

Application Type Renewal
Facility Type Municipal
Major / Minor Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.PA0043885APS ID820028Authorization ID988603

Applicant and Facility Information

Applicant Name	Greater Pottsville Area Sewer Authority	Facility Name	Greater Pottsville Area Sewer Authority Main STP			
Applicant Address	401 N Centre Street	Facility Address	Main Plant			
Applicant Contact	Pottsville, PA 17901-1745 Timothy R. Yingling - gpasa@comcast.net	Facility Contact	Pottsville, PA 17901 Timothy R. Yingling - gpasa@comcast.net			
Applicant Phone	(570) 622-0513	Facility Phone	(570) 622-0513			
Client ID	87466	Site ID	256601			
Ch 94 Load Status	Existing Hydraulic Overload	Municipality	Pottsville City			
Connection Status	Legally Modified Connection Prohibition	County	Schuylkill			
Date Application Recei	ivedJuly 3, 2013	EPA Waived?	No			
Date Application Accepted July 3, 2013		If No, Reason	Major Facility, Pretreatment			
Purpose of Application	Renewal of NPDES Permit.					

Summary of Review

The applicant is requesting renewal of an NPDES permit to discharge up to 8.2 MGD of treated sewage into the Schuylkill River a (CWF) Cold Water Fishes receiving stream in water shed 3-A through outfall 001. Per the Department's current existing use list, the receiving stream does not have an existing use classification that is more protective than the designated use. The discharge is not expected to affect public water supplies.

The effluent limits for CBOD5, TSS, pH, and Fecal Coliform are technology-based requirements. The Dissolved Oxygen, Ammonia, TDS, TRC limits are water quality based.

New DRBC parameter requirements added as per Docket 2002-041 CP-3 are:

The requirements in EFFLUENT TABLE A-2 are not listed in the NPDES Permit but are Commission basin-wide parameters that must be met as a condition of this docket approval.

EFFLUENT TABLE A-2: DRBC Parameters Not Included in NPDES Permit

OUTFALL 001 (Discharging to the Schuylkill River)									
PARAMETER	LIMIT	MONITORING							
Total Dissolved Solids*	1,000 mg/l *	Quarterly							
CBOD ₅ (at 20° C)	Monitor & Report Influent and Percent Removal	Monthly, paired with CBOD ₅ effluent monitoring sample							

A PROMINIA 11 AT

Approve	Deny	Signatures	Date
х		Bernard Feist (signed) Bernard Feist, P.E. / Environmental Engineer	November 8, 2021
Х		Amy M. Bellanca (signed) Amy M. Bellanca, P.E. / Environmental Engineer Manager	11-16-21

As well as Influent TSS monitoring per DEP's updated policy for POTW's .

Upper Schuylkill River TMDL

The Schuylkill River is affected by pollution from AMD. This pollution has caused high levels of metals in the Schuylkill River. Major sources of AMD occur at twelve (12) known abandoned deep mine discharges. There are active mining operations in the watershed that are considered remining permits. The twelve (12) major discharges in the watershed are all caused by abandoned mines and are treated as non-point sources. The distinction between non-point and point sources in this case is determined on the basis of whether or not there is a responsible party for the discharge.

Various methods to eliminate or treat pollutant sources and to provide a reasonable assurance that the proposed TMDLs can be met exist in Pennsylvania. These methods include PADEP's primary efforts to improve water quality through reclamation of abandoned mine lands (for abandoned mining) and through the National Pollution Discharge Elimination System (NPDES) permit program (for active mining).

Funding sources available that are currently being used for projects designed to achieve TMDL reductions include the Environmental Protection Agency (EPA) 319 grant program and Pennsylvania's Growing Greener Program (for watershed restoration and protection in mine-drainage impacted watersheds and abandoned mine reclamation).

The following TMDL table shows the applicable water-quality criteria for selected AMD parameters subject to water Quality modelling.

Parameter	Criterion Value (mg/l)	Total Recoverable/Dissolved
Aluminum (Al)	0.75	Total Recoverable
Iron (Fe)	1.50	30-day average; Total
Manganese (Mn)	1.00	Total Recoverable
pH *	6.0-9.0	N/A

Table 3. Applicable Water Quality Criteria

Since the AMD TMDL did not consider sewage dischargers, there are no WLAs to apply. Since there are industrial users, monitoring for iron, manganese and aluminum will allow future assessment of loadings without limits.

In general, DEP establish limits in the draft permit where the effluent concentration exceeds 50% of the WQBEL. For nonconservative pollutants, establish monitoring requirements where the effluent concentration determined is between 25% -50% of the WQBEL. For conservative pollutants, establish monitoring requirements where the effluent concentration determined is between 10% - 50% of the WQBEL.

Industrial Pretreatment standards are monitored by the EPA for this facility.

Schuylkill River PCB TMDL

This is a southern region problem - The Schuylkill River, from Felix Dam in Berks County to Fairmount Dam in Philadelphia was listed in 1996 and 1998 under section 303(d) of the Clean Water Act as impaired because excessive levels of PCB and chlordane were found in fish tissue, resulting in fish consumption advisories.

Stormwater Outfalls

<u>Outfalls 002 through 008</u> are on-site stormwater only outfalls and are subject to the Stormwater General Permit's Appendix J. Bi-yearly monitoring parameters of TSS, Oil & Grease plus pH are required for this Permit. The permittee is authorized to discharge non-polluting stormwater from its site through the following outfalls:

Outfall No.	Latitude	Longitude	Description
002	40° 40' 25"	-76º 11' 12"	To Schuylkill River -CWF
003	40° 40' 27"	-76º 11' 13"	To Schuylkill River -CWF
004	40° 40' 30"	-76º 11' 15"	To Schuylkill River -CWF
005	40° 40' 32"	-76º 11' 16"	To Schuylkill River -CWF
006	40° 40' 34"	-76º 11' 17"	To Schuylkill River -CWF
007	40° 40' 38"	-76º 11' 20"	To Schuylkill River -CWF
008	40° 40' 40"	-76º 11' 21"	To Schuylkill River -CWF

