

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonFacility Type
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0044261

APS ID 319071

Authorization ID 1452045

	Applicant and	Facility Information			
Applicant Name	PA DCNR Facility Design & Const Bureau	Facility Name	Canoe Creek State Park		
Applicant Address	205 Canoe Creek Road	Facility Address	205 Canoe Creek Road		
	Hollidaysburg, PA 16648-8444	_	Hollidaysburg, PA 16648-8444		
Applicant Contact	James Sowerbrower	Facility Contact	Joseph Basil		
Applicant Phone	(814) 733-9123	Facility Phone	(814) 695-6807		
Client ID	76763	Site ID	452857		
Ch 94 Load Status	Not Overloaded	Municipality	Frankstown Township		
Connection Status	No Limitations	County	Blair		
Date Application Rece	ived August 24, 2023	EPA Waived?	Yes		
Date Application Acce	pted September 6, 2023	If No, Reason			

Approve	Deny	Signatures	Date
Х		Nicholas Hong, P.E. / Environmental Engineering Nick Hong (via electronic signature)	November 15, 2023
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
х		Maria D. Bebenek for Daniel W. Martin	December 7, 2023
		Maria D. Bebenek, P.E. / Environmental Program Manager	
х		Maria D. Bebenek	December 7, 2023

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Canoe Creek State Park STP located at 205 Canoe Creek Road, Hollidaysburg, PA 16648 in Blair County, municipality of Frankstown Township. The existing permit became effective on October 1, 2018 and expired on September 30, 2023. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on August 24, 2023.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.120 annual average design flow rate. The hydraulic design capacity is 0.300 MGD. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Blair County Commissioners and Frankstown Township Supervisors and the notice was received by the parties on March 31, 2023. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be New Creek. The sequence of receiving streams that the New Creek discharges into are Canoe Creek, Frankstown Branch Juniata River, Juniata River, and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for high quality cold water fishes (HQ-CWF) and migratory fishes. No Class A Wild Trout fisheries are impacted by this discharge. The presence of high quality and/or exceptional value surface waters triggers the need for an additional evaluation of anti-degradation requirements.

The New Creek is a Category 4c and 5 stream listed in the 2022 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an impaired stream for aquatic life due to flow regime modification from dam/impoundment. The receiving stream is also impaired for aquatic life due to siltation/sediment from agriculture. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Due to the EPA triennial review, monitoring for E. coli is required.
- Monitoring for lead has been reduced to 2x/yr

Sludge use and disposal description and location(s): Biosolids/sewage sludge disposed at Altoona STP located in Blair County, Altoona, PA

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name: Canoe Creek State Park STP

NPDES Permit # PA0044261

Physical Address: 205 Canoe Creek Road

Hollidaysburg, PA 16648

Mailing Address: 205 Canoe Creek Road

Hollidaysburg, PA 16648

Contact: James Sowerbrower

Regional Engineer (814) 733-9123 jsowerbrow@pa.gov

Adam Watchey, PE

Assistant Regional Engineer

awatchey@pa.gov

Consultant: There was not a consultant utilized for this NPDES renewal.

1.2 Permit History

Permit submittal included the following information.

- NPDES Application
- Flow Diagrams
- Influent Sample Data
- Effluent Sample Data

2.0 Treatment Facility Summary

2.1.1 Site location

The physical address for the facility is 205 Canoe Creek Road, Hollidaysburg, PA 16648. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

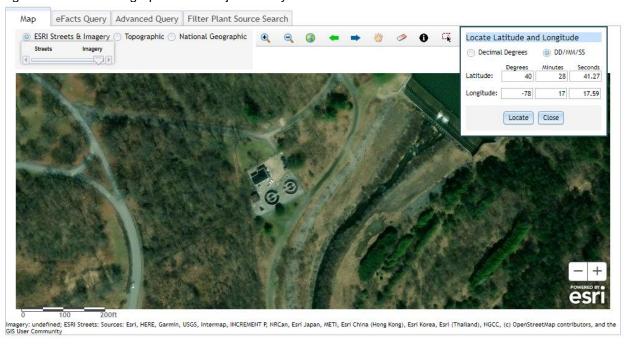
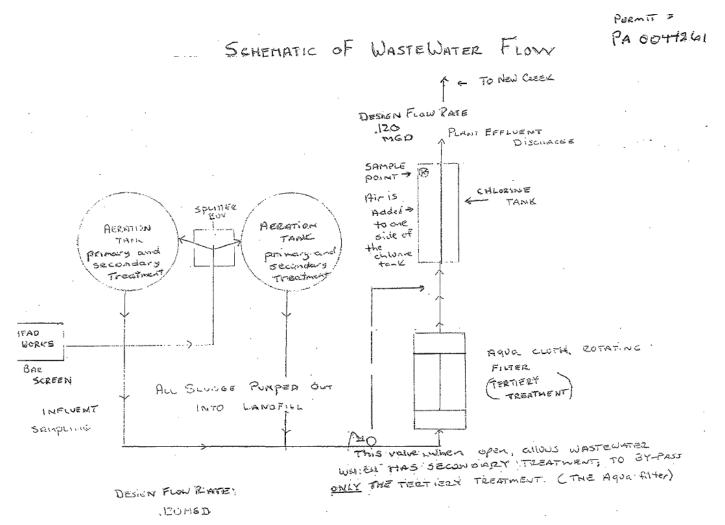



Figure 2: Aerial Photograph of the subject facility

2.1.2 Sources of Wastewater/Stormwater

The facility receives wastewater from the sources summarized in the table.

Sources of W	Sources of Wastewater									
Municipalities Served	Flow Contribution									
Frankstown Township	45.00%									
Canoe Creek State Park	55.00%									
Total	100.00%									


2.2 Description of Wastewater Treatment Process

The subject facility is a 0.120 MGD annual average design flow facility. The subject facility treats wastewater using two (2) aeration basins, an AquaDisk Tertiary Filtration (manufactured by Aqua-Aerobic Systems, Inc.), and a chlorine contact chamber for disinfection prior to discharge to New Creek. The treatment forward flow process has a bypass around the AquaDisk Tertiary Filtration unit on an as needed basis for overloading as permitted in the NPDES permit conditions. The facility is being evaluated for flow, pH, dissolved oxygen, TRC, CBOD5, TSS, fecal coliform, nitrogen species, phosphorus, and lead. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Treatment Facility Summary										
Treatment Facility Na	me: Canoe Creek State Pa	ırk									
WQM Permit No.	Issuance Date										
0706403	09/01/2015										
	Degree of			Avg Annual							
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)							
Sewage	Secondary With Ammonia Reduction	Extended Aeration	Hypochlorite	0.12							
<u> </u>											
Hydraulic Capacity	Organic Capacity			Biosolids							
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal							
-				Combination of							
0.30		Not Overloaded	Aerobic Digestion	methods							

A schematic of the treatment process is depicted.

