH3-N (mg/L) 1.92 1.72 1.54	Ivsis Temperature (°C) 21.221 Reach WDRatio 48.580 teach NH3-N (mg/L) 2.15 Kr.Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.79	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days)</u>	<u>Total Discharge</u> 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u> 0.67 <u>Reach Kr (</u> 5.02 TravTime (days) 0.146 0.293 0.439 0.586	Flow (mgd) pth (ft)) 1/days) 5 1/days) 7 Subreact CBOD5 (mg/L) 5.32 4.79 4.32 3.89) <u>Ana</u> Results NH3-N (mg/L) 1.92 1.72 1.54 1.37	Ivsis Temperature (°C) 21.221 Reach WDRatio 48.580 teach NH3-N (mg/L) 2.15 Kr.Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.94	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days)</u>	Total Discharge 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u> 0.67 <u>Reach Kr (</u> 5.02 TravTime (days) 0.146 0.293 0.439 0.586 0.732	Flow (mgd) pth (ft)) 1/days) 5 1/days) 7 Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89 3.50) <u>Ana</u> Results NH3-N (mg/L) 1.92 1.72 1.54 1.37 1.23	Nysis Temperature (°C) 21.221 Reach WDRatio 48.580 ieach NH3-N (mg/L) 2.15 Kr.Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.94 7.11	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days)</u>	Total Discharge 0.86 Reach De 0.67 Reach KC (0.67 Reach Kr (5.02 TravTime (days) 0.146 0.293 0.439 0.586 0.732 0.878	Flow (mgd) pth (ft)) 1/days) 5 1/days) 7 Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89 3.50 3.15) <u>Ana</u> Results NH3-N (mg/L) 1.92 1.72 1.54 1.37 1.23 1.10	Kysis Temperature (°C) 21.221 Reach WDRatio 48.580 ieach NH3-N (mg/L) 2.15 Kr.Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.94 7.11 7.29	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/davs)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days)</u>	Total Discharge 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u> 0.67 , <u>Reach Kr (</u> 5.02 TravTime (days) 0.146 0.293 0.439 0.586 0.732 0.878 1.025	Flow (mgd) pth (ft)) 1/days) 5 1/days) 7 Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89 3.50 3.15 2.84) <u>Ana</u> Results NH3-N (mg/L) 1.92 1.72 1.54 1.37 1.23 1.10 0.98	Nysis Temperature (°C) 21.221 Reach WDRatio 48.580 each NH3-N (mg/L) 2.15 Kr Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.94 7.11 7.29 7.45	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days)</u>	Total Discharge 0.86 Reach De 0.67 Reach KC (0.67 Reach Kr (5.02 TravTime (days) 0.146 0.293 0.439 0.586 0.732 0.878 1.025 1.171	Flow (mgd) pth (ft)) 1/days) 5 1/days) 7 Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89 3.50 3.15 2.84 2.56) <u>Ana</u> Results NH3-N (mg/L) 1.92 1.72 1.54 1.37 1.23 1.10 0.98 0.88	Nysis Temperature (°C) 21.221 Reach WDRatio 48.580 ieach NH3-N (mg/L) 2.15 Kr.Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.79 6.94 7.11 7.29 7.45 7.60	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/days)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		
27.600 <u>Reach Width (ft)</u> 32.565 <u>Reach CBOD5 (mg/L)</u> 5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days)</u>	Total Discharge 0.86 <u>Reach De</u> 0.67 <u>Reach Kc (</u> 0.67 , <u>Reach Kr (</u> 5.02 TravTime (days) 0.146 0.293 0.439 0.586 0.732 0.878 1.025	Flow (mgd) pth (ft)) 1/days) 5 1/days) 7 Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89 3.50 3.15 2.84) <u>Ana</u> Results NH3-N (mg/L) 1.92 1.72 1.54 1.37 1.23 1.10 0.98	Nysis Temperature (°C) 21.221 Reach WDRatio 48.580 each NH3-N (mg/L) 2.15 Kr Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.94 7.11 7.29 7.45	6.955 <u>Reach Velocity (fps)</u> 0.171 <u>Reach Kn (1/davs)</u> 0.769 <u>Reach DO Goal (mg/L)</u>		

