

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal Facility Type Municipal Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0047201 APS ID 1066334 Authorization ID 1401206

Applicant Name	Tiones	sta Municipal Authority	Facility Name	Tionesta Borough WWTP	
Applicant Address	РО Во	x 408	Facility Address	104 River Street	
	Tiones	ta, PA 16353-0408	<u> </u>	Tionesta, PA 16353-0408	
Applicant Contact		a Crytzer, Borough Manager crytzer@tionestaboro.org)	Facility Contact	Cynthia Crytzer, Borough Manager (cindycrytzer@tionestaboro.org)	
Applicant Phone	(814) 7	755-3502	Facility Phone	(814) 755-3502	
Client ID	(814) 755-3502 66643		Site ID	263865	
Ch 94 Load Status	Not Ov	verloaded	Municipality	_Tionesta Borough	
Connection Status	No Lim	nitations	County	Forest	
Date Application Rece	eived	June 23, 2022	EPA Waived?	Yes	
Date Application Acce	epted	June 29, 2022	If No, Reason	-	

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The Permittee should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS:

- A. Stormwater into sewers
- B. Right of way
- C. Solids handling
- D. Effluent Chlorine Optimization and Minimization

II. Solids Management

There are no open violations in efacts for Client ID (66643) as of 2/1/2024.

Approve	Deny	Signatures	Date	
V		Stephen A. McCauley	2/4/2024	
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	2/1/2024	
X			Okay to Draft	
^		Vacant / Environmental Engineer Manager	JCD 2/5/2024	

Discharge, Receiving Wa	aters and Water Supply Infor	mation		
Outfall No. 001		Design Flow (MGD)	0.250	
Latitude 41° 29' 30	0.00"	Longitude	-79° 27' 34.00"	
Quad Name		Quad Code		
Wastewater Description	n: Sewage Effluent			
Daniel Lan Matain Al	L L (\A(\A(\G))	0	40400	
	legheny River (WWF)	Stream Code	42122	
	00475283	RMI	153	
	720	Yield (cfs/mi²)	0.1 (default value)	
. ,	72.0	Q ₇₋₁₀ Basis	calculated	
` ')33		0.000189	
	3-F	Chapter 93 Class.	WWF	
<u></u>		_		
Exceptions to Use		Exceptions to Criteria		
Assessment Status	Impaired*			
Cause(s) of Impairment	•			
Source(s) of Impairmen	nt Source Unknown			
TMDL Status	-	Name		
Background/Ambient D	ata	Data Source		
pH (SU)		<u>-</u>		
Temperature (°F)				
Hardness (mg/L)				
Other:	<u>-</u>	-		
Nearest Downstream P	ublic Water Supply Intake	Aqua Pennsylvania, Inc Em	lenton	
	gheny River	Flow at Intake (cfs)	1,376	
PWS RMI 90.0		Distance from Outfall (mi)	63.0	

^{* -} The receiving stream is impaired by Mercury. Since this discharge is a POTW with no commercial or industrial users, it is not expected to discharge Mercury. No monitoring or limits will be added with this renewal.

Sludge use and disposal description and location(s):

Solid sludge is hauled in a WM Warren roll off to the Greentree Landfill, and liquid sludge is hauled by CWM Environmental to the Ridgway Borough STP.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.250 MGD of treated sewage from an existing Publicly Owned Treatment Works (POTW) in Tionesta Borough, Forest

County.

Treatment permitted under WQM Permit 2780401 consists of the following: A 580 gallon wet well, one 1" bar screen followed by a 2" bar screen, an aerated, mechanically-cleaned grit chamber, a gravity screen, two Rotating Biological Reactors (RBCs) in parallel with 75,000 square feet of media on each, two 16,441 gallon settling tanks in parallel, and chlorine disinfection with a 6,581 gallon contact tank. A 1,000 gallon aerobic sludge digester and a 2,400 square foot drying bed are used for sludge handling.

1. Streamflow:

Allegheny River at Outfall 001:

Drainage Area: 3,720 sq. mi. (USGS StreamStats)

Yieldrate: 0.1 cfsm (Default used in absence of data)

% of stream allocated: 100% Basis: No nearby discharges

 Q_{7-10} : 372 cfs (Calculated)

2. Wasteflow:

Maximum discharge: 0.25 MGD = 0.38 cfs

Runoff flow period: 24 hours Basis: Runoff flow for municipal STPs

The calculated stream flow (Q7-10) is greater than 3 times the permitted discharge flow. In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, will not be evaluated with this renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

b. <u>Total Suspended Solids</u>

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/quarter.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.05 MGD

and less than 1.0 MGD.

e. Total Phosphorus

Chapter 96.5 does not apply. Therefore, the previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 6.5 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 25°C (default value used for WWF modeling)

Background NH₃-N concentration: <u>0.0</u> mg/l

Basis: Default value

Calculated NH₃-N Summer limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer NH3-N limits above (see Attachment 1). The winter limits are

calculated as three times the summer limits, but since the technology-based limits would govern, they will be used. These limits are the same as the previous permit and will be retained. Per the

SOP, and similar to the previous permit, monitoring for NH3-N will be set year round.

h. CBOD₅

Median discharge pH to be used: 6.5 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 25°C (default value used for WWF modeling)

Background CBOD₅ concentration: <u>2.0</u> mg/l

Basis: Default value

Calculated CBOD₅ limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated CBOD5 limits above (see Attachment 1). These limits are the

same as the previous permit and will be retained.

i. Influent Total Suspended Solids and BOD₅

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, as authorized under Chapter 92a.61.

j. <u>Dissolved Oxygen (DO)</u>

The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. This limit is the same as the previous permit and will be retained.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

k. Disinfection

Ultraviolet (UV) light monitoring

☐ Total Residual Chlorine (TRC) limits: 0.5 mg/l (monthly average)

1.6 mg/l (instantaneous maximum)

Basis: The technology-based TRC limits above were calculated using the Department's TRC

Calculation Spreadsheet (see Attachment 2). The limits are the same as the previous

NPDES Permit and will be retained.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet (see Attachment 3).

