

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0046302

 APS ID
 274796

 Authorization ID
 1409638

Applicant and Facility Information

Applicant Name	PA American Water Company	Facility Name	PA American Water Hershey
Applicant Address	200 East Canal Street	Facility Address	200 Canal Street
	Hummelstown, PA 17036		Hummelstown, PA 17036-9225
Applicant Contact	Cody Cutler	Facility Contact	Cody Cutler
Applicant Phone	(717) 663-9933	Facility Phone	(717) 533-2148
Client ID	87712	Site ID	258391
SIC Code	4941	Municipality	South Hanover Township
SIC Description	Trans. & Utilities - Water Supply	County	Dauphin
Date Application Receiv	ved September 8, 2022	EPA Waived?	Yes
Date Application Accep	ted September 20, 2022	If No, Reason	
Purpose of Application	Renewal to discharge treated indust	rial wastewater	

Summary of Review

1.0 General Discussion

This factsheet supports the renewal of an existing NPDES permit for the discharge of treated industrial wastewater from Hershey GC Smith water treatment plant. PA American water owns and operates the water treatment plant which is located in Hummelstown, Dauphin County. Water is withdrawn from Swatara and Manada Creeks to produce potable water. Ferric Chloride, Polymer, Sodium Permanganate, Sodium Hydroxide (Caustic Soda), Powdered Carbon and Chlorine are the chemical used for the water purification process. Potable water from the plant is supplied to residential, commercial, and industrial customers in Derry Township, Palmyra Borough, South Hanover Township, North and South Londonderry Townships, North and South Annville Township and Annville. The facility discharges an average of about 0.20 mgd of filter backwash and rinse cycles, sludge blowdowns from sedimentation clarifiers, process analyzer and sample pump wastewater through either outfall 001 to Swatara Creek or outfall 002 to Manada Creek. There are 5 filters at the site and are backwashed every 120hours. Treatment of the wastewater is provided in two settling lagoons. The lagoons have valves which are closed when they received backwash to allow a minimum of 3 hours of settling prior to a discharge. De-Chlorination is provided if needed. Flow is divided between lagoon 1 and lagoon 2 in the ratio of 1 to 3. Lagoon 2 receives most of the flow and discharge to outfall 002. Outfall 001 is used when lagoon 2 is being cleaned. An additional outfall (003) discharges to Manada Creek that serves as an emergency outlet from a clearwell. Lagoons are periodically cleaned to remove sludge for land application by a certified hauler. Both Swatara and Manada Creeks are classified for warm water and migratory fishes. This facility is not covered under ELG but has technology-based treatment requirements developed by the Department. See details at technology limits section of the report. The existing permit was issued on August 30, 2018 with effective date of September 1, 2018 and expiration date of August 31, 2023. The permittee submitted a timely NPDES permit renewal application to the Department and has been operating under the conditions in the existing permit

Approve	Deny	Signatures	Date
х		<i>J. Pascal Kwedza</i> J. Pascal Kwedza, P.E. / Environmental Engineer	November 21, 2023
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	December 7, 2023
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	December 7, 2023

Summary of Review

pending action on the permit renewal. A topographical map showing the discharge location is presented in attachment A and process flow diagram is presented in attachment F.

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Discharge, Receiving Waters and Water Supply In	formation						
Outfall No. 001	Design Flow (MGD)	.2					
Latitude 40° 18' 15"	Longitude	-76º 40' 7"					
Quad Name	Quad Code						
Wastewater Description: <u>IW Process Effluent without</u>	ut ELG, Water Treatment Effluer	nt					
Receiving Waters Swatara Creek (WWF, MF)	Stream Code	09361					
NHD Com ID56400575	RMI	15.42					
Drainage Area481	Yield (cfs/mi ²)						
Q ₇₋₁₀ Flow (cfs)66.7	Q ₇₋₁₀ Basis	USGS Gage Station					
Elevation (ft)	Slope (ft/ft)						
Watershed No. 7-D	Chapter 93 Class.	WWF, MF					
Existing Use	Existing Use Qualifier						
Exceptions to Use	Exceptions to Criteria						
Assessment Status Not Assessed							
Cause(s) of Impairment							
Source(s) of Impairment							
TMDL Status	Name						
Background/Ambient Data	Data Source						
pH (SU)							
Temperature (°F)							
Hardness (mg/L)							
Other:							
Nearest Downstream Public Water Supply Intake	Veolia Water PA						
PWS Waters Swatara Creek	Flow at Intake (cfs)						
PWS RMI	Distance from Outfall (mi) 5.2						

Changes Since Last Permit Issuance: None

1.2.1 Water Supply Intake:

The closest water supply intake located downstream from the discharge is the Veolia Water PA on Swatara Creek in Hummelstown Borough, Dauphin County. The distance downstream from the discharges to the intake is approximately 5.2 miles. The discharge is not expected to have an impact on the intake.

1.3 Discharge, Recei	ving Waters and Water Supply In	formation						
Outfall No. 002		Design Flow (MGD)	.2					
Latitude 40º 1	8' 19"	Longitude	-76º 40' 10"					
Quad Name		Quad Code						
Wastewater Descrip	otion: IW Process Effluent witho	ut ELG, Water Treatment Effluer	nt					
Receiving Waters	Manada Creek (WWF, MF)	Stream Code	09546					
NHD Com ID	56400575	RMI	0.10					
Drainage Area	32	Yield (cfs/mi ²)						
Q7-10 Flow (cfs)	4.48	Q7-10 Basis	USGS Gage Station					
Elevation (ft)		Slopo (ft/ft)						
Watershed No.	7-D	Chapter 93 Class.	WWF, MF					
Existing Use		Existing Use Qualifier						
Exceptions to Use		Exceptions to Criteria						
Assessment Status								
Cause(s) of Impairr	nent							
Source(s) of Impair	ment							
TMDL Status		Name						
Background/Ambie	nt Data	Data Source						
pH (SU)								
Temperature (°F)								
Hardness (mg/L)								
Other:								
	m Public Water Supply Intake	Veolia Water PA						
	Swatara Creek	Flow at Intake (cfs)						
PWS RMI		Distance from Outfall (mi)						

Changes Since Last Permit Issuance: None

1.3.1 Water Supply Intake:

The closest water supply intake located downstream from the discharge is the Veolia Water PA on Swatara Creek in Hummelstown Borough, Dauphin County. The distance downstream from the discharges to the intake is approximately 5.3 miles. The discharge is not expected to have an impact on the intake.

1.4 Discharge, Receiving Waters and Water Supply Information									
Outfall No. 003		Design Flow (MGD)	0						
Latitude 40° 18' 36"		Longitude	-76º 40' 18"						
Quad Name		Quad Code							
Wastewater Description:	IW Process Effluent without	ut ELG, Water Treatment Effluer	nt						
Receiving Waters Mana	da Creek (WWF, MF)	Stream Code	09546						
NHD Com ID 56400)279	RMI							
Drainage Area		Yield (cfs/mi ²)							
Q7-10 Flow (cfs)		Q7-10 Basis							
Elevation (ft)		Slope (ft/ft)							
Watershed No. 7-D		Chapter 93 Class.	WWF, MF						
Existing Use		Existing Use Qualifier							
Exceptions to Use		Exceptions to Criteria							
Assessment Status	Impaired								
Cause(s) of Impairment	Pathogens								
Source(s) of Impairment	Source Unknown								
TMDL Status		Name							
Background/Ambient Data		Data Source							
pH (SU)									
Temperature (°F)									
Hardness (mg/L)									
Other:									
Nearest Downstream Publi	c Water Supply Intake								
PWS Waters		Flow at Intake (cfs)							
PWS RMI		Distance from Outfall (mi)							

Changes Since Last Permit Issuance: None

1.5 Existing Limitation and Monitoring Requirements.

1.5.1 Outfall 001

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	ххх	xxx	6.0 Daily Min	xxx	9.0	xxx	1/day	Grab
TRC	xxx	XXX	XXX	0.5	XXX	1.6	1/day	Grab
TSS	Report	Report	xxx	30	60	75	1/week	24-Hr Composite
Nitrate-Nitrite	XXX	XXX	xxx	Report Annl Avg	xxx	xxx	1/year	24-Hr Composite
Total Nitrogen	XXX	xxx	XXX	Report Annl Avg	XXX	xxx	1/year	Calculation
TKN	XXX	xxx	XXX	Report Annl Avg	XXX	xxx	1/year	24-Hr Composite
Total Phosphorus	XXX	xxx	XXX	Report Annl Avg	XXX	xxx	1/year	24-Hr Composite
Total Aluminum	Report	Report	XXX	4.0	8.0	10	1/week	24-Hr Composite
Total Iron	Report	Report	xxx	2.0	4.0	5	1/week	24-Hr Composite
Total Manganese	Report	Report	xxx	1.0	2.0	2.5	1/week	24-Hr Composite