WQM 7.0 D.O.Simulation

Wednesday, January 17, 2024

<u>SWP Basin</u> St	<u>ream Code</u>			Stream Name	
06C	16895		w	ICONISCO CREEK	
<u>RMI</u> 23.500	Total Discharge) <u>Ana</u>	lysis Temperature (°C)	Analysis pH
23.500 Reach Width (ft)	0.91 <u>Reach De</u>			21.221 <u>Reach WDRatio</u>	6.958 <u>Reach Velocity (fps)</u>
35.272	0.69			50.979	0.166
Reach CBOD5 (mg/L)	Reach Kc		R	teach NH3-N (mg/L)	Reach Kn (1/days)
2.51				1.12	0.769
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.831	2,52	7		Tsivoglou	5
<u>Reach Travel Time (days)</u> 2.777	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.278	2.45	0.91	7.64	
	0.555	2.40	0.73	7.68	
	0.833	2.34	0.59	7.81	
	1.111	2.29	0.48	7.96	
	1.389	2.24	0.39	8.06	
	1.666	2.19	0.31	8,06	
	1.944	2.14	0.25	8.06	
	2.222	2.09	0.20	8.06	
	2.499	2.05	0.16	8.06	
	2.777	2.00	0.13	8.06	
RMI	Total Discharge) <u>Ana</u>	lysis Temperature (°C)	Analysis pH
15.950	1.31			21.531	6.968
Reach Width (ft)	<u>Reach De</u>			Reach WDRatio	Reach Velocity (fps)
20,000	0.70	2		55.018	0.183
39.698 Reach CBOD5 (mg/l)	0.72 Beach Ko		D		Reach Kn (1/dave)
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	(1/days)	<u>R</u>	<u>each NH3-N (mg/L)</u> 1.96	Reach Kn (1/days) 0 788
<u>Reach CBOD5 (mg/L)</u> 4.71		<u>(1/days)</u> 1	<u>R</u>	1.96 <u>Kr Equation</u>	<u>Reach Kn (1/days)</u> 0.788 <u>Reach DO Goal (mg/L)</u>
Reach CBOD5 (mg/L)	<u>Reach Kc (</u> 0.28	<u>1/days)</u> 1 1/days)	<u>R</u>	1.96	0.788
Reach CBOD5 (mg/L) 4.71 Reach DO (mg/L) 7.719 each Travel Time (days)	<u>Reach Ko (</u> 0.28 <u>Reach Kr (</u> 2.72	(<u>1/days)</u> 1 <u>1/days)</u> 9 Subreach	Results	1.96 <u>Kr Equation</u> Tsivoglou	0.788 <u>Reach DO Goal (mg/L)</u>
<u>Reach CBOD5 (mg/L)</u> 4.71 <u>Reach DO (mg/L)</u> 7.719	<u>Reach Kc (</u> 0.28 <u>Reach Kr (</u>	(<u>1/days)</u> 1 <u>1/days)</u> 9		1.96 <u>Kr Equation</u>	0.788 <u>Reach DO Goal (mg/L)</u>
Reach CBOD5 (mg/L) 4.71 Reach DO (mg/L) 7.719 each Travel Time (days)	<u>Reach Kc (</u> 0.28 <u>Reach Kr (</u> 2.72 TravTime	(1/days) 1 1/days) 9 Subreach CBOD5	Results NH3-N	1.96 <u>Kr Equation</u> Tsivoglou D.O.	0.788 <u>Reach DO Goal (mg/L)</u>
Reach CBOD5 (mg/L) 4.71 Reach DO (mg/L) 7.719 each Travel Time (days)	<u>Reach Kc (</u> 0.28 <u>Reach Kr (</u> 2.72 TravTime (days)	<u>1/days)</u> 1 <u>1/days)</u> 9 Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	1.96 <u>Kr Equation</u> Tsivoglou D.O. (mg/L)	0.788 Reach DO Goal (mg/L)
Reach CBOD5 (mg/L) 4.71 Reach DO (mg/L) 7.719 each Travel Time (days)	Reach Kc (0.28 Reach Kr (2.72 TravTime (days) 0.284	(1/days) 1 1/days) 9 Subreach CBOD5 (mg/L) 4.32	Results NH3-N (mg/L) 1.57	1.96 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.73	0.788 Reach DO Goal (mg/L)
Reach CBOD5 (mg/L) 4.71 Reach DO (mg/L) 7.719 each Travel Time (days)	Reach Kc (0.28 Reach Kr (2.72 TravTime (days) 0.284 0.568	(<u>1/days)</u> 1 <u>1/days)</u> 9 Subreach CBOD5 (mg/L) 4.32 3.97	Results NH3-N (mg/L) 1.57 1.25	1.96 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.73 6.55	0.788 Reach DO Goal (mg/L)
Reach CBOD5 (mg/L) 4.71 Reach DO (mg/L) 7.719 each Travel Time (days)	Reach Kc (0.28 Reach Kr (2.72 TravTime (days) 0.284 0.568 0.853	(1/days) 1 1/days) 9 Subreach CBOD5 (mg/L) 4.32 3.97 3.64	Results NH3-N (mg/L) 1.57 1.25 1.00	1.96 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.73 6.55 6.70	0.788 Reach DO Goal (mg/L)
Reach CBOD5 (mg/L) 4.71 Reach DO (mg/L) 7.719 each Travel Time (days)	Reach Kc (0.28 Reach Kr (2.72 TravTime (days) 0.284 0.568 0.853 1.137	(1/days) 1 1/days) 9 Subreach CBOD5 (mg/L) 4.32 3.97 3.64 3.34	Results NH3-N (mg/L) 1.57 1.25 1.00 0.80	1.96 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.73 6.55 6.70 6.95	0.788 Reach DO Goal (mg/L)
Reach CBOD5 (mg/L) 4.71 Reach DO (mg/L) 7.719 each Travel Time (days)	Reach Kc (0.28 Reach Kr (2.72 TravTime (days) 0.284 0.568 0.853 1.137 1.421 1.705 1.989	(1/days) 1 1/days) 9 Subreach CBOD5 (mg/L) 4.32 3.97 3.64 3.34 3.34 3.07 2.82 2.59	Results NH3-N (mg/L) 1.57 1.25 1.00 0.80 0.64 0.51 0.41	1.96 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.73 6.55 6.70 6.95 7.22 7.46 7.68	0.788 Reach DO Goal (mg/L)
Reach CBOD5 (mg/L) 4.71 Reach DO (mg/L) 7.719 Reach Travel Time (days)	Reach Kc (0.28 Reach Kr (2.72 TravTime (days) 0.284 0.568 0.853 1.137 1.421 1.705 1.989 2.273	(1/days) 1 1/days) 9 Subreach CBOD5 (mg/L) 4.32 3.97 3.64 3.34 3.07 2.82 2.59 2.37	Results NH3-N (mg/L) 1.57 1.25 1.00 0.64 0.51 0.41 0.33	1.96 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.73 6.55 6.70 6.95 7.22 7.46 7.68 7.86	0.788 <u>Reach DO Goal (mg/L)</u>
Reach CBOD5 (mg/L) 4.71 <u>Reach DO (mg/L)</u> 7.719 Reach Travel Time (days)	Reach Kc (0.28 Reach Kr (2.72 TravTime (days) 0.284 0.568 0.853 1.137 1.421 1.705 1.989	(1/days) 1 1/days) 9 Subreach CBOD5 (mg/L) 4.32 3.97 3.64 3.34 3.34 3.07 2.82 2.59	Results NH3-N (mg/L) 1.57 1.25 1.00 0.80 0.64 0.51 0.41	1.96 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.73 6.55 6.70 6.95 7.22 7.46 7.68	0.788 Reach DO Goal (mg/L)