Combined Sewer Overflow (CSO) Outfalls

The Authority operates 22 CSO diversion structures, a reduction from over 60. The Authority's CSO overflows are controlled electronically and are metered. The diversion manholes are checked with monthly inspection reports. Their stated Nine Minimum controls are:

	Minimum Control	Examples of Control M	leasures	Minimum Control	Examples of Control Measures
۱	Proper Operation and Maintenance	 Maintain/repair regulators Maintain/repair tidegates Remove sediment/debris Repair pump stations Develop inspection program Inspect collection system 		Control of Solid and Floatable Materials in CSOs	 Screening - Baffles, trash racks, screens (static and mechanical), netting, catch basin modifications Skimming - booms, skimmer boats, flow balancing Source controls - street cleaning, anti-litter, public education, solid waste collection, recycling
2	Maximum Use of Collection System for Storage	 Maintain/repair tidegates Adjust regulators Remove small system bottlenect Prevent surface runoff Remove flow obstructions Upgrade/adjust pumping operations 	ks ions	Pollution Prevention	 Source controls (see above) Water conservation
3	Review and Modify Pretreatment Requirements	Volume Control • Diversion storage • Flow restrictions • Reduced runoff • Curbs/dikes • BMP	Control ss modifications water treatment ved keeping Plan	Public Notification	 Posting (at outfalls, use areas, public places) TV/newspaper notification Direct mail notification
4	Maximum Flow to the POTW for Treatment	 Analyze flows Analyze unit processes Analyze headloss Evaluate design capacity Modify internal piping Use abandoned facilities Analyze sewer system 	9	Monitoring	 Identify all CSO outfalls Record total number of CSO events and frequency and duration of CSOs for a representative number of events Summarize locations and designated uses of receiving waters Summarize water quality data for receiving waters
5	Eliminate Dry Weather Overflows	 Perform routine inspections Remove illicit connections Adjust/repair regulators Repair tidegates Clean/repair CSS Eliminate bottlenecks 			Summarize CSO impacts/incidents

Exhibit 2-1.) Summary of the Nine Minimum Controls

The goals of the EPA's 1994 Combined Sewer Overflow (CSO) Control Policy (Volume 59 of the Federal Register (FR) 18688 and 18689, April 19, 1994) are :

1. To ensure that if CSOs occur, they are only as a result of wet weather,

2. To bring all wet weather CSO discharge points into compliance with the technology-based and water quality-based requirements of the Clean Water Act (CWA) and

3. To minimize water quality, aquatic biota and human health impacts from CSOs from all Publicly Owned Treatment Works (POTW) Treatment Plants (as defined in Title 40 of the Code of Federal Regulations (CFR) Part 403.3(p))."

<u>NPDES Compliance - EPA Publication Number: 305-K-17-001 Interim Revised Version, January 2017</u> EPA's CSO Policy outlines the NMCs and the minimum elements of an LTCP. Table 12-1 lists the NMCs, while Table 12-2 lists the elements of the LTCP.

Table 12-1. Nine Minimum CSO Controls

- Proper operation and regular maintenance programs for the sewer system and the CSOs.
- Maximum use of the collection system for storage.
- Review and modification of pretreatment requirements to ensure that CSO impacts are minimized.
- Maximization of flow to the POTW for treatment.
- Prohibition of CSOs during dry weather.
- Control of solid and floatable materials in CSOs.
- Establishment of pollution prevention programs.
- Public notification to ensure that the public receives adequate notification of CSO occurrences and CSO impacts.
- Monitoring to effectively characterize CSO impacts and the efficacy of CSO controls.

Table 12-2. Elements of the Long-Term CSO Control Plan

- Characterization, monitoring, and modeling of the Combined Sewer System
- Public Participation
- Consideration of Sensitive Areas
- Evaluation of Alternatives
- Cost/Performance Considerations
- Operational Plan
- Maximizing Treatment at the Existing POTW Treatment Plant
- Implementation Schedule
- Post-Construction Compliance Monitoring Program

https://www.epa.gov/sites/production/files/2017-03/documents/npdesinspect-chapter-12.pdf

The key elements of CSO control is to:

• Eliminate or relocate overflows that discharge to sensitive areas wherever physically possible and economically achievable, and where not possible, provide treatment necessary to meet WQS for full protection of existing and designated uses.

• Coordinate the review and appropriate revision of water quality standards and implementation procedures on CSOimpacted waters with development of long-term CSO control plans.

• Evaluate a reasonable range of alternatives for the CSO control plan that could achieve the necessary level of control/treatment, and select the controls to be implemented based on cost/performance evaluations.

• Develop an implementation schedule based on the relative importance of adverse impacts on WQS and designated uses, priority projects identified in the long-term plan LTCP, and on the permittee's financial capability.

• Maximize treatment of wet weather flows at the existing POTW treatment plant.

All future PaDEP Inspections and Permits will obtain information to determine compliance in the following areas:

- CSO prevention during dry weather.
- Implementation of the nine minimum CSO controls.
- Adherence to a schedule for development, submission, and implementation of a LTCP, including any interim deliverables.
- Adherence to schedule for implementation of the CSO controls selected from the LTCP.
- Elimination or relocation of overflows from identified sensitive areas, as defined in the approved LTCP.
- Meeting narrative, performance-based, or numerical water quality-based effluent limitations.
- Monitoring program, including baseline information on frequency, duration, and impacts of CSOs.
- PADEP will incorporate E. coli limits in subsequently reissued NPDES permits and ensure that it is included in CSO postconstruction compliance monitoring (PCCM) plans to verify compliance with water quality standard and designated uses.

PaDEP's Annual CSO Status Report (Chapter 94 Report)

The Annual CSO Status Report is part of the permittee's annual Chapter 94 Municipal Wasteload Management Report. In this annual report, the permittee includes

- 1. The summary of the frequency, duration and volume of the CSO events from the past year,
- 2. The operational status of the CSO outfalls,
- 3. Identification of any known in-stream water quality impacts,
- 4. A summary of all actions taken to implement NMCs and the LTCP and effectiveness of those actions,
- 5. A progress report and evaluation of the NMC implementation,
- 6. Rain gauge data for each event and
- 7. Documentation of annual inspections and maintenance.