1.5.2 Outfall 002,

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	xxx	9.0	xxx	1/day	Grab
TRC	xxx	xxx	XXX	0.37	XXX	1.22	1/day	Grab
TSS	Report	Report	XXX	30	60	75	1/week	24-Hr Composite
Nitrate-Nitrite	XXX	XXX	xxx	Report Annl Avg	XXX	xxx	1/year	24-Hr Composite
Total Nitrogen	XXX	XXX	xxx	Report Annl Avg	XXX	xxx	1/year	Calculation
TKN	XXX	XXX	xxx	Report Annl Avg	XXX	xxx	1/year	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report Annl Avg	XXX	ххх	1/year	24-Hr Composite
Total Aluminum	Report	Report	xxx	4.0	8.0	10	1/week	24-Hr Composite
Total Iron	Report	Report	XXX	2.0	4.0	5	1/week	24-Hr Composite
Total Manganese	Report	Report	xxx	1.0	2.0	2.5	1/week	24-Hr Composite

2.0 Compliance History

2.1 DMR Data for Outfall 001 (from October 1, 2022 to September 30, 2023)

Parameter	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22
Nitrate-Nitrite (mg/L) Annual Average										1.70		
Total Nitrogen (mg/L) Annual Average										3.24		
TKN (mg/L) Annual Average										1.55		
Total Phosphorus (mg/L) Annual Average										0.12		

2.2 DMR Data for Outfall 002 (from October 1, 2022 to September 30, 2023)

Parameter	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22
Flow (MGD)												
Average Monthly	0.184	0.191	0.183	0.189	0.18	0.194	0.189	0.177	0.179	0.179	0.182	0.204
Flow (MGD)												
Daily Maximum	0.243	0.291	0.206	0.225	0.184	0.334	0.367	0.198	0.182	0.184	0.327	0.345
pH (S.U.)												
Daily Minimum	7.44	7.47	7.37	7.38	7.29	7.24	7.22	7.18	7.21	7.17	7.21	7.39
pH (S.U.)												
Daily Maximum	7.95	7.83	7.78	7.79	7.96	7.53	7.52	7.58	7.57	7.72	7.68	7.76
TRC (mg/L)												
Average Monthly	< 0.07	< 0.07	< 0.05	< 0.05	0.06	0.06	0.08	0.08	0.10	0.14	0.13	0.12
TRC (mg/L)												
Instantaneous												
Maximum	0.15	0.30	0.15	0.11	0.18	0.15	0.30	0.14	0.18	0.35	0.35	0.34
TSS (lbs/day)												
Average Monthly	< 10.0	< 10	< 8	< 6	< 7	< 8	< 6	< 9	< 7	< 6	< 7	< 9
TSS (lbs/day)												
Daily Maximum	16	17	11	7	8	< 8	< 6	18	8	8	< 11	11
TSS (mg/L)			_		_	_		_				
Average Monthly	< 7.0	< 6	< 5	< 4	< 4	< 4	< 4	< 6	< 4	< 4	< 4	< 4
TSS (mg/L)						_				_		
Daily Maximum	11.0	11	6.8	4.4	5.6	4	4	12	5.2	5	< 4	4
Nitrate-Nitrite (mg/L)												
Annual Average										3.97		
Total Nitrogen (mg/L)												
Annual Average										3.97		

NPDES Permit No. PA0046302

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TKN (mg/L)										0.50		
	Annual Average										< 0.50		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(mg/L)												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											< 0.10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		< 0.1	< 0.2	< 0.2	< 0.2	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.2	< 0.2	< 0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3
Average Monthly < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Total Aluminum												
Total Aluminum (mg/L) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.1 Total Iron (lbs/day) 3.0 2 2 1 </td <td>(mg/L)</td> <td></td>	(mg/L)												
(mg/L) <	Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.1
Daily Maximum < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Total Aluminum												
Total Iron (lbs/day) Average Monthly 3.0 2 2 1 1 1 2 1 0.9 1 1 Total Iron (lbs/day) Daily Maximum 6.0 3 2 1 2 2 1 0.9 1 1 Total Iron (lbs/day) Daily Maximum 6.0 3 2 1 2 2 1 7 1 1 2 3 Total Iron (mg/L) Average Monthly 2.1 1.3 1.0 0.7 0.8 1.0 0.8 1.7 0.7 0.6 0.7 0.5 Total Iron (mg/L) Daily Maximum 3.9 2.3 1.5 0.879 1.67 1.18 0.878 4.67 0.91 0.745 1.56 0.95	(mg/L)												
Average Monthly 3.0 2 2 1 1 1 2 1 0.9 1 1 Total Iron (lbs/day) 6.0 3 2 1 2 2 1 7 1 1 2 3 Daily Maximum 6.0 3 2 1 2 2 1 7 1 1 2 3 Total Iron (mg/L) 3	Daily Maximum	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1
Average Monthly 3.0 2 2 1 1 1 2 1 0.9 1 1 Total Iron (lbs/day) 6.0 3 2 1 2 2 1 7 1 1 2 3 Daily Maximum 6.0 3 2 1 2 2 1 7 1 1 2 3 Total Iron (mg/L) 3	Total Iron (lbs/day)												
Total Iron (lbs/day) Daily Maximum 6.0 3 2 1 2 2 1 7 1 1 2 3 Total Iron (mg/L) Average Monthly 2.1 1.3 1.0 0.7 0.8 1.0 0.8 1.7 0.7 0.6 0.7 0.5 Total Iron (mg/L) Average Monthly 2.1 1.3 1.0 0.7 0.8 1.0 0.8 1.7 0.7 0.6 0.7 0.5 Total Iron (mg/L) Daily Maximum 3.9 2.3 1.5 0.879 1.67 1.18 0.878 4.67 0.91 0.745 1.56 0.95		3.0	2	2	1	1	1	1	2	1	0.9	1	1
Daily Maximum 6.0 3 2 1 2 2 1 7 1 1 2 3 Total Iron (mg/L) Average Monthly 2.1 1.3 1.0 0.7 0.8 1.0 0.8 1.7 0.7 0.6 0.7 0.5 Total Iron (mg/L) Daily Maximum 3.9 2.3 1.5 0.879 1.67 1.18 0.878 4.67 0.91 0.745 1.56 0.95													
Total Iron (mg/L) Average Monthly 2.1 1.3 1.0 0.7 0.8 1.0 0.8 1.7 0.7 0.6 0.7 0.5 Total Iron (mg/L) Daily Maximum 3.9 2.3 1.5 0.879 1.67 1.18 0.878 4.67 0.91 0.745 1.56 0.95		6.0	3	2	1	2	2	1	7	1	1	2	3
Average Monthly 2.1 1.3 1.0 0.7 0.8 1.0 0.8 1.7 0.7 0.6 0.7 0.5 Total Iron (mg/L)	Total Iron (mg/L)												
Total Iron (mg/L) 3.9 2.3 1.5 0.879 1.67 1.18 0.878 4.67 0.91 0.745 1.56 0.95		2.1	1.3	1.0	0.7	0.8	1.0	0.8	1.7	0.7	0.6	0.7	0.5
Daily Maximum 3.9 2.3 1.5 0.879 1.67 1.18 0.878 4.67 0.91 0.745 1.56 0.95													
		3.9	2.3	1.5	0.879	1.67	1.18	0.878	4.67	0.91	0.745	1.56	0.95
	Total Manganese												
(lbs/day)													
Average Monthly 0.3 0.2 0.4 0.3 0.4 0.2 0.1 0.1 0.09 0.3 0.3		0.3	0.2	0.4	0.3	0.3	0.4	0.2	0.1	0.1	0.09	0.3	0.3
Total Manganese													
(lbs/day)													
Daily Maximum 0.3 0.4 0.4 0.3 0.6 0.2 0.2 0.1 0.1 0.5 0.7		0.3	0.3	0.4	0.4	0.3	0.6	0.2	0.2	0.1	0.1	0.5	0.7
Total Manganese				-	-			-	-	-	-		-
(mg/L)													
Average Monthly 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.1		0.1	0.1	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.1
Total Manganese			•••		0.=				•••	••••	•••		
(mg/L)													
Daily Maximum 0.181 0.226 0.286 0.283 0.216 0.307 0.146 0.121 0.087 0.093 0.287 0.243		0.181	0.226	0,286	0.283	0.216	0.307	0.146	0.121	0.087	0.093	0.287	0.243

2.3 Effluent Violations for Outfall 002, from: November 1, 2022 To: September 30, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Total Iron	09/30/23	Avg Mo	2.1	mg/L	2.0	ma/L

2.4 Summary of DMRs:

Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation presented on the table 2.2 indicate permit limits have been met most of the time. One permit violation was noted on DMRs for Total Iron in September 2023 presented on table 2.3 during the period reviewed. The violation appear to be a onetime occurrence. Outfall 001 was used once during the past 12 months.

