

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0046868

 APS ID
 1069193

 Authorization ID
 1406174

		Applicant and F	acility Information	
Applicant Name	Lower M Authori	Ioreland Township Municipal ty	Facility Name	Lower Moreland Chapel Hill STP
Applicant Address	640 Rec	Lion Road	Facility Address	3865 Heaton Road
	Hunting	don Valley, PA 19006	_	Huntingdon Valley, PA 19006
Applicant Contact	Christop	her Hoffman	Facility Contact	Frank Kolanko
Applicant Phone	(215) 94	7-3100	Facility Phone	(215) 947-3100
Client ID	52545		Site ID	457812
Ch 94 Load Status	Not Ove	rloaded	Municipality	Lower Moreland Township
Connection Status	Self Imp	osed Connection Prohibition	County	Montgomery
Date Application Rece	eived	August 1, 2022	EPA Waived?	Yes
Date Application Acce	Date Application Accepted		If No, Reason	
Purpose of Application NPDES permit renew		NPDES permit renewal.		

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from CKS Engineers (consultant) on behalf of Lower Moreland Township Municipal Authority (permittee/authority) on August 1, 2022 for permittee's Chapel Hill STP (facility). The facility is in Lower Moreland Township, Montgomery County. The treated effluent is discharged through Outfall 001 into an UNT to Southampton Creek in State Watershed 3-J, classified as TSF/MF. The facility is a minor sewage facility (MISF2). The current permit will expire on January 31, 2023. The terms and conditions of the permit will be automatically extended since the renewal application was received at least 180 days prior to the expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this renewal: Total copper limits more stringent, total lead, total zinc, and e-coli monitoring added.

Sludge use and disposal description and location(s): Liquid biosolids are stored in sludge holding tank and hauled off to Hatboro Incinerator for final disposal.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	September 7, 2022
х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	09/07/2022

Discharge, Receiving Waters and Water S	apply Information
Outfall No. 001	Design Flow (MGD)
Latitude <u>40° 9' 39.4"</u>	Longitude75° 3' 40.05"
Quad Name <u>Hatboro</u>	Quad Code 1745
Wastewater Description: Sewage Efflue	nt
Receiving Waters UNT to Southampton	Creek (TSF, MF) Stream Code 02453
NHD Com ID 25599695	RMI 0.4900
Drainage Area 0.63 mi ²	Yield (cfs/mi²) 0.25
Q ₇₋₁₀ Flow (cfs) 0.158	Q7-10 Basis Please see below
Elevation (ft) 190.2	Slope (ft/ft)
Watershed No. 3-J	Chapter 93 Class. TSF, MF
Existing Use TSF/MF	Existing Use Qualifier Ch. 93
Exceptions to Use None	Exceptions to Criteria N/A
Assessment Status Impaired	
	G, FLOW REGIME MODIFICATION, HABITAT ALTERATIONS, ORGANIC ENRICHMENT, PATHOGENS
	POINT SOURCE DISCHARGES, MUNICIPAL POINT SOURCE
	S, MUNICIPAL POINT SOURCE DISCHARGES, RURAL (RESIDENTIAL
	AL (RESIDENTIAL AREAS), RURAL (RESIDENTIAL AREAS)
TMDL Status Final	Name Southampton Creek
Background/Ambient Data	Data Source
pH (SU) <u>7.0</u>	Default
Temperature (°C) <u>20</u>	Default
Hardness (mg/L)100	Default
Other:	
Nearest Downstream Public Water Supply	
PWS Waters	Flow at Intake (cfs)
PWS RMI	Distance from Outfall (mi)

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

USGS's web based watershed delineation tool StreamStats (accessible at <u>https://streamstats.usgs.gov/ss/</u>, accessed on August 26, 2022) was utilized to determine the drainage area and low flow statistics of the receiving stream at discharge point. The drainage area was found to be 0.63 mi². Data from the nearby StreamGage 01467042 was also considered. This gage is located on Pennypack Creek at Pine Road in Philadelphia, PA. Q₇₋₁₀, Q₁₋₁₀, and Q₃₀₋₁₀ values at this gage are 9.3 cfs, 8.6 cfs, and 11.3 cfs respectively for the reporting years of 1965-1981. The drainage area at this gage was found to be 37.9 mi². These values were obtained from the latest USGS streamflow report ⁽¹⁾.

 $\begin{array}{l} Q_{7\text{-}10} \text{ runoff rate} = 9.3 \text{ cfs}/37.9 \text{ mi}^2 = 0.25 \text{ cfs}/\text{mi}^2 \\ Q_{7\text{-}10} = 0.25 \text{ cfs}/\text{mi}^2 * 0.63 \text{ mi}^2 = 0.158 \text{ cfs} \\ Q_{1\text{-}10}/Q_{7\text{-}10} = 8.6 \text{ cfs}/9.3 \text{ cfs} = 0.92 \\ Q_{30\text{-}10}/Q_{7\text{-}10} = 11.3 \text{ cfs}/9.3 \text{ cfs} = 1.22 \end{array}$

⁽¹⁾ Stuckey, M.H., Roland, M.A., 2011, Selected streamflow statistics for streamgage locations in and near Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2011-1070, PP 10, PP 22.

NPDES Permit Fact Sheet Lower Moreland Chapel Hill STP

Wastewater Characteristics:

A median pH of 6.9 and hardness of 160 mg/l from eDMR during dry months July through September for the years 2021-2022, and default discharge temperature of 20°C will be used for modeling, if needed.

Background data:

There is no nearby WQN station from the discharge point. A default pH of 7.0, default stream temperature of 20°C, and default hardness of 100 mg/l will be used, if needed.

Southampton Creek Watershed TMDL:

On June 30, 2008, the United States Environmental Protection Agency (USEPA) Region III established nutrient and sediments Total Maximum Daily Load (TMDLs) for the Southampton Creek Watershed, Pennsylvania. The TMDL requires the discharge from Lower Moreland Township Authority's Chapel Hill WWTP to meet final waste load allocation (WLA) of 0.18 lbs./day or 0.079 mg/l (seasonal from May 1 thru Sept 30). For the remaining time-period, the effluent limit includes a seasonal multiplier of 2.0. No sediment reductions for Chapel Hill WWTP are required under the Southampton Creek TMDL. The previous permits offered a 10-year compliance schedule to meet the final total phosphorus limit required by the TMDL. The final action item on the schedule ended in December 31, 2020. The previous permit had a tiered approach for Total Phosphorus with final limit effective from January 1, 2021. The permit will be renewed with final limit from effective date of the permit as a continuation from last permit.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Trout Stocking (TSF). No High-Quality stream is impacted by this discharge. No Exceptional-Value stream is impacted by this discharge.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

Biosolids Management: Liquid biosolids are stored in sludge holding tank and hauled off to Hatboro Incinerator for final disposal.