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	_ 001	Design Flow (MGD)	.12 (average annual); .30 (hydraulic)
Latitude	40° 28' 41.27"	_ Longitude	-78º 17' 17.59"
Wastewater D	escription: Sewage Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

Sodium hypochlorite for disinfection

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART	RT A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS											
I. A.	For Outfall 001	, Latitude _40° 28' 41.27", Longitude _78° 17' 17.59", River Mile Index _0.43, Stream Code _16255										
	Receiving Waters:	New Creek										
	Type of Effluent:	Sewage Effluent										

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required	
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured	
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab	
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	xxx	XXX	XXX	1/day	Grab	
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab	
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	15.0	24.0	30	2/month	24-Hr Composite	
Biochemical Oxygen Demand (BOD5)								24-Hr	
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	24-Hr Composite	
Total Suspended Solids	xxx	xxx	xxx	15.0	24.0	30	2/month	24-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	xxx	2000 Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	xxx	200 Geo Mean	XXX	1000	2/month	Grab	
Nitrate-Nitrite as N	Report Avg Ortly	xxx	XXX	Report Avg Ortly	XXX	XXX	1/quarter	24-Hr Composite	

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required			
Parameter	Average	Daily		Average	Weekly	Instant.	Measurement	Sample	
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Type	
	Report			Report					
Total Nitrogen	Avg Ortly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Calculation	
								24-Hr	
Ammonia-Nitrogen	XXX	XXX	XXX	3.0	XXX	6	2/month	Composite	
Ammonia-Nitrogen (Total	Report								
Load, Jbs) (lbs)	Avg Ortly	XXX	XXX	XXX	XXX	XXX	1/quarter	Calculation	
	Report			Report				24-Hr	
Total Kjeldahl Nitrogen	Avg Ortly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite	
	Report			Report				24-Hr	
Total Phosphorus	Avg Ortly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite	
	Report			Report	Report			24-Hr	
Lead, Total	Avg Ortly	Report	XXX	Avg Qrtly	Daily Max	XXX	1/quarter	Composite	

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

^{1.} The permittee is authorized to discharge during the period from October 1, 2018 through September 30, 2023.

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

05/01/2020

- Monthly and quarterly DMR's were being submitted as required but there were no supplemental reports attached
 to the E-DMRs since July 2019. Monthly discharge monitoring reports from August 2019 through March 2020
 needed to be revised to include influent and effluent supplemental reports and the biosolids disposal form. Quarterly
 reports should include an annual Chesapeake Bay spreadsheet supplemental form attached.
- The plant upgrade project was completed.
- The only recent effluent DMR violation was for TSS in February 2020. The violation was attributed to a problem with the cloth filter unit

10/19/2021:

- The treatment plant upgrade project was completed in 2018. Recent work included repairing all three blower motors and manifolds and replacing the chlorine feed pump.
- There was no calibration record for the influent flow meter and the operator was unsure when it was last calibrated. Flow meters are required to be calibrated annually.
- The thermometer in the sample storage refrigerator read 20 degrees and did not appear to be accurate. Recommend replacing with a NIST traceable thermometer.
- A review of plant records showed a reporting error on the August 2021 discharge monitoring report and supplemental form. The test result for Nitrate-Nitrite on the laboratory report did not match the value on the effluent supplemental form. The supplemental form and DMR needed to be revised.
- The log book used for recording daily effluent test results showed a grab time for effluent sample, but not the analysis time. EPA method requires that both times be recorded to demonstrate that testing is conducted within the 15 minute holding time.
- Sludge removal records are kept at the park office and were not available for review at the treatment plant.

03/18/2022:

- The grab and analysis times for daily effluent tests were being recorded in the logbook.
- Sludge hauler receipts were available for review. Sludge is hauled by Ken Wertz Septic service and was last removed on November 1, 2021.
- The park needed to obtain an NIST traceable thermometer for the effluent composite sampler.
- The operator needed to revise the August 2021 DMR to show the correct value for NO2-NO3 and attach a revised
 effluent supplemental form. In addition, a review of DMRs showed that the quarterly reports did not include a
 supplemental form. Each quarterly DMR should have an Annual Chesapeake Bay Spreadsheet attached to the
 report.

04/25/2022:

Quarterly DMR's for 2021 Annual Chesapeake Bay Spreadsheet were not attached to the report

12/7/2022: The facility was cited for:

• Failure to monitor pollutants as required by the NPDES permit. Influent sample was only 4 hour composite sample. Permit requires 24 composite sample (25 Pa. Code 92a.61(c)).

- Failure to update lab accreditation or registration. Needed to update Lab form to reflect new testing laboratory (25 Pa. Code 252.4(a).
- Failure to properly calibrate equipment. Dissolved oxygen probe cap was expired and meter needs to be calibrated 25 Pa. Code 92a.41(a)(10)

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.078 MGD in November 2022. The design capacity of the treatment system is 0.30 MGD.

The off-site laboratory used for the analysis of the parameters was the DEP Bureau of Labs located at 2675 Interstate Drive, Harrisburg, PA 1710 and Fairway Laboratories located at 2019 Ninth Avenue, Altoona, PA 166003.

DMR Data for Outfall 001 (from September 1, 2022 to August 31, 2023)

Parameter	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD)												
Average Monthly	0.013	0.017	0.036	0.031	0.067	0.033	0.02	0.018	0.03	0.078	0.049	0.038
Flow (MGD)												
Daily Maximum	0.020	0.045	0.071	0.100	0.311	0.091	0.029	0.028	0.07	0.246	1.116	0.070
pH (S.U.)												
Instantaneous												
Minimum	8.21	7.52	7.94	7.29	7.67	7.68	7.78	7.62	7.78	7.56	7.75	7.72
pH (S.U.)												
Instantaneous												
Maximum	8.81	8.54	8.32	8.28	8.48	8.27	8.22	8.17	8.14	7.99	8.01	8.35
DO (mg/L)												
Instantaneous												
Minimum	8.27	8.31	8.99	9.34	6.71	9.74	10.3	8.27	8.59	8.47	8.96	8.85
TRC (mg/L)												
Average Monthly	0.28	0.32	0.41	0.34	0.32	0.29	0.29	0.28	0.41	0.39	0.45	0.42
TRC (mg/L)			-						-			-
Instantaneous												
Maximum	0.98	0.77	0.4	0.66	0.9	0.48	0.48	0.55	0.88	0.96	0.79	0.66
CBOD5 (mg/L)		-	_									
Average Monthly	5.0	3.0	7.0	3.0	1.0	5.0	2.0	0.2	3.0	< 3.0	2.0	2.0
CBOD5 (mg/L)												
Weekly Average	6.0	3.0	10.0	4.0	2.0	8.0	2.0	0.2	3.0	< 3.0	3.0	2.0
BOD5 (lbs/day)			1010								0.0	
Raw Sewage Influent												
 br/> Average												
Monthly	15.0	19	71.0	59	95	23	23	25	70	61.0	31	41.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	15.0	22	90.0	62	113	38	26	29	94	80.0	37	43.0
BOD5 (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	165.0	201	172.0	204	181	130	133	192	178	95.0	152	137.0
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	19.0	58	86.0	124	161	34	23	36	22	275.0	30	50.0
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	22.0	61	102.0	127	187	63	25	51	40	513.0	35	51.0