Result: None of the discharge concentrations for the parameters sampled were found to be greater than 10% of the calculated WQBELs. No monitoring or limits are required as a result of the Reasonable Potential

Analysis.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate).

Nearest Downstream potable water supply (PWS): Aqua Pennsylvania, Inc. - Emlenton

Distance downstream from the point of discharge: 63.0 miles (approximate)

Parameter	PWS Criteria (mg/l)	Discharge Maximum (mg/l)
TDS	500	280
Chloride	250	140
Bromide	1.0	<0.1
Sulfate	250	21.8

Result: Since none of the parameters are discharged at a concentration greater than the criteria at the PWS, no limits or monitoring are necessary as significant dilution is available.

6. Flow Information:

The Tionesta Borough receives 95% of its flow from the borough. The remaining 5% of its flow comes from the Tionesta Township. The Tionesta Borough and the Tionesta Township are both separate sewer systems.

7. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

8. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

Attachment 3 - Toxics Management Spreadsheet

Attachment 4 - Mussel Impact Evaluation Spreadsheet

(The Attachments above can be found at the end of this document)

Threatened and Endangered Mussel Species Concerns and Considerations

The Allegheny River is known to contain state and federally listed threatened and endangered mussel species. Due to this being a direct discharge to the Allegheny River, potential impacts were evaluated.

The USFWS has indicated that to protect threatened and endangered mussel species, wastewater discharges containing Ammonia-Nitrogen (NH₃-N), Chloride (Cl⁻), Dissolved Nickel, and Dissolved Zinc, where mussels or their habitat exist, can be no more than 1.9 mg/l, 78 mg/l, 7.3 μg/l, and 13.18 μg/l, respectively.

Since this facility was previously identified, the sampling below was collected for Ammonia-Nitrogen, Chloride, and Nickel.

Sampling Data for USFWS Parameters of Concern					
Parameter	NPDES Renewal Application (June 13, 2022)				
Ammonia-Nitrogen (NH ₃ -N) (mg/L)	1.93 avg. / 11.8 max. (11 samples)				
Chloride (mg/L)	69.0 avg. / 140 max. (24 samples)				
Total Nickel (μg/L)	3.1 avg. / 6.0 max. (7 samples)				
Total Zinc (µg/L)	30.0 max. (1 samples)				

The Department required monitoring during the previous NPDES Permit period for Ammonia-Nitrogen, Chloride, and Total Nickel to determine the discharge concentrations for each parameter. Based on the reported sampling data, the Department has determined that the discharge concentrations of Ammonia-Nitrogen, Chloride, and Total Nickel do not show a reasonable potential to cause harm to mussels in the receiving stream. In addition, the Department's Mussel Impact Evaluation Spreadsheet (see Attachment 4) shows the maximum stream impact area (NH3-N) to only be 0.8 square meters when assuming a worst-case scenario of maximum discharge flow at the maximum reported concentration of ammonia-nitrogen and at low flow (Q_{7-10}) stream flow. (JCD) Therefore, additional monitoring for Ammonia-Nitrogen, Chloride, and Total Nickel will not be included with this renewal.

The only data available for Total Zinc was from the 1 sample required with the NPDES Permit renewal. Since Zinc was not required to be monitored in the previous NPDES Permit, the Department has decided to require quarterly monitoring with this renewal. In addition, the monitoring will be for Dissolved Zinc since that is the parameter of concern for mussels as indicated by the USFWS.

Compliance History

DMR Data for Outfall 001 (from December 1, 2022 to November 30, 2023)

Parameter	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22
Flow (MGD)												
Average Monthly	0.028	0.026	0.022	0.033	0.035	0.025	0.035	0.044	0.075	0.050	0.086	0.056
Flow (MGD)												
Daily Maximum	0.145	0.091	0.036	0.159	0.106	0.055	0.088	0.232	0.230	0.186	0.280	0.239
pH (S.U.)												
Instantaneous Minimum	6.25	6.40	6.20	6.22	6.27	6.33	6.31	6.21	6.45	6.31	6.58	6.37
pH (S.U.)												
Instantaneous Maximum	6.84	6.90	6.65	6.69	6.75	6.77	6.82	6.95	7.0	6.92	6.92	7.11
DO (mg/L)												
Instantaneous Minimum	4.50	4.08	4.07	4.09	4.2	4.40	5.13	5.60	7.11	6.60	6.55	6.28
TRC (mg/L)												
Average Monthly	0.43	0.42	0.45	0.44	0.44	0.44	0.42	0.43	0.43	0.43	0.42	0.42
TRC (mg/L)												
Instantaneous Maximum	0.57	0.56	0.59	0.65	0.61	0.58	0.57	0.59	0.56	0.55	0.56	0.56
CBOD5 (lbs/day)												
Average Monthly	0.7	1.0	1.0	0.9	1.0	1.0	2.0	1.0	2.0	2.0	2.0	0.9
CBOD5 (lbs/day)												
Weekly Average	1.0	3	2.0	1.0	2.0	2.0	2.0	2.0	2.0	5.0	2.0	1.0
CBOD5 (mg/L)												
Average Monthly	4.5	4.2	5.3	4.5	6.2	5.5	6.3	4.2	4.0	3.7	3.3	3.1
CBOD5 (mg/L)												
Weekly Average	5.8	5.6	9.8	5.7	7.9	5.8	12.0	4.6	5.0	4.4	4.0	3.3
BOD5 (lbs/day)												
Influent Average Monthly	31.0	33	39.0	39.0	35.0	46.0	58	42.0	49.0	87.0	63.0	41
BOD5 (mg/L)												
Influent Average Monthly	189.0	166	196.0	206.0	212.0	206.0	208	158.0	109.0	151.0	120.0	145
BOD5 (mg/L)												
Influent Weekly Average	228.0	212	267.0	244.0	279.0	280.0	371	197.0	207.0	186.0	151.0	195
TSS (lbs/day)												
Average Monthly	0.5	0.8	0.8	0.7	0.5	1.0	2.0	1.0	2.0	2.0	2.0	1.2
TSS (lbs/day)	_	_					_					_
Influent Average Monthly	24.0	37	24.0	33.0	26.0	31.0	37	31.0	37.0	138.0	53.0	26
TSS (lbs/day)	_		_	_	_	_	_		_	_	_	
Weekly Average	0.7	2	0.9	0.8	0.6	2.0	3.0	1.0	2.0	6.0	3.0	1.0
TSS (mg/L)												
Average Monthly	3.0	4.0	4.0	3.0	3.0	6.0	6.0	5.0	4.0	4.0	3.0	4.0
TSS (mg/L)												
Influent Average Monthly	146.0	169	121.0	170.0	157.0	133.0	137	117.0	81.0	191.0	98.0	91