Long Term Control Plan

The required Long-Term Control Plan (LTCP) is a document by which the permittee evaluates the existing CSS infrastructure and the hydraulic relationship between the CSS, wet weather, overflows and treatment capacity. Cost effective alternatives for reducing or eliminating overflows are evaluated and a plan forward to eventually meet water quality standards is selected. An implementation schedule is then developed to achieve that goal. The three LTCP options are demonstrative, presumptive and total separation.

Presently the permittee shall comply with a minimum of one of the following under design conditions:

• A planned control program that has been demonstrated to be adequate to meet the water quality-based requirements of the CWA ("demonstration approach"), or

• A minimum level of treatment that is presumed to meet the water quality-based requirements of the CWA, unless data indicate otherwise ("presumption approach"):

- a. Eliminate or capture for treatment, or storage and subsequent treatment, at least 85% of the system-wide combined sewage volume collected in the combined sewer system during precipitation events under design conditions; or
- b. Discharge no more than an average of [4, 5, or 6] overflow events per year; or
- c. Eliminate or remove no less than the mass of the pollutants identified as causing water quality impairment, for the volumes that would be eliminated or captured for treatment under the 85% capture by volume approach.

The intent of this Permit cycle is to renew all Long Term Control Plans with stated design choices with minimum monitoring requirements to prove water quality compliance and a defined timeline for the submission of a Post-construction compliance monitoring (PCCM) plan.

• A minimum of E. coli monitoring must be included in Post-construction compliance monitoring (PCCM) plans to verify compliance with water quality standard and designated uses.

Wasted sludge will continue to be hauled off-site by a licensed hauler for disposal at a state approved facility.

The WMS Report query "Water Management System Inspections" was run. On 09/16/2020 a Routine/Partial Inspection was done with No Violations noted.

The WMS "Open Violations by Client Report" was run and there are No Open Violations.

The Existing Permit expired on 12/31/2013 and the renewal was submitted 07/03/2013.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Wate	rs and Water Supply Inform	ation			
Outfall No. 001		Design Flow (MGD)	8.2		
Latitude 40° 40' 30.7	8"	Longitude	<u>-76º 11' 14.00"</u>		
Quad Name		Quad Code			
Wastewater Description:	Sewage Effluent				
Receiving Waters Schu	ylkill River	Stream Code	00833		
NHD Com ID 1332	28594	RMI	122.9		
Drainage Area 61 m	2	Yield (cfs/mi ²)	0.374		
Q ₇₋₁₀ Flow (cfs) 22.8		Q7-10 Basis	Dflow Gage 01468500		
Elevation (ft) 597.	5	Slope (ft/ft)			
Watershed No. 3-A		Chapter 93 Class.	CWF, MF		
Existing Use		Existing Use Qualifier			
Exceptions to Use		Exceptions to Criteria			
Assessment Status	Impaired				
Cause(s) of Impairment	Metals, Other Habitat Altera	ations, PCB, Siltation, Water/F	low Variability		
Source(a) of Impeirment	Abandoned Mine Drainage	, Channelization, Road Runoff,	, Source Unknown, Urban		
Source(s) of impairment	Final	Schuvlkill Ri	iver PCB TMDI		
TMDL Status	Final	Name Upper Schu	Jylkill River		
Background/Ambient Data		Data Source			
pH (SU)					
Temperature (°F)					
Hardness (mg/L)					
Other:					
Nearest Downstream Publ	ic Water Supply Intake	Pottstown Water Authorit	У		
		Distance from Outfall (mi)	<u>65</u>		

Hydrologic Unit Code: 2040203 Lower Delaware ; Schuylkill. Pennsylvania.

JFLOW Results										
<u>File</u> Edit View Help										
All available data from Apr 1, 1990 through Mar 31, 2016 are included in analysis. Climatic year defined as Apr 1 - Mar 31.										
Gage	Period	Days in Record	7Q10	Harmonic						
01468500 - Schuylkill River at Landingville, PA	1989/04/01 - 2015/04/01	9,496	49.7	1.65E+02						

USGS Station ID: 1468500 Site Name: Schuylkill River at Landingville, PA Altitude of Gauge: 470.64 Drainage Area: 133 Q_{7-10} LowFlowYield (cfs/mi²)= LFY = 49.7/133 = 0.374

NPDES Permit Fact Sheet Gr Pottsville Area Sewer Authority Main STP

Outfall 001 at RMI 122.9 (Latitude, Longitude): 40.67662, -76.18843Parameter CodeParameter DescriptionValueUnitDRNAREAArea that drains to a point on a stream61square miles

Dflow LFY = 0.374 Q7-10 Flow (cfs) = $0.374 \times 61 = 22.8$ cfs stream flow Height = 597.5 feet

RMI 122.4 at Trib Tumbling Run confluence (Latitude, Longitude): 40.67237, -76.18572Parameter CodeParameter DescriptionValueUnitDRNAREAArea that drains to a point on a stream67.4square milesHeight = 580.8 feet