	Tre	eatment Facility Summar	у	
eatment Facility Na	me: Chapel Hill WWTP			
WQM Permit No.	Issuance Date			
4600409 A-1	01/23/2018			
4600409	4/7/2000			
	Degree of			Avg Annua
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
		Activated Sludge With		
Sewage	Tertiary	Solids Removal	Ultraviolet	0.279
ludraulia Canaaitu	Organia Canacity			Piecelida
lydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
0.279	653	Not Overloaded	Holding Tank	Other WWTP

Changes Since Last Permit Issuance: None

Treatment Plant Description

Lower Moreland Township Authority owns and operates a WWTP named Chapel Hill Wastewater Treatment Plant, located in Lower Moreland Township, Montgomery County. The WWTP treats up to 279,000 GPD and treated effluent discharges into an UNT to Southampton Creek (TSF/MF). The actual discharge for the years 2021, 2020, and 2019 is 0.191 MGD, 0.176 MGD, and 0.208 MGD, respectively. This WWTP is an activated sludge with solids removal process that includes 1 influent PS and comminutor, one aerated surge tank, two aeration tanks, two final clarifiers, two disk filters, one UV disinfection system, sludge holding tank, chemical addition system, and outfall structure to discharge through

NPDES Permit Fact Sheet Lower Moreland Chapel Hill STP

Outfall 001. The major contributor to the STP is Lower Moreland Township (98%) with a little (2%) flow from Supper Southampton Township. 100% of the flow is separated from stormwater. The permit application indicated there is no industrial contributor but several small commercial contributors to this WWTP.

Existing limits

For Outfall 001:

			Effluent I	Limitations			Monitoring Re	quirements
Parameter	(lbs/d	Units lay) ⁽¹⁾		Concentra		Minimum ⁽²⁾	Required	
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	XXX	xxx	xxx	Continuous	Recorded
pH (S.U.)	ххх	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	6.0	XXX	XXX	XXX	1/day	Grab
CBOD5	23	35	XXX	10	15	20	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	ххх	xxx	Report	xxx	xxx	1/week	24-Hr Composite
TSS	23	35	xxx	10	15	20	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) (*)	xxx	xxx	xxx	200 Geo Mean	xxx	1000	1/week	Grab
UV Intensity (µw/cm²)	XXX	ХХХ	Report	ххх	xxx	xxx	1/day	Measured
Total Nitrogen	Report	XXX	xxx	Report	xxx	xxx	1/week	24-Hr Composite
NH3-N Nov 1 - Apr 30	7.0	xxx	xxx	3.0	xxx	6	1/week	24-Hr Composite
NH3-N May 1 - Oct 31	3.5	XXX	xxx	1.5	xxx	3	1/week	24-Hr Composite
Total Phosphorus Nov 1 - Apr 30	0.36	xxx	xxx	0.16	xxx	0.32	1/week	24-Hr Composite
Total Phosphorus May 1 - Oct 31	0.18	XXX	xxx	0.08	XXX	0.16	1/week	24-Hr Composite
Copper, Total	XXX	XXX	xxx	0.023	0.035 Daily Max	0.046	1/week	24-Hr Composite
Hardness, Total (as CaCO3)	xxx	XXX	xxx	Report	xxx	xxx	1/month	24-Hr Composite

Compliance History

DMR Data for Outfall 001 (from July 1, 2021 to June 30, 2022)

Parameter	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21
Flow (MGD)												
Average Monthly	0.1499	0.172	0.1735	0.148	0.173	0.167	0.151	0.1682	0.1638	0.1658	0.1614	0.155
Flow (MGD)												
Daily Maximum	0.1791	0.228	0.2778	0.1714	0.246	0.197	0.171	0.2091	0.2089	0.2795	0.2107	0.194
pH (S.U.)												
Instantaneous												
Minimum	6.6	6.6	6.7	6.8	6.6	6.7	6.8	6.7	6.8	6.7	6.7	6.8
pH (S.U.) IMAX	7.1	7.0	7.4	7.4	7.3	7.4	7.4	7.3	7.7	7.1	7.3	7.4
DO (mg/L)												
Instantaneous												
Minimum	7.2	7.5	6.8	8.8	9.0	6.7	8.9	7.7	6.9	6.2	6.5	7.3
CBOD5 (lbs/day)												
Average Monthly	6.0	3.0	3.0	2.0	6.0	3.0	4.0	4.0	3.7	4.3	4.8	7.0
CBOD5 (lbs/day)												
Weekly Average	7.0	4.0	4.0	2.0	14.0	4.0	5.0	5.0	4.6	6.5	6.8	9.4
CBOD5 (mg/L)												
Average Monthly	4.1	2.5	2.0	2.0	4.0	2.0	4.0	3.0	2.7	3.2	3.5	5.4
CBOD5 (mg/L)												
Weekly Average	4.8	3.4	2.0	4.0	10.0	2.0	5.0	4.0	3.3	4.8	5.3	6.5
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	166	159	206	122	236	183	162	227	139	144	163	145
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	117	150	144	100	170	130	124	158	116	110	222	114
TSS (lbs/day)												
Average Monthly	3.0	2.4	3.0	2.0	2.0	2.0	4.0	3.0	4.0	15.0	3.0	3.2
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	173	194	287	138	240	137	184	146	162	199	164	185
TSS (lbs/day)												
Weekly Average	4.0	3.0	4.0	5.0	3.0	3.0	5.0	5.0	4.0	51.8	4.5	4.3
TSS (mg/L)												
Average Monthly	1.9	1.9	2.0	2.0	2.0	1.0	3.0	2.0	3.0	11.1	2.2	2.6
TSS (mg/L)												
Raw Sewage Influent	465	465	465		4=0		4.10	465	4.60	4.10		
Average Monthly	123	122	180	114	173	96	140	103	116	149	119	147
TSS (mg/L)				10			10	10	5.0		0.5	0.5
Weekly Average	2.6	2.2	2.0	4.0	2.0	2.0	4.0	4.0	5.0	38.0	3.5	3.5