TSS (mg/L)												
Influent Weekly Average	164.0	207	174.0	210.0	244.0	190.0	202	146.0	124.0	282.0	150.0	142
TSS (mg/L)												
Weekly Average	4.0	6.0	6.0	4.0	3.0	7.0	10.0	6.0	6.0	4.0	5.0	5.0
Fecal Coliform (No./100 ml)												
Geometric Mean	1	1	1	2	1	1	13	1.0	2.0	4	4.0	6
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	2	4	1	7	4	2	455	2.0	4.0	15	22.0	13
Total Nitrogen (lbs/day)												
Average Monthly	4.0	3	8.0	6.0	5.0	3.0	19.0	7.0	8.0	6.0	9.0	6.0
Total Nitrogen (mg/L)												
Average Monthly	26.6	21.4	33.6	37.6	28.0	21.6	39.8	14.6	12.2	15.2	15.7	16.8
Total Nitrogen (mg/L)												
Instantaneous Maximum	26.6	21.4	33.6	37.6	28.0	21.6	39.8	14.6	12.2	15.2	15.7	16.8
Ammonia (lbs/day)												,
Average Monthly	0.08	0.1	2.0	0.5	0.4	0.3	0.2	0.08	0.2	0.1	0.3	0.1
Ammonia (mg/L)												
Average Monthly	0.51	0.8	8.14	3.07	2.39	2.11	0.43	0.17	0.31	0.4	0.55	0.4
Ammonia (mg/L)												
Instantaneous Maximum	0.51	0.8	8.14	3.07	2.39	2.11	0.43	0.17	0.31	0.4	0.55	0.4
Total Phosphorus (lbs/day)	0.0			4.0					4.0			
Average Monthly	0.6	0.7	1.0	1.0	0.9	0.9	1.0	0.7	1.0	0.7	1.0	0.8
Total Phosphorus (mg/L)	4.0=							4 = 0		4.00	0.04	
Average Monthly	4.05	5.35	5.85	5.94	5.66	5.96	2.4	1.58	1.57	1.99	2.31	2.22
Total Phosphorus (mg/L)	4.0=							4 = 0		4.00	0.04	
Instantaneous Maximum	4.05	5.35	5.85	5.94	5.66	5.96	2.4	1.58	1.57	1.99	2.31	2.22
Total Nickel (mg/L)			0.00=1-			0.05			0.00			
Average Quarterly			0.00518			< 0.02			0.02			0.002
Chloride (mg/L)		 4		70.4	00.0	00.5	40.0	540	540	400.0	05.4	
Average Monthly	57.5	57.1	66.3	70.1	62.3	66.5	43.9	54.2	54.2	133.0	85.1	4.31

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations		Monitoring Re	quirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrati	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	52.0	78.0	XXX	25.0	37.5	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	Report	XXX	1/week	24-Hr Composite
TSS	62.0	93.0	XXX	30.0	45.0	60	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	Report	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Total Nitrogen	Report	XXX	XXX	Report	XXX	Report	1/month	24-Hr Composite
Ammonia	Report	xxx	XXX	Report	XXX	Report	1/month	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations							
Parameter	Mass Units	Mass Units (lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required			
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
								24-Hr	
Total Phosphorus	Report	XXX	XXX	Report	XXX	Report	1/month	Composite	
	Report			Report				24-Hr	
Dissolved Zinc	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite	

Compliance Sampling Location: at Outfall 001, after disinfection

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 92a.48. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for influent BOD5 and influent TSS is based on Chapter 92a.61. Monitoring for E. Coli, Ammonia-Nitrogen, Total Nitrogen, Total Phosphorus, and Dissolved Zinc is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits

	SWP Basin Stream			Stream Name	X		
	18A 421	22		ALLEGRENY KI	VER		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
153.000	Tionesta WWTP	PA0047201	0.250	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
18A	42122		Al	LEGHENY RIVER	
RMI	Total Discharge	engle.	<u> Ana</u>	lysis Temperature (°C	
153.000 Reach Width (ft)	0.25 Reach De			25.000 Reach WDRatio	6.999 Reach Velocity (fps)
379.350	1.22			310.618	0.804
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
2.02	0.01			0.03	1.029
Reach DO (mg/L) 7.536	<u>Reach Kr (</u> 0.79			Kr Equation Tsivoglou	Reach DO Goal (mg/L) 5
Reach Travel Time (days)		Subreach	n Results		
0.228	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.023	2.02	0.03	7.54	
	0.046	2.02	0.02	7.54	
	0.068	2.02	0.02	7.54	
	0.091	2.02	0.02	7.54	
	0.114	2.02	0.02	7.54	
	0.137	2.02	0.02	7.54	
	0.160	2.02	0.02	7.54	
	0.182	2.02	0.02	7.54	
	0.205	2.02	0.02	7.54	
	0.228	2.01	0.02	7.54	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Input Data WQM 7.0