Elle Edit View History Bo	ookmarks Iools Help								
StreamStats	× +								
(←) → C @	0 🔒	https://streamstat	s.usgs.gov/ss/				🚥 😎 🚖 🔍 Search		III\ ED E
🚯 Most Visited 🛞 92a 🖻	🐨 Benefits 😰 DEP 🧃	eComment 🛞 eFi	acts 😌 ELGs 🛞 eMapPA	🛞 EPA webinar 🛞 ExUse G 🛛 🛞 Home 🗮 St	reamer 🧊 TMDL 🛞 Train 🛞 WMS Reports 🛞 W	rms 🜍 usgs	5 🛃 Distance 🔘 Alt 🙍 NPDES 🛞 N	AICS 🍞 Sign In 🍵 SOPs 📓 Archin	e
≊USGS	StreamStats		Region ID: Workspace ID:		PA PA2018030619533	33149000			Report 🛛 About ? Help
characteriatics here, t reports you wish to go "Build Report" button	then select the types of penerate. Then click the	Explor +	Time:	e, Longitude): Alto	40.67237, -76.185 2018-03-06 14:53:	:48 -0500			Layers X
▲ Hide Basin Ch	haracteristics							timest Parm 1	Application Layers 🗸
Basin Characteristics c	an be edited here	bunt Carmel	1	Const work	a second s			Tamaqua, PISEAN MOULTAIN	✓ PA Map Loyers ✓
Calculate Missir	ing Parameters	Same		McCa	on				V National Layers V
Parameter	Value	Locustoan	and a set					100 million 1	
DRNAREA	67.4	Lavelle	- man	Communication Communication					
PRECIP	50	TR		Varhalo				1 - The	
STRDEN	1.04	26					Leaflet Eari	Nebster,	
ROCKDEP	4.6	2	The South Caroline Stre	emStats application is testing LIDAR-derived dats an	d streams for delineation. This is a beta version and Q	A/QC Is incor	nplete. It may calculate basin	Black	
CARBON	0		Basin Characteristics						
		-1	Parameter Code	Parameter Description		Value	Unit	d Burney Julies Art	
Select available reports	ts to display:	121	DRNAREA	Area that drains to a point on a stream		67.4	square miles	A Lat	
		ES/-	PRECIP	Mean Annual Precipitation		50	inches	5	
 Basin Characteristic 	ics Report	1	STRDEN	Stream Density total length of streams	divided by drainage area	1.04	miles per square mile	=-	
Scenario Flow Repo	orta	Zoom Level:	ROCKDEP	Depth to rock		4.6	feet	9	
O Conti	tinu a	Map Scale: 1 Lat: 40.7249	CARBON	Percentage of area of carbonate rock		0	percent		Lander 1

	Trea	atment Facility Summa	iry	
Treatment Facility Na	me: Pottsville Main STP			
WQM Permit No.	Issuance Date			
5404402	05/07/2004			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Activated Sludge	Hypochlorite	8.2
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
· · ·		Existing Hydraulic		
8.2	14,635	Overload	Belt Filtration	Landfill

Greater Pottsville NPDES PA0043885 is based on a design flow of 8.2 MGD and an Organic Capacity of 14,635 lb BOD₅/day. The Authority's wastewater treatment plant utilizes the secondary treatment activated sludge process. The WWTP facilities consist of a mechanical bar screen, a channel course grinder, a vortex grit removal unit, two primary clarifiers, four aeration tanks, four final clarifiers, and two chlorine contact tanks. Sludge handling operation facilities include two anaerobic digester units, a sludge thickening tank, a sludge storage tank, a gravity belt thickener, and a belt filter press.

The Authority operates 22 CSO diversion structures down from over 60. Portions of the City of Pottsville remain under a sewer connection prohibition as of the Department's November 18, 2015 approval Letter. This system will continue to connect to the Authorities' collection system that was Permitted by WQM # 5404402 issued 05/07/2004.

		Type of Sewer System			
Municipalities Served	Flow Contribution (%)	Separate (%)	Combined (%)		
City of Pottsville	76.3	40	60		
Borough of Port Carbon	11.5	45	55		
Borough of Palo Alto	6.2	0	100		
Borough of Mechanicsville	2.6	100	0		
Norwegian Township	2.3	99	1		
Borough of Mount Carbon	0.6	100	0		
North Manheim Township	0.3	100	0		
East Norwegian Township	0.2	100	0		

The Authority's CSO overflows are controlled electronically and metered plus the diversion manholes are checked with monthly inspection reports.