NPDES Permit Fact Sheet Canoe Creek State Park

TSS (mg/L)												
Average Monthly	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	8.0	8.0	2.0	< 1.6	8.0	< 8.0
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	214	658	215.0	424	310	164	137	274	71	163.0	147	173.0
TSS (mg/L)												
Weekly Average	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	8.0	8.0	2.0	< 2.0	8.0	< 8.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	14.0	< 32.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	7	1.0	< 1.0	< 10	< 10.0
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	20.0	100.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	10	1.0	1.0	< 10	< 10.0
Nitrate-Nitrite (lbs/day)												
Average Quarterly			17.0			2			6.0			6.48
Nitrate-Nitrite (mg/L)												
Average Quarterly			25.0			19.39			28.58			24
Total Nitrogen												
(lbs/day)												
Average Quarterly			19.0			2			6.0			6.81
Total Nitrogen (mg/L)												
Average Quarterly			27.0			19.85			29.77			24.76
Ammonia (mg/L)												
Average Monthly	0.26	0.2	0.29	0.14	0.25	0.1	0.15	0.2	< 1.0	< 1.066	0.08	0.07
Ammonia (lbs)												
Average Quarterly			0.2			0.03			0.02			0.028
TKN (lbs/day)												
Average Quarterly			1.0			0.01			0.3			0.34
TKN (mg/L)												
Average Quarterly			2.0			1.19			1.41			1.24
Total Phosphorus												
(lbs/day)												
Average Quarterly			4.0			0.3			0.9			1.25
Total Phosphorus												
(mg/L)												
Average Quarterly			5.0			2.684			4			4.531
Total Lead (lbs/day)												
Average Quarterly			< 0.7			< 0.1			0.2			0.28
Total Lead (lbs/day)												
Daily Maximum			< 0.7			< 0.1			0.2			0.28
Total Lead (mg/L)												
Average Quarterly			< 1.0			< 1			< 1.0			1

NPDES Permit Fact Sheet Canoe Creek State Park

NPDES Permit No. PA0044261

Total Lead (mg/L)							
Daily Maximum	< 1	.0	< 1		< 1.0		1

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in October 1, 2018 to October 30, 2023, the following were observed effluent non-compliances.

			•	Compliance r 1, 2018 an					
NON_COMPLIANCE	NON_COMPL_ CATEGORY_DE SC		SAMPLE_ VALUE	VIOLATIO N_CONDI TION		UNIT_OF _MEASUR E	STAT RASE	DISCHARGE_ COMMENTS	FACILITY_COMMENTS
3/12/2020	Effluent	Total Suspended Solids	29.0	>	15.0	mg/L	Average Monthly		Filter Cloths had tears in them. Replaced with new filter cloths.
3/12/2020	Effluent	Total Suspended Solids	43.0	>	24.0	mg/L	Weekly Average		Filter cloths had tears in them. Replaced with new filter cloths on 3/6/2020
7/13/2020	Effluent	Fecal Coliform	3245	>	200	No./100 ml	Geometric Mean		
7/13/2020	Effluent	Fecal Coliform	4352	>	1000	No./100 ml	Instantaneo us Maximum		
7/15/2021	Effluent	Fecal Coliform	5450	>	1000	No./100 ml	Instantaneo us Maximum		
7/15/2021	Effluent	Total Residual Chlorine (TRC)	0.52	>	.5	mg/L	Average Monthly		

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in October 1, 2018 to October 30, 2023, there were no observed enforcement actions.

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

	202	22	
Sewage Slu	dge / Biosolids	Production Ir	nformation
	Hauled C	Off-Site	
Date (YEAR)	Gallons	% Solids	Dry Tons
January	16851	2.6	2.15
February			
March			
April	22089	1.49	1.41
May			
June			
July	13885	1.49	Not reported
August			
September			
October			
November			
December			
Notes:			
Biosolids/sewa	age sludge disp	osed at Altoo	na STP
located in Blair	County, Altoo	na, PA	

3.5 Open Violations

No open violations existed as of November 2023.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be New Creek. The sequence of receiving streams that the New Creek discharges into are Canoe Creek, Frankstown Branch Juniata River, Juniata River, and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Mifflintown MA (PWS ID #4340008) located approximately 90 miles downstream of the subject facility on the Juniata River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2022 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2022 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 4c and 5 waterbody. This stream is an impaired stream for aquatic life due to flow regime modification from dam/impoundment. The receiving stream is also impaired for aquatic life due to siltation/sediment from agriculture. The designated use has been classified as protected waters for high quality cold water fishes (HQ-CWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Frankstown Branch Juniata station (WQN224). This WQN station is located approximately 9 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Frankstown Branch Juniata River at Williamsburg, PA (USGS station number 1556000). This gauge station is located approximately 7 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 7.84 and the stream water temperature was estimated to be 22 C.

The hardness of the stream was estimated from the water quality network to be 135 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

Calculations			
The low flow yield of th	ne gauge station is:		
Low Flow Yield (LFY) = 0	Q710 / DA		
LFY =	(47.8 ft ³ /sec / 291 mi ²)		
LFY =	0.1643	ft³/sec/mi²	
The low flow at the sub	iject site is based upon the DA of	6.41	mi ²
Q710 = (LFY@gauge state	tion)(DA@Subject Site)		
$Q710 = (0.1643 \text{ft}^3/\text{sec/r})$	mi²)(6.41 mi²)		
Q710 =	1.053	ft ³ /sec	

5 Summary or Dis	scharge, Receiving Waters ar	id water Supply information			
Outfall No. 001	1	Design Flow (MGD)	.12		
Latitude 40°	28' 40.93"	Longitude	-78º 17' 17.70"		
Quad Name		Quad Code			
Wastewater Desc	cription: Sewage Effluent				
Receiving Waters	New Creek (HQ-CWF)	Stream Code	16255		
NHD Com ID	65607928	RMI	0.42		
Drainage Area	6.41	Yield (cfs/mi²)	0.1643		
Q ₇₋₁₀ Flow (cfs)	1.053	Q ₇₋₁₀ Basis	StreamStats/streamgauge		
Elevation (ft)	890	Slope (ft/ft)			
Watershed No.	11-A	Chapter 93 Class.	HQ-CWF		
Existing Use		Existing Use Qualifier			
Exceptions to Use		Exceptions to Criteria			
Assessment Stati		: life due to flow regime modification fr : life due to siltation/sediment from agi			
TMDL Status	Not applicable	Name			
Background/Amb	ient Data	Data Source			
pH (SU)	7.84	WQN224: Median July to Ser	WQN224; Median July to Sept		
Temperature (°C)	22.0	WQN224; Median July to Sep			
Hardness (mg/L)	135	WQN224; median historical	<u> </u>		
Other:					
Nearest Downstre	eam Public Water Supply Intake	e Mifflintown MA			
PWS Waters	Juniata River	Flow at Intake (cfs)			
PWS RMI	37	Distance from Outfall (mi)	90		

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

The modeling point nodes utilized for this facility are summarized below. The modeling point river mile index was extended to the secondary stream for modeling purposes.

