

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0046418

APS ID 1067569

Authorization ID 1403407

	Applicant and Facility Information											
Applicant Name	Middleboro Municipal Authority	Facility Name	Middleboro STP									
Applicant Address	P O Box 189	Facility Address	West Road									
	Mc Kean, PA 16426-0189		Mc Kean, PA 16426-1422									
Applicant Contact	Frederick Dylewski, Business Manager	Facility Contact	Douglas Burdick									
Applicant Phone	(814) 476-7788	Facility Phone	(814) 476-7788									
Applicant E Mail	rickyracoon2@aol.com	Facility E Mail										
Client ID	44319	Site ID	244576									
Municipality	McKean Borough	County	Erie									
Ch 94 Load Status	Projected Hydraulic and Organic Overload	Connection Status	No Limitations									
Date Application Recei	ivedJuly 11, 2022	EPA Waived?	Yes									
Date Application Accep	otedJuly 28, 2022	If No, Reason										
Purpose of Application	NPDES permit renewal											

Summary of Review

No violations since December 4, 2017. No open violations listed. 11/28/2023 CWY A few self-monitoring violations are reported.

Municipalities	Flow Contribution	Separate Sewers	Population
Borough of McKean	96%	100%	490
McKean Township	4%	100%	20

Sludge use and disposal description and location(s): Solid sludge is landfilled. Liquid sludge is transported to a DEP approved facility for treatment and disposal. Don Green Sanitation hauled 4.2 dry tons sludge to the Lake View Landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
V		William H. Mentzer	
Λ		William H. Mentzer, P.E. Environmental Engineering Specialist	November 22, 2023
X		Chad W. Yurisic Chad W. Yurisic, P.E. Environmental Engineer Manager	11/28/2023

ischarge, Receiving	g Waters	and Water Supply Info	ormation					
Outfall No.	001		Design Flow (MGD)	0.112				
Latitude DP		59,00"	Longitude DP	-80° 8' 48.66"				
Latitude NHD	42° 0' ().71"	Longitude NHD	-80° 8' 48.54"				
Quad Name	Edinbo	ro North	Quad Code	0304				
Wastewater Descrip	ption: _	Treated municipal sanita	ary sewer waste waters					
Receiving Waters	Elk Cre		Stream Code	62491				
NHD Com ID	123926	6048	RMI	21.98				
Drainage Area	19.6		Yield (cfs/mi²)	0.019				
Q ₇₋₁₀ Flow (cfs)	0.35		Q ₇₋₁₀ Basis	Elk Creek				
Elevation (ft)	982.29		Slope (ft/ft)	0.00872 WWF, MF				
Watershed No.	15-A		Chapter 93 Class.					
Existing Use	statewi	de	Existing Use Qualifier	none				
Exceptions to Use	See be	low for the main stem.	Exceptions to Criteria	none				
Comments	Main s	tem Elk Creek: DO2 and	Temp ₂ deleted and DO ₁ and Tem	np₁ added.				
	Discha	rge is 0.32 mile above La	Lamson Run at NHD RMI is 0.09.					
Assessment Status	_	Attaining Use(s)						
Cause(s) of Impairr	ment _							
Source(s) of Impair	ment _							
TMDL Status	_		Name					
Background/Ambie	nt Data		Data Source					
pH (SU)	=	7.6		elled discharge pH is 7.45 SU.				
Temperature (°F)		68	default	mod diconargo pri lo 1110 CC1				
Hardness (mg/L)		100	default					
Other:								
Nearest Downstrea	m Public	Water Supply Intake	City of Erie					
	₋ake Erie		Flow at Intake (cfs)	NA				
_	915		Distance from Outfall (mi) 34.48					

Changes Since Last Permit Issuance: Facility expansion

Other Comments: none

Treatment Facility Summary

Treatment Facility Name: Municipal Authority Of Middleboro

WQM Permit No.	Issuance Date
Facility expansion	3 February 1976
2574407 A1	27 December 2004
2574407 A2	25 October 2005
2574407 A3	19 December 2016

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Gas Chlorine	0.061

Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
		Projected Hydraulic and		
0.112	178	Organic Overload	Aerobic Digestion	Other WWTP

Changes Since Last Permit Issuance: facility expansion

The original permit was for a 0.1-MGD activated sludge contact stabilization facility. This was the design flow from 1975 to 2004. The permit included municipal sewers and alum (chemical) addition for phosphorus control. No pump stations are discussed in the application, but three pressure sewer areas are mentioned. One pressure sewer was temporary lasting until such time a gravity sewer connection could be made. The other two pressure sewer systems were considered permanent. In 2004 amendment 1 changed the waste treatment operation from activated sludge contact stabilization to activated sludge extended aeration with a design flow reduction from 0.100-MGD to 0.081-MGD.

A bar screen, Parshall flume for effluent flow measurement, two aerated equalization tanks, and two open sludge drying beds are installed.

A-1 application is dated 26 July 2004 and revised on 8 December 2004. The annual average flow is 0.061-MGD, the hydraulic design flow is 0.081-MGD, daily peak flow is 0.205-MGD, and the Organic design is for 112-lb.day 5 Day BOD. Issued with 2004 Sewerage conditions 1, 6, 8, 9, 10 (PA0046418), 12, 13, 16, 18, 20, 21, 22, 23, 24, 25, and 26. For an upgrade including: equalization tank flow rerouting; existing, circular steel extended aeration tank reconfiguration; a new rectangular, reinforced concrete treatment tank with a 50,000-gallons aeration capacity and 23,600-gallons sludge holding capacity, and 200 square foot (25 131-gallon) clarifier; and a new 2,853-gallon chlorine contact tank. Also provided is three 240 scfm new control building aeration blowers, and chlorine gas will replace liquid sodium hypochlorite as the disinfecting agent. Aeration required is 477 scfm based on 233 scfm for aeration, 190 scfm for sludge digestion and 24 scfm for sludge air lifts. Two conventional activated sludge operation treatment trains are provided. One train is adequate for flows up to 56,000-gpd and the two-train operation is adequate for up to 81,000-gpd.