2.5 Summary of Inspections:

The facility was inspected a couple of times during the past permit cycle. Inspection reports review for the facility during the period indicate permit limits have been met satisfactorily. The facility has good compliance record.

		3.0 Developmen	t of Effluent Limitations	
Outfall No. Latitude Wastewater D	001 40° 18' 15.00 Description:)" _IW Process Effluent without ELG	Longitude	.2 -76º 40' 7.00"
Outfall No. Latitude	002 40º 18' 19.00		Design Flow (MGD) Longitude	.2 -76º 40' 10.00"
Wastewater D	escription:	IW Process Effluent without ELG	6, Water Treatment Effluent	
Outfall No. Latitude	003 40º 18' 36.00		Design Flow (MGD) Longitude	0 -76º 40' 18.00"
Wastewater D	escription:	IW Process Effluent without ELG	6. Water Treatment Effluent	

3.1 Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit(WQBEL) is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

3.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Technology-based (BAT) effluent limits for water treatment plant wastewater discharges are presented in the Department's June 1989 Guidance document entitled, "Technology Based Controls for Discharges from Water Treatment Plants" as follows:

Parameter	Monthly Avg mg/l	Daily Max. mg/l
Suspended Solids	30	60
Aluminum	4	8
Iron	2	4
Manganese	1	2
рН	6-9 S.	U at all times

3.3 Water Quality-Based Limitations

3.3.1 Receiving Stream

The receiving streams are Manada Creek and Swatara Creek. According to 25 PA § 93.9, Manada Creek and Swatara Creek are protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). They located in Drainage List N and State Watershed 7-D. Manada Creek and Swatara Creek have been assigned stream codes 09546 and 09361 respectively. According to eMapPA, the segment of Manada Creek receiving the discharge is impaired not supporting recreational use due to pathogens and aquatic life due to habitat modification and siltation. The segment of Swatara Creek receiving the discharge is attaining its uses

3.3.2 Streamflows

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No. 01573560 on Swatara Creek near Hershey. The Q_{7-10} and drainage area at the gage is 67.7ft3/s and 483mi² respectively. The resulting yields are as follows:

• $Q_{7-10} = (67.7 \text{ ft}^3/\text{s})/483 \text{ mi}^2 = 0.14 \text{ ft}^3/\text{s}/\text{ mi}^2$

- $Q_{30-10} / Q_{7-10} = 0.89$
- $Q_{1-10} / Q_{7-10} = 1.23$

The drainage area at discharge to Swatara Creek(outfall 001) is determined to be 481 mi²

The Q_{7-10} at discharge (Outfall 001) = 481 mi² x 0.14 ft³/s/mi² = 66.7 ft³/s.

The drainage area at discharge to Manada Creek (Outfall 002) is determined to be 32 mi²

The Q_{7-10} at discharge (Outfall 002) = 32 mi² x 0.14 ft³/s/mi² = 4.48 ft³/s.

3.3.3 The following input data were used for Toxics Management Spreadsheet (TMS) model:

- * Discharge pH = 7.4 (DMR median July Sept.)
- * Stream pH = 7.0 (Default)
 - Discharge Hardness = 130 mg/l
- * Stream Hardness = 100 mg/l

3.3.4 Toxics

A reasonable potential (RP) analysis was done for pollutant Groups 1 and 2 submitted with the application. All pollutants that were presented in the application sampling data and all pollutants in the existing permit were entered into DEP's TMS to calculate WQBELs. The calculated results from the TMS are presented in attachments B and C. The results indicate discharge levels are well below DEP's target quantitation limits and the calculated WQBELs, therefore, no monitoring or limitation was recommended for both outfalls 001 and 002. The existing technology quality-based limits for Total Aluminum, Total Iron, and Total Manganese will remain the permit with mass load reporting requirement. The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

3.3.5 Total Suspended Solids (TSS):

There is no water quality criteria for TSS. The existing BPT TBEL referenced in section 3.2 will remain in the permit with mass load reporting requirement.

3.3.6 Instantaneous Maximum:

The existing IMAX limitations in the permit determined using multiplier of 2.5 will be carried forward.

3.3.7 Chesapeake Bay Strategy:

In 2003, EPA established state-wide cap loads for Total Nitrogen and Total Phosphorus for Pennsylvania that are needed to ensure compliance with new water quality standards enacted to restore the water quality of the Chesapeake Bay. DEP released Pennsylvania's Chesapeake Bay Tributary Strategy (CBTS) in January of 2005 to guide Pennsylvania's efforts to meet those cap loads and made revisions to the Strategy in 2006-2007 following a stakeholder process. Industrial discharges have been prioritized by Central Office based on their delivered TN and TP loadings to the Bay. Significant industrial wastewater dischargers are facilities that discharge more than 75 lbs/day of TN or 25 lbs/day of TP on an average annual basis and the rest are classified as non-significant dischargers. DEP developed Chesapeake Bay IW monitoring plan for all industrial facilities that discharge to the Chesapeake Bay. This facility is classified as a non-significant discharger with little or no potential to introduce nutrients to the receiving stream but has been monitoring TP and the TN series (nitrate-nitrite, TKN) and will continue monitoring them annually to collect data for future Chesapeake Bay modelling.

3.3.8 Total Residual Chlorine (TRC)

The attached TRC model results presented in attachments D and E utilize the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached results indicate that a technology limit of 0.5 mg/l and 1.6mg/l IMAX would be needed to prevent toxicity concerns for both outfalls 001 and 002. This is

consistent with the existing permit for outfall 001 but the existing monthly permit limit of 0.37mg/l and IMAX of 1.22mg/l for outfall 002 are more stringent and will remain in the permit. TRC will be monitored for outfall 003 if there is an emergency discharge.

3.3.9 Cleaning of Lagoons

The lagoons are cleaned periodically, and the solids removed. Conditions and reporting requirements prior and during lagoons cleaning can be found in PART C of the permit.

4.0 Other Requirements

4.1 Anti-backsliding

Not applicable to this permit

4.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

4.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

4.4 303d Listed Streams

The discharge is not located on a 303d listed stream segment for Swatara Creek. The discharge is located on a 303d listed segment for Manada Creek. Manada Creek is not supporting recreational use due to pathogens and is impaired for aquatic life due to habitat modification and siltation. This is a category 5 impairment which does not warrant any action at this time.

4.5 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

4.6 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

5.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Falametei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	ххх	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
TRC	xxx	xxx	XXX	0.5	XXX	1.6	1/day	Grab
TSS	Report	Report	XXX	30	60	75	1/week	24-Hr Composite
Nitrate-Nitrite	XXX	XXX	xxx	Report Annl Avg	xxx	ххх	1/year	24-Hr Composite
Total Nitrogen	XXX	XXX	xxx	Report Annl Avg	XXX	ххх	1/year	Calculation
TKN	XXX	XXX	xxx	Report Annl Avg	XXX	ххх	1/year	24-Hr Composite
Total Phosphorus	XXX	XXX	xxx	Report Annl Avg	XXX	XXX	1/year	24-Hr Composite
Total Aluminum	Report	Report	xxx	4.0	8.0	10	1/week	24-Hr Composite
Total Iron	Report	Report	xxx	2.0	4.0	5	1/week	24-Hr Composite
Total Manganese	Report	Report	XXX	1.0	2.0	2.5	1/week	24-Hr Composite