General Data 1	(Modeling Point #1)	(Modeling Point #2)	Units
Stream Code	16255	16255	
River Mile Index	0.96	0	miles
Elevation	890.61	873.83	feet
Latitude	40.478131	40.473626	
Longitude	-78.288219	-78.276439	
Drainage Area	6.41	256	sq miles
Low Flow Yield	0.164	0.1643	cfs/sq mile

The actual river mile index to the facility is 0.42.

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH₃-N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the following pollutants: TDS, chloride, bromide, and sulfate. As the facility does not receive industrial/commercial contributions, sampling for other parameters were not required.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Applicable monitoring or permit limits for toxics are summarized in Section 6.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WET.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety (MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. The TMDL components are illustrated using the following equation:

TMDL = $\Sigma WLAs + \Sigma LAs + MOS$

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was September 13, 2021.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30. For facilities that have received Cap Loads in any other form, the Cap Loads will be modified accordingly when the permits are renewed.

Offsets have been incorporated into Cap Loads in several permits issued to date. From this point forward, permits will be issued with the WLAs as Cap Loads and will identify Offsets separately to facilitate nutrient trading activities and compliance with the TMDL.

NPDES Permit Fact Sheet Canoe Creek State Park

Based upon the supplement the subject facility has been categorized as a Sector C discharger. The supplement defines Sector C as a non-significant dischargers include sewage facilities (Phase 4 facilities: ≥ 0.2 MGD and < 0.4 MGD and Phase 5 facilities: > 0.002 MGD and < 0.2 MGD), small flow/single residence sewage treatment facilities (≤ 0.002 MGD), and non-significant IW facilities, all of which may be covered by statewide General Permits or may have individual NPDES permits.

At this time, there are approximately 850 Phase 4 and 5 sewage facilities, approximately 715 small flow sewage treatment facilities covered by a statewide General Permit, and approximately 300 non-significant IW facilities.

For Phase 5 sewage facilities with individual permits (average annual design flow on August 29, 2005 > 0.002 MGD and < 0.2 MGD), DEP will issue individual permits with monitoring and reporting for TN and TP throughout the permit term at a frequency no less than annually, unless 1) the facility has already conducted at least two years of nutrient monitoring and 2) a summary of the monitoring results are included in the next permit's fact sheet. If, however, Phase 5 facilities choose to expand, the renewed or amended permits will contain Cap Loads based on the lesser of a) existing TN/TP concentrations at current design average annual flow or b) 7,306 lbs/yr TN and 974 lbs/yr TP.

If no data are available to determine existing concentrations for expanding Phase 4 or 5 facilities, default concentrations of 25 mg/l TN and 4 mg/l TP may be used (these are the average estimated concentrations of all non-significant sewage facilities).

DEP will not issue permits to existing Phase 4 and 5 facilities containing Cap Loads unless it is done on a broad scale or unless the facilities are expanding.

For new Phase 4 and 5 sewage discharges, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance, with the exception of small flow and single residence facilities.

Due to the Chesapeake Bay WIP, this facility is subject to Sector C monitoring requirements. Monitoring for nitrogen species and phosphorus shall be 1x/quarter.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected.* Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a high quality (HQ) special protection waters. The permit conditions are imposed to protect existing instream water quality and uses. The effluent limits to satisfy the anti-degradation analysis are consistent with the April 26, 1993 antidegradation guidance manual. Since the facility is not expanding, the facility will not be subject to the effluent limits prescribed by the November 29, 2003 antidegradation guidance document.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1 Conventional Pollutants and Disinfection

			Canoe Creek State Park STP, PA0044261
Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
!! (0 !!)	TDE	Effluent Limit:	Effluent limits may range from pH = 6.0 to 9.0
pH (S.U.)	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limit assigned by Chapter 95.2(1).
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
Dissolved			Effluent limits shall be greater than 5.0 mg/l.
Oxygen	BPJ	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limit assigned by best professional judgement.
		Monitoring:	The monitoring frequency shall be 2x/month as a 24-hr composite sample (Table 6-3).
			Effluent limits shall not exceed 15 mg/l as an average monthly.
CBOD	Anti-backsliding	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limit assigned by anti-backsliding from prior permit limits. While WQM modeling indicates that 25 mg CBOD, the recommended limit will remain at 15 mg/l due to anti-backsliding. The effluent limit wadeveloped in accordance with the April 4, 1993 antidegradation manual. Since the facility is not expanding, the facility will not be subject to the November 29, 2003 antibacksliding implementation guidance.
		Monitoring:	The monitoring frequency shall be 2x/month as a 24-hr composite sample (Table 6-3).
		Effluent Limit:	Effluent limits shall not exceed 15 mg/l as an average monthly.
TSS Anti-backsliding	Anti-backsliding	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limit assigned by anti-backsliding from prior permit limits. The effluent limit was developed in accordance with the April 4, 1993 antidegradation manual. Since the facility is not expanding, the facility will not be subject to the November 29, 2003 antibacksliding implementaion guidance.
		Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).
TRC	TBEL	forms of aqua imposed on a expressed in (Implementati Based on the calculated by	The average monthly limit should not exceed 0.5 mg/l and/or 1.6 mg/l as an instantaneous maximum. Ilorine in both combined (chloramine) and free form is extremely toxic to freshwater fish and other atic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations to be discharger shall be the more stringent of either the WQBEL or TBEL requirements and shall be the NPDES permit as an average monthly and instantaneous maximum effluent concentration on Guidance Total Residual Chlorine 4). Stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject facility the TRC Evaluation worksheet, the TBEL is more stringent than the WQBEL.
		Chapter 92a.4	
		Monitoring:	The monitoring frequency shall be 2x/month as a grab sample (Table 6-3).
Fecal Coliform	TBEL	Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.
0001111		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limit assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).
		Monitoring:	The monitoring frequency shall be 1x/month as a grab sample (SOP).
	SOP: Chapter	Effluent Limit:	No effluent requirements.
E. Coli SOP; Chapte 92a.61		Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revise March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli.