NPDES Permit Fact Sheet Lower Moreland Chapel Hill STP

NPDES Permit No. PA0046868

Fecal Coliform												
(No./100 ml)												
Geometric Mean	1	1	1	2.0	1	2	2	3	6	6	4	3
Fecal Coliform												
(No./100 ml) IMAX	1	1	2	4.0	1	10	10	10	12	26	7	10
UV Intensity (µw/cm ²)												
Instantaneous												
Minimum	5.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total Nitrogen												
(lbs/day)												
Average Monthly	37	33	36	36.0	42	43	43	43	43	24	32	51
Total Nitrogen (mg/L)												
Average Monthly	26	26	24	29.0	30	30	33	30	31	17.4	24.7	39
Ammonia (lbs./day)												
Average Monthly	0.08	0.1	0.08	0.2	0.6	0.1	0.1	0.1	0.1	1.4	0.1	0.1
Ammonia (mg/L)												
Average Monthly	0.055	0.083	0.1	0.1	0.5	0.1	0.1	0.1	0.1	1.012	0.093	0.1
Total Phosphorus												
(lbs./day)												
Average Monthly	0.09	0.08	0.100	0.200	0.070	0.07	0.20	0.600	0.30	0.30	0.30	0.30
Total Phosphorus												
(mg/L)												
Average Monthly	0.064	0.065	0.0848	0.1334	0.0535	0.051	0.11	0.385	0.230	0.20	0.26	0.20
Total Copper (mg/L)												
Average Monthly	0.008	0.0100	0.0100	0.0100	0.010	0.010	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200
Total Copper (mg/L)												
Daily Maximum	0.008	0.011	0.0130	0.0160	0.010	0.012	0.0200	0.0170	0.0200	0.0200	0.0200	0.0200
Total Hardness (mg/L)												
Average Monthly	213	150	143	164	147	165	185	170	180	145	160	203

Compliance History

Effluent Violations for Outfall 001, from: August 1, 2021 To: June 30, 2022

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TSS	09/30/21	Wkly Avg	51.8	lbs/day	35	lbs/day
TSS	09/30/21	Avg Mo	11.1	mg/L	10	mg/L
TSS	09/30/21	Wkly Avg	38.0	mg/L	15	mg/L
Total Phosphorus	11/30/21	Avg Mo	0.600	lbs/day	.36	lbs/day
Total Phosphorus	08/31/21	Avg Mo	0.30	lbs/day	.18	lbs/day

NPDES Permit No. PA0046868

NPDES Permit Fact Sheet Lower Moreland Chapel Hill STP

Total Phosphorus	10/31/21	Avg Mo	0.30	lbs/day	.18	lbs/day
Total Phosphorus	09/30/21	Avg Mo	0.30	lbs/day	.18	lbs/day
Total Phosphorus	09/30/21	Avg Mo	0.20	mg/L	.08	mg/L
Total Phosphorus	08/31/21	Avg Mo	0.26	mg/L	.08	mg/L
Total Phosphorus	11/30/21	Avg Mo	0.385	mg/L	.16	mg/L
Total Phosphorus	10/31/21	Avg Mo	0.230	mg/L	.08	mg/L

Summary of Inspections:

January 12, 2022: CEI conducted. No violation noted. The effluent limits violations related to total Phosphorus in the year 2021 was likely due to ACH PAC feed pump not operating properly. The pump was replaced along with new electronics to provide a more consistent chemical feed. After the pump was replaced, the effluent phosphorus concentration was reduced significantly and in compliance with winter effluent limits. The effluent being discharged was very clear.

July 21, 2021: CEI conducted. No violation noted. Many upgrades were made including 0.1-micron membrane filters and associated polymer coagulation, mixing, and floc tanks added; surge tank diffusers replaced, and tank was painted; VFD was added; new DO diffusers were added to the aeration tank etc.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.279
Latitude	40º 9' 39.4"		Longitude	-75º 3' 40.05"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform	200 / 100 ml	Geo Mean	_	DEBC, 92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	1,000 / 100 ml	IMAX, 10% rule	-	DRBC
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

WQM 7.0:

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD₅, NH₃-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. The model was utilized for this permit renewal by using updated Q_{7-10} and historic background water quality levels of the receiving stream. The following data were used in the attached computer model of the stream:

٠	Discharge pH	6.9	(median Jul-Sep, 2021-2022, eDMR data)
٠	Discharge Temperature	20°C	(Default per 391-2000-007)
٠	Discharge Hardness	160 mg/l	(median Jul-Sep, 2021-2022, eDMR data)
٠	Stream pH	7.0	(Default per 391-2000-013)
٠	Stream Temperature	20°C	(Default per 391-2000-013, TSF/CWF)
٠	Stream Hardness	100 mg/l	(Default)

The following nodes were considered in modeling:

Node 1:	At Outfall 001 on UNT	To Southampton Creek (02453)
	Elevation:	190.20 ft (USGS National Map viewer, 08/26/2022)
	Drainage Area:	0.63 mi ² (StreamStat Version 3.0, 06/24/2022)
	River Mile Index:	0.49 (PA DEP eMapPA)
	Low Flow Yield:	0.25 cfs/mi ²
	Discharge Flow:	0.279 MGD
Node 2:	At confluence with So	uthampton Creek
Node 2:	At confluence with So Elevation:	uthampton Creek 174.15 ft (USGS National Map viewer, 08/26/2022)
Node 2:		•
Node 2:	Elevation:	174.15 ft (USGS National Map viewer, 08/26/2022)
Node 2:	Elevation: Drainage Area:	174.15 ft (USGS National Map viewer, 08/26/2022) 0.79 mi ² (StreamStat Version 3.0, 08/26/2022)

<u>NH₃-N:</u>

WQM 7.0 suggested NH₃-N limit of 1.5 mg/l as monthly average and 3.0 mg/l as IMAX limit during summer to protect water quality standards. These are the same as existing limits and will be carried over. The winter limits are calculated by multiplying the summer limit with a factor of 2. The mass loads are calculated at a flow of 0.279 MGD.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 10 mg/l. this is the same as existing limit and will be carried over. The IMAX limit is calculated by multiplying the average monthly value with a factor of 2. The mass loads are calculated at a flow of 0.279 MGD.

Dissolved Oxygen (DO):

The existing permit has a minimum DO of 6.0 mg/I Per Pa Code 25 Ch.93.7 which is also supported by WMS output and will be carried over.

Toxics:

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:	4	
--------------------	---	--

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.052	0.08	22.3	34.6	34.6	µg/L	22.3	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	Report	Report	Report	Report	Report	µg/L	6.91	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	163	AFC	Discharge Conc > 10% WQBEL (no RP)

Total Copper: The current permit has an average monthly, daily maximum, and IMAX Total Copper limit of 23 ug/l, 35 ug/l, and 46 ug/l respectively. The modeling suggests 22.3 ug/l as AML, 34.6 ug/l as MDL and IMAX, which are a little more

NPDES Permit Fact Sheet Lower Moreland Chapel Hill STP

stringent than current permit. More stringent limits will be imposed. Since existing limits and proposed new limits are very close and the permittee is meeting the current limits, no schedule is needed. Please note that per a study performed by the permittee in 2006, a chemical translator of 0.7479 was used in TMS.