Compliance Sampling Location: At Outfall 001

5.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

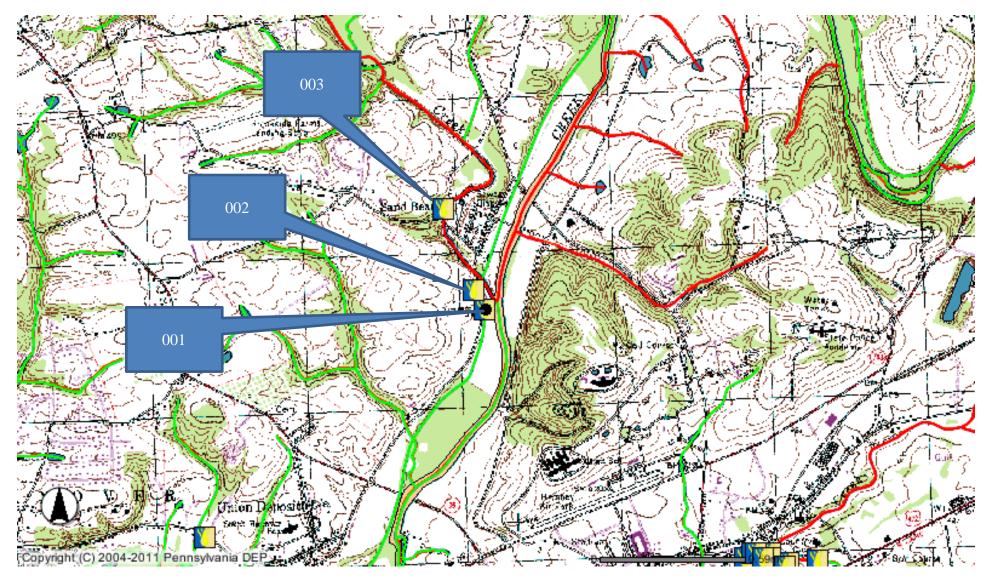
			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
_pH (S.U.)	XXX	xxx	6.0 Daily Min	xxx	9.0	xxx	1/day	Grab
TRC	xxx	XXX	XXX	0.37	XXX	1.22	1/day	Grab
TSS	Report	Report	XXX	30	60	75	1/week	24-Hr Composite
Nitrate-Nitrite	XXX	XXX	XXX	Report Annl Avg	XXX	xxx	1/year	24-Hr Composite
Total Nitrogen	XXX	xxx	xxx	Report Annl Avg	xxx	xxx	1/year	Calculation
TKN	XXX	xxx	xxx	Report Annl Avg	xxx	xxx	1/year	24-Hr Composite
Total Phosphorus	XXX	xxx	xxx	Report Annl Avg	xxx	xxx	1/year	24-Hr Composite
Total Aluminum	Report	Report	xxx	4.0	8.0	10	1/week	24-Hr Composite
Total Iron	Report	Report	xxx	2.0	4.0	5	1/week	24-Hr Composite
Total Manganese	Report	Report	XXX	1.0	2.0	2.5	1/week	24-Hr Composite

Compliance Sampling Location: At Outfall 002

5.2 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 003, Effective Period: Permit Effective Date through Permit Expiration Date.


			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
		Report							
Flow (MGD)	XXX	Daily Max	XXX	XXX	XXX	XXX	1/discharge	Estimate	
			6.0		9.0				
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/discharge	Grab	
					Report				
TRC	XXX	XXX	XXX	XXX	Daily Max	XXX	1/discharge	Grab	

Compliance Sampling Location: At outfall 003

	6.0 Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
	Toxics Management Spreadsheet (see Attachment B&C)
	TRC Model Spreadsheet (see Attachment D&E)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
\square	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing effluent limitation for individual industrial permit
	Other:

7. ATTACHMENTS

A. Topographical Map

B. Toxic Management Spreadsheet Results for Outfall 001

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions Disc	harge Stream		
Facility: PA An	erican Water Co	NPDES Permit No.: PA0046302	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Industrial Waste	

		Discharge Characteristics												
	Design Flow (MGD)*	Hardness (mg/l)*	рН (SU)*	P	artial Mix Fa	actors (PMF	Complete Mix Times (min)							
				AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh					
	0.2	130	7.44											

					0 If lef	t blank	0.5 lf le	ft blank	0) if left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc			Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		263									
5	Chloride (PWS)	mg/L		74.4									
Group	Bromide	mg/L	<	0.2									
5	Sulfate (PWS)	mg/L		22.1									
	Fluoride (PWS)	mg/L	<	0.08									
	Total Aluminum	µg/L	<	0.007									
	Total Antimony	µg/L	<	0.0004									
	Total Arsenic	µg/L	<	0.001									
	Total Barium	µg/L		0.04									
	Total Beryllium	µg/L	<	0.0004									
	Total Boron	µg/L	<	0.06									
	Total Cadmium	µg/L	<	0.0001									
	Total Chromium (III)	µg/L		0.76									
	Hexavalent Chromium	µg/L		0.001									
	Total Cobalt	µg/L	<	0.001									
	Total Copper	mg/L		0.004									
3	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L	<	0.005									
5	Dissolved Iron	µg/L		0.012									
-	Total Iron	µg/L		0.636									
	Total Lead	µg/L	<	0.001									
	Total Manganese	µg/L		0.106									
	Total Mercury	µg/L	<	0.0002									
	Total Nickel	µg/L		0.003									
	Total Phenols (Phenolics) (PWS)	µg/L	<	0.005									
	Total Selenium	µg/L	<	0.002									
	Total Silver	µg/L	<	0.0002									
	Total Thallium	µg/L	<	0.0004									
	Total Zinc	mg/L	<	0.004									
	Total Molybdenum	µg/L		0.002									
	A la la		1										

Stream / Surface Water Information

PA American Water Co, NPDES Permit No. PA0046302, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Swatara Creek

No. Re	aches to	Model:	1

Statewide Criteria

0	Great Lakes Criteria
0	ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)* DA (mi ²)* S		Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	009361	15.42	330	481			Yes
End of Reach 1	009361	14.6	318	505			Yes

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributary		Stream		Analysis	
		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(davs)	Hardness	рΗ	Hardness*	pH*	Hardness	рΗ
Point of Discharge	15.42	0.14										100	7		
End of Reach 1	14.6	0.14													

Q_h

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	n	Analys	sis
LUCATION	PAIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	15.42														
End of Reach 1	14.6														

Model Results

PA American Water Co, NPDES Permit No. PA0046302, Outfall 001

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	IIA 🔘) Inputs	⊖ Results	O Limits	

Hydrodynamics

Q 7-10

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
15.42	67.34		67.34	0.309	0.003	1.007	123.401	122.574	0.545	0.092	388.898
14.6	70.70		70.7								

Q,

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
15.42	294.37		294.37	0.309	0.003	1.924	123.401	64.15	1.241	0.04	148.287
14.6	307.172		307.17								

✓ Wasteload Allocations

☑ AFC	CCT (min): 1	15	PMF:	0.196	Ana	lysis Hardne	ss (mg/l):	100.69 Analysis pH: 7.01
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	32,808	
Total Antimony	0	0		0	1,100	1,100	48,119	
Total Arsenic	0	0		0	340	340	14,873	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	918,635	
Total Boron	0	0		0	8,100	8,100	354,331	
Total Cadmium	0	0		0	2.027	2.15	94.0	Chem Translator of 0.944 applied
Total Chromium (III)	0	0		0	572.962	1,813	79,316	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	713	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	4,156	
Total Copper	0	0		0	13.526	14.1	616	Chem Translator of 0.96 applied

NPDES Permit No. PA0046302

Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	65.064	82.4	3,603	Chem Translator of 0.79 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	72.0	Chem Translator of 0.85 applied
Total Nickel	0	0		0	470.951	472	20,643	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.255	3.83	168	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	2,843	
Total Zinc	0	0		0	117.861	121	5,272	Chem Translator of 0.978 applied
CFC C Pollutants	CT (min): ##	Stream		1 Fate	WQC	alysis Hardne	wLA (μg/L)	100.14 Analysis pH: 7.00 Comments
Total Disselved Oslide (DW(O)	(ug/L) 0	CV	(µg/L)	Coef 0	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	U	0		U	N/A	N/A	N/A	
Model Results					11/5	9/2023		Рає
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A N/A	N/A N/A	N/A N/A	

Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	48,102	
Total Arsenic	0	0		0	150	150	32,797	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	896,453	
Total Boron	0	0		0	1,600	1,600	349,835	
Total Cadmium	0	0		0	0.246	0.27	59.2	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.198	86.3	18,864	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	2,273	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	4,154	
Total Copper	0	0		0	8.966	9.34	2,042	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	327,971	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.520	3.19	697	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	198	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.067	52.2	11,419	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	1,091	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	2,842	
Total Zinc	0	0		0	118.276	120	26,228	Chem Translator of 0.986 applied
	' CT (min): 	*######	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A

ntean WQC Stream Trib Conc Fate WQ Obj Pollutants Conc WLA (µg/L) Comments CV (µg/L) Coef (µg/L) (µg/L) (ua/L) 0 Total Dissolved Solids (PWS) 0 0 500,000 500,000 N/A Chloride (PWS) 250.000 0 0 0 250,000 N/A Sulfate (PWS) 0 0 250,000 250,000 0 N/A Fluoride (PWS) 0 0 0 2,000 2,000 N/A Total Aluminum 0 0 0 N/A N/A N/A 0 0 0 56 1,224 Total Antimony 5.6 Total Arsenic 0 0 0 10 10.0 2,186 Total Barium 0 0 0 2,400 2,400 524,753 3,100 3,100 0 0 0 677,806 Total Boron Total Cadmium 0 0 0 N/A N/A N/A 0 0 0 N/A Total Chromium (III) N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 300 300 65,594 Total Iron 0 0 0 N/A N/A N/A 0 0 0 N/A N/A Total Lead N/A **Total Manganese** 0 0 0 1,000 1,000 218,647 Total Mercury 0 0 0 0.050 0.05 10.9 Total Nickel 0 0 0 610 610 133,375 Total Phenols (Phenolics) (PWS) 0 0 50 0 5 N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 0.24 0.24 52.5 Total Zinc 0 0 0 N/A N/A N/A