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

² Monitoring frequency based on flow rate of 0.12 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.2 Nitrogen Species and Phosphorus

Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus

Canoe Creek State Park STP, PA0044261

			Cande Creek State 1 ark S11 , 1 A0044201				
Parameter	Permit Limitation Required by ¹ :	Recommendation					
		Monitoring:	The monitoring frequency shall be 2x/month as a 24-hr composite sample				
Ammonia-		Effluent Limit:	Effluent limits shall not exceed 3.0 mg/l as an average monthly.				
Nitrogen	Anti-backsliding	Rationale:	While the WQM recommends that the ammonia-nitrogen limit should be 6 mg/l, the current limit of 3 mg/l is more stringent than the WQM modeling. Thus, by anti-backsliding, the current effluent limit of 3 mg/l will remain in the proposed permit.				
		Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample				
Nitrate-	Chesapeake Bay	Effluent Limit:	No effluent requirements.				
Nitrite as N TMD	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/quarter.				
		Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample				
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.				
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/quarter.				
		Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample				
TKN	Chesapeake Bay	Effluent Limit:	No effluent requirements.				
T KIN	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/quarter.				
		Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample				
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.				
Phosphorus	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/quarter.				
Notes:							

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

² Monitoring frequency based on flow rate of 0.12 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.3 Toxics

The monitoring data for lead was reviewed for the current cycle. The maximum lead concentration was 1 ug/l. Greenport data was erroneously reported as mg/l instead of ug/l. The units were confirmed with DCNR on November 8, 2023.

TMS was conducted without reasonable potential.

Attached D summarizes the monitoring data.

		Summa	ary of Proposed NPDES Parameter Details for Toxics
			Canoe Creek State Park STP, PA0044261
Donomoton	Permit Limitation		Recommendation
Parameter	Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be 2x/yr (semi-annual) as a 24-hr composite sample
	ad Anti-backsliding	Effluent Limit:	No effluent requirements
Lead		Rationale:	Toxics Management Spreadsheet was conducted without reasonable potential. Due to anti-backsliding, the parameter shall continue to be monitored. Monitoring frequency has been reduced to 2x/yr (semi-annual).
Notes:			
1 The NPDES	permit was limited b	y (a) anti-Bacl	ksliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other
2 Monitoring f	requency based on f	low rate of 0.1	2 MGD.
3 Table 6-3 (Self Monitorina Reau	irements for S	ewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limita

6.1.3.1 Implementation of Regulation- Chapter 92a.61

Chapter 92a.61 provides provisions to DEP to monitor for pollutants that may have an impact on the quality of waters of the Commonwealth. Based upon DEP policy directives issued on March 22, 2021 and in conjunction with EPA's 2017 Triennial Review, monitoring for E. Coli shall be required.

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

- Due to the EPA triennial review, monitoring for E.coli is required.
- Monitoring for lead has been reduced to 2x/yr

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PAR1	ΓA - EFFLUENT LIMITA	ATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS
I. A.	For Outfall 001	_, Latitude _40° 28' 41.27" _, Longitude _78° 17' 17.59" _, River Mile Index _0.43 _, Stream Code _16255
	Receiving Waters:	New Creek
	Type of Effluent:	Sewage Effluent

^{1.} The permittee is authorized to discharge during the period from October 1, 2018 through September 30, 2023.

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units (lbs/day) (1) Concentrations (mg/L)				Minimum (2)	Required		
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	15.0	24.0	30	2/month	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Total Suspended Solids	XXX	XXX	XXX	15.0	24.0	30	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Nitrate-Nitrite as N	Report Avg Ortly	XXX	XXX	Report Avg Ortly	XXX	XXX	1/quarter	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrati	ions (mg/L)		Minimum (2)	Required
Faiailletei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
	Report			Report				24-Hr
Nitrate-Nitrite as N	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
Total Nitrogen	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	Calculation
								24-Hr
Ammonia-Nitrogen	XXX	XXX	XXX	3.0	XXX	6	2/month	Composite
Ammonia-Nitrogen (Total Load, lbs) (lbs)	Report Avg Qrtly	XXX	XXX	xxx	XXX	XXX	1/quarter	Calculation
	Report			Report			·	24-Hr
Total Kjeldahl Nitrogen	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
•	Report			Report				24-Hr
Total Phosphorus	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
				Report				24-Hr
Lead, Total (ug/L)	XXX	XXX	XXX	SEMİ AVG	XXX	XXX	1/6 months	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
<u> </u>	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: New and Reissuance Sewage Individual NPDES Permit Applications
	Other:

Attachment A Stream Stats/Gauge Data

Table 1 13

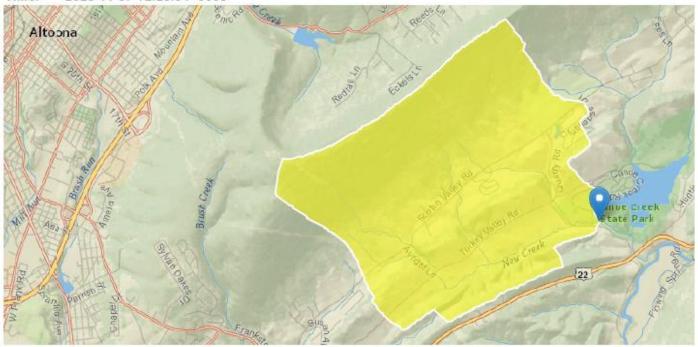
Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	Y
01542000	Moshannon Creek at Osceola Mills, Pa.	40.850	-78.268	68.8	N
01542500	WB Susquehanna River at Karthaus, Pa.	41.118	-78.109	1,462	Y
01542810	Waldy Run near Emporium, Pa.	41.579	-78.293	5.24	N
01543000	Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa.	41.413	-78.197	272	N
01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41.317	-78.103	685	N
01544000	First Fork Sinnemahoning Creek near Sinnemahoning, Pa.	41.402	-78.024	245	Y
01544500	Kettle Creek at Cross Fork, Pa.	41.476	-77.826	136	N
01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	Y
01545500	West Branch Susquehanna River at Renovo, Pa.	41.325	-77.751	2,975	Y
01545600	Young Womans Creek near Renovo, Pa.	41.390	-77.691	46.2	N
01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77.794	119	N
01546400	Spring Creek at Houserville, Pa.	40.834	-77.828	58.5	N
01546500	Spring Creek near Axemann, Pa.	40.890	-77.794	87.2	N
01547100	Spring Creek at Milesburg, Pa.	40.932	-77.786	142	N
01547200	Bald Eagle Creek below Spring Creek at Milesburg, Pa.	40.943	-77.786	265	N
01547500	Bald Eagle Creek at Blanchard, Pa.	41.052	-77.604	339	Y
01547700	Marsh Creek at Blanchard, Pa.	41.060	-77.606	44.1	N
01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01547950	Beech Creek at Monument, Pa.	41.112	-77.702	152	N
01548005	Bald Eagle Creek near Beech Creek Station, Pa.	41.081	-77.549	562	Y
01548500	Pine Creek at Cedar Run. Pa.	41.522	-77.447	604	N
01549000	Pine Creek near Waterville, Pa.	41.313	-77.379	750	N
01549500	Blockhouse Creek near English Center, Pa.	41.474	-77.231	37.7	N
01549700	Pine Creek below Little Pine Creek near Waterville, Pa.	41.274	-77.324	944	Y
01550000	Lycoming Creek near Trout Run, Pa.	41.418	-77.033	173	N
01551500	WB Susquehanna River at Williamsport, Pa.	41.236	-76.997	5,682	Y
01552000	Loyalsock Creek at Loyalsockville, Pa.	41.325	-76.912	435	N
01552500	Muncy Creek near Sonestown, Pa.	41.357	-76.535	23.8	N
01553130	Sand Spring Run near White Deer, Pa.	41.059	-77.077	4.93	N
01553500	West Branch Susquehanna River at Lewisburg, Pa.	40.968	-76.876	6,847	Y
01553700	Chillisquaque Creek at Washingtonville, Pa.	41.062	-76.680	51.3	N
01554000	Susquehanna River at Sunbury, Pa.	40.835	-76.827	18,300	Y
01554500	Shamokin Creek near Shamokin, Pa.	40.810	-76.584	54.2	N
01555000	Penns Creek at Penns Creek, Pa.	40.867	-77.048	301	N
01555500	East Mahantango Creek near Dalmatia, Pa.	40.611	-76.912	162	N
01556000	Frankstown Branch Juniata River at Williamsburg, Pa.	40.463	-78.200	291	N
01557500	Bald Eagle Creek at Tyrone, Pa.	40.684	-78.234	44.1	N
01558000	Little Juniata River at Spruce Creek, Pa.	40.613	-78.141	220	N
0100000	•	40.485	-78.019	816	LF
	Juniata Kiver at Huntingdon, Pa.				
01559000	Juniata River at Huntingdon, Pa. Standing Stone Creek near Huntingdon, Pa.				
	Standing Stone Creek near Huntingdon, Pa. Sulphur Springs Creek near Manns Choice, Pa.	40.524 39.978	-77.971 -78.619	128 5.28	N N