<u>Total Lead:</u> This is a new parameter with monitoring recommendation on this renewal. The permittee will be required to collect quarterly samples for this pollutant and the data will be used for RP analysis in next permit renewal.

<u>Total Zinc:</u> This is a new parameter with monitoring recommendation on this renewal. The permittee will be required to collect quarterly samples for this pollutant and the data will be used for RP analysis in next permit renewal.

<u>Total Hardness:</u> Since Total Copper is a hardness-based pollutant, an effluent Total Hardness reporting requirement was included in the last permit which will be carried over.

Additional Considerations

Fecal Coliform:

The seasonal effluent limitations for fecal coliform are based on Chapter 92a (§ 92a.47(4) & (5)) of DEP's regulations and Delaware River Basin Commission's (DRBC's) Water Quality Regulations at § 4.30.4.A. DEP's regulations govern the summer limits for fecal coliform while the winter limits are based on DRBC's regulations. The DRBC regulations state that during winter season from October through April, the instantaneous maximum concentration of fecal coliform organisms shall not be greater than 1,000 per 100 milliliters in more than 10 percent of the samples tested. These are the same as existing permit limits and will be carried over.

E. Coli:

DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends quarterly E. Coli monitoring for all dischargers with flow between ≥0.05 MGD to <1.0 MGD, in support of Pa Code 25 §92a.61. This requirement will be applied from this permit term.

<u>рН:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 § 95.2(1)) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The current permit has AML, Weekly Average, and IMAX concentrationbased limits of 10 mg/l, 15 mg/l, and 20 mg/l, respectively which will be carried over. The mass-based AML and weekly average limits are calculated for a flow of 0.279 MGD, which will also be carried over.

UV Disinfection:

PADEP's SOP BCW-PMT-033 recommends UV parameter monitoring where UV is used as a method of disinfection, with the same frequency as would be if Chlorine is used for disinfection. The existing permit has a daily UV intensity reporting requirement in μ W/cm² which will be carried over.

Flow, Influent BOD5, and Influent TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). To meet the Ch. 94 requirements, influent BOD5 and TSS monitoring will be continued.

Best Professional Judgement (BPJ):

Total Nitrogen:

PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria. This is an existing requirement and will be carried over.

Total Phosphorus:

As stated in page 3 of this report, the facility was allocated a WLA in Southampton Creek Watershed TMDL. The summer limits are 0.08 mg/l as AML and 0.16 mg/l as IMAX (corresponding AML mass limit is 0.18 lbs./day). The winter limits are 0.16 mg/l as AML and 0.32 mg/l as IMAX (corresponding AML mass limit is 0.36 lbs./day). As stated in page 7 of this report, the permittee was having difficulties in meeting TP limits, however, after replacing the chemical feed pump the facility is now in compliance with the limits.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Anti-Backsliding

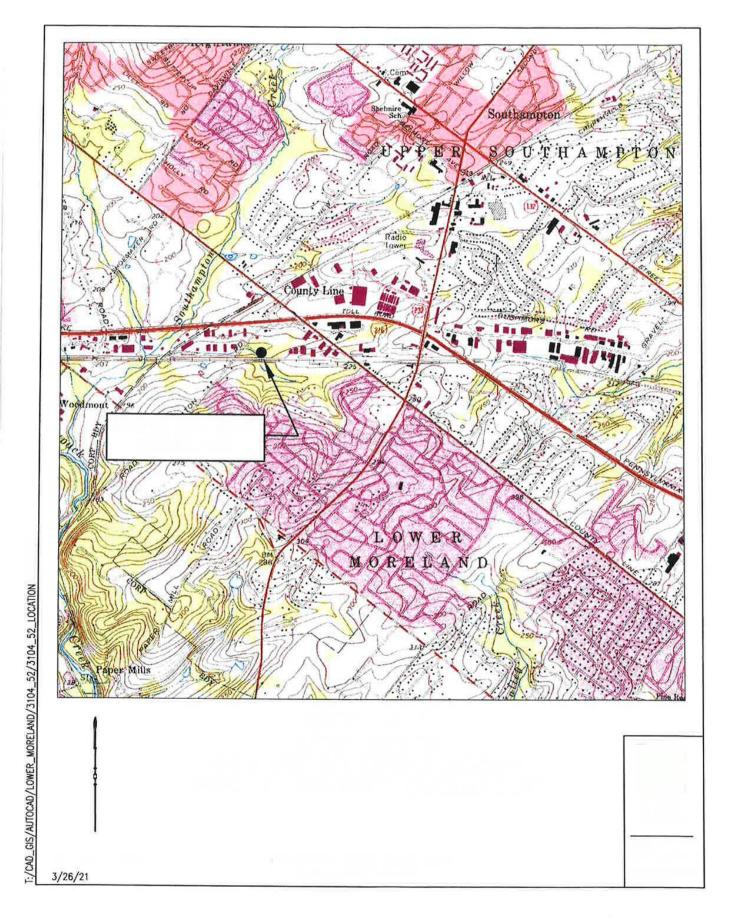
The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

