

Northcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0046159
APS ID 1054508

Authorization IE 1381184

Applicant and Facility Information

Applicant Name	Municipal Sewer Authority of Houtzdale Borough	Facility Name	Regional Water Pollution Control Facility
Applicant Address	116 Sterling Avenue	Facility Address	116 Sterling Avenue
	Houtzdale, PA 16651-1748		Houtzdale, PA 16651-1748
Applicant Contact	John Bumbarger	Facility Contact	Michael B. White
Applicant Phone	(814) 378-5739	Facility Phone	(814) 378-5739
Client ID	<u>287392</u>	Site ID	249443
Ch 94 Load Status	Not Overloaded	Municipality	Woodward Township
Connection Status	No Limitations	County	Clearfield
Date Application Rece	eived January 7, 2022	EPA Waived?	Yes
Date Application Acce	epted January 13, 2022	If No, Reason	
Purpose of Application	n Renewal of an existing NPDES	S permit for the discharge of	treated sewage.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Derek S. Garner Derek S. Garner / Project Manager	10/20/2022
Х		Nicholas W. Hartranft Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	10/21/2022

Discharge, Receiving Wate	rs and Water Supply Informa	tion
Outfall No. 001 Latitude 40° 49' 44.35" Quad Name Houtzdale Wastewater Description: Sewage Effluent	Design Flow (MGD) Longitude Quad Code	0.3 -78° 20' 26.06" 1219
Receiving Waters Beaver Run NHD Com ID 134238071 Drainage Area 5.35 Q ₇₋₁₀ Flow (cfs) 1.28 Elevation (ft) 1501	Stream Code RMI Yield (cfs/mi²) Q ₇₋₁₀ Basis Slope (ft/ft)	25878 3.23 0.239 Streamgage No. 01546400 n/a
Watershed No. 8-D Existing Use n/a Exceptions to Use n/a	Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	CWF, MF n/a n/a
Assessment Status Impaired Cause(s) of Impairment Source(s) of Impairment TMDL Status Impaired Metals, Siltation Acid Mine Drainage Final	Name Moshannon	Creek Watershed
Nearest Downstream Public Water Supply Intake PWS Waters West Branch Susquehanna River PWS RMI 10.64	PA American Water Compar Flow at Intake (cfs) Distance from Outfall (mi)	668 171.37

Treatment Facility Summary

WQM Permit No.	Issuance Date
1772402	6/5/1972
1704401	3/22/2004

The facility's original water quality management (WQM) permit was issued June 5, 1972. The facility is a dual train contact stabilization treatment plant consisting of; one splitter box, two bar screens, two aeration tanks, two clarifiers, two chlorine contact tanks, and two aerobic sludge digesters.

WQM Permit No. 1704401 was issued on March 22, 2004 to rerate the facility's organic capacity from 500 to 600 lbs/day of BOD₅. No physical changes to the facility were made as part of the rerate. In a September 22, 2015 letter amendment DEP acknowledged that the existing comminutors, originally permitted in the 1972 WQM permit, have been taken offline.

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Contact Stabilization	Gas Chlorine	0.3
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.3	600	Existing Hydraulic Overload	Aerobic Digestion	Landfill

Compliance History

The following eDMR violations occurred during the existing permit's term:

	5		Sample	Violation	Permit		
Date	Description	Parameter	Value	Condition	Value	Unit	SBC
6/28/2017	Violation of permit condition	Ammonia-Nitrogen	9	>	6.5	mg/L	Weekly Average
6/28/2017	Violation of permit condition	Fecal Coliform	2419.6	>	1000	No./100 ml	Instantaneous Maximum
7/27/2017	Violation of permit condition	Ammonia-Nitrogen	10	>	6.5	mg/L	Weekly Average
7/27/2017	Violation of permit condition	Ammonia-Nitrogen	5.1	>	4.5	mg/L	Average Monthly
7/27/2017	Violation of permit condition	Fecal Coliform	2419.6	>	1000	No./100 ml	Instantaneous Maximum
8/24/2017	Violation of permit condition	Ammonia-Nitrogen	4.9	>	4.5	mg/L	Average Monthly
8/24/2017	Violation of permit condition	Ammonia-Nitrogen	7.5	>	6.5	mg/L	Weekly Average
9/27/2017	Violation of permit condition	Ammonia-Nitrogen	5.3	>	4.5	mg/L	Average Monthly
9/27/2017	Violation of permit condition	Ammonia-Nitrogen	8	>	6.5	mg/L	Weekly Average
10/25/2017	Violation of permit condition	Ammonia-Nitrogen	10	>	6.5	mg/L	Weekly Average
10/25/2017	Violation of permit condition	Ammonia-Nitrogen	6.3	>	4.5	mg/L	Average Monthly
8/23/2018	Violation of permit condition	Ammonia-Nitrogen	8	>	6.5	mg/L	Weekly Average
8/23/2018	Violation of permit condition	Fecal Coliform	217	>	200	No./100 ml	Geometric Mean
8/23/2018	Violation of permit condition	Fecal Coliform	2419.6	>	1000	No./100 ml	Instantaneous Maximum
6/27/2019	Violation of permit condition	Fecal Coliform	2419.6	>	1000	No./100 ml	Instantaneous Maximum
8/26/2019	Violation of permit condition	Ammonia-Nitrogen	7	>	6.5	mg/L	Weekly Average
10/24/2019	Violation of permit condition	Fecal Coliform	2419.6	>	1000	No./100 ml	Instantaneous Maximum
11/27/2019	Violation of permit condition	Ammonia-Nitrogen	14	>	6.5	mg/L	Weekly Average
11/27/2019	Violation of permit condition	Ammonia-Nitrogen	23.8	>	16	lbs/day	Weekly Average
7/23/2020	Violation of permit condition	Fecal Coliform	1203.3	>	1000	No./100 ml	Instantaneous Maximum
11/24/2020	Violation of permit condition	Ammonia-Nitrogen	13.2	>	4.5	mg/L	Average Monthly
11/24/2020	Violation of permit condition	Ammonia-Nitrogen	17	>	11	lbs/day	Average Monthly
11/24/2020	Violation of permit condition	Ammonia-Nitrogen	25	>	6.5	mg/L	Weekly Average
11/24/2020	Violation of permit condition	Ammonia-Nitrogen	34.1	>	16	lbs/day	Weekly Average
3/31/2021	Late DMR Submission	n/a	n/a	n/a	n/a	n/a	n/a
7/26/2021	Violation of permit condition	Fecal Coliform	2419.6	>	1000	No./100 ml	Instantaneous Maximum