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued [ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.2
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	21971-2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.3
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.8
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.6
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.6
01551500	21963-2008	46	520	578	1,020	678	1,330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.6
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.3
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.7
01553500	21968-2008	41	760	838	1,440	1,000	1,850	1,470
01553500	31941-1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.2
01554000	21981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	31939-1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.6
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.6
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.7
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.8
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	73.7
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931-1958	28	9.3	10.5	15.0	12.4	17.8	15.8
01559700	1963-1978	16	.1	.1	.2	.1	.3	.2
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.2
01561000	1932-1958	27	.4	.5	1.6	.8	2.5	1.7
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.5
01562500	1931-1957	27	1.1	1.6	3.8	2.3	5.4	3.7
01563200	21974-2008	35	_	_	_	112	266	129
01563200	31948-1972	25	10.3	28.2	86.1	64.5	113	95.5
01563500	21974-2008	35	384	415	519	441	580	493
01563500	31939–1972	34	153	242	343	278	399	333
01564500	1940-2008	69	3.6	4.2	10.0	6.2	14.4	10.6


StreamStats Report

Region ID: PA

Workspace ID: PA20231107172812751000

Clicked Point (Latitude, Longitude): 40.47803, -78.28832

Time: 2023-11-07 12:28:34 -0500

Canoe Creek State Park PA0044261 Modeling Point #1 November 2023

Collapse All

3 11 9			
arameter			
Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	41.33	percent
RNAREA	Area that drains to a point on a stream	6.41	square miles
RECIP	Mean Annual Precipitation	40	inches
OCKDEP	Depth to rock	4.5	feet
TRDEN	Stream Density total length of streams divided by	2.33	miles per square
	drainage area		mile

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	6.41	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	40	inches	35	50.4
STRDEN	Stream Density	2.33	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	41.33	percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.729	ft^3/s	38	38
30 Day 2 Year Low Flow	0.945	ft^3/s	33	33
7 Day 10 Year Low Flow	0.352	ft^3/s	51	51
30 Day 10 Year Low Flow	0.458	ft^3/s	46	46
90 Day 10 Year Low Flow	0.641	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

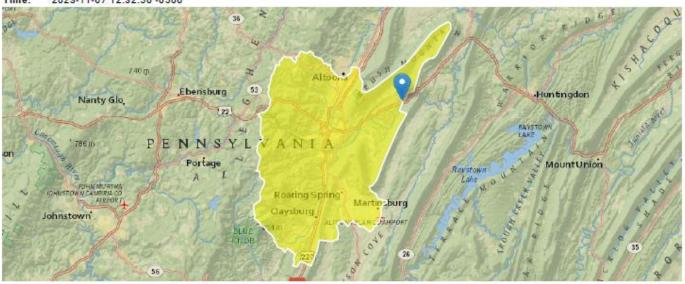
USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1


StreamStats Report

Region ID: P

Workspace ID: PA20231107173229614000

Clicked Point (Latitude, Longitude): 40.47382, -78.27600

Time: 2023-11-07 12:32:50 -0500

Canoe Creek State Park PA0044261 Modeling Point #2 December 2023

Collapse All

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	20.59	percent
DRNAREA	Area that drains to a point on a stream	256	square miles
PRECIP	Mean Annual Precipitation	40	inches
ROCKDEP	Depth to rock	4.6	feet
STRDEN	Stream Density total length of streams divided by drainage area	2.07	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [99.9 Percent (256 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	256	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	40	inches	35	50.4
STRDEN	Stream Density	2.07	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.6	feet	3.32	5.65
CARBON	Percent Carbonate	20.59	percent	0	99

Low-Flow Statistics Flow Report [99.9 Percent (256 square miles) Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	39.3	ft^3/s	38	38
30 Day 2 Year Low Flow	48.8	ft^3/s	33	33
7 Day 10 Year Low Flow	23.4	ft^3/s	51	51
30 Day 10 Year Low Flow	28.9	ft^3/s	46	46
90 Day 10 Year Low Flow	38.4	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1 StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Attachment B

WMS Output

Toxics Management Spreadsheet Output Values

WQM 7.0 Effluent Limits

		<u>m Code</u> 6255	Stream Name NEW CREEK							
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)			
0.960	Canoe Creek SP	PA0044261	0.120	CBOD5	25					
				NH3-N	6.09	12.18				
				Dissolved Oxygen			5			

0.96 Canoe Creek SP

WQM 7.0 Wasteload Allocations

	SWP Basin 11A		<u>n Code</u> 255			ream Name EW CREEK		
NH3-N	Acute Alloca	ations	;					
RMI	Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.9	60 Canoe Creek	SP	4.1	25.28	4.1	25.28	0	0
RMI	Chronic Allo Discharge Na	B ame C	ns laseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.9	60 Canoe Creek	SP	.81	6.09	.81	6.09	0	0
issolv	ed Oxygen A	Alloca	tions					
			<u>c</u>	BOD5	NH3-N	Dissol	ved Oxygen	Critical