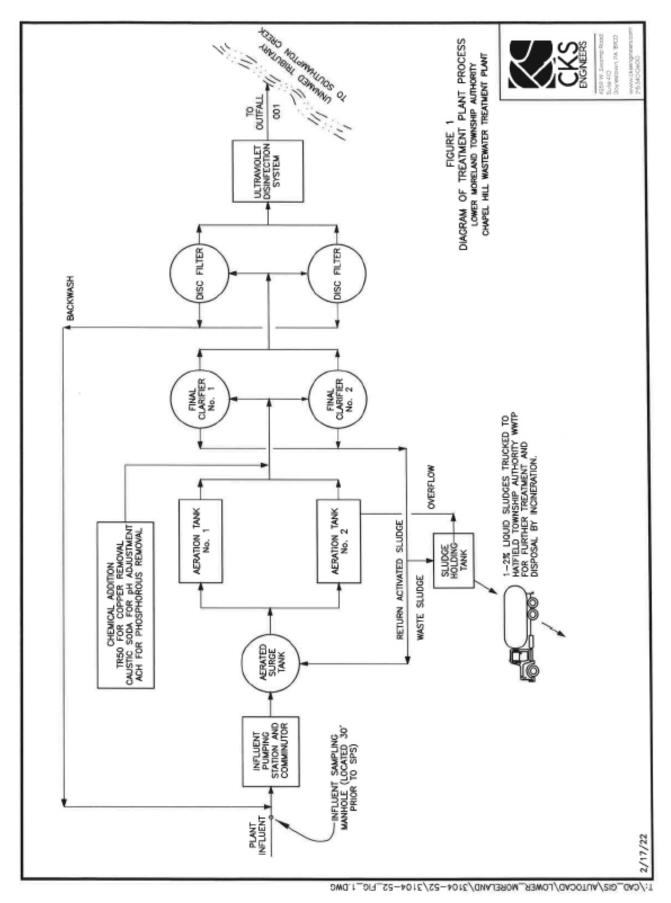
Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent Lir	nitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentratio	ons (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	ххх	XXX	xxx	Continuous	Recorded
pH (S.U.)	XXX	xxx	6.0	ххх	XXX	9.0	1/day	Grab
DO	ХХХ	xxx	6.0	XXX	XXX	ХХХ	1/day	Grab
CBOD5	23	35	xxx	10	15	20	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	ХХХ	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	xxx	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	23	35	XXX	10	15	20	1/week	24-Hr Composite
Fecal Coliform (No./100 ml)	ххх	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	ххх	xxx	xxx	XXX	XXX	Report	1/quarter	Grab
UV Intensity (µw/cm ²)	xxx	xxx	Report	XXX	XXX	xxx	1/day	Measured
Total Nitrogen	Report	XXX	XXX	Report	XXX	ХХХ	1/week	24-Hr Composite
Ammonia Nov 1 - Apr 30	7.0	xxx	XXX	3.0	XXX	6	1/week	24-Hr Composite
Ammonia May 1 - Oct 31	3.5	xxx	XXX	1.5	XXX	3	1/week	24-Hr Composite
Total Phosphorus Nov 1 - Apr 30	0.36	xxx	XXX	0.16	XXX	0.32	1/week	24-Hr Composite


Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent Lin	nitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ons (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Total Phosphorus								24-Hr
May 1 - Oct 31	0.18	XXX	XXX	0.08	XXX	0.16	1/week	Composite
					0.0346			24-Hr
Total Copper	XXX	XXX	XXX	0.0223	Daily Max	0.0346	1/week	Composite
								24-Hr
Total Lead	XXX	XXX	XXX	Report	Report	XXX	1/quarter	Composite
				•			•	24-Hr
Total Zinc	XXX	XXX	XXX	Report	Report	XXX	1/quarter	Composite
				•				24-Hr
Total Hardness	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite

Compliance Sampling Location: At Outfall 001


Other Comments: None

	Tools and References Used to Develop Permit
	WOM for Windows Model (see Attachment
	WQM for Windows Model (see Attachment) Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: BCW-PMT-033
	Other:

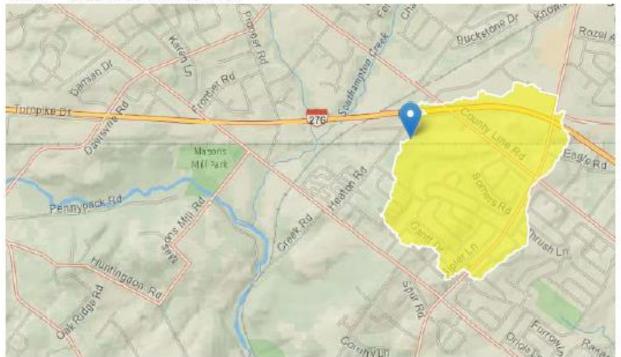
3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0046868

16

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0046868


PA0046868 at Outfall 001

 Region ID:
 PA

 Workspace ID:
 PA20220826140410473000

 Clicked Point (Latitude, Longitude):
 40.16102, -75.06121

 Time:
 2022-08-26 10:04:32 -0400

Collapse All

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	2.7606	degrees
DRNAREA	Area that drains to a point on a stream	0.63	square miles
ROCKDEP	Depth to rock	4.7	feet
URBAN	Percentage of basin with urban development	94.3582	percent

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.63	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	2.7606	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.7	feet	4.13	5.21
URBAN	Percent Urban	94.3582	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

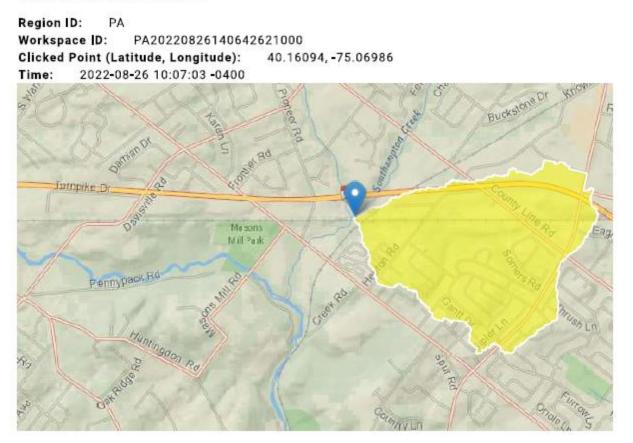
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.228	ft^3/s
30 Day 2 Year Low Flow	0.338	ft^3/s
7 Day 10 Year Low Flow	0.108	ft^3/s
30 Day 10 Year Low Flow	0.165	ft^3/s
90 Day 10 Year Low Flow	0.317	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)


USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0046868

PA0046868 at node 2

Collapse All

Parameter Code Pa			
	arameter Description	Value	Unit
BSLOPD M	lean basin slope measured in degrees	2.8066	degrees
DRNAREA Ar	rea that drains to a point on a stream	0.79	square miles
ROCKDEP D	epth to rock	4.7	feet

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.79 squar miles		1150
BSLOPD	Mean Basin Slope degrees	2.8066 degre	ees 1.7	6.4
ROCKDEP	Depth to Rock	4.7 feet	4.13	5.21
URBAN	Percent Urban	87.775 perce	ent O	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.273	ft^3/s
30 Day 2 Year Low Flow	0.403	ft^3/s
7 Day 10 Year Low Flow	0.129	ft^3/s
30 Day 10 Year Low Flow	0.196	ft^3/s
90 Day 10 Year Low Flow	0.375	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006– 5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

Discharge Information

Inst	ructions D	ischarge Stream												
Faci	ility: Cha	pel Hill STP				NP	DES Per	mit No.:	PA0046	868		Outfall	No.: 001	
Eval	luation Type:	Major Sewage /	Industr	ial Wast	e	Wa	stewater	Descrip	tion: Trea	ated Wa	stewate	r		
					Discha	rge Cha	racterist	ics						
De	sign Flow	Hardness (mg/l)*	-11/	eu		Partia	al Mix Fa	actors (F	°MFs)		Com	olete Mi	x Times	(min)
	(MGD)*	Hardness (mg/l)*	рн (SU)*	AFC		CFC	THE	1 (CRL	Q7	-10	0	2 ⁿ
	0.279	160	6	.9										
						0 If lef	t blank	0.5 lf le	ft blank	() if left blani	k	1 If lef	t blank
	Disch	arge Pollutant	Units	_	scharge	Trib Conc	Stream Conc	Daily	Hourly	Strea m CV	Fate	FOS		Chem