NPDES Permit No. PA0046302

Page

CRL C	CT (min): ###	###	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	

odel Results

11/9/2023

Total Chromium (III)	0	0	 0	N/A	N/A	N/A	
Total Chromium (III)	-	-	U				
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (Ibs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	N/A	N/A	Discharge Conc < TQL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	524,753	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	227,112	µg/L	Discharge Conc < TQL
Total Cadmium	59.2	µg/L	Discharge Conc < TQL
Total Chromium (III)	18,864	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	457	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	2,664	µg/L	Discharge Conc < TQL
Total Copper	0.4	mg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	65,594	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	327,971	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	697	µg/L	Discharge Conc < TQL
Total Manganese	218,647	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	10.9	µg/L	Discharge Conc < TQL
Total Nickel	11,419	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	1,091	µg/L	Discharge Conc < TQL
Total Silver	107	µg/L	Discharge Conc < TQL
Total Thallium	52.5	µg/L	Discharge Conc < TQL
Total Zinc	3.38	mg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS

C. Toxic Management Spreadsheet Results for Outfall 002

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions Disc	harge Stream								
Facility: PA An	nerican Water Co	NPDES Permit No.: PA0046302	Outfall No.: 002						
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Industrial Waste							
Discharge Characteristics									

			Discharge	Characterist	tics			
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	s)	Complete Mi	x Times (min)
(MGD)*	Hardness (mg/l)*	рн (30)-	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
0.2	130	7.44						

					0 If lef	t blank	0.5 lf le	eft blank	0) if left blan	k	1 lf lef	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		263									
5	Chloride (PWS)	mg/L		74.4									
Group	Bromide	mg/L	<	0.2									
5	Sulfate (PWS)	mg/L		22.1									
	Fluoride (PWS)	mg/L	<	0.08									
	Total Aluminum	µg/L	<	0.007									
	Total Antimony	µg/L	<	0.0004									
	Total Arsenic	µg/L	<	0.001									
	Total Barium	µg/L		0.04									
	Total Beryllium	µg/L	<	0.0004									
	Total Boron	µg/L	<	0.06									
	Total Cadmium	µg/L	<	0.0001									
	Total Chromium (III)	µg/L		0.76									
	Hexavalent Chromium	µg/L		0.001									
	Total Cobalt	µg/L	<	0.001									
	Total Copper	mg/L		0.004									
5	Free Cyanide	µg/L											
	Total Cyanide	µg/L	<	0.005									
Group	Dissolved Iron	µg/L		0.012									
-	Total Iron	µg/L		0.636									
	Total Lead	µg/L	<	0.001									
	Total Manganese	µg/L		0.106									
	Total Mercury	µg/L	<	0.0002									
	Total Nickel	µg/L		0.003									
	Total Phenols (Phenolics) (PWS)	µg/L	<	0.005									
	Total Selenium	µg/L	<	0.002									
	Total Silver	µg/L	<	0.0002									
	Total Thallium	µg/L	<	0.0004									
	Total Zinc	mg/L	<	0.004									
	Total Molybdenum	µg/L		0.002									
	Annelate		1										

Stream / Surface Water Information

PA American Water Co, NPDES Permit No. PA0046302, Outfall 002

Instructions Discharge Stream

Receiving Surface W	/ater Name: Mar	nada Creek				No. Reaches to Mod	el: <u>1</u>	 Statewide Criteria Great Lakes Criteria
Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*	ORSANCO Criteria
Point of Discharge	009546	0.1	340	32			Yes	
End of Reach 1	009546	0.01	331	39.1			Yes	

Q 7-10

Location	RMI	LFY	Flow	(CfS)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	n	Analys	sis
Location		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	рН	Hardness*	pH*	Hardness	pН
Point of Discharge	0.1	0.14										100	7		
End of Reach 1	0.01	0.14													

Q,

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Strear	n	Analys	is
Location	RIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	рН	Hardness	рН
Point of Discharge	0.1														
End of Reach 1	0.01														

Model Results

PA American Water Co, NPDES Permit No. PA0046302, Outfall 002

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	IIA ()	⊖ Inputs	⊖ Results	O Limits	
--------------	---------	------------------	-------------	-------	--------	----------	-----------	----------	--

☑ Hydrodynamics

Q 7-10

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
0.1	4.48		4.48	0.309	0.019	0.695	26.176	37.651	0.263	0.021	10.3
0.01	5.47		5.474								

Q,

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
0.1	27.56		27.56	0.309	0.019	1.509	26.176	17.349	0.706	0.008	3.601
0.01	32.83		32.83								

✓ Wasteload Allocations

AFC	CCT (min): 10.	.300	PMF:	1	[Ana	lysis Hardne	ss (mg/l):	101.94 Analysis pH: 7.02
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)		0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	11,610	
Total Antimony	0	0		0	1,100	1,100	17,028	
Total Arsenic	0	0		0	340	340	5,263	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	325,072	
Total Boron	0	0		0	8,100	8,100	125,385	
Total Cadmium	0	0		0	2.052	2.18	33.7	Chem Translator of 0.943 applied
Total Chromium (III)	0	0		0	578.791	1,832	28,353	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	252	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	1,471	
Total Copper	0	0		0	13.684	14.3	221	Chem Translator of 0.96 applied

NPDES Permit No. PA0046302

Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	65.945	83.7	1,295	Chem Translator of 0.788 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	25.5	Chem Translator of 0.85 applied
Total Nickel	0	0		0	475.901	477	7,382	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.325	3.91	60.5	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	1,006	
Total Zinc	0	0		0	119.102	122	1,885	Chem Translator of 0.978 applied
CFC CC	CT (min): 10	.300	PMF:	1] Ana	alysis Hardne	ess (mg/l):	101.94 Analysis pH: 7.02
Pollutants	Conc	Stream	n Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
r olutants	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	(µg/L)	Conintents
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	

Model Results

11/9/2023

Pag

I/A N/A N/A 20 220 3,406 50 150 2,322 Chem Translator of 1 applied 100 4,100 63,467 500 1,600 24,767 249 0.27 4.25 Chem Translator of 0.908 applied 289 87.5 1,355 Chem Translator of 0.86 applied
I/A N/A N/A I/A N/A N/A I/A N/A N/A I/A N/A N/A 20 220 3,406 50 150 2,322 Chem Translator of 1 applied 100 4,100 63,467 600 1,600 24,767 249 0.27 4.25 Chem Translator of 0.908 applied
N/A N/A 20 220 3,406 50 150 2,322 Chem Translator of 1 applied 100 4,100 63,467 600 1,600 24,767 249 0.27 4.25 Chem Translator of 0.908 applied
20 220 3,406 50 150 2,322 Chem Translator of 1 applied 100 4,100 63,467 600 500 1,600 24,767 249 0.27 4.25 Chem Translator of 0.908 applied
50 150 2,322 Chem Translator of 1 applied 100 4,100 63,467
100 4,100 63,467 500 1,600 24,767 249 0.27 4.25 Chem Translator of 0.908 applied
500 1,600 24,767 249 0.27 4.25 Chem Translator of 0.908 applied
249 0.27 4.25 Chem Translator of 0.908 applied
289 87.5 1.355 Chem Translator of 0.86 applied
0 10.4 161 Chem Translator of 0.962 applied
19 19.0 294
104 9.48 147 Chem Translator of 0.96 applied
I/A N/A N/A
500 1,500 23,219 WQC = 30 day average; PMF = 1
570 3.26 50.5 Chem Translator of 0.788 applied
I/A N/A N/A
770 0.91 14.0 Chem Translator of 0.85 applied
858 53.0 821 Chem Translator of 0.997 applied
I/A N/A N/A
600 4.99 77.2 Chem Translator of 0.922 applied
I/A N/A N/A Chem Translator of 1 applied
3 13.0 201
.076 122 1,885 Chem Translator of 0.986 applied

Total Nickel

Total Phenols (Phenolics) (PWS)