6.09

6.09

Input Data WQM 7.0

	SWP Basin			Str	eam Name		RMI	Ele	evation (ft)	Drainag Area (sq mi		Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	11A	162	255 NEW	CREEK			0.9	60	890.61	6	3.41 0	.00000		0.00	✓
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	<u>Tributar</u> np	<u>Y</u> pH	Tem	Strean p	n pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
Q7-10 Q1-10 Q30-10	0.164	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	2.00	7.84	(0.00	0.00	
					Di	ischarge	Data]	
			Name	Pe	rmit Numbe	Disc	Permitt Disc Flow (mgd	Di:	sc Res	serve	Disc Temp (°C)	Di: p	sc H		
		Cano	e Creek SI	P PA	0044261	0.120	0 0.120	00 0.	1200	0.000	25.0	00	8.00		
					Pa	arameter	Data								
				Paramete	ır Name			Trib Conc	Stream Conc	Fate Coef					
				raiamete	i Maille	(m	ng/L) (r	mg/L)	(mg/L)	(1/days	3)				
			CBOD5				25.00	2.00	0.00	1.5	50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	00				
			NH3-N				25.00	0.00	0.00	0.7	0				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)		ope t/ft)	PWS Withdrawal (mgd)	
	11A	162	255 NEW	CREEK			0.00	00	873.83	256.	0.0	00000	0.0	0 🗸
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary	H	Temp	Stream pH	
Condi	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(℃)		(°C)		
Q7-10 Q1-10 Q30-10	0.164	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	2.00	7.84	0.	.00 0.0	0
					Di	ischarge								
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res	erve 7	Disc Femp (°C)	Dis pH		
						0.000	0.000	0.0	0000	0.000	25.00) 7	7.00	
					Pa	arameter	Data							
			ı	Paramete	r Name			Frib Conc	Stream Conc	Fate Coef				
						(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Name		
11A	16255			NEW CREEK		
RMI	Total Discharge	Flow (mad) Anai	lysis Temperatu	re (°C)	Analysis pH
0.960	0.12	0		22.450		7.861
Reach Width (ft)	Reach De	pth (ft)		Reach WDRati	<u>o</u>	Reach Velocity (fps)
15.445	0.52	7		29.288		0.152
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (m	<u>q/L)</u>	Reach Kn (1/days)
5.45	0.92			0.91		0.845
Reach DO (mg/L)	Reach Kr (Kr Equation		Reach DO Goal (mg/L)
7.757	5.07	D		Tsivoglou		5
Reach Travel Time (days	s)	Subreach	Results			
0.386	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.039	5.23	0.88	7.52		
	0.077	5.03	0.85	7.35		
	0.116	4.83	0.83	7.22		
	0.154	4.65	0.80	7.13		
	0.193	4.47	0.77	7.06		
	0.231	4.29	0.75	7.02		
	0.270	4.12	0.73	7.00		
	0.309	3.96	0.70	7.00		
	0.347	3.81	0.68	7.01		
	0.386	3.66	0.66	7.03		

WQM 7.0 Hydrodynamic Outputs

	SWP Basin		Strea	m Code				Stream	Name			
		11A	1	6255				NEW C	REEK			
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Trav	Analysis Temp	Analysis pH
	(cfs)	(cfs)	Flow (cfs)	Flow (cfs)	(ft/ft)	(ft)	(ft)		(fps)	Time (days)	(°C)	
Q7-1	0 Flow											
0.960	1.05	0.00	1.05	.1856	0.00331	.527	15.44	29.29	0.15	0.386	22.45	7.86
Q1-1	0 Flow											
0.960	0.96	0.00	0.96	.1856	0.00331	NA	NA	NA	0.15	0.403	22.49	7.86
Q30-	10 Flow	,										
0.960	1.21	0.00	1.21	.1856	0.00331	NA	NA	NA	0.16	0.361	22.40	7.86

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.91	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	•
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions	Discharge	Stream				
Facility:	Canoe Creel	State Park		NPDES Permit No.: PA	A0044261	Outfall No.: 001
Evaluation Ty	ype Majo	or Sewage / Ind	lustrial Waste	Wastewater Description	n: Sewage effluent	

	Discharge Characteristics											
Design Flow	Hardness (mg/l)* pH (SU)*											
(MGD)*	naruness (mg/l)*	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	\mathbf{Q}_{h}				
0.12 100 8												

	Max Disch			0 if lef	t blank	0.5 if le	eft blank	0	if left blan	k	1 if lef	t blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
_	Total Dissolved Solids (PWS)	mg/L		1320									
ď	Chloride (PWS)	mg/L		577									
	Bromide	mg/L	<	0.2									
້	Sulfate (PWS)	mg/L		61.6									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L											
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L											
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L											
	Total Copper	μg/L											
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L											
18	Dissolved Iron	μg/L											
ľ	Total Iron	μg/L											
	Total Lead	μg/L		1									
	Total Manganese	μg/L											
	Total Mercury	μg/L											
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L											
	Total Silver	μg/L											
l	Total Thallium	μg/L											
	Total Zinc	μg/L											
	Total Molybdenum	μg/L											
	Acrolein	μg/L	<										
1	Acrylamide	µg/L	<										
	Acrylonitrile	μg/L	<										
1	Benzene	µg/L	<										
	Bromoform	μg/L	<										
	Carbon Tetrachloride	µg/L	<										
1	Chlorobenzene	µg/L											
1	Chlorodibromomethane	μg/L	<										
l	Chloroethane	μg/L	<										
1	2-Chloroethyl Vinyl Ether	μg/L	<										
,		1.3.2											

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Canoe Creek State Park, NPDES Permit No. PA0044261, Outfall 001

Instructions Disch	arge Str	eam													
Receiving Surface W	Vater Name:	New Cree	k				No. Rea	aches to	Model:	1	-	tewide Criter			
Location	Stream Cod	de* RN	II* Eleva	I D∧ /∞	ıi²)* SI	ope (ft/ft)		Withdraw MGD)	/al Apply Crite			SANCO Crite			
Point of Discharge	016255	0.0	96 890.	61 6.4	1				Ye	S					
End of Reach 1	016255	C	873.	83 256	3				Ye	S					
Q ₇₋₁₀		LFY	l Flov	w (cfs)	l W/D	Width	Depth	Velocit	Travel	Tributa	arv	Strea	m	Analys	sis
Location	RMI	(cfs/mi ²)*	Stream	Tributary	Ratio		(ft)	y (fps)	Time	Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	0.96	0.164	- Curcum	modaly	rtatio	(11)	(11)) (ipc)	111110	Tiaranooo	Pil	135	7.84	r iai ai iooo	p
End of Reach 1	0	0.164				1						135	7.84		
Q _h				<u> </u>		•	•	•		tummumiliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		•	
Location	RMI	LFY	Flov	w (cfs)	W/D	Width	Depth	Velocit	Travel	Tributa	ary	Strea	m	Analys	sis
Location	KIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time	Hardness	рН	Hardness	рН	Hardness	pН
Point of Discharge	0.96														
End of Reach 1	0														