NPDES Permit Fact Sheet Gr Pottsville Area Sewer Authority Main STP

8. Location	Map or sketch of the CSS. Attach Sched	dule 2MAP.											
	Old	Number:	1B-06	11C	17C	31D	37C	39-03	41C	50C	53B	84C	103B
9. CSO Information	a Permitted CSO number	5	a 11	12	13	14	15	16	17	18	19	20	21
	b Description of location	9	b 509 West Bacon St. Palo Alto (Walco Steel)	109 West Bacon St. Palo Alto (Fire Hall)	71 East Bacon St. Palo Alto (Playground)	5 Tuscarora St. Palo Alto	65 Coal St. Port Carbon	196 Pine St. Port Carbon	82 Rose Ave. Port Carbon	9 Commerce St. Port Carbon	1 East Washington St. Port Carbon	399 6th and Lillian St. Port Carbon	213 Mauch Chunk St. Pottsville
	c Latitude/Longitude	5	40° 41' 01" 76° 11' 06"	40° 41' 09* 76° 10' 06*	40° 41' 15" 76° 10' 23"	40° 41' 34" 76° 09' 43"	40° 41' 42" 76° 09' 57"	40° 41' 43* 76° 10' 00*	40° 41' 41" 76° 10' 08"	40° 41' 38° 76° 10' 15"	40° 41' 40" 76° 09' 51"	40° 42' 10" 76° 09' 59"	40° 40' 52" 76° 11' 28"
	d Receiving water	9	d Schuylkill River	Schuylkill River	Schuylkill River	Schuylkill River	Mill Creek	Mill Creek	Mill Creek	Mill Creek	Schuvlkill River	Mill Creek	Schuvlkill River
10. CSS Information	a Sub-sewershed area (acres)	10	la 78.1	52.8	153.8	149.2	39.0	27.5	17.2	18.4	8.1	78.1	20.7
	b Principal land use	10	b Dense Mixed- Use/Forested	Dense Mixed- Use/Forested	Dense Mixed- Use/Forested	Dense Mixed- Use/Forested	Dense Residential	Dense Residential	Dense Residential	Light Residential	Dense Residential	Light Residential	Dense Mixed-Use
11. Pipe, Capacity and	a Type of CSO hydraulioc control	11	a Drop-down Slot, covered by Bar Screen, see Dwg. SW 28	Drop-down Slot, covered by Bar Screen, see Dwg. SW 29	Drop-down Slot, covered by Bar Screen, see Dwg. SW 30	Drop-down Slot, covered by Bar Screen, see Dwg. SW 31	Drop-down Slot, covered by Bar Screen, see Dwg. SW 32	Drop-down Slot, covered by Bar Screen, see Dwg. SW 33	Drop-down Slot, covered by Bar Screen, see Dwg. SW 34	Drop-down Slot, covered by Bar Screen, see Dwg. SW 35	Drop-down Slot, cov ered by Bar Screen, see Dwg. SW 36	Drop-down Slot, cov ered by Bar Screen, see Dwg. SW 37	Drop-down Slot, cov ered by Bar Screen, see Dwg.
Flow Information	b CSO hydraulic control capacity (MGD)	11	b 0.091	0.111	0.150	0.027	0.095	0.040	0.154	0.102	0.066	0.040	0.027
	c Name of interceptor or downstream pipe		c MH IB-05	MH 11D	MH 17B	MH 58-05	MH 39-02A	MH 39-02	MH 41B	MH 31P-15	MH 53C	MH 83A	MH 103A
	Old	Number:	107C	114B	207B	210C	212E	215C	220A	2268	241B	294B	556
9. CSO Information	a Permitted CSO number b Description of location	5	a 22	23	24	25	26	27	28	29	30	31	32
		9	b 399 South Jacksor St. Pottsville	n 698 Mauch Chunk St. Pottsville	106 East Howard Ave. Pottsville	321 East Norwegian St. Pottsville	101 East Market St Pottsville	205 North Second St. Pottsville	179 East Race St. Pottsville	50 Harrison St. Pottsville	652 North Centre St. Pottsville	449 East Railroad St. Pottsville	2199 West End Ave. Pottsville
	c Latitude/Longitude	S	40° 41' 02" 76° 11' 21"	40° 41' 08° 76° 11' 06°	40° 41' 02* 76° 11" 37"	40° 41' 10" 76° 11' 35"	40° 41' 10* 76° 11' 44*	40° 41' 12" 76° 11' 53"	40° 41' 16" 76° 11' 48"	40° 41' 24" 76° 11' 53"	40° 41' 34" 76° 11' 56"	40° 41' 46" 76° 11' 28"	40° 40' 46" 76° 13' 36"
	d Receiving water	9	d Schuylkill River	Schuylkill River	Norwegian Creek	Norwegian Creek	Norwegian Creek	Norwegian Creek	Norwegian Creek	Norwegian Creek	Norwegian Creek	Norwegian Creek	West Branch Schuylkill
10. CSS Information	a Sub-sewershed area (acres)	10	a 17.2	96.4	31.0	36.7	190.5	103.3	8.0	11.5	222.7	79.2	172.2
	b Principal land use	10	b Dense Residential	Light Residential	Medium Mixed-Use	Dense Mixed-Use	Medium Residential	Dense Residential	Dense Residential	Dense Residential	Light Mixed-Use	Light	Medium Residentia
11. Pipe, Capacity and	a Type of CSO hydraulioc control	11	a Drop-down Slot, cov ered by Bar Screen, see Dwg. SW 39	Drop-down Slot, covered by Bar Screen; see Dwg. SW-40	Drop-down Slot, covered by Bar Screen; see Dwg. SW-41	Drop-down Slot, coverd by Bar Screen; see Dwg. SW-42	Drop-down Slot, covered by Bar Screen, see Dwg. SW 43	Drop-down Slot, cov ered by Bar Screen, see Dwg. SW 44	Drop-down Slot, cov ered by Bar Screen, see Dwg. SW 45	Drop-down Slot, cov ered by Bar Screen, see Dwg. SW 46	Drop-down Slot, cov ered by Bar Screen, see Dwg. SW 47	Drop-down Slot, cov ered by Bar Screen, see Dwg. SW 48	Drop-down Slot, cov ered by Bar Screen, see Dwg. SW 49
highly information	b CSO hydraulic control canacity (MGD)	1 1 1	bl 0.000	0.0.033	0.135	0.116	2 000	0.460	0.040	0.000	0.504	0.044	4.050
riow mormadon	a about hydraulia control capacity (mob)	10	0.035	0.0.000	0.100	0.110	2.900	0.409	0.242	0.229	0.521	0.014	1.200

Development of Effluent Limitations							
Outfall No.	001		Design Flow (MGD)	8.2			
Latitude	40° 40' 40.00)"	Longitude	-76º 11' 21.00"			
Wastewater	Description:	Sewage Effluent					

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Technology-Based Limitations

The following minimum technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Minimum	Average Monthly	Average Weekly	ІМАХ	Basis
Flow (MGD)	XXX	Report	Report Max Daily	XXX	§§ 92a.27, 92a.61
CBOD5 (mg/L)	XXX	25	40	50	§ 92a.47
TSS (mg/L)	XXX	30	45	60	§ 92a.47
TRC (mg/L)	XXX	0.5	XXX	1.6	§§ 92a.47-48
NH3-N (mg/L)	XXX	25	XXX	50	BPJ
D.O. (mg/L)	4	XXX	XXX	XXX	BPJ
pH (SU)	6	XXX	XXX	9	§ 92a.47, § 95.2
Total N (mg/L)	XXX	Report	XXX	XXX	§ 92a.61
Total P (mg/L)	XXX	Report	XXX	XXX	§ 92a.61
Fecal Coliform (No./100 ml) (May-Sept)	XXX	200 Geo Mean	xxx	1,000	§ 92a.47
Fecal Coliform (No./100 ml) (Oct-April)	XXX	2,000 Geo Mean	xxx	10,000	§ 92a.47
E. Coli (No./100 ml)*	XXX	XXX	XXX	Report	§ 92a.61

*Sewage discharges now require monitoring and reporting for E. Coli. A monitoring frequency of 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD, 1/year for design flows of 0.002 – 0.05 MGD will be utilized.