A-2 is not listed as such but amounts to a chlorine contact tank as built revision. The 1974 aeration tank was left as originally specified and the 1974 chlorine contact tank was converted to aerated sludge storage. The chlorine contact tank volume is not clearly stated but is specified in A-1 as at least 2 135-gallons. Aeration capacity increases from 50,000 to 62,600-gallons and aerated sludge holding decreases from 23,600 to 16,500-gallons.

A-3 listed as A-2 changes to the existing plant include: Replacing the EQ tank pumps with larger units, upsizing the aeration piping to reduce friction in the air delivery line and adding a de-chlorination tank (sodium bisulfite feed).

A-3 added dichlorination and rerated the hydraulic capacity of the plant to 0.112 MGD and the organic capacity to 178 lb/day BOD5.

Service area is McKean Borough (96%) and Township (4%).

Disinfection is chlorine gas

Chemical addition: Alum at 4-gallons/day (control mechanism effluent aluminum and pH)

Anticipated changes: equalization pump and air piping upgrade. Water-quality adds TRC to the upgrade.

Other Comments:

NPDES Permit Fact Sheet Middleboro STP

Treatment: Bar screen, equalization, extended aeration with clarification, gas chlorination, dichlorination, aerobic sludge digestion and dewatering (drying beds). Solid sludge is landfilled. Liquid sludge is transported to a DEP approved facility for treatment and disposal.

Alum is applied for phosphorus control.

			Influ	ent							Effluent	: :	
		Ave	Ave	Max		Min	Ave			Min	Ave	Max	.,
Annual Average Design		MGD 0.067	PPD	PPD	#	mg/L	mg/L	mg/L	#	mg/L	mg/L	mg/L	#
Hydraulic Design Capacity		0.112											
Organic Design Capacity		···-	178										
	2019	0.039											
<u>-</u>	2020	0.044											
	2021	0.048											
Previous Year Highest Month November		0.061											
pH										7.0	0.00	7.7	1462
TRC											0.03	0.65	73
Fecal Coliform											< 54.8	980	104
BOD5			52	143	24		140	428	24				
CBOD5											5.08	14.96	104
TSS			42	82	24		115	192	24		6.2	12.8	104
NH3											< 1.1	5.45	104
N										<	< 11.98	23.30	24
P											0.60	0.84	24
DO										7.36			731
Copper										< 0.01			1
Lead										< 0.008	3		1
Zinc										< 0.02	2		1

Effluent Violations for Outfall 001, from: November 1, 2022 To: September 30, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
CBOD5	07/31/23	Wkly Avg	18.6	mg/L	15.0	mg/L
Fecal Coliform	05/31/23	IMAX	1419.6	No./100 ml	1000	No./100 ml
Fecal Coliform	06/30/23	IMAX	2419.5	No./100 ml	1000	No./100 ml
Ammonia	06/30/23	Avg Mo	2.85	lbs/day	2.3	lbs/day
Ammonia	06/30/23	Avg Mo	7.0	mg/L	2.5	mg/L
Ammonia	05/31/23	Avg Mo	3.40	mg/L	2.5	mg/L
Ammonia	05/31/23	IMAX	5.242	mg/L	5.0	mg/L
Ammonia	06/30/23	IMAX	13.09	mg/L	5.0	mg/L

The violations do not appear in eFACTS.

	Compliance History
Summary of DMRs:	See below
Summary of Inspections:	None

Compliance History

DMR Data for Outfall 001 (from July 1, 2021 to June 30, 2022)