					шр	ut Data	I VVQ	WI 7.0						
	SWP Basin			Str	eam Name		RM	I EI	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Appl FC
	18A	42	122 ALLEC	SHENY R	IVER		153.0	000	1033.00	3720.00	0.0000	0	0.00	V
9					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		<u>Tributary</u> np pH	Te	<u>Strear</u> mp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	.00 2	5.00 7.	00	0.00	0.00	
					Di	scharge [Data						1	
			Name	Pe	rmit Number	Existing Disc Flow (mgd)	Permit Disc Flow (mgc	Di v Fl	sc Res	Dis erve Ten ctor (°C	np	Disc pH		
		Tion	sta WWTF	PA	0047201	0.2500	0.00	00 0.	.0000	0.000 2	25.00	6.50		
					Pa	arameter I	Data							
			1	Paramete	r Name	Di Co		Trib Conc	Stream Conc	Fate Coef				
	_					(m	g/L) (mg/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI	E	levation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	18A	421	122 ALLEC	SHENY R	IVER		150.00	00	1030.00	4210.00	0.0000	00	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dept		<u>Tributary</u> np pH	Te	<u>Strean</u> emp	D pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)	('	°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0	.00 2	5.00 7.	00	0.00	0.00	
					Di	scharge I	Data					2		
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	D F	isc Res	Diserve Ter actor	np	Disc pH		
		S-				0.0000	0.000	00 0	0.0000	0.000	25.00	7.00		
					Pa	arameter l	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
	_		20/		The state of the s	(m	g/L) (n	ng/L)	(mg/L)	(1/days)		_		
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			;	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				<u>Stream</u>	<u>Name</u>			
		18A	4:	2122			AL	LEGHEN	IY RIVER			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
153.000	372.00	0.00	372.00	.3868	0.00019	1.221	379.35	310.62	0.80	0.228	25.00	7.00
Q1-1	0 Flow											
153.000	238.08	0.00	238.08	.3868	0.00019	NA	NA	NA	0.63	0.293	25.00	7.00
Q30-	10 Flow	,										
153 000	505 92	0.00	505 92	3868	0.00019	NA	NA	NA	0.95	0 192	25.00	7.00

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
18A	42122	ALLEGHENY RIVER

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
153.000	Tionesta WWTP	11.09	50	11.09	50	0	0
H3-N (Chronic Allocati	ons					
H3-N C	Chronic Allocati	ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	<u>DD5</u>	NH:	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
153.00	Tionesta WWTP	25	25	25	25	4	4	0	0

Attachment 2

TRC EVALUA	ATION				
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9			
372	= Q stream (cfs)	0.5	= CV Daily	
0.25	= Q discharg	je (MGD)	0.5	= CV Hourly	
30	= no. sample	8	1	= AFC_Partial N	flix Factor
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	Aix Factor
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
0.5	= BAT/BPJ V	'alue	720	= CFC_Criteria	Compliance Time (min)
0	= % Factor o	of Safety (FOS)	0	=Decay Coeffic	ient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	306.853	1.3.2.iii	WLA cfc = 299.150
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	114.341	5.1d	LTA_cfc = 173.912
Source		Efflue	nt Limit Calcu	lations	
PENTOXSD TRG	5.1f		AML MULT =	1.231	
PENTOXSD TRG	5.1g	AVG MON	_IMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX	_IMIT (mg/l) =	1.635	
WLA afc	(019/e(-k*Al	FC tc)) + [(AFC Yc*Qs*.019	/Od*e/-k*AF0	: tc))	
WEA alc	AND STATE OF STREET STREET, STREET ST. AU	C Yc*Qs*Xs/Qd)]*(1-FOS/10		,	
LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2+	Name of the last o		
LTA_afc	wla_afc*LTA	5	,,		
WLA_cfc	\$2.50	FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10		_tc))	
LTAMULT cfc		(cvd^2/no_samples+1))-2.32		o samples+1)^(1.5)
LTA_cfc	wla_cfc*LTA	AND TOWNSON TECHNICALESCENIA SERVICE DESCRIPTION OF THE TOWNSON TOWNSON TO SERVICE DESCRIPTION OF THE PROPERTY	o Lintora Zili	o_campios. ()	
Conservation of the Conser					
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	^2/no_samples+	-1))
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IL_MULT)		
INST MAX LIMIT	1.5*((av_moi	n_limit/AML_MULT)/LTAMUL	.T_afc)		

Attachment 3

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions Dis	charge Stream		
Facility: Tione	sta Boroough WWTP	NPDES Permit No.: PA0047201	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: POTW Sewage	

			Discharge	Characteris	Discharge Characteristics										
Design Flow	Hardness (mg/l)*	pH (SU)*	F	Partial Mix F	actors (PMF:	s)	Complete Mix Times (mi								
(MGD)*	Hardness (mg/l)*		AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h							
0.25	100	6.5													

					0 if lef	t blank	0.5 if le	eft blank	C	if left blan	k	1 if left	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
	Total Dissolved Solids (PWS)	mg/L		280									
7	Chloride (PWS)	mg/L		140									
۱ă	Bromide	mg/L	<	0.1									
Group	Sulfate (PWS)	mg/L		21.8									
4000	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L											
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L											
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L											
	Total Copper	mg/L		0.01									
2	Free Cyanide	μg/L	<	0.02									
Group	Total Cyanide	μg/L											
5	Dissolved Iron	μg/L											
	Total Iron	μg/L											
	Total Lead	μg/L											
	Total Manganese	μg/L											
	Total Mercury	μg/L											
	Total Nickel	μg/L		0.006									
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	mg/L		0.03									
	Total Molybdenum	μg/L											
	Acrolein	μg/L	٧										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	٧										
	Bromoform	μg/L	٧										