Water Quality-Based Limitations

A "Reasonable Potential Analysis" determined the following parameters were candidates for limitations and the following limitations were determined through water quality modeling (output files attached) and continue unchanged:

Parameter	Limit (mg/l)	SBC	Model		
TRC	0.32	Average Monthly	TRC Evaluation		
NH ₃ -N	6.0	Average Monthly	WQM 7.0		

Toxics Screening Analysis revealed these toxics of interest:

NPDES Permit Fact Sheet Gr Pottsville Area Sewer Authority Main STP

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	1,021	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	15.7	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	28.0	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barlum	6,716	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	4,478	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	0.76	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	241	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	22.2	µg/L	Discharge Conc < TQL
Total Cobalt	53.2	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	19.1	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	840	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	4,198	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	8.9	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	2,798	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.14	µg/L	Discharge Conc < TQL
Total Nickel	146	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenois (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	14.0	µg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	5.15	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallum	0.67	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	163	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	4.08	µg/L	Discharge Conc < TQL
Acrylamide	0.7	µg/L	Discharge Conc < TQL
	_		

TMS PA0043885.pdf

TMS produced No additional limit recommendations.

	CIMD Deale	Stream C	- de		Stream Mam	0		
	SVVP Basin	Stream Co	bae		Stream Nam			
	03F	833			SCHUYLKILL R	IVER		
/1	Name		Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Lin Minimur (mg/L
000	Pottsville		PA0043885	8.200	CBOD5	25		
					NH3-N	5.9	11.8	
					Dissolved Oxygen			3
	TRC EVALU Input appropria 22.8 8.2	UATION ate values = Q strea = Q disch	in B4:B8 ar m (cfs) arge (MGD	nd E4:E7)	Enter Facility Greater Pottsv 0.5 = CV Dail 0.5 = CV Hou	Name in E3 ille Area y rly		
	Ince EVAL Input appropria 22.8 8.2 4 0.3 0 0 0.6	UATION ate values = Q strea = Q disch = no. san = no. san = Chlorin = Chlorin = BAT/BF	in B4:B8 ar m (cfs) parge (MGD ples e Demand d e Demand d 2 Value	nd E4:E7) of Stream of Discha	Enter Facility Greater Pottsv 0.5 = CV Dail 0.6 = CV Hou 1 = AFC_Pe 1 = CFC_Pe 15 = AFC_Cr 720 = CFC_Cr	Name in E3 iilie Area y rly artial Mix Facto artial Mix Facto iteria Complia iteria Complia	or or ance Time ance Time	(min) (min)
	Incc EVAL Input appropria 22.8 8.2 4 0.3 0 0 0.5 0	ate values = Q strea = Q disch = no. sam = Chlorin = Chlorin = BAT/BF = % Fact	in B4:B8 an m (cfs) arge (MGD aples e Demand (e Demand (J Value or of Safety	nd E4:E7) of Stream of Dischart (FOS)	Enter Facility Greater Pottsv 0.5 = CV Dail 0.6 = CV Hou 1 = AFC_Pa 1 = CFC_Pa 15 = AFC_Cr 720 = CFC_Cr = Decay C	Name in E3 ille Area y rly artial Mix Facto ritial Mix Facto riteria Complia iteria Complia coefficient (K)	or or ance Time ance Time	(min) (min)
	Incc EVAL Input appropria 8.2 4 0.3 0 0 0.5 0 50urce TPC	JATION ate values = Q strea = Q disch = no. sam = Chlorin = Chlorin = BAT/BF = % Fact Reference	in B4:B8 ar m (cfs) barge (MGD ples e Demand o PJ Value or of Safety AFC Calc	of Stream of Stream of Disching r (FOS) ulations	Enter Facility Greater Pottsv 0.5 = CV Dail 0.6 = CV Dail 1 = AFC_Pa 1 = CFC_Pa 1 = CFC_Pa 1 = CFC_C 720 = CFC_Cr =Decay C Referen 0.522 1 2 2	Name in E3 ille Area y rly rrial Mix Facte ritial Mix Facte iteria Complia iteria Complia iteria Complia coefficient (K) ce CFC Calci	or or ance Time ance Time ulations	(min) (min)
	Incc EVAL Input appropriu 22.8 8.2 4 0.3 0 0.5 0 0 Source TRC PENTOXSD TRC	JATION ate values = Q strea = Q disch = no. san = Chiorin = Chiorin = Chiorin = BAT/BF = % Fact Reference 1.3.2.ili 5.1a	in B4:B8 ar m (cfs) arge (MGD aples e Demand d e Demand d PJ Value or of Safety AFC Calc V LTAMI	nd E4:E7) of Streau of Disch r (FOS) ulations VLA afc = ULT afc =	Enter Facility Greater Pottsv 0.5 = CV Dail 0.6 = CV Hou 1 = AFC_Pe 15 = AFC_C 15 = AFC_C 16 = CFC_C 1720 = CFC_CT = Decay C Referen 0.592 1.3.2.1 0.373 5.1e	Name in E3 ille Area y rly rrial Mix Facte ritial Mix Facte iteria Complia iteria Complia iteria Complia coefficient (K) ce CFC Calci ii LTAMU	or or ance Time ance Time ulations LA cfc = 0.5 LT cfc = 0.5	(min) (min) 70 81
	IncleVAL Input appropria 22.8 8.2 4 0.3 0 0.6 0 Source TRC PENTOXSD TRC PENTOXSD TRC	UATION ate values = Q strea = Q disch = no. san = Chlorin = Chlorin = Chlorin = BAT/BF = % Fact Reference 1.3.2.III 5.1a 5.1b	in B4:B8 ar m (cfs) earge (MGD pples e Demand (c e Demand (c e Demand (c e Demand (c e Demand (c e Demand (c) e AFC Calc V LTAM(t	nd E4:E7) of Streat of Disch v (FOS) ulations VLA afc = JLT afc = _TA_afc=	Enitor Facility Greater Pottaw 0.5 = CV Dail 0.6 = CV Dail 1 = AFC_Ps 1 = AFC_Ps 15 = AFC_Cr 720 = CFC_Cr	Name in E3 lile Area y rly rrtial Mix Factu rital Mix Factu riteria Complia iteria Complia icofficient (K) ce CFC Calcu II WI LTAMU LTAMU	or ance Time ance Time lations LA cfc = 0.5 LT cfc = 0.5 A_cfc = 0.3	(min) (min) 70 81 31
	ITTC EVAL Input appropria 22.8 8.2 4 0.3 0 0.6 0 Source TRC PENTOXSD TRC PENTOXSD TRC PENTOXSD TRC Source	UATION ate values = Q strea = Q disci = no. sar = Chlorin = Chlorin = Chlorin = Chlorin = Stract Reference 1.3.2.111 5.1a 5.1b	in B4:B8 ar m (cfs) aarge (MGD pples e Demand (c e Demand (c e Demand (c e Demand (c) e Demand (nd E4:E7) of Stream of Disch y (FOS) ulations VLA afc = ULT afc = .TA_afc= Effluent L	Eniter Facility Greater Pottaw 0.6 = CV Dail 0.5 = CV Dail 1 = AFC_Pa 1 = CFC_Pa 15 = AFC_Cr 720 = CFC_Cr	Name in E3 Ille Area y rly rrtial Mix Factu rital Mix Factu ritaria Complia coefficient (K) ce CFC Calcu II WII LTAMU LTAMU	or ance Time ince Time ilations LA cfc = 0.5 LT cfc = 0.3 A_cfc = 0.3	(min) (min) 70 81 31
	ITTC EVAL Input appropria 22.8 8.2 4 0.3 0 0.5 0 Source TRC PENTOXSD TRC PENTOXSD TRC PENTOXSD TRC PENTOXSD TRC	UATION ate values = Q strea = Q disch = no. sam = Chlorin = Streat = Strat = Chlorin = Strat =	in B4:88 ar m (cfs) earge (MGD pples e Demand (c e Demand (c J Value or of Safety AFC Calc V LTAMU	nd E4:E7) of Streat of Disch of (FOS) ulations VLA afc = JLT afc = JLT afc = LTA_afc = LTA_afc = AML	Enitor Facility Greater Pottav 0.6 = CV Dai 0.5 = CV Dai 1 = CFC_Pa 15 = AFC_Pr 15 = AFC_Cr 720 = CFC_Cqc Referen 0.592 0.373 5.1c 0.221 5.1d imit Calculations MULT = 1.720	Name in E3 ille Area y rly rrtial Mix Factu ritial Mix Factu ritial Complia iteria Complia iteri	or ance Time ance Time ulations LA cfc = 0.5 LT cfc = 0.3	(min) (min) 70 81 31