Parameter	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21
Flow (MGD) Ave Mon	0.0467	0.0595	0.067	0.048	0.065	0.0368	608	0.061	0.045	0.0467	0.041	0.055
Flow (MGD) Daily Max	0.068	0.096	0.104	0.063	0.110	0.057	0.110	0.092	0.111	0.099	0.078	0.101
pH (S.U.) Minimum	7.0	7.2	7.3	7.2	7.1	7.2	7.3	7.2	7.3	7.3	7.2	7.2
pH (S.U.) Maximum	7.4	7.5	7.6	7.5	7.6	7.6	7.7	7.6	7.6	7.5	7.4	7.5
DO (mg/L) Minimum	7.76	8.80	8.5	8.45	8.75	8.87	8.5	8.45	8.42	8.5	8.11	8.75
TRC (mg/L) Ave Mon	0.02	0.02	0.05	0.03	0.11	0.14	0.11	0.06	0.02	0.02	0.02	0.02
TRC (mg/L) Inst Max	0.62	0.02	0.15	0.16	0.26	0.30	0.18	0.18	0.55	0.02	0.52	0.50
CBOD5 (PPD) Ave Mon	3.39	2.68	1.73	1.00	2.28	1.20	2.59	1.37	1.2	1.52	1.13	1.56
CBOD5 (PPD) Wkly Ave	5.60	3.52	2.40	1.57	2.52	2.70	4.69	1.71	1.29	1.7	2.22	2.72
CBOD5 (mg/L) Ave Mon	8.7	5.40	3.1	2.5	4.20	3.9	5.1	2.7	3.2	3.9	3.3	3.4
CBOD5 (mg/L) Wkly Ave	14.37	7.10	4.29	3.93	4.64	8.81	9.24	3.36	3.43	4.56	6.48	5.93
BOD5 (PPD) Infl Ave Mon	50	99	85	28	83	42	118	115	143	45	23	40
BOD5 (PPD) Infl Wkly Ave	50	99	85	28	83	42	118	115	143	45	23	40
BOD5 (mg/L) Infl Ave Mon	102	215	140	66	57	194	197	63	428	149	86	161
BOD5 (mg/L) Infl Wkly Ave	102	215	140	66	57	194	197	63	428	149	86	161
TSS (PPD) Ave Mon	3.74	4.68	2.51	1.44	4.88	1.63	1.52	1.42	1.69	1.17	1.71	2.43
TSS (PPD) Infl Ave Mon	59	63	58	54	20	40	82	40	26	34	41	33
TSS (PPD) Infl Wkly Ave	59	63	58	54	20	40	82	40	26	34	41	33
TSS (PPD) Weekly Ave	7.40	6.05	2.79	2.8	7.05	2.46	2.03	2.54	3.38	2.7	2.05	3.21
TSS (mg/L) Ave Mon	9.6	8.5	4.5	3.6	9.0	5.3	3.0	2.8	4.5	3.0	5.0	5.3
TSS (mg/L) Influent Ave Mon	120	138	96	130	62	184	136	72	78	114	152	130
TSS (mg/L) Infl Wkly Ave	120	138	96	130	62	184	136	72	78	114	152	130
TSS (mg/L) Weekly Ave	19.0	11.0	5.0	7.0	13.0	8.0	4.0	5.0	9.0	5.0	6.0	7.0
F Coliform (#100 ml) Geo Mn	< 13	20.1	< 10	< 33.3	100.8	490	655	138.9	< 25.7	13.5	< 27.5	< 16.8
F Coli (#/100 ml) Inst Max	29	86.0	< 10	810	440.0	920	980	910	< 61.0	24.0	72	31.0
T Nitrogen (mg/L) Ave Mon	4.375	11.45	8.24	7.56	20.0	21.1	5.91	12.5	14	11.8	2.97	4.07
Ammonia (PPD) Ave Mon	< 0.47	0.99	0.50	< 0.56	< 0.33	0.98	2.03	0.25	< 0.18	< 0.19	< 0.17	< 0.87
Ammonia (mg/L) Ave Mon	< 1.2	2.0	0.9	< 1.4	< 0.6	3.2	4.0	< 0.5	< 0.5	< 0.5	< 0.5	< 1.9
Ammonia (mg/L) Instant Max	2.06	2.86	1.21	3.61	0.86	4.38	5.45	< 0.5	< 0.5	< 0.5	< 0.5	2.75
T Phosphor (PPD) Ave Mon	0.39	0.27	0.44	0.27	0.40	0.21	0.26	0.31	0.21	0.12	0.06	0.29
T Phosph (mg/L) Ave Mon	0.64	0.55	0.78	0.68	0.73	0.69	0.51	0.61	0.56	0.31	0.16	0.63

The December mean flow appears to be a typographical error.

Compliance History

DMR Data for Outfall 001 (from October 1, 2022 to September 30, 2023)

Parameter	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22
Flow (MGD) Ave Mon	0.0485	0.055	0.055	0.0489	0.064	0.073	0.086	0.077	0.098	0.0555	0.0559	0.065
Flow (MGD) D Max	0.072	0.086	0.098	0.120	0.123	0.114	0.121	0.106	0.180	0.119	0.111	0.149
pH (S.U.) Minimum	7.2	7.3	7.0	7.0	7.2	7.2	7.1	7.2	7.2	7.2	7.1	7.1
pH (S.U.) Maximum	7.5	7.6	7.6	7.4	7.6	7.5	7.7	7.6	7.6	7.5	7.4	7.4
DO (mg/L) Minimum	8.48	8.8	7.98	7.85	8.47	8.85	8.5	9.1	9.07	9.01	8.85	8.67
TRC (mg/L) Ave Mon	0.02	0.02	0.02	0.02	0.02	0.02	0.20	0.14	0.13	0.14	0.22	0.21
TRC (mg/L) Inst Max	0.02	0.02	0.02	0.02	0.02	0.48	0.34	0.22	0.25	0.28	0.32	0.28
CBOD5 (ppd) Ave Mon	1.29	1.10	3.30	2.04	1.17	1.28	2.58	1.73	1.80	1.34	1.12	3.58
CBOD5 (ppd) Wk Ave	1.80	1.23	8.53	3.51	1.30	1.46	4.30	2.47	1.99	2.10	1.30	4.50
CBOD5 (mg/L) Aver Mon	3.20	2.4	7.2	5.0	2.2	2.1	3.60	2.7	2.2	2.9	2.40	6.6
CBOD5 (mg/L) Wk Ave	4.46	2.69	18.6	8.60	2.43	2.4	6.00	3.84	2.44	4.54	2.79	8.30
BOD5 (ppd) Infl Ave Mon	197	91	85	61	187	172	163	81	228	47	62	70
BOD5 (ppd) Infl Wk Ave	197	91	85	61	187	172	163	81	228	47	62	70
BOD5 (mg/L) Infl Ave Mon	464	144	209	147	182	234	162	137	224	226	164	199
BOD5 (mg/L) Infl Wk Ave	464	144	209	147	182	234	162	137	224	226	164	199
TSS (lbs/day) Ave Mon	2.50	2.06	2.0	3.79	4.16	3.1	8.97	3.21	2.86	1.9	1.82	1.08
TSS (ppd) Infl Ave Mon	149	147	59	53	230	229	242	81	285	47	38	29
TSS (ppd) Infl Wk Ave	149	147	59	53	230	229	242	81	285	47	38	29
TSS (ppd) Wk Ave	4.44	3.44	4.49	5.91	8.81	4.87	15.59	4.82	3.68	2.78	2.56	1.63
TSS (mg/L) Ave Mon	6.2	4.5	4.9	9.3	7.8	5.1	12.5	5.0	3.5	4.1	3.9	2.0
TSS (mg/L) Infl Ave Mon	350	232	144	128	224	312	240	136	280	224	100	82
TSS (mg/L) Infl Wk Ave	350	232	144	128	224	312	240	136	280	224	100	82
TSS (mg/L) Wk Ave	11.0	7.5	11.0	14.5	16.5	8.0	21.0	7.5	4.5	6.0	5.5	3.0
F Coliform (#/100 ml) Geo Mn	3.0	1.0	< 1	24.2	32.9	29.1	33.7	145.9	< 45.3	542.5	3.0	214
F Coliform (#100 ml) Inst Max	80.9	1.0	< 1	2419.5	1419.6	228.2	1553.1	2419.6	2419.6	2420	21.8	680
T N (mg/L) Ave Mon	15.53	13.68	5.3196	20.266	8.8666	10.411	10.613	17.48	13.28	19.55	26.01	11.93
Am (ppd) Ave Mon	0.24	0.09	0.24	2.85	1.81	0.06	< 0.07	< 0.06	0.08	1.43	< 0.05	< 0.27
Am (mg/L),Ave Mon	0.6	0.20	0.6	7.0	3.40	< 0.1	< 0.1	< 0.1	< 0.1	3.1	< 0.1	< 0.5
Am (mg/L) Inst Max	1.489	0.34	1.575	13.09	5.242	< 0.1	< 0.1	< 0.1	< 0.1	11.19	< 0.1	< 0.5
T P (ppd) Ave Mon	0.31	0.24	0.11	0.40	0.17	0.34	0.37	0.28	0.11	0.088	0.17	0.28
T P (mg/L) Ave Mon	0.78	0.535	0.27	0.99	0.31	0.556	0.498	0.43	0.132	0.19	0.375	0.51