The Operations Section has been in contact with the permittee regarding the frequent ammonia-n violations.

The facility was most recently inspected March 8, 2022. No violations were noted.

There are no open violations associated with the permittee.

001

Outfall No.

Latitude

Development of Effluent Limitations Design Flow (MGD) 0.3 Longitude -78° 20′ 27.00″

Technology-Based Limitations ("TBELs")

40° 49' 44.00"

Wastewater Description: Sewage Effluent

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations ("WQBELs")

DEP models in-stream conditions to determine if WQBELs are appropriate. Specifically, WQM 7.0 is used to determine the applicability of WQBELs for CBOD5, ammonia-n, and dissolved oxygen and the Toxics Management Spreadsheet ("TMS") is used for toxic pollutants.

Since there have been no noted changes to the receiving water or to the discharge that would impact CBOD5, ammonian, or dissolved oxygen concentration levels the previous model run from 2017 is still applicable and has been attached. The previous model results are as follows:

	Discharge	Effluent Limitations						
Parameter	Conc. (mg/l)	30 Day Average (mg/l)	Maximum (mg/l)	Minimum (mg/l)				
CBOD5	20	20	-	-				
NH3-N	4.5	4.5	9	-				
Dissolved Oxygen	3	=	-	3				

Existing requirements for CBOD5, ammonia-n and dissolved oxygen remain in the permit. This includes the use of seasonal multipliers for CBOD5 (2x) and ammonia-N (3x), not to exceed technology-based secondary treatment limits. Seasonal multipliers are based on reduced biological treatment efficiencies and generally higher dilution during cold weather months.

Toxic parameters were evaluated in TMS. TMS is a single discharge model that assigns a partial mixing factor based upon surface water and discharge characteristics. Input concentrations were developed as follows:

- When possible, effluent concentration data was pulled from eDMR and entered into TOXCONC. TOXCONC is a spreadsheet that develops average monthly input concentrations and daily coefficient of variations based on actual maximum daily concentrations.'
- When no eDMR data was available, maximum concentrations were pulled from the effluent testing section of the application.

NPDES Permit Fact Sheet Regional Pollution Control Facility

Based on the input data, only one effluent limit was recommended:

	Mass	Concentration Limits							
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.088	0.099	35	39.5	87.6	μg/l	35.0	CFC	Discharge Conc ≥ 50% WQBEL RP

The recommended average monthly total copper limit is less stringent than the existing limit of 33.69 µg/l. Accordingly, DEP recommends the existing total copper limit remains in the permit. The TMS spreadsheet is attached.

Total residual chlorine ("TRC") limits were previously developed using the TRC_CALC spreadsheet. There have been no changes to the input values. Accordingly, DEP recommends that the existing TRC limits remain in the permit. The TRC CALC spreadsheet developed during the last renewal is attached.

Moshannon Creek Watershed Total Maximum Daily Load (TMDL)

The Moshannon Creek Watershed TMDL was finalized on May 7, 2009. The TMDL establishes load allocations (LA) for non-point source discharges and waste load allocations for point source discharges for metals (AI, Fe, Mn) typically associated with abandoned mine drainage. A WLA was not developed for this facility. Two permit cycles ago, the permit established annual monitoring requirements for the three metals so that a future decision could be made if the discharge is contributing to the impairment. Based on the annual sampling results, only manganese was being discharged at concentrations above Chapter 93 water quality criteria. Any discharge above criteria not accounted for in the TMDL is considered to be contributing to the watershed's impairment. Accordingly, the previous permit established effluent limits for manganese and removed monitoring requirements for aluminum and iron.

Based on sampling results recorded in eDMR, manganese continues to be discharged above criteria at times. Additionally, it appears that aluminum may also be discharged above criteria. Accordingly, DEP recommends that existing manganese requirements remain in the permit and that aluminum limits are established at criteria.