	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		494								
5	Chloride (PWS)	mg/L		122								
	Bromide	mg/L										
6	Sulfate (PWS)	mg/L		46								
	Fluoride (PWS)	mg/L										
	Total Aluminum	µg/L										
	Total Antimony	µg/L										
	Total Arsenic	µg/L										
	Total Barium	µg/L										
	Total Beryllium	µg/L										
	Total Boron	µg/L										
	Total Cadmium	µg/L										
	Total Chromium (III)	µg/L										
	Hexavalent Chromium	µg/L										
	Total Cobalt	µg/L										
	Total Copper	µg/L		18								0.7479
2	Free Cyanide	µg/L										
Group	Total Cyanide	µg/L										
5	Dissolved Iron	µg/L										
-	Total Iron	µg/L										
	Total Lead	µg/L		1.3								
	Total Manganese	µg/L										
	Total Mercury	µg/L										
	Total Nickel	µg/L										
	Total Phenols (Phenolics) (PWS)	µg/L										
	Total Selenium	µg/L										
	Total Silver	µg/L										
	Total Thallium	µg/L										
	Total Zinc	µg/L		34								
	Total Molybdenum	µg/L										
	Acrolein	µg/L	<									
	Acrylamide	µg/L	<									
	Acrylonitrile	µg/L	<									
	Benzene	µg/L	<									
	Bromoform	µg/L	<									

Discharge Information

Toxics Management Spreadsheet Version 1.3, March 2021

					_	-				
	Carbon Tetrachloride	µg/L	<	 Ļ	_	Ļ				
	Chlorobenzene	µg/L			_	╞				
	Chlorodibromomethane	µg/L	<			+				
	Chloroethane	µg/L	<	T		Ť				
	2-Chloroethyl Vinyl Ether	µg/L	<	Ì		Ì				
	Chloroform	µg/L	<	_						
	Dichlorobromomethane	µg/L	<	H		┢				
	1,1-Dichloroethane	µg/L	<	Fi		T				
0	1,2-Dichloroethane	µg/L	<							
<u>e</u>	1,1-Dichloroethylene	µg/L	<			÷				
Group	1,2-Dichloropropane	µg/L	<	H	+	÷				
Ø	1,3-Dichloropropylene	µg/L	<	Ħ	t	t				
	1,4-Dioxane	µg/L	<	Ľ	Ť	Ť				
	Ethylbenzene	µg/L	<		+	t				
	Methyl Bromide	µg/L	<	Ħ	+	÷				
	Methyl Chloride	µg/L	<	\vdash	+	+				
	Methylene Chloride	µg/L	<	Ħ	÷	÷	 			
	1,1,2,2-Tetrachloroethane		<		+	Ŧ	 			
		µg/L	<	╞╡	+	┿				
	Tetrachloroethylene	µg/L	<	H	+	+				
	Toluene	µg/L	<u> </u>	 Ħ	+	÷				
	1,2-trans-Dichloroethylene	µg/L	<			Ļ				
1	1,1,1-Trichloroethane	µg/L	<	H	-	-				
	1,1,2-Trichloroethane	µg/L	<		+	+				
	Trichloroethylene	µg/L	<							
	Vinyl Chloride	µg/L	<			1				
	2-Chlorophenol	µg/L	<							
	2,4-Dichlorophenol	µg/L	<			-				
	2,4-Dimethylphenol	µg/L	<	H		Ŧ				
	4,6-Dinitro-o-Cresol	µg/L	<	T		T				
4	2,4-Dinitrophenol	µg/L	<			Τ				
Group	2-Nitrophenol	µg/L	<		-	÷				
5	4-Nitrophenol	µg/L	<	Ħ	Ŧ	ŧ				
-	p-Chloro-m-Cresol	µg/L	<	H	+	$^{+}$				
	Pentachlorophenol	µg/L	<			t				
	Phenol	µg/L	<	Ħ	+	t				
	2,4,6-Trichlorophenol	µg/L	<	H	╈	╈				
\vdash	Acenaphthene	µg/L	<	Ħ	÷	t	 			
	Acenaphthylene	µg/L	<		+	t	 			
	Anthracene	µg/L	<	╞╡	+	┿				
	Benzidine		<	\vdash	+	+				
		μg/L μg/L	<	 Ħ	Ŧ	÷	 	 		
	Benzo(a)Anthracene		<u> </u>		+	÷	 			
	Benzo(a)Pyrene	µg/L	<			-				
	3,4-Benzofluoranthene	µg/L	<	 ╞╡	+	╞	 	 		
	Benzo(ghi)Perylene	µg/L	<	 Ħ	-	+				
	Benzo(k)Fluoranthene	µg/L	<							
	Bis(2-Chloroethoxy)Methane	µg/L	<	Ц						
	Bis(2-Chloroethyl)Ether	µg/L	<			+				
	Bis(2-Chloroisopropyl)Ether	µg/L	<			+				
	Bis(2-Ethylhexyl)Phthalate	µg/L	<							
	4-Bromophenyl Phenyl Ether	µg/L	<							
	Butyl Benzyl Phthalate	µg/L	<							
	2-Chloronaphthalene	µg/L	<	H		T				
	4-Chlorophenyl Phenyl Ether	µg/L	<			Ì				
	Chrysene	µg/L	<			T				
	Dibenzo(a,h)Anthrancene	µg/L	<	H	+	+				
	1,2-Dichlorobenzene	µg/L	<	Ħ	+	+				
	1,3-Dichlorobenzene	µg/L	<							
	1,4-Dichlorobenzene	µg/L	<		T					
p 5	3,3-Dichlorobenzidine	µg/L	<	Ħ	+	+				
Group	Diethyl Phthalate	μg/L	<	\vdash	+	+				
5	Dimethyl Phthalate		<	Ħ		+				
	Di-n-Butyl Phthalate	µg/L	<	Ð	Ì	Ì				
		µg/L	<u> </u>	H	-	-				
	2,4-Dinitrotoluene	µg/L	<							