The monthly maximum flow is approaching the design flow,

July CBOD5 was high.

Ammonia was high in May and June.

Fecal coliform maximum was high in June

		Develo	ppment of Effluent Limitations		
Outfall No.	001		Design Flow (MGD)	.112	
Latitude	41° 59' 59.00	O"	Longitude	-80° 8' 48.66"	
Wastewater D	escription:	Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102©	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO	4.0	Daily Minimum		BPJ
E Coli	Report	annually		BPJ

Facility design is tertiary treatment at 95% summer BOD5 reduction, 90% rest of the year BOD5 reduction and less than 10-mh/L ammonia nitrogen. Later tertiary treatment was re-defined as 10-mg/L BOD5, 10-mg/L TSS and 4-mg/L ammonia-nitrogen. The last tertiary definition is 10-mg/L CBOD5, 30-mg/L TSS and 2.5-mg/L ammonia.

The Middleboro proposal and the then existing Georgetown Heights discharges were evaluated together as a single discharge. The combined discharge modelled with a 16-hour run-off still requires advanced treatment. Together the Middleboro and Georgetown Heights discharges total 0.36-MGD with an 0.54-MGD 24-four-hour discharge. The requirements are supported by one-page water quality summary that does not clearly state why tertiary requirements were established. The Georgetown Heights facility has since ceased operations.

Meanwhile The McKean Township STP was added downstream and for a time the sub-basin had three sewage discharges. For three basin discharges with equalization and equal percent reduction. CBOD5 is 17.94, 17.94, and 17.62 while ammonia is 4.3, 4.3 and 4.85-mg/L Without Georgetown CBOD5 is 17.92 and 16.68-mg/L while ammonia is 4.50 and 4.74-mg/L With a 16-hour runoff CBOD5 is 14.36 and 13.96-mg/L while ammonia is 3.37 and .8-mg/L.

Currently advanced (tertiary) treatment is controlling at 10-mg/L CBOD and TSS with ammonia at 2.5-mg/L.

Other Considerations

Except for Park Run (62492), the basin is classified as a warm water and migratory fishery with the Fish and Boat Commission classifying the basin as trout approved waters

The basin is not classified for trout reproduction which has an 8-mg/L October through May dissolved oxygen minimum.

For trout protection, the statewide warm water dissolved oxygen and temperature requirements have been replaced by the cold water dissolved oxygen and temperature.

DO Criteria

DO₁ For flowing waters, 7-day average 6.0 mg/l; minimum 5.0 mg/l.

For naturally reproducing salmonid early life stages, applied in accordance with subsection (b), 7-day average 9.0 mg/l; minimum 8.0 mg/l.

For lakes, ponds and impoundments, minimum 5.0 mg/l. (CWF) DO₂ 7-day average 5.5 mg/l; minimum 5.0 mg/l. (WWF)

DO₃ For the period February 15 to July 31 of any year, 7-day average 6.0 mg/l; minimum 5.0 mg/l. For the remainder of the year, 7-day average 5.5 mg/l; minimum 5.0 mg/l. (TSF)

For naturally reproducing salmonids, protected early life stages include embryonic and larval stages and juvenile forms to 30 days after hatching. The DO₁ standard for naturally reproducing salmonid early life stages applies October 1 through May 31. The DO₁ standard for naturally reproducing salmonid early life stages applies unless it can be demonstrated to the Department's satisfaction, that the following conditions are documented: 1) the absence of young of the year salmonids measuring less than 150 mm in the surface water; and 2) the absence of multiple age classes of salmonids in the surface water. These conditions only apply to salmonids resulting from natural reproduction occurring in the surface waters. Additional biological information may be considered by the Department which evaluates the presence or absence of early life stages.

This daily minimum dissolved oxygen is essentially the assumed ambient dissolved oxygen. For small streams no assimilative capacity is available and the effluent DO should be the DO criteria.

Water Quality-Based Limitations

The effluent quantity and quality has not changed. The water quality requirements are based on previous modelling which has not been changed significantly.