Parameter	AML	MDL	IMAX	Units
Total Manganese	1.0	2.0	2.5	mg/l
Total Aluminum	0.75	0.75	0.75	mg/l

Best Professional Judgment (BPJ) Limitations

DEP recommends that dissolved oxygen effluent monitoring and influent monitoring for BOD5 and TSS remain in the permit to continue to characterize the wastewater.

DEP recommends quarterly E. Coli reporting per the 2017 Triennial Review of Water Quality Standards, published in the PA Bulletin on July 11, 2020.

Chesapeake Bay Considerations

The Regional Pollution Control Facility is classified as a Phase 4 facility (> 0.2 MGD, ≤ 0.4 MGD) in Pennsylvania's Chesapeake Bay Watershed Implementation Plan. Phase 4 facilities are required to perform, at a minimum, monthly monitoring for total nitrogen and total phosphorus. Accordingly, DEP recommends the existing monthly requirements remain in the permit.

Anti-Backsliding

No permit requirements are proposed to be less stringent. Anti-backsliding should not impact the permit.

Existing Effluent Limitations and Monitoring Requirements

The existing effluent limitations and monitoring requirements are as follows:

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units (lbs/day)			Concentrati	_	Minimum	Required	
raiametei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.35	XXX	1.14	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	60	100	XXX	25.0	40.0	50	1/week	8-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	50	75	XXX	20.0	30.0	40	1/week	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Suspended Solids	75	110	XXX	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	33	50 Wkly Avg	XXX	13.5	20.0	27	1/week	8-Hr Composite
Ammonia-Nitrogen May 1 – Oct 31	11	16 Wkly Avg	XXX	4.5	6.5	9	1/week	8-Hr Composite
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite

NPDES Permit Fact Sheet Regional Pollution Control Facility

		Monitoring Requirements						
Darameter	Mass Unit	s (lbs/day)		Concentrat	Minimum	Required		
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
					67.38			8-Hr
Copper, Total (µg/L)	0.08	0.16	XXX	33.69	Daily Max	84.22	1/week	Composite
					Report			8-Hr
Lead, Total	XXX	Report	XXX	XXX	Daily Max	XXX	1/6 months	Composite
					2.00			8-Hr
Manganese, Total	2.5	5.0	XXX	1.00	Daily Max	2.5	1/week	Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Davamatar	Mass Unit	s (lbs/day)		Concentrati	ons (mg/L)		Minimum	Required	
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Metered	
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab	
DO	XXX	XXX	Report Inst Min	XXX	XXX	XXX	1/day	Grab	
TRC	XXX	XXX	XXX	0.35	XXX	1.14	1/day	Grab	
CBOD5 Nov 1 - Apr 30	60	100	XXX	25.0	40.0	50	1/week	8-Hr Composite	
CBOD5 May 1 - Oct 31	50	75	XXX	20.0	30.0	40	1/week	8-Hr Composite	
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
TSS	75	110	XXX	30.0	45.0	60	1/week	8-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab	
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite	

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Unit	s (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required	
Parameter	Average	Daily		Average	Weekly	Instant.	Measurement	Sample	
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Туре	
Ammonia		50						8-Hr	
Nov 1 - Apr 30	33	Wkly Avg	XXX	13.5	20.0	27	1/week	Composite	
Ammonia		16						8-Hr	
May 1 - Oct 31	11	Wkly Avg	XXX	4.5	6.5	9	1/week	Composite	
								8-Hr	
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite	
					0.75			8-Hr	
Total Aluminum	1.87	1.87	XXX	0.75	Daily Max	0.75	1/week	Composite	
					67.38			8-Hr	
Total Copper (ug/L)	0.08	0.16	XXX	33.69	Daily Max	84.22	1/week	Composite	
					2.00			8-Hr	
Total Manganese	2.50	5.00	XXX	1.00	Daily Max	2.5	1/week	Composite	

Compliance Sampling Location: Outfall 001

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI	Elevati	A	rainage Area sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	08D	258	378 BEAVE	ER RUN			3.230	150	1.00	5.35	0.00000	0.00	
					St	ream Data	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Reh Trav Time	Reh Velocity	WD Ratio	Reh Width	Reh Depth	<u>Tri</u> Temp	i butary pH	Temp	Stream pH	
oona.	(cfsm)	(els)	(els)	(days)	(fps)		(ft)	(ft)	('C)		('C)		
Q7-10 Q1-10 Q30-10	0.239	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.00	0 6.50) 0	.00 0.00)
	-				Di	scharge D	ata						
			Name	Pei	rmit Numbe	Disc	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor			-	
		Houtz	dale Bora	PAC	046159	0.3000	0.3000	0.3000	0.00	00 25	.00 7	7.00	
					Pa	rameter D	ata						
						Dis Co							
			F	arameter	Name	(mg	g/L)						
			CB0D5			2	20.00	2,00	0,00	1.50			
			Dissolved	Oxygen			3.00	8.24	0,00	0,00			
			NH3-N				4.50	0.00	0.00	0.70			