Whole Effluent Toxicity (WET)

For Outfall 001, \Box Acute \boxtimes Chronic WET Testing was completed:

July 3, 2013 is the date the application was received with the previous instructions of 4 WET tests for renewal. Today's standards require yearly passing Wet tests (see proposed draft permit for details.)

\triangleleft	For the	permit	renewal	application	(4 tests).
-----------------	---------	--------	---------	-------------	------------

Quarterly throughout the permit term.

Quarterly throughout the permit term and a TIE/TRE was conducted.

Other:

The Target Instream Waste Concentration (TIWC) used for analysis of the results was: 39.

Summary of Four Most Recent Test Results

DEP's Regional Biologist reviewed the Wet Tests for 8/12, 11/12, 1/13, and 4/13 and reported that All Chronic Wet Tests for both species passed except for the Ceriodaphnia growth test on 1/13. The NOEC was 25% which is below the TIWc OF 39%. 1/13 was resubmitted 2/13 with passing results. The applicant submitted :

		Ceriodaphnia		Pimephales Results				
Test Date	Survival NOEC	Reproduction NOEC	LC50	Pass/Fail	Survival NOEC	Growth NOEC	LC50	Pass/Fail
8/7-14/12	100%	100%	100%	PASS	100%	100%	100%	PASS
11/1-8/12	100%	100%	100%	PASS	100%	100%	100%	PASS
1/29/13-2/	5/13 100%	100%	100%	PASS	100%	100%	100%	PASS
4/2-9/13	100%	100%	100%	PASS	100%	100%	100%	PASS

The new permit will be upgraded to PaDEP's policy of yearly WET Testing, requiring quarterly monitoring upon any failure. If there is a failure the permit conditions provide guidance on the WET testing and limits. For the Northeast our Program Biologist reviews all WET Test submissions and the Program Water Quality Specialist's uploads them in the eDMR system.

TST Data Analysis

(NOTE – In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).

	Ceriodaphnia F	Results (Pass/Fail)	Pimephales Results (Pass/Fail)			
Test Date	Survival	Reproduction	Survival	Growth		
8/12	Pass	Pass	Pass	Pass		
11/12	Pass	Pass	Pass	Pass		
1-then 2/13	Fail/ then Pass	Pass	Pass	Pass		
4/13	Pass	Pass	Pass	Pass		

* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

🗌 YES 🖾 NO

Comments: In accordance with 40 CFR 122.44(d)(1)(iv), when the permitting authority determines that a discharge causes, has the reasonable potential to cause, or contributes to an in-stream excursion above the numeric criterion for WET, the permit must contain effluent limits for WET. New Permit conditions of Yearly Testing must confirm lack of limits.