The following limitations were determined through water quality modeling (output files attached):

Parameter	L	imit (mg/	(I)	SBC	Ex	cisting Lim	nits
	1 day	30 day	1 day		1 day	30 day	1 day
	Minimum	mean	Maximum		Minimum	mean	Maximum
Ammonia-nitrogen summer		2.5	5.0	NA		2.5	5.0
Ammonia-nitrogen winter		7.0	15.0	NA		7.0	15.0
Dissolved Oxygen	4.0			NA	4.0		
Total Residual Chlorine		0.3	1.0	NA		0.3	1.0
Total Phosphorus		1		NA		1	
CBOD 5 day		10	20	NA		10	20

Note the above requirements are for a cold-water fishery only. For a migratory fishery with salmonid reproduction the minimum daily dissolved oxygen requirement increases to 8-mg/L.

Best Professional Judgment (BPJ) Limitations

Comments: The 4.0-mg/L daily DO minimum is based on BPJ requirements

Anti-Backsliding

The 10-mg/L CBOD5 and 2.5-mgL Ammonia-nitrogen are best technology available limitations.

В	С	D	E	F	G	Н		J	K L	М
	charger Site	Middleboro Middleboro S	STP				Revised		ovember 14, 2023 ovember 16, 2023	
Mun	icipality	McKean Boro					itovisod	maioady, in	0, 2020	
	ounty ES Permit	Erie PA0046418								
	0.5	FA0040410								
		**			TRC EV	LUATION				
ACCOUNT OF A DESIGNATION OF A SECURITY OF	oriate values in E	n Translatification are a constitution of the				L ov paik				
	0.365 1.1120	= Q stream (c = Q discharge				= CV Daily = CV Hourly				
	30	= no. sample:			32	= AFC_Partial N				
	0.3		mand of Strea			= CFC_Partial = AFC_Criteria		(()		
	0.5	= BAT/BPJ V:	mand of Disch alue	arge	720	= CFC_Criteria				
	0		f Safety (FOS)			=Decay Coeffic	ient (K)	N (2)		
	Source TRC	Reference 1.3.2.iii	AFC Calculation	ns WLA afc =	0.001	Refer 1.3.:			CFC Calculations WLA cfc = 0.666	
PENTOXSD T		5.1a		LTAMULT afc =		5.1			MULT cfc = 0.581	
PENTOXSD	TRG	5.1b		LTA_afc=	0.257	5.1	d		LTA_cfc = 0.387	
Source						Effluer	nt Limit Calcula	tions		
PENTOXSD T		5.1f			AML MULT :					
PENTOXSD T	TRG	5.1g			LIMIT (mg/l) =			AFC		
					(LIMIT (mg/l) :	1.036				
WLA afc		(.019/e(-k*AF	C_tc)) + [(AFC_	Yc*Qs*.019/Qd*e	(-k*AFC_tc))					
		+ Xd + (AFC	_Yc*Qs*Xs/Qd)]*(1-FOS/100)						
LTAMULT afc LTA_afc		EXP((0.5*LN() wla_afc*LTAN		*LN(cvh^2+1)^0.5)					
WLA_cfc				/c*Qs*.011/Qd*e(-k*CFC_tc))					
LTAMULT_cfc			_Yc*Qs*Xs/Qd cvd*2/no sampl	es+1))-2.326*LN(ovd^2/no samp	iles+1)^0.5)				
LTA_cfc		wla_cfc*LTAM		THE RESERVE THE PARTY OF THE PA		Bross satisfications				
AML MULT		EYP/2 328*I N	I((cvd\2/no_sar	nples+1)^0.5)-0.5*	I N(cvd\2/nn s	amples+1))				
AVG MON LIM	IT			.TA_cfc)*AML_ML		amplestry				
INST MAX LIMI	IT	1.5*((av_mon	_limit/AML_MU	LT)/LTAMULT_af	c)					
	FC_tc/1440)))+X Chlorine Requi Reach/Node		= 1	perennial 1	Chlorin	e Demand	+	Chlorine Residual		
Stream	Flow	Conditions		Perennial						
Stream	Code Function			62491 OUTFALL						
Samples			2000	30						
reach	outfall Reach End		RMI RMI	21.98 21.84						
reach	Readil End		feet	739.2						
drainage	P. W. P.	W0.9400.09.00.00.00.00.00.00.00.00.00.00.00.0	sq miles	19.6						
TRC	limitation	average maximum	mg/L mg/L	0.317 1.036						
elevation		modelled	feet	982.29						
elevation slope		modelled modelled	feet foot/foot	979.72 0.003						
low flow		modelled	cfs/sq mi	0.019						
discharge	Period		mgd	0.1120						
Runoff The current		e 0.3-mg/L moi	hours hthly average a	24.000 and 0.1-m/L max	imum.					
ctroam	flow		cfs	0.36484						
stream stream	flow		MGD.	0.35484						
stream	flow	total	MGD	0.347802						
stream discharge	chlorine discharge	demand demand	mg/L mg/L	0.3						
stream	Total Stream		ratio	3.1						
BAT BAT	TRC TRC	mean	BAT	0.5 1.6						
DAI	IKC	maximum	BAT	1.0						
В	С	D	E	E ²	G	Н			K L	M

	SWP Basin	Strea Cod		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		ope /ft)	PWS Withdra (mgd	awal	Apply FC
	15	624	191 ELK C	REEK			21.98	0	982.29	19.6	0.0	0000		0.00	~
S.					St	ream Dat	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem		H	Tem		рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.019	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	0 2	0.00	7.60	0	0.00	0.00	
					Di	scharge	Data								
			Name	Per	mit Number	Existing Disc		e Desig Disc Flow (mgc	Res w Fa	erve To	Disc emp °C)	Dis pl			
		Midd	eboro	PA	0046418	0.112	0 0.112	0 0.1	120 (0.000	25.00	>	7.40		
					Pa	rameter	Data								
			,	Paramete	r Name			rib S onc	Stream Conc	Fate Coef					
			8	urumete	riumo	(m	ng/L) (m	ng/L)	(mg/L)	(1/days)					
	-		CBOD5				25.00	2.00	0.00	1.50	ĺ				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00					
			NH3-N				25.00	0.10	0.00	0.70					