Input Data WQM 7.0

	SWP Basi n	Strea Cod		Str	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slop (fl/f	Witho	VS Irawal gd)	Apply FC
	08D	258	378 BEAVE	ER RUN			3.02	20 1	1498.00	8.23	3 0.00	000	0.00	
					St	ream Data	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Reh Trav Time	Reh Velocity	WD Ratio	Reh Width	Reh Depth	Tem	<u>Tributary</u> p pH		<u>Strear</u> Temp	<u>n</u> pH	
	(efsm)	(els)	(els)	(days)	(fps)		(ft)	(ft)	('C))		('C)		
Q7-10 Q1-10 Q30-10	0.239	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	0 20	0.00 6	.50	0.00	0.00	
					Di	scharge D	ata							
			Name	Per	mit Number	Disc	Permit Disc Flow (mgd)	tted Des Disc Flow (mgd	Reso		•	Disc pH		
						0.0000	0.0000	0.00	000	0.000	25.00	7.00		
					Pa	rameter D	ata							
			F	Paramete	r Name	Di: Co		rib S	Stream Cone	Fate Coef				
						(m	g/L) (m	ng/L)	(mg/L)	(1/days)				
			CBDD5		-	2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			2	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basi r	Strea Cod		Stre	eam Name		RMI	Eleva		rainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Appl FC
	08D	258	378 BEAVE	ER RUN			1.02	0 14	77.00	13.60	0.00000	0.00	_
					St	ream Dat	a						
Design	LFY	Trib Flow	Stream Flow	Reh Trav Time	Reh Velocity	WD Ratfo	Reh Width	Reh Depth	<u>Ir</u> Temp	<u>ributary</u> pH	Temp	Stream pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	('C)		('C)		
Q7-10 Q1-10 Q30-10	0.239	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	a.a	0.00	0.00	20.0	00 7.00	0.	00 0.00	
			Name	Per	Di mit Numbe	Disc			Reserv Facto			I	
						0.0000		0.000	0.0	00 25.	.00 7	7.00	
					Pa	rameter [
			F	Parameter	Name		one C	one (Cone	Fate Coef			
						(m	g/L) (n 	ng/L) (r	ng/L) (1	1/days) 			
			CB0D5			:	25.00	2.00	0.00	1.50			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00			
			NH3-N			:	25.00	0.00	0.00	0.70			

WQM 7.0 Hy:drody:namic Out uts

					•	•						
	SW	P Basin	Strea	m Code			_	Stream	Name	-		
		08D	2	5878				BEAVEF	RRUN			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(fl)		(fps)	(days)	('C)	
Q7-1	0 Flow	_					-					
3.230	1.28	0.00	1.28	.4641	0.00271	.554	16.69	30.12	0.19	0.068	21.33	6.59
3.020	1.97	0.00	1.97	.4641	0.00199	.589	20.5	34.8	0.20	0.607	20.95	6.56
Q1-1	0 Flow											
3.230	1.23	0.00	1.23	.4641	0.00271	NA	NA	NA	0.19	0.069	21.37	6.59
3.020	1.89	0.00	1.89	.4641	0.00199	NA	NA	NA	0.20	0.618	20.99	6.56
Q30-	10 Flow											
3.230	1.41	0.00	1.41	.4641	0.00271	NA	NA	NA	0.20	0.065	21.24	6.58
3.020	2.16	0.00	2.16	.4641	0.00199	NA	NA	NA	0.21	0.581	20.88	6.56

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLAMethod	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.96	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.1	Temperature Adjust Kr	
0.0. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

SWP Basin Stream Code

Stream Name

08D

25878

BEAVER RUN

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
3.230	Houtzdale Boro	_ 10.59	9	10.59	9	0	0
3.020		NA	NA	10.97	NA	NA	NA

NH3-N Chronic Allocations

RMI Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
3.230 Houtzdale Boro	2.25	4.5	2.25	4.5	0	0
3.020	NA	NA	2.34	NA	NA	NA

Dissolved Oxygen Allocations

		CBOD5		NH3	<u>8-N</u>	Dissolved O gen		Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)		Reduction
3.231	Houtzdale Boro	20	20	4.5	4.5	3	3	0	0
3.02		NA	NA	NA	NA	NA	NA	NA	NA