1	Carbon Tetrachloride	μg/L	<				
	Chlorobenzene	μg/L	_				
	Chlorodibromomethane	μg/L	<				
	Chloroethane		<				
	2-Chloroethyl Vinyl Ether	μg/L	<				
		μg/L	<				
	Chloroform	μg/L		<u> </u>			
	Dichlorobromomethane	μg/L	<				
	1,1-Dichloroethane	μg/L	<				
m	1,2-Dichloroethane	μg/L	<				
Group	1,1-Dichloroethylene	μg/L	<				
1%	1,2-Dichloropropane	μg/L	<				
١٥	1,3-Dichloropropylene	μg/L	<				
	1,4-Dioxane	μg/L	<				
	Ethylbenzene	μg/L	<				
	Methyl Bromide	μg/L	<				
	Methyl Chloride	μg/L	<				
	Methylene Chloride	μg/L	<				
	1,1,2,2-Tetrachloroethane	μg/L	<				
	Tetrachloroethylene	μg/L	<				
	Toluene	μg/L	<				
	1,2-trans-Dichloroethylene	μg/L	<	1			
	· ·		<				
	1,1,1-Trichloroethane	μg/L					
1	1,1,2-Trichloroethane	μg/L	<				
	Trichloroethylene	μg/L	<				
\vdash	Vinyl Chloride	μg/L	<				
	2-Chlorophenol	μg/L	<				
	2,4-Dichlorophenol	μg/L	<				
	2,4-Dimethylphenol	μg/L	<				
	4,6-Dinitro-o-Cresol	μg/L	<				
4	2,4-Dinitrophenol	μg/L	<				
Group	2-Nitrophenol	μg/L	<				
ij	4-Nitrophenol	μg/L	<				
-	p-Chloro-m-Cresol	μg/L	<				
	Pentachlorophenol	μg/L	<				
	Phenol	μg/L	<				
	2,4,6-Trichlorophenol	μg/L	<				
\vdash	Acenaphthene	μg/L	<				
	Acenaphthylene	μg/L	<				
	Anthracene		<	1 1			
		μg/L		1			
	Benzidine	μg/L	<	1			
	Benzo(a) Anthracene	μg/L	<				
	Benzo(a)Pyrene	μg/L	<				
	3,4-Benzofluoranthene	μg/L	<				
1	Benzo(ghi)Perylene	μg/L	<				
1	Benzo(k)Fluoranthene	μg/L	<				
1	Bis(2-Chloroethoxy)Methane	μg/L	<				
1	Bis(2-Chloroethyl)Ether	μg/L	<				
1	Bis(2-Chloroisopropyl)Ether	μg/L	<				
1	Bis(2-Ethylhexyl)Phthalate	μg/L	<				
1	4-Bromophenyl Phenyl Ether	μg/L	<				
1	Butyl Benzyl Phthalate	μg/L	<				
1	2-Chloronaphthalene	μg/L	<				
1	4-Chlorophenyl Phenyl Ether	μg/L	<				
1	Chrysene	µg/L	<				
1	Dibenzo(a,h) Anthrancene	μg/L	<				
1	1,2-Dichlorobenzene	μg/L	<				
1			<				
	1,3-Dichlorobenzene	μg/L					
5	1,4-Dichlorobenzene	μg/L	<				
ΙŽ	3,3-Dichlorobenzidine	μg/L	<				
Group	Diethyl Phthalate	μg/L	<				
۱	Dimethyl Phthalate	μg/L	<				
1	Di-n-Butyl Phthalate	μg/L	<				
	2,4-Dinitrotoluene	μg/L	<				

	0 0 District - L		١.					
	2,6-Dinitrotoluene	μg/L	<					
	Di-n-Octyl Phthalate	μg/L	<					
	1,2-Diphenylhydrazine	μg/L						
	Fluoranthene	μg/L	<					
	Fluorene	μg/L	<					
	Hexachlorobenzene	μg/L	<					
	Hexachlorobutadiene	μg/L	<					
	Hexachlorocyclopentadiene	μg/L	<					
	Hexachloroethane	μg/L	<					
	Indeno(1,2,3-cd)Pyrene	μg/L	<					
	Isophorone	μg/L	<					
	Naphthalene	μg/L	<					
	Nitrobenzene	μg/L	<					
	n-Nitrosodimethylamine	μg/L	<					
	n-Nitrosodi-n-Propylamine	μg/L	<					
	n-Nitrosodiphenylamine	μg/L	<					
	Phenanthrene	μg/L	<					
	Pyrene	μg/L	٧					
	1,2,4-Trichlorobenzene	μg/L	<					
	Aldrin	μg/L	<					
	alpha-BHC	μg/L	<					
	beta-BHC	μg/L	<					
	gamma-BHC	μg/L	<					
	delta BHC	μg/L	<					
	Chlordane	μg/L	<					
	4,4-DDT	μg/L	<					
	4,4-DDE	µg/L	<					
	4,4-DDD	µg/L	<					
	Dieldrin	μg/L	<					
	alpha-Endosulfan	μg/L	<				1	
	beta-Endosulfan	μg/L	<					
0	Endosulfan Sulfate	µg/L	<					
2	Endrin	μg/L	<					
2	Endrin Aldehyde	µg/L	<					
	Heptachlor	µg/L	<					
	<u>'</u>		<		4			
	Heptachlor Epoxide PCB-1016	μg/L	<					
	PCB-1016 PCB-1221	μg/L	<					
		μg/L						
	PCB-1232	μg/L	<					
	PCB-1242	μg/L	<					
	PCB-1248	μg/L	<			-		
	PCB-1254	μg/L	<					
	PCB-1260	μg/L	<					
	PCBs, Total	μg/L	<					
	Toxaphene	μg/L	<					
	2,3,7,8-TCDD	ng/L	<					
	Gross Alpha	pCi/L						
	Total Beta	pCi/L	<					
dnois	Radium 226/228	pCi/L	<					
2	Total Strontium	μg/L	<					
,	Total Uranium	μg/L	<					
	Osmotic Pressure	mOs/kg						
- 1								

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Tionesta Boroough WWTP, NPDES Permit No. PA0047201, Outfall 001

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Tionesta Boroough WWTP, NPDES Permit No. PA0047201, Outfall 001