WQM 7.0 D.O.Simulation

Wednesday, January 17, 2024

Version 1.1

Page 2 of 2

C. TRC CALCULATIONS

TRC EVAL	JATION									
Input appropriate values in A3:A9 and D3:D9										
2.4 = Q stream (cfs) 0.5										
	= Q discha	· · ·		= CV Hourly						
	= no. samp		1 = AFC_Partial Mix Factor							
		Demand of Stream		= CFC_Partia						
-		Demand of Discharge	15	= AFC_Criter	ia Compliance Time (min)					
0.5	= BAT/BPJ	Value			ia Compliance Time (min)					
0	= % Factor	of Safety (FOS)	0 =Decay Coefficient (K)							
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	1.226	1.3.2.iii	WLA cfc = 1.188					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.457	5.1d	LTA_cfc = 0.691					
Source		Efflue	nt Limit Calcu	lations						
PENTOXSD TRG	5.1f		AML MULT =	1.231						
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.500	BAT/BPJ					
		INST MAX I	LIMIT (mg/l) =	1.635						
-										
WLA afc		AFC_tc)) + [(AFC_Yc*Qs	-	- k*A FC_tc))	•					
LTAMULT afc		<pre>\FC_Yc*Qs*Xs/Qd)]*(1-F(/outb22+4)\ 2.226*LN/(outb22+</pre>	-							
-	wla_afc*LTA	(cvh^2+1))-2.326*LN(cvh^2+ MULT_afe	1) 0.5)							
LTA_afc	wia_arc LTA	moli_arc								
WLA_cfc	(.011/e(-k*	CFC_tc) + [(CFC_Yc*Qs*	.011/Qd*e(-	k*CFC_te())						
		FC_Yc*Qs*Xs/Qd)]*(1-F	-							
LTAMULT_cfc		(cvd^2/no_samples+1))-2.32	-	o samples+1)^	0.5)					
LTA_cfc	wla_cfc*LTA			,						
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	1^2/no_samples	+1))					
AVG MON LIMIT	MIN(BAT_B	PJ,MIN(LTA_afc,LTA_cfc)*A	ML_MULT)							
INST MAX LIMIT	1.5*((av_m	on_limit/AML_MULT)/LT/	AMULT_afc)							