Total Selenium

Total Silver

Total Thallium

Total Zinc

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N/A

NPDES Permit No. PA0046302

Poliutants Owner Statul Statul (WS) Sterm (WS) Tele (WS) WG2 Obj (WG2 Obj	Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Aluminum Total Antimony Total Assenic Total Barium Total Boron Total Cadmium Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	Conc (µa/l) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0	(μg/L) 500,000 250,000 250,000 2,000 N/A	(µg/L) 500,000 250,000 250,000	N/A N/A	Comments
Total Desider (PWS) 0 0 900,000 900,000 NA Sulfate (PWS) 0 0 250,000 250,000 NA Total Alminum 0 0 250,000 250,000 NA Total Alminum 0 0 0 250,000 NA Total Alminum 0 0 0 16 66 86.7 Total Alminum 0 0 0 160 100 115 Total Alminum 0 0 0 100 116 100 115 Total Contain 0 0 0 100 116 100 115 Total Contain 0 0 0 NA NA NA NA Total Contain 0 0 0 NA NA NA NA Total Contain 0 0 0 NA NA NA NA Total Cotati 0 0 0 NA NA NA NA Total Cotati 0 0 0 0	Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Aluminum Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0 0 0 0	500,000 250,000 250,000 2,000 N/A	500,000 250,000 250,000	N/A	
Chooke (FWS) 0 0 1 0 250,000 250,000 NA Fluorde (FWS) 0 0 0 2,000 NA NA Total Aminum 0 0 0 2,000 NA NA Total Aminum 0 0 0 5.6 5.6 5.6 Total Aminum 0 0 0 10 10.0 16.5 Total Barinum 0 0 0 10 10.0 16.5 Total Cadmum 0 0 0 NA NA NA Total Cadmum 0 0 0 NA NA NA Total Cobalt 0 0 NA NA NA NA Total Cobalt 0 0 0 NA NA NA NA Total Cobalt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Aluminum Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper</td><td>0 0 0 0 0 0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td><td></td><td>0 0 0</td><td>250,000 250,000 2,000 N/A</td><td>250,000 250,000</td><td>N/A</td><td></td></t<>	Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Aluminum Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0	250,000 250,000 2,000 N/A	250,000 250,000	N/A	
Subiate (PWS) 0 0 0 220,000 220,000 NA Total Alumnum 0 0 0 0 NA NA NA Total Alumnum 0 0 0 NA NA NA NA Total Animony 0 0 0 10 100 156 Total Asimony 0 0 0 10 100 156 Total Strom 0 0 0 2400 2.400 2.400 3.101 156 Total Containin 0 0 0 NA NA NA NA Heavalet Chromium (II) 0 0 0 NA NA NA Total Cobati 0 0 0 NA NA NA Total Cobati 0 0 0 NA NA NA Total Stome 0 0 0 0.00 0.00 0.00 0.00 Total Cobati <t< td=""><td>Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Antimony Total Ansenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper</td><td>0 0 0 0 0 0 0 0 0 0 0</td><td>0 0 0 0 0 0 0</td><td></td><td>0 0 0</td><td>250,000 2,000 N/A</td><td>250,000</td><td></td><td></td></t<>	Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Antimony Total Ansenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0	250,000 2,000 N/A	250,000		
Fluoride (FWS) 0 0 0 2000 2000 NA Total Antimom 0 0 0 NA NA NA Total Antimomy 0 0 0 56 56 86.7 Total Barum 0 0 0 100 100 155 Total Cadmium 0 0 0 2,400 2,400 37,161 Total Cadmium 0 0 0 NA NA NA Total Cadmium 0 0 0 NA NA NA Total Copper 0 0 NA NA NA NA Total Copper 0 0 0 NA NA NA Total Koroka Iron 0 0 0 NA NA NA Total Koroka Iron 0 0 0 0.056 0.77 Total Koroka Iron 0 0 0 0.056 0.77 Total Selenium 0	Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0 0 0 0 0 0	0 0 0 0 0		0 0 0	2,000 N/A		N/A	
Total Aluminum 0 0 NA NA NA NA Total Arsenic 0 0 0 10 100 155 656 7 Total Arsenic 0 0 0 10 100 155 156 1567 Total Cardinum 0 0 0 2400 22400 37.151	Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0 0 0 0 0	0 0 0 0		0	N/A	2 000		
Total Antimony 0 0 0 5.6 5.6 5.6 5.7 Total Barum 0 0 0 10 100 135 100 135 Total Cadmium 0 0 0 2,400 2,400 37,151 100 135 Total Cadmium 0 0 NA NA NA NA NA Total Coduit 0 0 NA NA NA NA NA Total Colper 0 0 NA NA NA NA NA Total Colper 0 0 NA NA NA NA NA Total Ison 0 0 NA NA NA NA NA Total Colper 0 0 0 NA NA NA NA Total Selection 0 0 0 0.050 0.77 1000 15,630 Total Mercury 0 0 0	Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0 0 0 0	0 0 0		0				
Total Arsenic 0 0 10 10 155 Total Boron 0 0 0 2,400 37,151 Total Chronium 0 0 0 3,100 47,987 Total Chronium 0 0 0 NA NA NA Heavalet Chronium 0 0 0 NA NA NA Total Contium 0 0 0 NA NA NA Total Cobalt 0 0 0 NA NA NA Total Cobalt 0 0 0 NA NA NA Total Magnese 0 0 0 NA NA NA Total Magnese 0 0 0 0 0 1000 1000 1000 Total Magnese 0 0 0 0 0 100 100 100 100 Total Mercury 0 0 0 0 10	Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0 0	0 0 0		1				
Total Barium 0 0 2,400 2,400 3,100 47,197 Total Cadmium 0 0 0 3,100 47,997	Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0 0	0						
Total Boron 0 0 0 3,100 3,100 47,987 Total Chronium (III) 0 0 N/A N/A N/A N/A Heaxvalent Chromium 0 0 N/A N/A N/A N/A Total Cobait 0 0 N/A N/A N/A N/A Total Copper 0 0 N/A N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Total Lead 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 Total Selenium 0 0 0 0.0 0.0 0.0 0.0 0.0 Total Silver 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0	0						
Total Cadmium 0 0 N/A N/A N/A N/A Indial Chromium 0 0 N/A N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Dissolvel fron 0 0 0 N/A N/A N/A Total Manganese 0 0 0 N/A N/A N/A Total Manganese 0 0 0 0.050 0.050 0.77 Total Mickal 0 0 0 0.050 0.944.3 Total Selenium 0 0 0 0.04 0.42.43.72 Total Selenium 0 0 0 0.02.4 0.24 3.72 Total Selenium 0 0 0 N/A N/A N/A <t< td=""><td>Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0							
Total Chromium 0 N/A N/A N/A N/A Hexavalent Chromium 0 0 N/A N/A N/A N/A Total Copat 0 0 N/A N/A N/A N/A Total Copat 0 0 N/A N/A N/A N/A Total Copat 0 0 0 N/A N/A N/A Total Copat 0 0 0 N/A N/A N/A Total Icad 0 0 0 0 0 0 0 Total Necal 0 0 0 0 0 0 0 0 0 Total Neckel 0 0 0 0 0 0 0 0 0 Total Seenium 0 <td>Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0	0						
Hexavalent Chromium 0 0 N/A N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A N/A Dissolved Ion 0 0 0 N/A N/A N/A N/A Dissolved Ion 0 0 0 N/A N/A N/A Total Magnese 0 0 0 N/A N/A N/A Total Magnese 0 0 0 0 5 5.0 N/A Total Magnese 0 0 0 0 9,443 Total Selenium 0 0 0 0 N/A N/A N/A Total Selenium 0 0 0 0 N/A N/A N/A Total Selenium 0 0 0 0 N/A N/A N/A Total Zine 0 0 0 N/A N/A N/A N/A	Hexavalent Chromium Total Cobalt Total Copper	-			8				
Total Cobalt 0 0 N/A N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A N/A Dissolved Ion 0 0 0 0 300 4.644 Total Icead 0 0 0 N/A N/A N/A Total Manganese 0 0 0 0.0 0.0 1.000 15.480 Total Mercury 0 0 0 0.0 0.0 0.0 7 Total Steinium 0 0 0 0.0 0.0 7 Total Steinium 0 0 0 0.0 0.0 7 Total Ster 0 0 0 0.0 0.0 1.0 1.0 1.0 Total Ster 0 0 0 0.0 0.0 1.0 1.0 Total Ster 0 0 0 0.0 0.0 1.0 1.0 Total Stenoius	Total Cobalt Total Copper	0			_				
Total Copper 0 0 N/A N/A N/A N/A Dissolved fon 0 0 0 N/A N/A N/A N/A Total lead 0 0 0 N/A N/A N/A N/A Total Margunese 0 0 0 N/A N/A N/A Total Margunese 0 0 0 0.050 0.05 0.77 Total Margunese 0 0 0 0.050 0.05 0.77 Total Selenium 0 0 0 0.050 0.05 0.77 Total Selenium 0 0 0 N/A N/A N/A Total Selenium 0 0 0 0.04 0.72 3.72 Total Selenium 0 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0	Total Copper		0		0	N/A	N/A	N/A	
Disslved from 0 0 0 300 4.6.4 Total lead 0 0 N/A N/A N/A Total Lead 0 0 N/A N/A N/A Total Marganese 0 0 0 N/A N/A N/A Total Marganese 0 0 0 0.000 15.400		0	0		0	N/A	N/A	N/A	