WQM 7.0 D.O.Simulation

SWP Basin Si	tream Code			Stream Name	
08D	25878			BEAVER RUN	
<u>RM</u> I 3.230	Total Discharge		l) Ana	alvsis Temperature (°C) 21.332	Analysis pH 6.587
Reach Width (ft)	Reach De	epth <i>(ft)</i>		Reach WDRatio	Reach Velocity (fps)
16.690	0.55			30.117	0.188
Reach CBOD5 (mg/L)	Reach Kc (1.16		<u>E</u>	Reach NH3-N /mg/L) 1.20	<u>Reach Kn /1/davs)</u> 0.776
6.79	Reach Kr (Kr Equation	Reach DO Goal /mg/L
Reach DO (mg/LI 6.847	4.99			Tsivoglou	6
Reach Travel Time (days) 0.068	TravTime	Subreach CBOD5	Results NH3-N	D.O.	
0.000	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.007	6.74	1.19	6.80	
	0.007	6.68	1.19	6.76	
	0.020	6.62	1.18	6.73	
	0.027	6.57	1.17	6.69	
	0.034	6.51	1.17	6.66	
	0.041	6.46	1.16	6.63	
	0.048	6.40	1.15	6.60	
	0.054	6.35	1.15	6.57	
	0.061	6.30	1.14	6.54	
	0.068	6.25	1.14	6.52	
- DMI	Total Discharge	Flow (mad)	\ Anal	veis Temperature (°C)	Analysis nH
<u>RM</u> I 3.020	Total Discharge) <u>Ana</u> l	vsis Temperature (°C)	Analysis pH
3.020	0.30	0) <u>Ana</u> l	20.955	6.561
	_	0 pth (ft)) Anal		
3.020 Reach Width <i>(ft</i>)	0.300 Reach De	0 <u>pth (ft</u>) 9		20.955 Reach WDRatio	6.561 Reach Velocity (fps)
3.020 <u>Reach Width <i>(ft)</i></u> 20.500	0.300 <u>Reach De</u> 0.58	0 <u>pth (ft</u>) 9 <u>1/davs</u> l		20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/days) 0.753
3.020 <u>Reach Width (ft)</u> 20.500 <u>Reach CBOD5 (mo/L</u> I	0.30 <u>Reach De</u> 0.58 <u>Reach Kc (</u> 0.85 <u>Reach Kr /</u>	0 oth (ft) 9 1/davs 0 1/davs)		20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)
3.020 <u>Reach Width (ft)</u> 20.500 <u>Reach CBOD5 (mg/L)</u> 5.04	0.300 <u>Reach De</u> 0.580 <u>Reach Kc (</u> 0.850	0 oth (ft) 9 1/davs 0 1/davs)		20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/days) 0.753
3.020 <u>Reach Width (ft)</u> 20.500 <u>Reach CBOD5 (mg/Ll</u> 5.04 <u>Reach DO (mg/Ll</u> 7.005	0.300 <u>Reach De</u> 0.580 <u>Reach Kc.(</u> 0.850 <u>Reach Kr./</u> 3.890 TravTime	0 poth (ft) 9 1/davs 0 1/davs 1 Subreach CBOD5	Results NH3-N	20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation Tsivoglou D.O.	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)
3.020 <u>Reach Width (ft)</u> 20.500 <u>Reach CBOD5 (mo/L)</u> 5.04 <u>Reach DO (mo/L)</u> 7.005 Reach Travel Time (days)	0.30 <u>Reach De</u> 0.58 <u>Reach Kc (</u> 0.85 <u>Reach Kr /</u> 3.89	0 pth (ft) 9 1/davs 0 1/davs) 1 Subreach	Results	20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation Tsivoglou	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)
3.020 <u>Reach Width (ft)</u> 20.500 <u>Reach CBOD5 (mo/L)</u> 5.04 <u>Reach DO (mo/L)</u> 7.005 Reach Travel Time (days)	0.300 Reach De	0 poth (ft) 9 1/days 0 0 1/days 1 0 1 1/days 1 1 Subreach CBOD5 (mg/L) 4.78	Results NH3-N (mg/L)	20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation Tsivoglou D.O. (mg/L) 6.92	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)
3.020 Reach Width (ft) 20.500 Reach CBOD5 (mg/L) 5.04 Reach DO (mg/L) 7.005 Reach Travel Time (days)	0.300 Reach De	0 poth (ft) 9 1/days 0 1/days 1 0 1/days 1 1 Subreach CBOD5 (mg/L) 4.78 4.53	Results NH3-N (mg/L) 0.78 0.74	20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation Tsivoglou D.O. (mg/L) 6.92 6.88	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)