Q7-10 Flow* 22		cfs PMFa* 0.625 PMFc* 1.0 WETT Required by Permit	?☑
IWCa 47	7.1 % T	Test Type Chronic Test Type for Failures(s)	()
IWCc 35	.75 %	1st 2nd 3rd 4th 5th Test Type (Other)	1
TIWC 36	% D	Dilution Series 9 18 36 68 100 Comments	1
	Species Typ	pe* Species	
	CDUBI	Ceriodaphnia Dubia	
	PPROM	Pimephales Promelas	

(TIWC) to be used for future analysis of the results is: 36

The 2012 and 2013 PDF Wet Attachments are in the appendix Fact Sheet

Compliance History

DMR Data for Outfall 001 (from May 1, 2020 to April 30, 2021)

Parameter	APR-	MAR-	FEB-	JAN-	DEC-	NOV-	OCT-	SEP-	AUG-	JUL-20	JUN-	MAY-
	21	21	21	21	20	20	20	20	20		20	20
Flow (MGD)	4.05	0.00	4.00	4 70	5.00	0.07	0.04	0.50	4.00	0.50	5 50	5.04
Average Monthly	4.95	6.89	4.96	4.79	5.28	3.97	3.34	3.58	4.09	3.50	5.52	5.61
FIOW (IVIGD)	10.46	11 70	12 20	9.76	16.67	0.20	10.67	7 1 2	0.67	6 56	12/1	12.97
	10.40	11.70	13.30	0.70	10.07	9.39	10.07	7.15	9.07	0.00	12.41	13.07
Daily Minimum	6.2	64	5.9	65	64	67	6.6	64	6.8	65	6.6	6.6
pH (SII)	0.2	0.4	5.5	0.5	0.4	0.7	0.0	0.4	0.0	0.5	0.0	0.0
Daily Maximum	7.0	7.1	7.2	7.1	7.3	7.4	7.6	7.4	7.4	7.4	7.4	7.6
DO (mg/L)												
Daily Minimum	6.0	7.4	7.3	6.5	7.2	5.9	5.8	6.0	5.3	5.7	6.0	5.9
TRC (mg/L)												
Average Monthly	0.03	0.04	0.04	0.05	0.05	0.04	0.05	0.04	< 0.05	0.04	< 0.05	0.06
TRC (mg/L)												
Instantaneous												
Maximum	0.07	0.08	0.07	0.08	0.41	0.12	0.30	0.09	0.61	0.45	0.15	0.44
CBOD5 (lbs/day)												
Average Monthly	< 252	< 418	< 253	< 231	< 221	< 214	< 174	< 185	< 200	< 173	< 275	< 245
CBOD5 (lbs/day)												
Weekly Average	< 352	< 612	< 666	< 307	< 333	< 329	< 253	< 308	< 276	< 188	< 366	< 343
CBOD5 (mg/L)												
Average Monthly	< 6.0	< 6.6	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0
CBOD5 (mg/L)												
Weekly Average	< 6.0	< 8.9	< 6.0	< 6.0	< 6.0	< 6.0	< 6.2	< 6.0	< 6.0	< 6.0	< 6.0	< 0.0
155 (IDS/day)	- 077	- 125	- 246	- 240	1 260	< 20G	× 276	. 200	- 212	- 147	. 202	. 210
	< 211	< 420	< 340	< 249	< 200	< 200	< 370	< 200	< 212	< 147	< 303	< 310
Weekly Average	349	642	1507	362	400	~ 1096	~ 1170	< 607	~ 300	< 167	657	- 440
	040	042	1007	502	400	< 1000	<1175	< 001	< 500	< 107	007	\++0
Average Monthly	< 6.9	< 6.6	< 7.0	< 6.4	<72	< 6.9	< 7.6	< 7.6	< 61	< 5.1	< 7.9	< 7.7
TSS (mg/L)		. 0.0	11.0			. 0.0						,
Weekly Average	< 8.5	< 8.5	14.4	7.1	11.8	< 15.5	< 16.0	< 13.4	< 7.0	< 5.3	10.7	9.4
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 1.4	< 2.2	< 2.3	< 1.9	< 1.8	< 3.3	< 2.1	< 2.3	< 3.2	< 2.5	< 3.4	< 6.8
Ammonia (lbs/day)												
Average Monthly	< 8.4	< 18.2	< 18.3	< 8.5	< 8.6	< 12.8	< 9.7	< 6.8	< 7.1	< 6.5	< 12.9	< 10.2
Ammonia (mg/L)												
Average Monthly	< 0.2	< 0.3	< 0.4	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3
Total Copper												
(IDS/day)	0.0400	0.04744	0.00074	0.04405	0.0000	0.00000	0.0404	0.4405	0.07000	0.0004	0 4044	0.04004
Average Monthly	0.3403	0.31744	0.39374	0.31465	0.2988	0.22903	0.2494	0.4465	0.37989	0.2091	0.4211	0.34361
(lbs/dov)												
(IDS/Udy) Daily Maximum	0 42258	0 3051/	0.68981	0 36566	0 /287	0 24222	0 3650	1 0564	0.63228	0 2805	0.54830	0 37030
Total Copper	0.42230	0.00014	0.00301	0.00000	0.4207	0.24222	0.3033	1.0004	0.03220	0.2005	0.04000	0.07000
(mg/L)												
Average Monthly	0.0089	0.00607	0.00915	0.00813	0.0078	0.00773	0.0092	0.0118	0.00948	0.0077	0.0105	0.00890
Total Copper												
(mg/L)												
Daily Maximum	0.01121	0.00691	0.01070	0.00949	0.0108	0.00897	0.0107	0.0197	0.01050	0.0101	0.01120	0.01050
Total Lead												
(lbs/day)												
Average Monthly	< 0.040	< 0.054	< 0.056	< 0.039	< 0.039	< 0.030	< 0.027	< 0.063	< 0.042	< 0.027	< 0.042	< 0.041
Total Lead												
(lbs/day)												
Daily Maximum	< 0.051	< 0.077	0.12056	< 0.046	< 0.051	< 0.033	< 0.034	0.19574	< 0.081	< 0.028	0.04914	< 0.056
I otal Lead (mg/L)	0.001	0.001	0.001		0.001		0.001	0.000	0.001	0.001	0.001	
Average Monthly	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001
Doily Maximum	. 0.004	. 0.004	0.00407	. 0.004	0.00400	. 0.004	. 0.004	0.00005	. 0.004	.0.004	0.00400	0.00400
	< 0.001	< 0.001	0.00187	< 0.001	0.00102	< 0.001	< 0.001	0.00365	< 0.001	< 0.001	0.00123	0.00109