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	•
D.O. Saturation	95.00%	Use Balanced Technology	•
D.O. Goal	8		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
15	62491	ELK CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
21.98) Middleboro	7.7	17.95	7.7	17.95	0	0
IH3-N	Chronic Allocati	ons					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
21.98	Middleboro	16.24	16.24	4.5	4.5	8	8	0	0

WQM 7.0 D.O.Simulation

SWP Basin Str	ream Code			Stream Name	
15	62491			ELK CREEK	
<u>RMI</u> 21.980	Total Discharge		l) <u>Ana</u>	lysis Temperature (°C	<u>Analysis pH</u> 7.525
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
14.515 Reach CBOD5 (mg/L)	0.49 ² Reach Kc (В	29.591 each NH3-N (mg/L)	0.076 Reach Kn (1/days)
6.59	0.752 Reach Kr (2	<u>1X</u>	1.52 Kr Equation	0.792 Reach DO Goal (mg/L)
Reach DO (mg/L) 8.165	14.92			Owens	8
Reach Travel Time (days) 0.251	TravTime (days)	Subreach CBOD5 (mg/L)	n Results NH3-N (mg/L)	D.O. (mg/L)	
	0.025	6.45	1.49	8.11	
	0.050 0.075	6.32 6.20	1.46 1.43	8.08 8.07	
	0.100	6.07	1.40	8.06	
	0.125 0.150	5.95 5.83	1.37 1.35	8.06 8.07	
	0.175	5.71	1.32	8.08	
	0.201	5.60	1.29	8.09	
	0.226 0.251	5.49 5.38	1.27 1.24	8.10 8.12	

WQM 7.0 Effluent Limits

	SWP Basin Sti	ream Code		Stream Name	<u>e</u>		
	15	62491		ELK CREEK	e G		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
21.980	Middleboro	PA0046418	0.112	CBOD5	25		
				NH3-N	4.5	9	
				Dissolved Oxygen			4

	SWP Basin	Strea Cod		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slop (ft/fl	With	NS drawal ngd)	Apply FC
	15	624	191 ELK C	REEK			21.98	0	982.29	19.6	0.000	000	0.00	~
S.					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem		1	<u>Strea</u> Temp	<u>m</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.019	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	0 2	0.00 7	7.60	0.00	0.00	
					Di	scharge	Data							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt d Disc Flow (mgd)	e Desig Disc Flow (mg	Res w Fa	erve Te ctor	isc emp PC)	Disc pH		
		Middl	eboro	PA	0046418	0.168	0.168	0 0.10	680 (0.000	25.00	7.40		
					Pa	rameter	Data							
			1	Paramete	r Name			rib s onc	Stream Conc	Fate Coef				
				aramete	Traine	(m	ıg/L) (m	ng/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.10	0.00	0.70				

	SWP Basin	Strea Cod		Stre	eam Name		RMI	Eleva (f		Drainage Area (sq mi)	Slop (ft/f	Witl	WS ndrawal ngd)	Apply FC
	15	624	191 ELK C	REEK			21.84	0 9	979.72	19.6	5 0.00	000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem		1	Stre: Temp	<u>am</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.019	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00 7	7.00	0.00	0.00	
					Di	scharge l	Data							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte d Disc Flow (mgd)	e Design Disc Flow (mgd	Res Fa	erve Te ctor	oisc emp °C)	Disc pH		
		Geor	getown Hts	PA	0023957	0.000	0.000	0.00	00 (0.000	25.00	7.00		
					Pa	rameter l	Data							
			1	⊃aramete	r Name				tream Conc	Fate Coef				
			35			(m	g/L) (m	ıg/L) (mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.10	0.00	0.70				

	SWP Basin	Strea Cod		Stre	eam Name		RMI		evation (ft)	Draina Area (sq m	à	Slope (ft/ft)	PW: Withdr (mg	awal	Apply FC
	15	624	191 ELK C	REEK			21.67	70	975.92	2	0.20 0	0.00000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributa</u> ip	<u>ry</u> pH	Tem	<u>Stream</u> np	рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	;)		
Q7-10 Q1-10 Q30-10	0.019	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	0.00	7.60	.11	0.00	0.00	
					Di	scharge [Data								
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt d Disc Flow (mgd)	Dis Flo	sc Res w Fa	erve ctor	Disc Temp (°C)		sc hH		
		l a				0.0000	0.000	0.0	0000	0.000	0.0	00	7.00		
					Pa	rameter I	Data								
			1	⊃aramete	r Name	Di Co		Trib Conc	Stream Conc	Fate Coef					
			ė		0.0000000	(m	g/L) (n	ng/L)	(mg/L)	(1/day	s)				
			CBOD5			-	25.00	2.00	0.00	1.	50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.	00				
			NH3-N			2	25.00	0.00	0.00	0	70				