Instruction	Results		RETUR	RN TO INPU	its (SAVE AS	PDF	PRIN	т	All	○ Inputs	○ Results	O Limits	
	dynamics													
Q 7-10														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs		irge Analy ow (cfs)	sis Slope (fi	t/ft) Depth	(ft) Widt	h (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
153	372			372		0.387	0.0001	9 1.22	1 379	.35	310.618	0.804	0.228	10597.49
150	421			421				9						
Q _h														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs		rge Analy ow (cfs)	sis Slope (fi	t/ft) Depth	(ft) Widt	h (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
153	1311.12			1311.12		0.387	0.0001	9 2.12	5 379	.35	178.503	1.627	0.113	4623.559
150	1460.869			1460.87	ő.									
Wastel ✓ AF	load Allocatio		T (min):	15	PMF:	0.038	Anal	ysis Hardne	ess (mg/l):	1	00	Analysis pH:	6.98	
	Pollutants		Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/l	_)		Co	omments	
Total Di	issolved Solid	ls (PWS)	0	0		0	N/A	N/A	N/A					
	Chloride (PW	,	0	0		0	N/A	N/A	N/A					
	Sulfate (PWS		0	0		0	N/A	N/A	N/A					
	Total Copper		0	0		0	13.439	14.0	521	+-		Chem Transl	ator of 0.96	applied
	Free Cyanide Total Nickel	9	0	0		0	22 468.236	22.0 469	818	+		Chem Transla	tor of 0 000	applied
	Total Zinc		0	0		0	117.180	120	17,447 4,456	+		Chem Transla		
☑ CF		CC.	T (min):	720	PMF:	0.261		lysis Hardne		1	200	Analysis pH:	7.00	
	Pollutants		Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/l	_)		Co	omments	
Total Di	issolved Solid	ls (PWS)	0	0		0	N/A	N/A	N/A				-	

Model Results 1/24/2024 Page 5

Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.956	9.33	2,348	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	1,309	
Total Nickel	0	0		0	52.007	52.2	13,130	Chem Translator of 0.997 applied
Total Zinc	0	0		0	118.139	120	30,159	Chem Translator of 0.986 applied
✓ THH ○	CT (min): 7	20	PMF:	0.261	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	1,007	
Total Nickel	0	0		0	610	610	153,545	
Total Zinc	0	0		0	N/A	N/A	N/A	
☑ CRL ○	` '	20	PMF:	0.395	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
		-			2.5.5	5.000	2000	i

☑ Recommended WQBELs & Monitoring Requirements

0

0

0

0

0

0

N/A

No. Samples/Month: 4

Total Copper

Free Cyanide

Total Nickel

Total Zinc

	Mass	Limits		Concentra	ition Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Model Results 1/24/2024 Page 6

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Copper	0.33	mg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	N/A	N/A	Discharge Conc < TQL
Total Nickel	11,183	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	2.86	mg/L	Discharge Conc ≤ 10% WQBEL

Model Results 1/24/2024 Page 7

Attachment 4

Facility:		Tionesta WWTP						
Permit Number:		PA0047201	Effective: N/A Expiration: N/A					
Outfall No:		001						
Location		Tionesta Borough, Forest County						
Discharg		Allegheny River						
Site Spec	ific Mussel Survey Completed:	No						
n: /	15. 51							
	e and Stream Characteristics		Comments					
Q_s	Stream Flow	240 MGD / 372 cfs	Fact Sheet					
Q_D	Discharge Flow	0.25 MGD / 0.38686 cfs	Fact Sheet					
C _{S(CI} -)	Instream chloride Concentration	16.82 mg/L	WQN 805					
C _{E(Cl-)}	Discharge chloride (existing)	140 mg/L	Max of 24 grab samples					
C _{P(Cl⁻)}	Discharge chloride (proposed)	140 mg/L	Max of 24 grab samples					
C _{S(CI} -)	Instream nickel Concentration	0.02 μg/L	WQN 805					
C _{E(Ni)}	Discharge nickel (existing)	6 μg/L	From renewal application - Max of 3 grab samples					
C _{P(Ni)}	Discharge nickel (proposed)	6 μg/L	From renewal application - Max of 3 grab samples					
C _{S(Zn)}	Instream zinc Concentration	16.26 μg/L	Average WQN data (2010 to 2021 - USGS-03036500)					
C _{E(Zn)}	Discharge zinc (existing)	30 μg/L	From renewal application - Max of 1 grab sample					
Zn _{P(CI} -)	Discharge zinc (proposed)	30 μg/L	From renewal application - Max of 1 grab sample					
C _{S(NH3-N)}	Instream NH ³ -N	0.02 mg/L	WQN 805					
C _{E(NH3-N)}	Discharge NH ³ -N (existing)	11.8 mg/L	From renewal application - Max of 11 samples					
C _{P(NH3-N)}	Discharge NH ³ -N (proposed)	11.8 mg/L	From renewal application - Max of 11 samples					
pH_S	Instream pH	7.69 S.U.	WQN 805 geo mean during critical period					
T_S	Instream Temp.	21.3 °C	WQN 805 median during critical period					
C _{C(NH3-N)}	Ammonia criteria	1.062 mg/L	From ammonia criteria comparison spreadsheet -using instream pH and Temp					
C _{C(CI⁻)}	Chloride criteria	78 mg/L	USFWS criteria					
C _{C(Ni)}	Nickel criteria	7.3 μg/L	USFWS criteria					
C _{C(Zn)}	Zinc criteria	13.18 μg/L	USFWS criteria					
W_s	Stream width	120 meters	Google Earth					

pH_S	7.69 S.U. (Default value is 7.0)						
Ts	21.3 °C (Default value is 20 °)						
Acute (Acute Criteria						
	METHOD and UNITS	CRITERIA		Comments			
	Old CMC (mg TAN/L) =	4.049					
	EPA 2013 CMC (mg TAN/L) =	6.124	Oncorhynchus present	* formula on pg. 41 (plateaus at 15.7 C			
	*	6.124	Oncorhynchus absent	* formula on pg. 42 (plateaus at 10.2 C			
Chronic	c Criteria						
	METHOD and UNITS	CRITERIA		COMMENTS			
	Old CMC (mg TAN/L) =	1.174					
C _C /NH3 N	EPA 2013 CMC (mg TAN/L) =	1.062		* formula on pg. 46 (plateaus at 7 C)			

Endangered Mussel Species Impact Area Calculations:

Existing Area of Impact

☑ N/A - No Site Specific Mussel Survey Completed for this Discharger

		_
Approximate Area of Impact Determined from Survey =	N/A m ²	(Enter N/A if no site specific survey has been completed
Existing Mussel Density within Area of Impact =]
Rabbitsfoot (Quadrula cylindrical)	N/A per m ²]
Northern Riffleshell (Epioblasma torulosa rangiana)	N/A per m²	
Rayed Bean (Villosa fabalis)	N/A per m ²	
Clubshell (<i>Pleurobema clava</i>)	N/A per m²	
Sheepnose (Plethobasus cyphyus)	N/A per m ²	
Snuffbox (Epioblasma triquetra)	N/A per m ²	1
TOTAL	0 per m²	1

Method 1 - Utilizing Site Specific Mussel Survey Information

✓ N/A - No Site Specific Mussel Survey Completed for this Discharger

This method utilizes a simple comparison of the size of the existing area of impact as determined from a site specific mussel survey and the chlorides in the existing discharge compared to the chlorides in the proposed discharge after the facility upgrades treatment technologies. This method is only applicable to where the stream impairment is caused by TDS and/or chlorides as the plume has been delineated through conductivity measurements.

A.	Area of Impact Determined from Survey:	N/A	m²
В.	Chlorides in Existing Discharge:		140 mg/L
C.	Chlorides in Proposed Discharge after Treatment Facility Upgrades:		140 mg/L

D. Approximate Area of Impact	D. Approximate Area of Impact after Treatment Facility Upgrades:					
A/B = D/C	Therefore $D = (A*C)/B$					

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 2 - Mass Balance Relationship of Loading and Assimilative Capacity of Stream

	$L_{S(C)^{-}}$ = Available Chloride Loading in Stream = $C_{C(C)^{-}}$ - $C_{S(C)^{-}}$ X Q _S (MGD) X 8.34 =	122,458 lbs/Day
	$L_{\text{D-MAX(C)}}$ = Current Maximium Discharge Chloride Loading exceeding criteria = $(C_{\text{F(CL)}}, C_{\text{F(CL)}}) \times Q_0 \text{(MGD)} \times 8.34 =$	129 lbs/Day
Chloride (CI)	** Percent of Stream Capacity for Current Loading = L _{D-MAX(CI)} / L _{S(CI)} = ** Percent of Stream Capacity for Current Loading = L _{D-MAX(CI)} / L _{S(CI)} = ** Percent of Stream Capacity for Current Loading = L _{D-MAX(CI)} / L _{S(CI)} = ** Percent of Stream Capacity for Current Loading = L _{D-MAX(CI)} / L _{S(CI)} = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Loading = ** Percent of Stream Capacity for Current Capacity for Capacity	0% of Stream Capacity
de ($L_{D(Cl^{-})}$ = Proposed Discharge Cl ⁻ Loading exceeding criteria after Treatment Facility Upgrades = $(C_{P(Cl^{-})} \times C_{P(Cl^{-})}) \times Q_{0}(MGD) \times 8.34 =$	129.27 lbs/Day
lori	$\%_{P(C)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(C)}$ / $L_{S(C)}$ =	0.11% of Stream Capacity
ಕ	Proposed Area of Impact due to Chloride * = $(\%_{R(C)} \times W_s)^2 \times 0.5 =$	0.0080 m ²
	* assuming equal flow across transect and 90° spread at discharge	0.0080 111
	L _{S(Ni)} = Available Nickel Loading in Stream = $C_{C(Ni)}$ - $C_{S(Ni)}$ X Q _S (MGD) X 8.34 =	14,572 lbs/Day
	$L_{\text{D-MAX}(N)}$ = Current Maximium Discharge Nickel Loading exceeding criteria = $(C_{E(N)}, C_{E(N)}) \times Q_0(\text{MGD}) \times 8.34 =$	-3 lbs/Day
≘	$\mathcal{E}_{\text{E(N)}} = \text{Percent of Stream Capacity for Current Loading} = L_{\text{D-MAX(N)}} / L_{\text{S(N)}} =$	0% of Stream Capacity
Nickel(Ni)		-2.7105 lbs/Day
ick	L _{D(Ni)} = Proposed Discharge Ni Loading exceeding criteria after Treatment Facility Upgrades = (C _{2(Ni)} - C _{2(Ni)}) X Q ₂ (MGD) X 8.34 =	-0.02% of Stream Capacity
Z	$%_{P(N^{i})}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(N^{i})} / L_{S(N^{i})}$ =	0.0002 m ²
	Proposed Area of Impact due to Nickel * = $\{\%_{P(N)} X W_s\}^2 X 0.5 =$	0.0002 111
	* assuming equal flow across transect and 90° spread at discharge	C 105 H. /D.
	$L_{S(Zn)}$ = Available Zinc Loading in Stream = $C_{C(Zn)}$ - $C_{S(Zn)}$ X $Q_{S}(MGD)$ X 8.34 =	-6,165 lbs/Day
	$L_{D-MAX(Zn)} = Current Maximium Discharge Zinc Loading exceeding criteria = {C_{E(Zn)}, C_{E(Zn)}} \times Q_0(MGD) \times 8.34 =$	35 lbs/Day
(uz	$\Re_{E(Zn)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Zn)}$ / $L_{S(Zn)}$ =	-1% of Stream Capacity
Zinc (Zn)	$L_{D(2n)}$ = Proposed Discharge Zn Loading exceeding criteria after Treatment Facility Upgrades = $(C_{P(2n)} - C_{P(2n)}) \times Q_0(MGD) \times 8.34 =$	35.0697 lbs/Day
Z	$\Re_{P(Zn)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Zn)} / L_{S(Zn)}$ =	-0.57% of Stream Capacity
	Proposed Area of Impact due to Zinc * = $(\%_{P(Zn)} \times W_s)^2 \times 0.5 =$	0.2330 m ²
	* assuming equal flow across transect and 90° spread at discharge	
_	$L_{S(NH3-N)}$ = Available NH3-N Loading in Stream = $C_{C(NH3-N)}$ - $C_{S(NH3-N)}$ X Q _S (MGD) X 8.34 =	2,086 lbs/Day
ger	$L_{D-MAX(NH3-N)}$ = Current Maximium Discharge NH3-N Loading = $C_{E(NH3-N)}$ X $Q_D(MGD)$ X 8.34 =	25 lbs/Day
Z it	$\Re_{E(NH3-N)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(NH3-N)} / L_{S(NH3-N)}$ =	1% of Stream Capacity
onia-Nitr (NH3-N)	L _{D(NH3-N)} = Proposed Discharge NH3-N Loading after Treatment Facility Upgrades = C _{P(NH3-N)} - C _{C(NH3-N)} X Q _D (MGD) X 8.34 =	22 lbs/Day
nor S	$\Re_{P(NH3:N)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(NH3:N)} / L_{S(NH3:N)}$ =	1.05% of Stream Capacity
Ammonia-Nitrogen (NH3-N)	Proposed Area of Impact due to NH3-N * = $(\%_{P(NH3-N)} X W_5)^2 X 0.5 =$	0.8008 m ²
٩	* assuming equal flow across transect and 90° spread at discharge	