				_	_	_						_
	2,6-Dinitrotoluene	µg/L	<			Ì	1			 		
	Di-n-Octyl Phthalate	µg/L	<									
	1,2-Diphenylhydrazine	µg/L	<	\vdash								
	Fluoranthene	µg/L	۷	H	-							
	Fluorene	µg/L	<	Fi	7	1						11
	Hexachlorobenzene	µg/L	<									
	Hexachlorobutadiene	µg/L	<			_						
	Hexachlorocyclopentadiene	µg/L	<	 Ħ	=	+						++
			<	 H	+	+						++
	Hexachloroethane	µg/L		 Ħ	╡	+	<u> </u>				╞╪╴	╪╡
	Indeno(1,2,3-cd)Pyrene	µg/L	<	Ħ	Ì	Ť	<u> </u>			 		++
	Isophorone	µg/L	<				1					
	Naphthalene	µg/L	<									
	Nitrobenzene	µg/L	<	\vdash	_	_	-					
	n-Nitrosodimethylamine	µg/L	<	H	-	+						++
	n-Nitrosodi-n-Propylamine	µg/L	۷	Fi	7	-						
	n-Nitrosodiphenylamine	µg/L	<									
	Phenanthrene	µg/L	<			_						
	Pyrene	µg/L	<	 Ħ	=	+	-					++
	1,2,4-Trichlorobenzene		<	H	+	+						++
_	Aldrin	µg/L	/ v	H	+	+				 	╞╞╞	++
		µg/L		 Ħ	Ŧ	Ŧ	<u> </u>			 		##
	alpha-BHC	µg/L	<				1					
	beta-BHC	µg/L	<	Ц								
	gamma-BHC	µg/L	<	Ц			-					
	delta BHC	µg/L	<	H	-		-					
	Chlordane	µg/L	۷	F		-	-					
	4.4-DDT	µg/L	<	Ħ		Ť						
	4,4-DDE	µg/L	<									
	4,4-DDD	µg/L	<	 Ħ	_	+	-					++
	Dieldrin	µg/L	<	 H	+	+						++
				 H	+	+				 		++
	alpha-Endosulfan	µg/L	<	Ħ	+	÷	<u> </u>					++
	beta-Endosulfan	µg/L	۷			Ì	1					
b	Endosulfan Sulfate	µg/L	<							 		
<u> </u>	Endrin	µg/L	<	Ц								
້ອ	Endrin Aldehyde	µg/L	<	\vdash								
	Heptachlor	µg/L	<	H		+						
	Heptachlor Epoxide	µg/L	۷									
	PCB-1016	µg/L	<									
	PCB-1221	µg/L	<	Ħ	-	+	-					
	PCB-1232	µg/L	<	Ħ	=	+	-					++
	PCB-1242	µg/L	<	 H	+	-	<u> </u>	 				
	PCB-1248		· ·				1					
			1	Π	Ŧ	+						╞
		µg/L	< .				-					
	PCB-1254	µg/L	<									
	PCB-1254 PCB-1260	μg/L μg/L	v v									
	PCB-1254 PCB-1260 PCBs, Total	μg/L μg/L μg/L	v v v				-					
	PCB-1254 PCB-1260 PCBs, Total Toxaphene	μg/L μg/L μg/L μg/L	vvvv									
	PCB-1254 PCB-1260 PCBs, Total	μg/L μg/L μg/L	v v v									
	PCB-1254 PCB-1260 PCBs, Total Toxaphene	μg/L μg/L μg/L μg/L	vvvv									
7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD	μg/L μg/L μg/L μg/L ng/L	vvvv									
7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta	μց/L μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L	v v v v v				- - - - - - - - - - - - - - - - - - -					
7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228	<mark>µg/L µg/L µg/L µg/L ng/L pCi/L pCi/L pCi/L</mark>	v v v v v v									
sroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium	μց/L μg/L μg/L μg/L ng/L pCi/L pCi/L pCi/L μg/L	v v v v v v v v									
sroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v									
sroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium	μց/L μg/L μg/L μg/L ng/L pCi/L pCi/L pCi/L μg/L	v v v v v v v v									
iroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									
iroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									
iroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									
iroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									
iroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									
sroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									
sroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									
sroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									
sroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									
sroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									
sroup 7	PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	μg/L μg/L μg/L ng/L ng/L pCi/L pCi/L μg/L μg/L	v v v v v v v v									

Stream / Surface Water Information

Toxics Management Spreadsheet Version 1.3, March 2021

Chapel Hill STP, NPDES Permit No. PA0046868, Outfall 001

tructions Discharge Stre

Receiving Surface Water Name:

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	002453	0.49	190.2	0.63			Yes
End of Reach 1	002453	0	174.15	0.79			Yes
-							

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

	Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	is
	Location	TXIVI1	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Po	oint of Discharge	0.49	0.25										100	7		
E	End of Reach 1	0	0.25													

Qh

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	n	Analys	is
Location	TSW1	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	0.49														
End of Reach 1	0														

Stream / Surface Water Information

9/7/2022

Page 4

	pennsylvania
\bowtie	DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Chapel Hill STP, NPDES Permit No. PA0046868, Outfall 001

Instructions Results	RETURN			SAVE AS	DDE	PRINT	() A	All 🔿 Inputs 🔿 Results 🔿 Limits
instructions Results	Cheronin	TO INFO		SAVEAS		C FRIN	, , ,	
Hydrodynamics								
Wasteload Allocations								
AFC cc	T (min): 0.	188	PMF:	1	Ana	lysis Hardne	ss (mg/l):	143.98 Analysis pH: 6.92
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	18.944	25.3	34.6	Chem Translator of 0.748 applied
Total Lead	0	0		0	95.801	130	177	Chem Translator of 0.738 applied
Total Zinc	0	0		0	159.562	163	223	Chem Translator of 0.978 applied
CFC CC	• •	188	PMF:	1	[Ana	alysis Hardne	ess (mg/l):	143.96 Analysis pH: 6.92
Pollutants	Conc (up/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	12.227	16.3	22.3	Chem Translator of 0.748 applied
Total Lead	0	0		0	3.733	5.06	6.91	Chem Translator of 0.738 applied
Total Zinc	0	0		0	160.868	163	223	Chem Translator of 0.986 applied
<i>⊡ тнн</i> сс	• • -	188	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (up/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Outral (DIALO)	-				050 000	050 000		

Model Results

Sulfate (PWS)

0

0

9/7/2022

250,000 250,000

N/A

0

Page 5

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0046868

Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
CRL CC	T (min): 0.1	724	PMF:	1	[Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (uo/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.052	0.08	22.3	34.6	34.6	µg/L	22.3	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	Report	Report	Report	Report	Report	µg/L	6.91	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	163	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Sulfate (PWS)	N/A	N/A	PWS Not Applicable