	SWP Basin	Strea Cod		Stre	eam Name		RMI		ration ft)	Drainage Area (sq mi)	Slop (ft/f	With	WS ndrawal ngd)	Apply FC
	15	624	191 ELK C	REEK			17.85	60	873.70	34.2	2 0.00	000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem		1	<u>Strea</u> Temp	<u>am</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.019	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 20	0.00 7	7.60	0.00	0.00	0000
					Di	scharge l	Data							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt d Disc Flow (mgd)	Disc Flow	Res V Fa	erve Te ctor	oisc emp PC)	Disc pH		
		McKe	ean Twp	PA	0222674	0.3750	0.375	0 0.37	'50 (0.000	25.00	7.00		
					Pa	rameter l	Data							
			,	⊃aramete	r Name				Stream Conc	Fate Coef				
				aramete	TTOTTO	(m	g/L) (m	ng/L)	(mg/L)	(1/days)				
	_		CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N			;	25.00	0.10	0.00	0.70				

	SWP Basin	Strea Cod		Stre	eam Name		RMI		evation (ft)	Draina Area (sq m	à	Slope (ft/ft)	PW Withdr (mg	awal	Apply FC
	15	624	191 ELK C	REEK			13.87	0	804.13	4:	2.05 0	.00000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem		<u>ry</u> pH	Tem		pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	;)		
Q7-10 Q1-10 Q30-10	0.019	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 20	0.00	7.60	.1	0.00	0.00	
					Di	scharge [Data								
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt d Disc Flow (mgd)	Dis Flo	c Res	erve ctor	Disc Temp (°C)		sc hH		
		l a				0.0000	0.000	0 0.0	0000	0.000	25.0	00	7.00		
					Pa	rameter I	Data								
			1	⊃aramete	r Name	Di Ce		rib Conc	Stream Conc	Fate Coef					
			ė		0.0000000	(m	g/L) (n	ng/L)	(mg/L)	(1/day	s)				
			CBOD5			1	25.00	2.00	0.00	1.:	50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.	00				
			NH3-N			2	25.00	0.00	0.00	0	70				

WQM 7.0 Hydrodynamic Outputs

	SWI	P Basin		m Code				<u>Stream</u>	<u>Name</u>			
		15	6:	2491				ELK CF	REEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
21.980	0.36	0.00	0.36	.2599	0.00348	.502	15.3	30.51	0.08	0.105	22.08	7.51
21.840	0.37	0.00	0.37	.2599	0.00423	.5	15.13	30.27	0.08	0.126	22.08	7.50
21.670	0.38	0.00	0.38	.2599	0.00507	.5	15.09	30.17	0.08	2.771	22.04	7.51
17.850	0.64	0.00	0.64	.84	0.00331	.579	21.98	37.99	0.12	2.095	22.84	7.24
Q1-1	0 Flow											
21.980	0.23	0.00	0.23	.2599	0.00348	NA	NA	NA	0.07	0.120	22.63	7.48
21.840	0.23	0.00	0.23	.2599	0.00423	NA	NA	NA	0.07	0.143	22.63	7.48
21.670	0.24	0.00	0.24	.2599	0.00507	NA	NA	NA	0.07	3.168	22.60	7.48
17.850	0.41	0.00	0.41	.84	0.00331	NA	NA	NA	0.11	2.302	23.37	7.20
Q30-	10 Flow	1 00										
21.980	0.50	0.00	0.50	.2599	0.00348	NA	NA	NA	0.09	0.094	21.72	7.52
21.840	0.50	0.00	0.50	.2599	0.00423	NA	NA	NA	0.09	0.113	21.72	7.52
21.670	0.51	0.00	0.51	.2599	0.00507	NA	NA	NA	0.09	2.487	21.68	7.52
17.850	0.87	0.00	0.87	.84	0.00331	NA	NA	NA	0.13	1.932	22.46	7.28

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	Uniform Treatme	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	85.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
15	62491	ELK CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
21.980) Middleboro	NA	50	7.61	14.36	1	71
21.840	Georgetown Hts	NA	NA	7.63	NA	NA	NA
21.670)	NA	NA	7.63	NA	NA	NA
17.850	McKean Twp	NA	50	10.37	21.89	4	56

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
21.98	0 Middleboro	NA	25	1.22	3.37	1	87
21.84	0 Georgetown Hts	NA	NA	1.23	NA	NA	NA
21.67	0	NA	NA	1.23	NA	NA	NA
17.85	0 McKean Twp	NA	25	1.4	3.8	4	85

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH3-N</u>		Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
21.98	Middleboro	25	14.36	3.37	3.37	4	4	4	30
21.84	Georgetown Hts	NA	NA	NA	NA	NA	NA	NA	NA
21.67		NA	NA	NA	NA	NA	NA	NA	NA
17.85	McKean Twp	25	13.96	3.8	3.8	4	4	4	30

WQM 7.0 D.O.Simulation

	ream Code			Stream Name	
15	62491			ELK CREEK	
RMI 21.980 Reach Width (ft) 15.303 Reach CBOD5 (mg/L) 7.14 Reach DO (mg/L) 6.478	Total Discharge 0.16 Reach De 0.50 Reach Kc (0.71 Reach Kr (8 <u>pth (ft)</u> 2 <u>1/days)</u> 5 1/days)		lysis Temperature (°C) 22.080 Reach WDRatio 30.513 Reach NH3-N (mg/L) 1.46 Kr Equation Owens	Analysis pH 7.505 Reach Velocity (fps) 0.081 Reach Kn (1/days) 0.822 Reach DO Goal (mg/L) 6
Reach Travel Time (days) 0.105	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.011 0.021 0.032 0.042 0.053 0.063 0.074 0.084 0.095	7.08 7.02 6.97 6.91 6.85 6.80 6.74 6.68 6.63 6.57	1.45 1.44 1.42 1.41 1.40 1.39 1.38 1.36 1.35	6.69 6.87 7.03 7.16 7.27 7.37 7.46 7.49 7.49	
RMI 21.840 Reach Width (ft) 15.129 Reach CBOD5 (mg/L) 6.57 Reach DO (mg/L) 7.495	Total Discharge 0.16 Reach De 0.50 Reach Kc (0.70 Reach Kr (15.48	8 pth (ft) 0 1/days) 0 1/days)		lysis Temperature (°C) 22.077 Reach WDRatio 30.275 Reach NH3-N (mg/L) 1.34 Kr Equation Owens	Analysis pH 7.504 Reach Velocity (fps) 0.083 Reach Kn (1/days) 0.821 Reach DO Goal (mg/L) 6
Reach Travel Time (days) 0.126	7ravTime (days) 0.013 0.025 0.038 0.050 0.063 0.075 0.088 0.100 0.113 0.126	Subreach CBOD5 (mg/L) 6.50 6.44 6.38 6.32 6.26 6.20 6.14 6.08 6.02 5.96	1.33 1.31 1.30 1.28 1.27 1.26 1.25 1.23 1.22	D.O. (mg/L) 7.49 7.49 7.49 7.49 7.49 7.49 7.49 7.49	