Total Icon 0 0 N/A N/A N/A N/A Total Manganese 0 0 0 1,000 1,000 15,480 Total Manganese 0 0 0 0,050 0,05 0,77 Total Mercury 0 0 0 0,050 0,77	Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Icon 0 0 N/A N/A N/A N/A Total Manganese 0 0 0 1,000 1,000 15,480 Total Manganese 0 0 0 0,050 0,05 0,77 Total Mercury 0 0 0 0,050 0,77		0	0		0	300	300	4,644	
Total Lead 0 0 N/A N/A N/A N/A Total Manganese 0 0 1,000 1,000 1,040	Total Iron	0	0		0	N/A	N/A		
Total Manganese 0 0 1.000 15.480 Total Mercury 0 0 0.050 0.05 0.77 Total Mercury 0 0 0 0.050 0.05 0.77 Total Selenium 0 0 0 5 5.0 N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Zinc 0 0 0 N/A N/A N/A Interview 0 0 0 0.24 0.24 3.72 Total Alexan CCT (min): 3.601 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Vial Dissolved Solids (PWS) 0 0 N/A N/A N/A N/A Conc Cural Auritimum 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Total Marcury 0 0 0 0.050 0.05 0.77 Total Nickel 0 0 610 610 9.433 Total Selenium 0 0 0 5 5.0 N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A Total Zinc 0 0 0 N/A N/A N/A Image: Selenium 0 0 N/A N/A N/A N/A									
Total Nicker 0 0 610 610 9,443 Total Phenolics (PMenolics) (PWS) 0 0 5 5.0 N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Tabilium 0 0 0 0.24 3.72 Total Zinc 0 0 0 0.24 3.72 Total Zinc 0 0 N/A N/A N/A Image: CCT (min): 3.601 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants O CCT (min): 3.601 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Total Discolved Solids (PWS) 0 0 N/A N/A N/A N/A Sublate (PWS) 0 0 0 N/A N/A N/A Total Antimony						-			
Otal Phenols (Phenolics) (PWS) 0 0 0 5 5.0 N/A Total Selenium 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Thallium 0 0 0 0.4 N/A N/A Total Zinc 0 0 0 N/A N/A N/A Total Zinc 0 0 0 N/A N/A N/A Pollutants Correcting Stream Trib Conc Fate (µg/L) WQC Obj WLA (µg/L) Comments Total Zinc 0 0 N/A N/A N/A N/A Pollutants Correcting Stream Trib Conc Fate (µg/L) WQC Obj WLA (µg/L) Comments Total Jesolved Solids (PWS) 0 0 N/A N/A N/A Suffate (PWS) 0 0 N/A N/A N/A Total Antimony 0			_						
Total Selenium 0 0 N/A N/A N/A N/A Total Silver 0 0 0 0 N/A N/A N/A Total Silver 0 0 0 0.24 0.24 3.72 Total Zinc 0 0 0 0.44 N/A N/A Image: Construct Silver 0 0 0 N/A N/A N/A Image: Construct Silver 0 0 0 N/A N/A N/A Image: Construct Silver 0 0 0 N/A N/A N/A Image: Construct Silver 0 0 N/A N/A N/A Image: Silver N/A Image: Construct Silver 0 0 N/A N/A N/A Image: Silver N/A Image: Construct Silver 0 0 N/A N/A N/A N/A Image: Construct Silver 0 0 N/A N/A N/A N/A									
Total Silver 0 0 N/A N/A N/A N/A Total Thallum 0 0 0 0.24 0.24 0.24 3.72 Total Zinc 0 0 0 0.1/A N/A N/A N/A Image: CRL CCT (mi): 3.601 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Conc CV (ug/L) Comments Comments Comments Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Sufate (PWS) 0 0 0 N/A N/A N/A Sufate (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A									
Total Thallium 0 0 0 0.24 0.24 3.72 Total Zinc 0 0 0 0 N/A N/A N/A Image: Concest of the state of the sta									
Total Zinc 0 0 N/A N/A N/A N/A Image: Concern of the second secon					-				
CRL CCT (min): 3.601 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Conc Conc Conc Conc (µg/L) (µg/L) WLA (µg/L) Comments Total Dissolved Solids (PWS) 0 0 N/A N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Barium 0 0 N/A N/A N/A N/A Total Cadmium 0 0 N/A N/A N/A N/A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
CRL CCT (min): 3.601 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Pollutants Conc Conc CV Trib Conc Fate WQC WQ Obj WLA (µg/L) Comments Total Dissolved Solids (PWS) 0 0 N/A N/A N/A N/A Chloride (PWS) 0 0 N/A N/A N/A N/A Fluoride (PWS) 0 0 N/A N/A N/A N/A Total Aluminum 0 0 N/A N/A N/A N/A Total Antimony 0 0 N/A N/A N/A N/A Total Arsenic 0 0 N/A N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Cadmium 0 0 N/A N/A N/A Mesults 11/9/2023 11/9/2023 11/9/2023 11/9/2023	Total Zinc	0	0		0	N/A	N/A	N/A	
Pollutants Conc (uoll 1) Stream CV Inb Conc (ug/L) Fate (ug/L) WG b0j (ug/L) WLA (ug/L) Comments Total Dissolved Solids (PWS) 0 0 N/A N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Assenic 0 0 N/A N/A N/A Total Boron 0 0 N/A N/A N/A Total Cadmium 0 0 N/A N/A N/A Total Cadmium 0 0 N/A N/A N/A Hexavalent Chromium (III) 0 0 0 N/A N/A <th>CCT (r</th> <th></th> <th>601</th> <th>PMF:</th> <th>1</th> <th>Ana</th> <th>lysis Hardne</th> <th>ss (mg/l):</th> <th>N/A Analysis pH: N/A</th>	CCT (r		601	PMF:	1	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Results 11/9/2023 11/9/2023 11/9/2023 11/9/2023 11/9/2023	Pollutants	Conc						WLA (µg/L)	Comments
Chloride (PWS) 0 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Arsenic 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A Results 11/9/2023 11/9/2023 11/9/2023	Total Dissolved Solids (PWS)		0		0			N/A	
Sulfate (PWS) 0 0 0 N/A N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Animony 0 0 0 N/A N/A N/A Total Arsenic 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Results 11/9/2023 11/9/2023 11/9/2023 11/9/2023 11/9/2023			0		0				
Fluoride (PWS) 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Arsenic 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Results 11/9/2023 11/9/2023 11/9/2023 11/9/2023 11/9/2023									
Total Aluminum 0 0 N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Arsenic 0 0 0 N/A N/A N/A Total Arsenic 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A tesults 11/9/2023 11/9/2023 11/9/2023 11/9/2023 11/9/2023									
Total Antimony 0 0 0 N/A N/A N/A Total Arsenic 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A tesults 11/9/2023 11/9/2023 11/9/2023 11/9/2023 Total Chromium (III) 0 0 0 N/A N/A Hexavalent Chromium 0 0 0 N/A N/A Total Cobalt 0 0 N/A N/A N/A Total Copper 0 0 N/A N/A N/A									
Total Arsenic 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A tesults 11/9/2023 11/9/2023 11/9/2023 11/9/2023 11/9/2023									
Total Barium 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A Results 11/9/2023 11/9/2023 11/9/2023 11/9/2023 11/9/2023 Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Total Copper 0 0 N/A N/A N/A N/A									
Total Boron 0 0 N/A N/A N/A Total Cadmium 0 0 0 N/A N/A N/A tesults 11/9/2023 11/9/2023 11/9/2023 11/9/2023 11/9/2023 Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A N/A Total Copper 0 0 N/A N/A N/A N/A									
Total Cadmium 0 0 N/A N/A N/A Atesults 11/9/2023<									
Total Chromium (III) 0 0 N/A N/A Hexavalent Chromium 0 0 N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A Total Cobalt 0 0 N/A N/A N/A Total Copper 0 0 N/A N/A N/A									
Total Chromium (III) 0 0 0 N/A N/A Hexavalent Chromium 0 0 0 N/A N/A Total Cobalt 0 0 0 N/A N/A Total Copper 0 0 N/A N/A	Total Cadmium	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium 0 0 0 N/A N/A Total Cobalt 0 0 0 N/A N/A Total Copper 0 0 N/A N/A N/A	Results					11/9	/2023		
Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 N/A N/A N/A	Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobalt 0 0 N/A N/A N/A Total Copper 0 0 N/A N/A N/A									
Total Copper 0 0 0 N/A N/A N/A									
	Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron 0 0 0 N/A N/A N/A									
Total Lead 0 0 N/A N/A N/A	Total Lead				0				
Total Manganese 0 0 0 N/A N/A N/A		0	0		0	N/A	N/A	N/A	