Model Results

9/7/2022

Page 6

	SWP Basin			Stre	am Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withdi (mg	rawal	Apply FC
	03J	2	453 Trib 02	453 to So	outhampton	Creek	0.49	90	190.20	0.63	0.0000	D	0.00	\checkmark
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Те	<u>Stream</u> mp	pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.250	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 2	0.00 7.	.00	0.00	0.00	
					Di	scharge	Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc	Res V Fa	erve Tei ctor	sc [mp C))isc pH		
		Chap	el Hill STP	PAG	046868	0.279	0 0.279	0 0.27	790 (0.000	20.00	6.90		
					Pa	arameter	Data							
				Parameter	Name	_			Stream Conc	Fate Coef				
				arameter	Marine	(m	ig/L) (n	ng/L) ((mg/L)	(1/days)				
	_		CBOD5				10.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			6.00	8.24	0.00	0.00				
			NH3-N				1.50	0.00	0.00	0.70				

Input Data WQM 7.0

Stream Data Design Cond. LFY (cfsm) Trib Flow Rch Flow Rch Trav (days) Rch Velocity Rch Ratio WD Width Rch Depth Temp PH Temp PH Q7-10 0.250 0.00 0.00 0.000 0.000 0.00		SWF Basi			Stre	eam Name		RMI	Elevat (ft)		rainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
LFY Trib Stream Rch Rch Velocity Ratio Width Depth Temp pH Temp pH Cond. (cfsm) (cfs) (cfs) (cfs) (cfs) (fps) (fps) (ft) (ft) (ft) (etc) (etc)		03J	2	453 Trib 02	2453 to Se	outhampton	Creek	0.00	0 17	4.15	0.79	0.00000	0.00	\checkmark
Design Cond. Flow Flow Trav Velocity Ratio Width Depth Temp pH Temp pH Cond. (efsm) (efs) (efs) (days) (fps) (ft) (ft)<						St	ream Dat	a						
(cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C) Q7-10 0.250 0.00 0.00 0.000 0.00		LFY			Trav							Tem		
Q1-10 0.00 0.00 0.000 Disc <	eena.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q30-10 0.00 0.00 0.000 0.000 0.000 Name Permit Number Flow	Q7-10	0.250	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.0	00 7.0	0 (0.0 0.0)
Discharge Data Existing Permitted Design Disc Disc Disc Disc Disc Disc Disc Reserve Temp pH Name Permit Number Flow Flow Flow Flow Factor (mgd) (mgd) (°C) 0.0000 0.0000 0.0000 0.000 25.00 7.00 Parameter Data	Q1-10		0.00	0.00	0.000	0.000								
Name Permit Number Existing Disc Permitted Design Disc Disc Disc Disc Temp Disc pH Name Permit Number Flow	Q30-10		0.00	0.00	0.000	0.000								
Name Permit Number Disc Disc Disc Reserve Temp pH Flow Flow Flow Flow Flow Flow C(mgd) (mgd) (*C) 0.0000 0.0000 0.0000 0.0000 25.00 7.00 Parameter Data						Di	scharge [Data						
(mgd) (mgd) (mgd) (*C) 0.0000 0.0000 0.0000 0.000 25.00 7.00 Parameter Data				Name	Per	mit Number	Disc	Disc	Disc		ve Tem			
Parameter Data								(mgd))		
							0.000	0.000	0.000	0.0	000 2	5.00	7.00	
Dira Trib Straam Fata						Pa	rameter l	Data						
Conc Conc Conc Coef											Fate			

(mg/L)

25.00

3.00

25.00

(mg/L)

2.00

8.24

0.00

(mg/L) (1/days)

1.50

0.00

0.70

0.00

0.00

0.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Input Data WQM 7.0

Monday, August 29, 2022

		P <u>Basin</u> 03J	Stream Code 2453		<u>Stream Name</u> Trib 02453 to Southampton Creek								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-1	0 Flow												
0.490	0.16	0.00	0.16	.4316	0.00620	.476	7.03	14.79	0.18	0.170	20.00	6.92	
Q1-1	0 Flow												
0.490	0.14	0.00	0.14	.4316	0.00620	NA	NA	NA	0.17	0.172	20.00	6.92	
Q30-	10 Flow												
0.490	0.19	0.00	0.19	.4316	0.00620	NA	NA	NA	0.18	0.165	20.00	6.93	

Monday, August 29, 2022

Version 1.0b

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0046868

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.92	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.22	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		

Monday, August 29, 2022

Version 1.0b

	SWP Basin St	ream Code		Stream Name							
	03J	2453		Trib 02453 to	Southampto	on Creek					
NH3-N	Acute Allocatio	ons									
RMI	Discharge Nan	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction				
0.49	0 Chapel Hill STP	10.16	3	10.16	3	0	0				
NH3-N	Chronic Alloca	tions									
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction				
0.49	0 Chapel Hill STP	2	1.5	2	1.5	0	0				

			CBC			3-N	Dissolved	i Oxygen	Critical	Percent
_	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	multiple	Daseine	muluple	Reach	Reduction
	0.49	Chapel Hill STP	10	10	1.5	1.5	6	6	0	0

Version 1.0b

				mulation	
SWP Basin St	tream Code			Stream Name	
03J	2453		Trib 0245	3 to Southampton Cr	eek
RMI	Total Discharge	e Flow (mgd) Ana	lysis Temperature (°C)	Analysis pH
0.490	0.27	79		20.000	6.925
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
7.034	0.47	76		14.788	0.176
Reach CBOD5 (mg/L)	Reach Kc		R	each NH3-N (mg/L)	Reach Kn (1/days)
7.86	1.38			1.10	0.700
Reach DO (mg/L)	Reach Kr			Kr Equation	Reach DO Goal (mg/L)
6.600	26.7	91		Owens	6
Reach Travel Time (days)		Subreach	Results		
0.170	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.017	7.68	1.09	7.27	
	0.034	7.50	1.07	7.70	
	0.051	7.32	1.06	7.98	
	0.068	7.15	1.05	8.16	
	0.085	6.99	1.04	8.24	
	0.102	6.83	1.02	8.24	
	0.119	6.67	1.01	8.24	
	0.136		1.00	8.24	
	0.153		0.99	8.24	
	0.170		0.98	8.24	

WQM 7.0 D.O.Simulation

Monday, August 29, 2022

Version 1.0b

	SWP Basin St	ream Code		Stream Name	2		
	03J	2453	Tri	b 02453 to Southam	pton Creek		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.490	Chapel Hill STP	PA0046868	0.279	CBOD5	10		
				NH3-N	1.5	3	
				Dissolved Oxygen			6

WQM 7.0 Effluent Limits

Monday, August 29, 2022

Version 1.0b