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
15	62491			ELK CREEK	
RMI 21.670 Reach Width (ft) 15.089 Reach CBOD5 (mg/L) 5.90 Reach DO (mg/L) 7.506	Total Discharge 0.16 Reach De 0.50 Reach Kc (0.35 Reach Kr (8 pth (ft) 0 1/days) 5 1/days)		22.044 Reach WDRatio 30.169 each NH3-N (mg/L) 1.13 Kr Equation Owens	Analysis pH 7.505 Reach Velocity (fps) 0.084 Reach Kn (1/days) 0.819 Reach DO Goal (mg/L) 6
Reach Travel Time (days) 2.771	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.277 0.554 0.831 1.108 1.385 1.662 1.939 2.216 2.493 2.771	5.29 4.75 4.26 3.83 3.43 3.08 2.77 2.48 2.23 2.00	0.90 0.72 0.57 0.46 0.36 0.29 0.23 0.18 0.15	7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	
RMI 17.850 Reach Width (ft) 21.982 Reach CBOD5 (mg/L) 6.70 Reach DO (mg/L) 6.256	Total Discharge 0.54 Reach De 0.57 Reach Kc (0.50 Reach Kr (3.90	3 pth (ft) 9 1/days) 6 1/days)		lysis Temperature (°C) 22.844 Reach WDRatio 37.985 each NH3-N (mg/L) 1.59 Kr Equation Tsivoglou	Analysis pH 7.243 Reach Velocity (fps) 0.116 Reach Kn (1/days) 0.871 Reach DO Goal (mg/L) 6
Reach Travel Time (days) 2.095	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.209 0.419 0.628 0.838 1.047 1.257 1.466 1.676 1.885 2.095	5.94 5.26 4.66 4.13 3.66 3.24 2.87 2.55 2.26 2.00	1.32 1.10 0.92 0.76 0.64 0.53 0.44 0.37 0.31	6.03 6.15 6.40 6.67 6.93 7.17 7.37 7.39 7.39 7.39	

WQM 7.0 Effluent Limits

		tream Code		Stream Name				
	15	62491		ELK CREEK	3			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
21.980	Middleboro	PA0046418	0.168	CBOD5	14.36			
				NH3-N	3.37	6.74		
				Dissolved Oxygen			4	
RMI	Name	Name Permit Number		Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
17.850	McKean Twp	PA0222674	0.375	CBOD5	13.96			
				NH3-N	3.8	7.6		
				Dissolved Oxygen			4	

	SWP Basin	Strea		Stre	eam Name		RMI		ation ft)	Drainage Area (sq mi)	Slo (ft/	V	PWS Vithdrawal (mgd)	Apply FC
	15	624	191 ELK C	REEK			21.67	0	975.92	20.2	0.00	0000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem		Н	Temp	<u>ream</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10 Q1-10 Q30-10	0.019	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 20	0.00	7.60	0.0	0.00	
					Di	scharge I	Data							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt d Disc Flow (mgd)	Disc Flow	Res	erve T ctor	Disc emp °C)	Disc pH		
		an .				0.0000	0.000	0 0.00	000 (0.000	25.00	7.	00	
					Pa	rameter l	Data							
			ī	⊃aramete	r Name				Stream Conc	Fate Coef				
					0015000000	(m	g/L) (m	ng/L) ((mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			1	25.00	0.00	0.00	0.70				

WQM 7.0 Effluent Limits

		tream Code		Stream Name				
	15	62491		ELK CREEK	3			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
21.980	Middleboro	PA0046418	0.168	CBOD5	14.36			
				NH3-N	3.37	6.74		
				Dissolved Oxygen			4	
RMI	Name	Name Permit Number		Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
17.850	McKean Twp	PA0222674	0.375	CBOD5	13.96			
				NH3-N	3.8	7.6		
				Dissolved Oxygen			4	

fProposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Faranielei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.3	XXX	1.0	1/day	Grab
CBOD5 Nov 1 - Apr 30	18.7	28.0	XXX	20.0	30.0	40.0	1/week	24-Hr Composite
CBOD5 May 1 - Oct 31	9.0	14.0	XXX	10.0	15.0	20.0	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	Report	XXX	1/month	Grab
TSS Raw Sewage Influent	Report	Report	XXX	Report	Report	XXX	1/month	Grab
TSS	28.0	42.1	XXX	30.0	45.0	60.0	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E Coli	XXX	XXX	XXXX	XXX	XXX	Report	1/Quarter	Grab
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
Ammonia Nov 1 - Apr 30	7.0	XXX	XXX	7.5	XXX	15.0	1/week	24-Hr Composite
Ammonia May 1 - Oct 31	2.3	XXX	XXX	2.5	XXX	5.0	1/week	24-Hr Composite
Total Phosphorus	0.9	XXX	XXX	1.0	XXX	XXX	1/month	24-Hr Composite

Compliance Sampling Location: Outfall 001 after disinfection