Pag

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (Ibs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

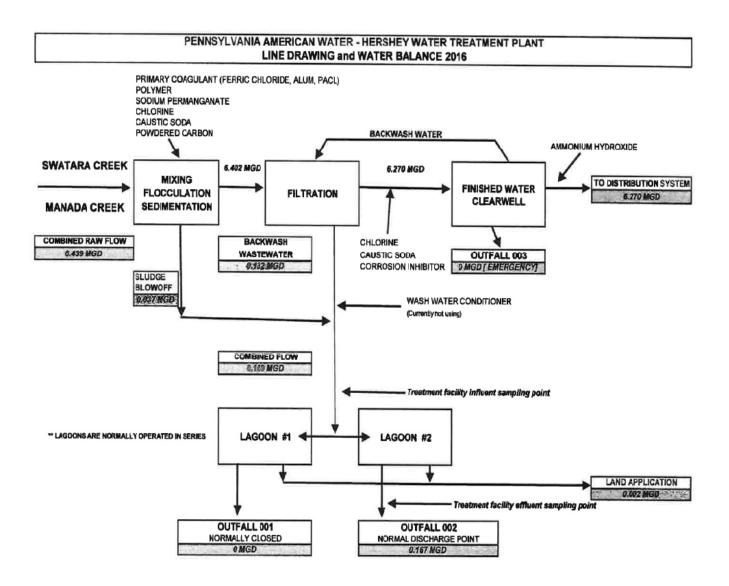
The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	N/A	N/A	Discharge Conc < TQL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	37,151	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	24,767	µg/L	Discharge Conc < TQL
Total Cadmium	4.25	µg/L	Discharge Conc < TQL
Total Chromium (III)	1,355	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	161	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	294	µg/L	Discharge Conc < TQL
Total Copper	0.14	mg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	4,644	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	23,219	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	50.5	µg/L	Discharge Conc < TQL
Total Manganese	15,480	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.77	µg/L	Discharge Conc < TQL
Total Nickel	821	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	77.2	µg/L	Discharge Conc < TQL

Model Results

11/9/2023

Total Silver	38.8	µg/L	Discharge Conc < TQL
Total Thallium	3.72	µg/L	Discharge Conc < TQL
Total Zinc	1.21	mg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS


D. TRC Calculation Results for Outfall 001

	ate values il	n A3:A9 and D3:D9									
67.34	4 = Q stream	ı (cfs)	0.5	i = CV Daily							
0.2	2 = Q discha	rge (MGD)	0.5	= CV Hourly							
30) = no. samp	les	1	al Mix Factor							
0.3= Chlorine Demand of Stream0= Chlorine Demand of Discharge0.5= BAT/BPJ Value			1 = CFC_Partial Mix Factor 15 = AFC_Criteria Compliance Time (m 720 = CFC_Criteria Compliance Time (m								
						C) = % Facto	r of Safety (FOS)	0	=Decay Coef	ficient (K)
						Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	69.448	1.3.2.iii	WLA cfc = 67.699						
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581						
PENTOXSD TRG	5.1b	LTA_afc=	25.878	5.1d	LTA_cfc = 39.357						
Source		Effluen	t Limit Calcu	lations							
PENTOXSD TRG											
PENTOXSD TRG	5.1g	AVG MON L	-IMIT (mg/l) =	0.500	BAT/BPJ						
		INST MAX L	IMIT (mall) =	4 005							
			- (ing/i) -	1.635							
WLA afc		AFC_tc)) + [(AFC_Yc*Qs	s*.019/Qd*e								
	+ Xd + (A	AFC_tc)) + [(AFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F(s*.019/Qd*e OS/100)								
LTAMULT afc	+ Xd + (A EXP((0.5*LN	AFC_tc)) + [(AFC_Yc*Qs . FC_Yc*Qs*Xs/Qd)]*(1-F (.(cvh^2+1))-2.326*LN(cvh^;	s*.019/Qd*e OS/100)								
	+ Xd + (A	AFC_tc)) + [(AFC_Yc*Qs . FC_Yc*Qs*Xs/Qd)]*(1-F (.(cvh^2+1))-2.326*LN(cvh^;	s*.019/Qd*e OS/100)								
LTAMULT afc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k*	AFC_tc)) + [(AFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F((cvh^2+1))-2.326*LN(cvh^) MULT_afc CFC_tc) + [(CFC_Yc*Qs	s*.019/Qd*e OS/100) 2+1)^0.5) *.011/Qd*e((-k*AFC_tc)).							
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (C	AFC_tc)) + [(AFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F((cvh^2+1))-2.326*LN(cvh^) MULT_afc CFC_tc) + [(CFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F(s*.019/Qd*e OS/100) 2+1)^0.5) *.011/Qd*e(OS/100)	(-k*AFC_tc)). -k*CFC_tc)).							
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (C EXP((0.5*LN	AFC_tc)) + [(AFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F((cvh^2+1))-2.326*LN(cvh^) MULT_afc CFC_tc) + [(CFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F((cvd^2/no_samples+1))-2.3	s*.019/Qd*e OS/100) 2+1)^0.5) *.011/Qd*e(OS/100)	(-k*AFC_tc)). -k*CFC_tc)).							
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (C	AFC_tc)) + [(AFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F((cvh^2+1))-2.326*LN(cvh^) MULT_afc CFC_tc) + [(CFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F((cvd^2/no_samples+1))-2.3	s*.019/Qd*e OS/100) 2+1)^0.5) *.011/Qd*e(OS/100)	(-k*AFC_tc)). -k*CFC_tc)).							
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (C EXP((0.5*LN wla_cfc*LTA	AFC_tc)) + [(AFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F((cvh^2+1))-2.326*LN(cvh^) MULT_afc CFC_tc) + [(CFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F((cvd^2/no_samples+1))-2.3	s*.019/Qd*e OS/100) 2+1)^0.5) *.011/Qd*e(OS/100) 826*LN(cvd^2	(- k*AFC_tc)) . (- k*CFC_tc)). 2/no_samples+1)^0.5)						
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (C EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	AFC_tc)) + [(AFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F((cvh^2+1))-2.326*LN(cvh^) MULT_afc CFC_tc) + [(CFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F((cvd^2/no_samples+1))-2.3 MULT_cfc	s*.019/Qd*e OS/100) 2+1)^0.5) *.011/Qd*e(OS/100) 326*LN(cvd^2 0.5)-0.5*LN(c	(- k*AFC_tc)) . (- k*CFC_tc)). 2/no_samples+1)^0.5)						

E. TRC Calculation Results for Outfall 002

Thous appropri	a har so a har a h					
	_	A3:A9 and D3:D9				
	= Q stream	· ·		5 = CV Daily 5 = CV Hourly 1 = AFC_Partial Mix Factor 4 = CFC_ Partial Mix Factor		
	= Q discha	•••				
) = no. samp					
0.3 = Chlorine Demand of Stream 0 = Chlorine Demand of Discharge 0.5 = BAT/BPJ Value 0 = % Factor of Safety (FOS)			1 = CFC_Partial Mix Factor 15 = AFC_Criteria Compliance Time (mi 720 = CFC_Criteria Compliance Time (mi			
						0 =Decay Coefficient (K)
			Source	Reference	AFC Calculations	~
TRC	1.3.2.iii	WLA afc =	4.638	1.3.2.iii	WLA cfc = 4.514	
PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581	
PENTOXSD TRG	5.1b	LTA_afc=		5.1d	LTA_cfc = 2.624	
Source		Effluer	nt Limit Calcu	lations		
PENTOXSD TRG	5.1f AML MULT = 1.231					
PENTOXSD TRG	5.1g	AVG MON I	_IMIT (mg/I) =	0.500	BAT/BPJ	
		INST MAX I	_IMIT (mg/l) =	1.635		
WLA afc		AFC_tc)) + [(AFC_Yc*Q; FC_Yc*Os*Xs/Od)]*(1-F		(-k*AFC_tc)).		
	+ Xd + (A	FC_Yc*Qs*Xs/Qd)]*(1-F	OS/100)	(-k*AFC_tc)).		
WLA afc LTAMULT afc LTA_afc	+ Xd + (A	FC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^	OS/100)	(-k*AFC_tc)).		
LTAMULT afc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k*	FC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^	OS/100) 2+1)^0.5) * .011/Qd*e(
LTAMULT afc LTA_afc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (C	FC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^ MULT_afc CFC_tc) + [(CFC_Yc*Qs	OS/100) 2+1)^0.5) *.011/Qd*e(OS/100)	-k*CFC_tc)).		
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (C	FC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^ MULT_afc CFC_tc) + [(CFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1))-2.3	OS/100) 2+1)^0.5) *.011/Qd*e(OS/100)	-k*CFC_tc)).		
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (C EXP((0.5*LN wla_cfc*LTA	FC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^ MULT_afc CFC_tc) + [(CFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1))-2.3	OS/100) 2+1)^0.5) *.011/Qd*e(OS/100) 326*LN(cvd^2	(- k*CFC_tc)). 2/no_samples+4	 I)^0.5)	
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (C EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	FC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^ MULT_afc CFC_tc) + [(CFC_Yc*Qs FC_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1))-2.3 MULT_cfc	OS/100) 2+1)^0.5) *.011/Qd*e(OS/100) 326*LN(cvd^2 0.5)-0.5*LN(c	(- k*CFC_tc)). 2/no_samples+4	 I)^0.5)	

F. Process Flow Diagram