3.020 Reach Width (ft) 20.500 Reach CBOD5 (mg/L) 5.04 Reach DO (mg/L) 7.005 Reach Travel Time (days)	0.300 Reach De	0 poth (ft) 9 1/davs 0 1/davs 0 1/davs 1 Subreach (CBOD5 (mg/L) 4.78 4.53 4.29	Results NH3-N (mg/L) 0.78 0.74 0.71	20.955 Reach WDRatio 34.797 each NH3-N (mo/L) 0.81 Kr Equation Tsivoglou D.O. (mg/L) 6.92 6.88 6.88	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)
3.020 Reach Width (ft) 20.500 Reach CBOD5 (mg/L) 5.04 Reach DO (mg/L) 7.005 Reach Travel Time (days)	0.300 Reach De 0.588 Reach Kc (0.850 Reach Kr / 3.890 TravTime (days) 0.061 0.121 0.182 0.243	0 pth (ft) 9 1/davs 0 1/davs 1 Subreach (CBOD5 (mg/L) 4.78 4.53 4.29 4.06	Results NH3-N (mg/L) 0.78 0.74 0.71 0.68	20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation Tsivoglou D.O. (mg/L) 6.92 6.88 6.88 6.89	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)
3.020 Reach Width (ft) 20.500 Reach CBOD5 (mg/L) 5.04 Reach DO (mg/L) 7.005 Reach Travel Time (days)	0.300 Reach De 0.588 Reach Kc (0.856 Reach Kr / 3.89 TravTime (days) 0.061 0.121 0.182 0.243 0.304	0 opth (ft) 9 1/davs 0 1/davs 0 1/davs 1 Subreach CBOD5 (mg/L) 4.78 4.53 4.29 4.06 3.85	Results NH3-N (mg/L) 0.78 0.74 0.71 0.68 0.65	20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation Tsivoglou D.O. (mg/L) 6.92 6.88 6.88 6.89 6.93	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)
3.020 Reach Width (ft) 20.500 Reach CBOD5 (mg/L) 5.04 Reach DO (mg/L) 7.005 Reach Travel Time (days)	0.304 Reach De 0.583 Reach Kc (0.856 Reach Kr // 3.897 TravTime (days)	0 poth (ft) 9 1/davs 0 1/davs 1 0 1/davs 1 1 Subreach CBOD5 (mg/L) 4.78 4.53 4.29 4.06 3.85 3.65	Results NH3-N (mg/L) 0.78 0.74 0.71 0.68 0.65 0.65	20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation Tsivoglou D.O. (mg/L) 6.92 6.88 6.88 6.88 6.89 6.93 6.98	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/days) 0.753 Reach DO Goal (mg/L)
3.020 Reach Width (ft) 20.500 Reach CBOD5 (mg/L) 5.04 Reach DO (mg/L) 7.005 Reach Travel Time (days)	0.304 Reach De 0.585 Reach Kc (0.856 Reach Kr / 3.89° TravTime (days) 0.061 0.121 0.182 0.243 0.304 0.364 0.425	0 pth (ft) 9 1/days 0 1/days 1 0 1/days 1 1 Subreach CBOD5 (mg/L) 4.78 4.53 4.29 4.06 3.85 3.65 3.46	Results NH3-N (mg/L) 0.78 0.74 0.71 0.68 0.65 0.62 0.59	20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation Tsivoglou D.O. (mg/L) 6.92 6.88 6.88 6.88 6.89 6.93 6.93 6.98 7.03	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)
3.020 <u>Reach Width (ft)</u> 20.500 <u>Reach CBOD5 (mo/L)</u> 5.04 <u>Reach DO (mo/L)</u> 7.005 Reach Travel Time (days)	0.304 0.304 0.588 Reach Kc (0.856 Reach Kr / 3.897 TravTime (days) 0.061 0.121 0.182 0.243 0.304 0.364 0.425 0.486	0 pth (ft) 9 1/davs 0 1/davs 1 Subreach CBOD5 (mg/L) 4.78 4.53 4.29 4.06 3.85 3.65 3.46 3.28	Results NH3-N (mg/L) 0.78 0.74 0.71 0.68 0.65 0.62 0.59 0.57	20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation Tsivoglou D.O. (mg/L) 6.92 6.88 6.88 6.89 6.93 6.98 7.03 7.10	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)
3.020 Reach Width (ft) 20.500 Reach CBOD5 (mg/L) 5.04 Reach DO (mg/L) 7.005 Reach Travel Time (days)	0.304 Reach De 0.585 Reach Kc (0.856 Reach Kr / 3.89° TravTime (days) 0.061 0.121 0.182 0.243 0.304 0.364 0.425	0 pth (ft) 9 1/days 0 1/days 1 0 1/days 1 1 Subreach CBOD5 (mg/L) 4.78 4.53 4.29 4.06 3.85 3.65 3.46	Results NH3-N (mg/L) 0.78 0.74 0.71 0.68 0.65 0.62 0.59	20.955 Reach WDRatio 34.797 each NH3-N (mg/L) 0.81 Kr Equation Tsivoglou D.O. (mg/L) 6.92 6.88 6.88 6.88 6.89 6.93 6.93 6.98 7.03	6.561 Reach Velocity (fps) 0.201 Reach Kn (1/davs) 0.753 Reach DO Goal (mg/L)