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 3 - Mass Balance Relationship of Stream Flow, Proposed Effluent Quality, and Mussel Protection Criteria

	$Q_{A(C \cdot)}C_{S(C \cdot)} + Q_DC_{P(C \cdot)} = Q_TC_{C(C \cdot)}$	
	Q _{A(Cl⁻)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D (cfs)$	
	$Q_{A(C \cdot)}C_{S(C \cdot)} + Q_{D}C_{P(C \cdot)} = (Q_{D} + Q_{S})C_{C(C \cdot)}$	
Chloride (CI)	SOLVING FOR $Q_{A(Cl^-)} = [(Q_D C_{P(Cl^-)} / C_{C(Cl^-)}) - Q_D)] / (1 - C_{S(Cl^-)} / C_{C(Cl^-)}) =$	0.39204511 cfs
Ë	% _{P(C -)} = Percent of Stream Width Required to Assimilate Chlorides to Criteria	
울	Concentration = $Q_{A(C T)} / Q_{S}(cfs) =$	0.1054%
0	W _{I(Cl⁻)} = Proposed Width of Stream required to Assimilate Chlorides to Criteria	
	Concentration = W _S X % _{P(C -)}	0.126466 meters
	Proposed Area of Impact due to Chloride * = $(W_{I(C T)})^2 \times 0.5 =$	0.0080 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$Q_{A(N)}C_{S(N)} + Q_DC_{P(N)} = Q_TC_{C(N)}$	
	Q _{A(Ni)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D (cfs)$	
	$Q_{A(N)}C_{S(N)} + Q_DC_{P(N)} = (Q_D + Q_S)C_{C(N)}$	
Nickel (Ni)	SOLVING FOR $Q_{A(Ni)} = [(Q_D C_{P(Ni)} / C_{C(Ni)}) - Q_D)] / (1 - C_{S(Ni)} / C_{C(Ni)}) =$	-0.0690821 cfs
- X	% _{P(C -)} = Percent of Stream Width Required to Assimilate Nickel to Criteria	
ž	Concentration = $Q_{A(N)}/Q_S$ (cfs) =	-0.0186%
00.000	W _{I(Ni)} = Proposed Width of Stream required to Assimilate Nickel to Criteria	
	Concentration = W _S X % _{P(Ni)}	-0.022285 meters
	Proposed Area of Impact due to Nickel * = (W _{I(Ni)}) ² X 0.5 =	0.0002 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$Q_{A(Zn)}C_{S(Zn)} + Q_DC_{P(Zn)} = Q_TC_{C(Zn)}$	

	Q _{A(Zn)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D(cfs)$	
	$Q_{A(Z_n)}C_{S(Z_n)} + Q_DC_{P(Z_n)} = (Q_D + Q_S)C_{C(Z_n)}$	
(uz	SOLVING FOR $Q_{A(Zn)} = [(Q_DC_{PZn})/C_{C(Zn)}) - Q_D]/(1 - C_{S(Zn)}/C_{C(Zn)}) =$	-2.1126575 cfs
Zinc (Zn)	% _{P(Ci')} = Percent of Stream Width Required to Assimilate Zinc to Criteria	
Zii	Concentration = $Q_{A(Zn)} / Q_S(cfs) =$	-0.5679%
	W _{I(Zn)} = Proposed Width of Stream required to Assimilate Zinc to Criteria	
	Concentration = W _S X % _{PZn}	-0.681502 meters
	Proposed Area of Impact due to Chloride * = $(W_{i(C \cdot)})^2 \times 0.5 =$	0.2322 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$Q_{A(NH3-N)}C_{S(NH3-N)} + Q_{D}C_{P(NH3-N)} = Q_{T}C_{C(NH3-N)}$	
9	Q _{A(NH3-N)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
Ammonia-Nitrogen (NH3-N)	$Q_T = Q_S + Q_D (cfs)$	
l Z	$Q_{A(NH3-N)}C_{S(NH3-N)} + Q_DC_{P(NH3-N)} = (Q_D + Q_S)C_{C(NH3-N)}$	
ger	SOLVING FOR $Q_{A(NH3-N)} = [(Q_DC_{P(NH3-N)}/C_{C(NH3-N)}) - Q_D)]/(1 - C_{S(NH3-N)}/C_{C(NH3-N)}) =$	3.986663 cfs
i i	% _{P(NH3 N)} = Percent of Stream Width Required to Assimilate NH3-N to Criteria	
a Z	Concentration = $Q_{A(NH3-N)} / Q_{S}$ (cfs) =	1.0717%
oni	W _{I(NH3-N)} = Proposed Width of Stream required to Assimilate NH3-N to Criteria	
E E	Concentration = W _S X % _{P(NH3-N)}	1.286020 meters
I⊸₹	Proposed Area of Impact due to NH3-N * = $(W_{I(NH3-N)})^2 \times 0.5$ =	0.8269 m ²
	* assuming equal flow across transect and 90° spread at discharge	