Toxics Management Spreadsheet Version 1.4, May 2023

Page 5

Model Results

Model Results

Canoe Creek State Park, NPDES Permit No. PA0044261, Outfall 001

Instructions Results	RETURN	TO INPU	TS (SAVE AS	PDF	PRINT	r) • A	All () Inputs) Results	O Limits		
Hydrodynamics ✓ Wasteload Allocations ✓ Applying Hardness (mg/l/t) 400.75 Applying pHz 7.96												
☑ AFC CC	T (min): 10	.712	PMF:	1	Anal	lysis Hardne	ss (mg/l):	129.75	Analysis pH:	7.86		
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)		Сог	mments		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A					
Chloride (PWS)	0	0		0	N/A	N/A	N/A					
Sulfate (PWS)	0	0		0	N/A	N/A	N/A					
Total Lead	0	0		0	85.650	114	758		Chem Translat	tor of 0.753 applied		
✓ CFC CC	T (min): 10	.712	PMF:	1] Ana	alysis Hardne	ess (mg/l):	129.75	Analysis pH:	7.86		
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	mments		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A					
Chloride (PWS)	0	0		0	N/A	N/A	N/A					
Sulfate (PWS)	0	0		0	N/A	N/A	N/A					
Total Lead	0	0		0	3.338	4.43	29.5		Chem Translat	tor of 0.753 applied		
✓ THH CC	T (min): 10.	.712	PMF:	1	1	alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A		
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Сог	mments		
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A					
Chloride (PWS)	0	0		0	250,000	250,000	N/A					
Sulfate (PWS)	0	0		0	250,000	250,000	N/A					
Total Lead	0	0		0	N/A	N/A	N/A					
✓ CRL CC	` /	144	PMF:	1		alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A		
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)		Cor	mments		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A					

11/8/2023

NPDES Permit Fact Sheet Canoe Creek State Park

Chloride (PWS)	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

	Mass Limits			Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing Units Units		Comments		
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable		
Chloride (PWS)	N/A	N/A	PWS Not Applicable		
Bromide	N/A	N/A	No WQS		
Sulfate (PWS)	N/A	N/A	PWS Not Applicable		
Total Lead	29.5	μg/L	Discharge Conc ≤ 10% WQBEL		

Model Results 11/8/2023 Page 6

Attachment C TRC Evaluation

Canoe Creek State Park

LTAMULT_cfc

wla_cfc*LTAMULT_cfc

LTA_cfc

AML MULT

AVG MON LIMIT

November 2023

PA0044261 F 1A В C D Е G 2 TRC EVALUATION Input appropriate values in B4:B8 and E4:E7 1.053 = Q stream (cfs)0.5 = CV Daily 0.12 = Q discharge (MGD) 0.5 = CV Hourly 6 30 = no. samples 1 = AFC_Partial Mix Factor 1 = CFC_Partial Mix Factor 7 0.3 = Chlorine Demand of Stream 8 0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 9 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) 0 =Decay Coefficient (K) Reference **AFC Calculations** Reference **CFC Calculations** 10 Source 11 TRC WLA afc = 1.828 WLA cfc = 1.775 1.3.2.iii 1.3.2.iii 12 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 13 PENTOXSD TRG 5.1b 5.1d $LTA_cfc = 1.032$ LTA_afc= 0.681 14 15 Source Effluent Limit Calculations 16 PENTOXSD TRG 5.1f AML MULT = 1.231PENTOXSD TRG 17 5.1g AVG MON LIMIT (mg/l) = 0.500BAT/BPJ 18 INST MAX LIMIT (mg/l) = 1.635(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))... WLA afc ...+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))... ...+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)

EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)

EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))

MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)

1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)

Attachment D Lead Monitoring

Summary of Lead Monitoring

Monitoring Period Begin Date	Monitoring Period End Date	Parameter Name	DMR Value	Permit Limit	Units	Units	Statistical Base Code
10/01/2018	12/31/2018	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Average Quarterly
10/01/2018	12/31/2018	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Daily Maximum
01/01/2019	03/31/2019	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Average Quarterly
01/01/2019	03/31/2019	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Daily Maximum
04/01/2019	06/30/2019	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Average Quarterly
04/01/2019	06/30/2019	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Daily Maximum
07/01/2019	09/30/2019	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Average Quarterly
07/01/2019	09/30/2019	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Daily Maximum
10/01/2019	12/31/2019	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Average Quarterly
10/01/2019	12/31/2019	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Daily Maximum
01/01/2020	03/31/2020	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Average Quarterly
01/01/2020	03/31/2020	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Daily Maximum
04/01/2020	06/30/2020	Lead, Total	< 0.008	Monitor and Report	mg/l	ug/l	Average Quarterly
04/01/2020	06/30/2020	Lead, Total	< 0.008	Monitor and Report	mg/l	ug/l	Daily Maximum
07/01/2020	09/30/2020	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Average Quarterly
07/01/2020	09/30/2020	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Daily Maximum
10/01/2020	12/31/2020	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Average Quarterly
10/01/2020	12/31/2020	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Daily Maximum
01/01/2021	03/31/2021	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Average Quarterly
01/01/2021	03/31/2021	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Daily Maximum
04/01/2021	06/30/2021	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Average Quarterly
04/01/2021	06/30/2021	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Daily Maximum
07/01/2021	09/30/2021	Lead, Total	1.0	Monitor and Report	mg/l	ug/l	Average Quarterly
07/01/2021	09/30/2021	Lead, Total	1.0	Monitor and Report	mg/l	ug/l	Daily Maximum
10/01/2021	12/31/2021	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Average Quarterly
10/01/2021	12/31/2021	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Daily Maximum
01/01/2022	03/31/2022	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Average Quarterly
01/01/2022	03/31/2022	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Daily Maximum
04/01/2022	06/30/2022	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Average Quarterly
04/01/2022	06/30/2022	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Daily Maximum
07/01/2022	09/30/2022		1	Monitor and Report	mg/l	ug/l	Average Quarterly
07/01/2022	09/30/2022	Lead, Total	1	Monitor and Report	mg/l	ug/l	Daily Maximum
10/01/2022	12/31/2022	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Average Quarterly
10/01/2022	12/31/2022	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Daily Maximum
01/01/2023	03/31/2023		< 1	Monitor and Report	mg/l	ug/l	Average Quarterly
01/01/2023	03/31/2023	Lead, Total	< 1	Monitor and Report	mg/l	ug/l	Daily Maximum
04/01/2023	06/30/2023	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Average Quarterly
04/01/2023	06/30/2023		< 1.0	Monitor and Report	mg/l	ug/l	Daily Maximum
07/01/2023	09/30/2023		< 1.0	Monitor and Report	mg/l	ug/l	Average Quarterly
07/01/2023	09/30/2023	Lead, Total	< 1.0	Monitor and Report	mg/l	ug/l	Daily Maximum