WQM 7.0 Effluent Limits

SWP Basin	Stream Code	Stream Name
08D	25878	BEAVER RUN

RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effi. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
3.230	Houtzdale Soro	PA0046159	0.300	CBOD5	20		
				NH3-N	4.5	9	
				Dissolved Oxygen			3

TRC EVALUA	TION									
Input appropriat	e values in A3	3:A9 and D3:D9								
C	= Q discharge = no. samples = Chlorine Der	(MGD) mand of Stream nand of Discharge ue Safety (FOS)	0.5 1 1 15	0.f =CV Daily 0.f =CV Hourly 1 = AFC_Partlal Mix Factor 1 = CFC_Partlal Mix Factor 1f = AFC_Criterla Compliance Time (m 720 = CFC_Criterla Compliance Time (m =Decay Coefficient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC PENTOXSD TRG PENTOXSD TRG	1.3.2.iii 5.1a 5.1b	WLA ate = LTAMULTafc= LTA_afc=	0.373	1.3.2.iii 5.1c 5.1d	WLA etc = 0.869 LTAMULT etc= 0.581 LTA_cfc = 0.505					
Source	-	Efflue	nt Limit Calcu	ations						
PENTOXSD TRG 5.1f AMLMULT= 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l)= 0.350 BAT/BPJ INST MAX LIMIT (mg/l)= 1.145										
WLAafc LTAMULT ale LTA_afc	+ Xd + (AFC	s_tc)) + [(AFC_Vc*Qs•.01g/ s_Vc*Qs*Xs/Qd)I*(1-FOS/100 /hA2+1))-2.326*LN(cvhA2+1 ULT_afc)	tc))						
WLA_cfc LTAMULT_cfc LTA_cfc	(.011/e(-k*CFC_tc) + [(CFC_Vc*Qs*,011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Vc*Qs*Xs/Qd)I*(1-FOS/100) _cfc EXP((0.5*LN(cvdA2/no_samples+1))-2.326*LN(cvdA2/no_samples+1)A0.5) wla_cfc*LTAMULT_cfc									
AMLMULT EXP(2.326*LN((cvdA2/no_samples+1)AO.5)-0.5*LN(cvdA2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) INST MAX LIMIT 1.5*((av_mon_limlt/AML_MULT)/LTAMULT_afc)										

Discharge Information

Instructions Discharge Stream

Facility: Houtzdale Borough Municipal Sewer Authority NPDES Permit No.: PA0046159 Outfall No.: 001

Evaluation Type Custom / Additives Wastewater Description: Sewage

Discharge Characteristics											
Design Flow	Handrage (man/l)*		F	Partial Mix Fa	s)	Complete Mix Times (min)					
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh			
0.3	100	7									

				0 if left blank		0.5 if left blank		0 if left blank			1 if left blank	
Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
Total Copper	μg/L		20.63			10						
Total Lead	μg/L		0.37			0.01						
Total Manganese	mg/L		1.23			0.51						
Total Zinc	mg/L		23.6									
Total Iron	mg/L	<	0.2									
Bromide	mg/L		2									
Total Dissolved Solids (PWS)	mg/L		282									
Chloride (PWS)	mg/L		75.1									
Sulfate (PWS)	mg/L		50.1									
Total Aluminum	mg/L	<	100									

End of Reach 1

3.02

Stream / Surface Water Information

Houtzdale Borough Municipal Sewer Authority, NPDES Permit No. PA0046159, Outfall 001

Instructions Disch	arge Str	ream														
Receiving Surface W	/ater Name:	Beaver R	un				No. Rea	aches to N	Model:	1	~	tewide Criteria at Lakes Crite				
Location Stream Code* RMI* Elevation (ft)* DA (mi²)*					i²)* SI	Slope (ft/ft) PWS Withdrawal Apply Fish (MGD) Criteria*					ORSANCO Criteria					
Point of Discharge	025878	3	23 150	1 5.35	;				Yes	;						
End of Reach 1	025878	3	02 149	98 8.23	3				Yes							
Q ₇₋₁₀	RMI	LFY		v (cfs)	W/D	Width	Depth	Velocit	rravei Time	Tributa		Stream		Analys		
		(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	рН	Hardness*	pH*	Hardness	рН	
Point of Discharge	3.23	0.239										100	6.5			
End of Reach 1	3.02	0.239										100	6.5			
Q_h																
Lasstian	DML	LFY	Flo	w (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	n	Analys	sis	
Location	RMI	(cfs/mi ²)		Tributary	Ratio		(ft)	y (fps)	Time (days)	Hardness	рН	Hardness	pН	Hardness	рН	
Point of Discharge	3.23															

Model Results

Houtzdale Borough Municipal Sewer Authority, NPDES Permit No. PA0046159, Outfall 001

Instructions Results	RETURN	TO INPU	TS S	SAVE AS	PDF	PRINT	• A	Ⅱ
☐ Hydrodynamics								
✓ Wasteload Allocations								
✓ AFC CC	T (min): 9.5	578	PMF:	1	Anal	ysis Hardnes	ss (mg/l):	100 Analysis pH: 6.59
Pollutants	Stream Conc (µg/L)		Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Copper	0	0		0	13.439	14.0	52.6	Chem Translator of 0.96 applied
Total Lead	0	0		0	64.581	81.6	307	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	117.180	120	450	Chem Translator of 0.978 applied
Total Iron	0	0		0	N/A	N/A	N/A	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	2,816	
☑ CFC CC	T (min): 9.5	578	PMF:	1	Ana	lysis Hardne	ess (mg/l):	100 Analysis pH: 6.59
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Copper	0	0		0	8.956	9.33	35.0	Chem Translator of 0.96 applied
Total Lead	0	0		0	2.517	3.18	11.9	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	118.139	120	450	Chem Translator of 0.986 applied
Total Iron	0	0		0	1,500	1,500	5,633	WQC = 30 day average; PMF = 1
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
	T (min): 9.5		PMF:	1 Fate	Ana	lysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Sileani	Sueam	THE CORE	rale	WWC	WQ Obj	vvLA (µg/L)	Comments

	Conc (µg/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	3,755	
Total Zinc	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	

☑ CRL CCT (min): 5.203 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.088	0.099	35.0	39.5	87.6	μg/L	35.0	CFC	Discharge Conc ≥ 50% WQBEL (RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Lead	11.9	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	3,755	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	288	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	5,633	μg/L	Discharge Conc ≤ 10% WQBEL
Bromide	N/A	N/A	No WQS
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable

Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	1,805	μg/L	Discharge Conc ≤ 10% WQBEL

Municipal Sewer Authority of Houtzdale Borough PA0046159 001

Facility: NPDES #: Outfall No: n (Samples/Month): Reviewer/Permit Engineer: 4 Derek Garner

	Reviewer/Permit	Engineer:	Derek Garner									
Parameter Name	Total Copper	Total Lead	Total Manganese									
Units	μg/L	μg/L	mg/L									
Detection Limit	0.005	0.005										
Sample Date			detection limit, en	ter "ND" or use th	he < notation (eg.	. <0.02)						
	0.01	ND	0.11									
	1	0.011	0.21									
	ND	ND	0.12									
	0.5	ND	0.11									
	0.5	ND	0.63									
	0.059	ND	1.21									
	5.9	0.005	0.41									
	0.049	ND	0.96									
	4.9	0.008	0.41									
	ND	0.008	0.17									
	0.5	0.000	0.04			1			1			
	0.009		0.22									
	0.009		0.06			1		1	1			
	0.005		0.06			-		 	-			
	0.003		0.06			 		 	 			
	ND		0.04			 	-	 	 		-	
												!
	0.5		0.03									
	0.005		0.04									
	0.5		0.04									
	ND		0.04									
	0.5		0.08									
	0.008		0.07									
	0.8		0.13									
	0.007		0.04									
	0.7		0.06									
	0.008		0.05									
	0.8		0.05									
	0.008		0.08									
	0.8		0.06									
	0.006		0.8									
	0.6		0.18									
	0.01		0.08			t		t	t			
	1		0.06			1		1	1			
	0.009		0.04			t		t	t			
	0.9		0.04			1		1	1			
	ND		0.04			†		†	†			
	0.5		0.03			†		<u> </u>	†			<u> </u>
	0.005		0.07			-		-	-			—
	0.5		0.17			 	 	 	 		 	
	0.01		0.06			1		1	1			
	0.01		0.07			-		 	-			
	0.01		0.43			-		 	-			
	0.01		0.43			 		 	 			
			0.08			 	-	 	 		-	
	0.008											!
	0.8		0.06									
	0.009		0.06									
	0.9		0.17			ļ		1	ļ			!
	0.009		0.835			ļ		1	ļ			!
	0.9		0.0566			l .		l .	l .			1

10/20/2022

Parameter Name	Total Copper	Total Lead	Total Manganese			1	l	1	1	l	l	l	
Units	μg/L 0.005	μg/L 0.005	Total Manganese mg/L										
Detection Limit	0.005	0.005											
Sample Date		ralues below the o	detection limit, en	ter "ND" or use ti	he < notation (eg.	<0.02)			•				,
	0.05		0.19										
	5		0.0664										
	0.009		0.0464										
	0.9		0.0587										
	0.011		0.0655										
	1.1		0.107										
	0.009		0.526										
	0.9		0.3										
	0.009		0.0888										
	0.9		0.0703										
	0.01		0.0716										
	1		0.0739					†					
	0.01		0.206					-					
	1	1	0.0602	1		1		 	1				
	0.008	1	0.189	1		1		 	1				
	0.8		0.103					-					
	0.01							-					
	0.01							-					
	0.008												
	0.8												
	0.008												
	0.8												
	0.009												
	0.9												
	0.006												
	0.6												
	0.01												
	1												
	0.008												
	0.8												
	0.009												
	0.9												
	0.008	İ	İ	İ		İ	İ	1	İ		İ	İ	
	0.8							1					
	0.005							1					
	0.5	1	1	1		1		<u> </u>	1				
	0.012												
	1.2	1	1	1		1		<u> </u>	1				
	0.12							-					
	1.2	 	 	 		 		 	 				
	0.009	 	 	 		 		 	 				
	0.00	 	 	 		 		 	 				
	0.016	 	 	 		 		 	 				
	1.16	1	1	1		1		 	1				
	0.009	1	1	1		1		 	1				
	0.9							1					
-	0.0115	 	 	 		 		 	 				
1	1.15	1	1	1		1		 	1				
1	0.0106	1	1	1		1		 	1				
	1.06	 	 	 		 		 	 				
	1.00							 					
<u> </u>		i	l	l		l	l	I	l	l	l	l	l .

2 10/20/2022

December Name						
Parameter Name Units						
Detection Limit						
Sample Date						

3 10/20/2022

Parameter Name	ı			ı	ı	ı	
Parameter Name Units							
Detection Limit							
Sample Date							
			•	•	•	•	•

10/20/2022

Reviewer/Permit	Engineer:	Derek Garner

Facility: NPDES #: Municipal Sewer Authority of Houtzdale Borough PA0046159

Outfall No: 001 n (Samples/Month): 4

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Total Copper (µg/L)	Delta-Lognormal	14.9352188	20.6302392
Total Lead (µg/L)	Delta-Lognormal	0.3674671	0.0088859
Total Manganese (mg/L)	Lognormal	1.2270605	0.5144501

TOXCON Output 10/20/2022