

Southeast Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Major

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.	PA0050326
APS ID	1079586
Authorization ID	1424563

Applicant Name	Cleveland Cliffs Plate LLC	Facility Name	Cleveland Cliffs Conshohocken Plant
Applicant Address	900 Conshohocken Road	Facility Address	900 Conshohocken Road
	Conshohocken, PA 19428-1038		Conshohocken, PA 19428-1038
Applicant Contact	Reza Ajalli	Facility Contact	Reza Ajalli
Applicant Phone	(610) 383-2097	Facility Phone	(610) 383-2097
Client ID	360683	Site ID	240175
SIC Code	3312	Municipality	Plymouth Township
SIC Description	Manufacturing - Blast Furnaces and Steel Mills	County	Montgomery
Date Application Rec	eived January 20, 2023	EPA Waived?	No
Date Application Acc	epted	If No, Reason	Major Facility

Summary of Review

The permittee requests approval for the renewal of a National Pollutant Discharge Elimination System (NPDES) Individual Permit to discharge 1.2 MGD of treated industrial wastewater and stormwater from Cleveland Cliffs Conshohocken Plant.

Production operations at the facility consists of hot rolling of steel plate and steel plate heat treating (quench water recycle with limited discharge). Facility's hot rolling mill operations have been idle since August 2018. Cleveland Cliffs has no immediate plans to restart rolling mill production operations, but the facility may resume rolling mill operations during this permit term. Heat treating operations are currently active. Since idling of the rolling mill operations, discharge from Outfall 001 has consisted of essentially on-site well water treated through the facility's wastewater treatment system to maintain equipment in good working condition.

The WWTP is comprised of an influent flume, a concentrator and a 125' diameter clarifier. Influent flow from the mill to the concentrator is dosed with ferric chloride at a rate proportional to flow. Ferric chloride promotes formation of a pin floc as fine, oily particles begin to coagulate. A bar screen ensures effective mixing of ferric chloride with the influent process water stream. The water flows to a quiescent settling basin in the concentrator where the coagulated particles coalesce as a pin floc grows. Oil skimming equipment is active in this area to remove surface oils that have come in with the process water. Heavier scale particles drop out in the concentrator and are removed in an annual maintenance clean out. Once out of the quiescent zone, the water stream is treated with a cationic polymer to further aid in agglomerating the coagulated particles to form a larger floc. The flow exits the concentrator and flows in an underground pipe to the center well of the clarifier. The clarifier flow is designed to provide a 90-minute residence time from center well to outer saw-toothed weir. A sixty-foot skimmer arm rotates capturing surface oils and directs them to a baffle that flows to an API oil/water separator. The waste oil is pumped to one of two secondarily contained waste oil holding tanks for further decanting of free water and periodic removal by a waste oil contractor. A portion of the clarifier effluent is recycled to plant operations and a portion is discharged to Outfall 001.

Approve	Deny	Signatures	Date
Х		Sara Abraham Sara Reji Abraham, E.I.T. / Project Manager	May 10, 2023
Х		Pravin Patel Pravin C. Patel, P.E. / Environmental Engineer Manager	05/10/2023

During the 90-minute residence time, floc continues to grow and sink to the cone bottom clarifier. Rubber squeegees attached to the bottom of the skimmer arm support structure sweep the concrete bottom with each rotation of the skimmer and direct the settled bottoms to a sludge pocket. The sludge that collects in the pocket is periodically pumped to a dewatering facility.

Sodium hypochlorite (disinfectant) and Sodium bisulfite (dechlorination) are listed in the application as wastewater treatment chemicals used at the facility.

DMR review shows the discharge has been in compliance with the permit effluent limitations.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Act 14 Notifications:

Plymouth Township - January 18, 2023 Montgomery Township - January 18, 2023

Permit Conditions:

- A. Necessary Property Rights
- B. Proper Sludge Disposal
- C. WQM Condition
- D. BAT/ELG reopener clause
- E. TRC Minimization
- F. Operations and Maintenance Plan
- G. 2°F Temperature Change
- H. DRBC Additional Requirements
- I. DRBC Docket
- J. Remedial Measures if Public Nuisance
- K. Fire Hydrant Discharge
- L. Dust Control
- M. CWIS Operation
- N. Chemical Additives
- O. Requirements Applicable to Stormwater Outfalls
- P. PCB PMP Requirement

Permittee is requesting that DEP use a production rate of 1540 tons/day for calculation of TBELs based on applicable ELGs. This value was used for the previous permit calculations. If the facility's plans for production are substantially different upon restarting rolling (hot forming) operations, the DEP will be notified. The permittee may need to request for an amendment if necessary.

Applicable effluent limitation guidelines (ELGs) are contained under 40 CFR Part 420, Iron and Steel Manufacturing Point Source Category, Subpart G, Hot Forming Subcategory. Hot forming means those steel operations in which solidified, heated steel is shaped by rolls. The applicable sections under Subpart G are:

420.72 (c)(2) Flat Mills – Carbon Plate Mills and 420.72 (c)(3) Flat Mills – Specialty Plate Mills

The following are the effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT):

(2) Carbon plate mills

	BPT effluent limitations	
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	Kg/kkg (pounds per 1,000 lb)	of product
TSS	0.227	0.0851
O&G	0.0568	
рН	(¹)	(1)

¹ within the range of 6.0 to 9.0

(3) Specialty plate mills.

	BPT effluent limitations	
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	Kg/kkg (pounds per 1,000 lb)	of product
TSS	0.100	0.0376
O&G	0.0250	
рН	(1)	(1)

¹ within the range of 6.0 to 9.0

The facility processes both carbon and specialty steels on the same plate rolling mill equipment. The product mix has historically been approximately 75% (1155 tons/day) carbon steel and 25% (385 tons/day) specialty steels. The following calculation is based on that approximation:

Carbon Steel:

$$1,155 \frac{tons}{day} \left(2,000 \frac{lbs}{tons} \right) = 2310000 \frac{lbs}{day}$$

Specialty Steel:

$$385 \frac{tons}{day} \left(2,000 \frac{lbs}{tons} \right) = 770000 \frac{lbs}{day}$$

TSS:

$$30$$
 – day average limit (carbon steel) = $\frac{0.0851 \, lb}{1,000 \, lbs} \times 2310000 \, \frac{lbs}{day} = 196.581 \, \frac{lbs}{day}$
 30 – day average limit (specialty steel) = $\frac{0.0376 \, lb}{1,000 \, lbs} \times 770000 \, \frac{lbs}{day} = 28.952 \, \frac{lbs}{day}$

30 - day average limit (total) = 225.533 lbs/day

Maximum daily limit (carbon steel) =
$$\frac{0.227lb}{1,000\ lbs} \times 2310000\ \frac{lbs}{day} = 524.37\frac{lbs}{day}$$

Maximum daily limit (specialty steel) = $\frac{0.1\ lb}{1,000\ lbs} \times 770000\ \frac{lbs}{day} = 77\frac{lbs}{day}$

Maximum daily limit (Total) = 601.37 lbs/day

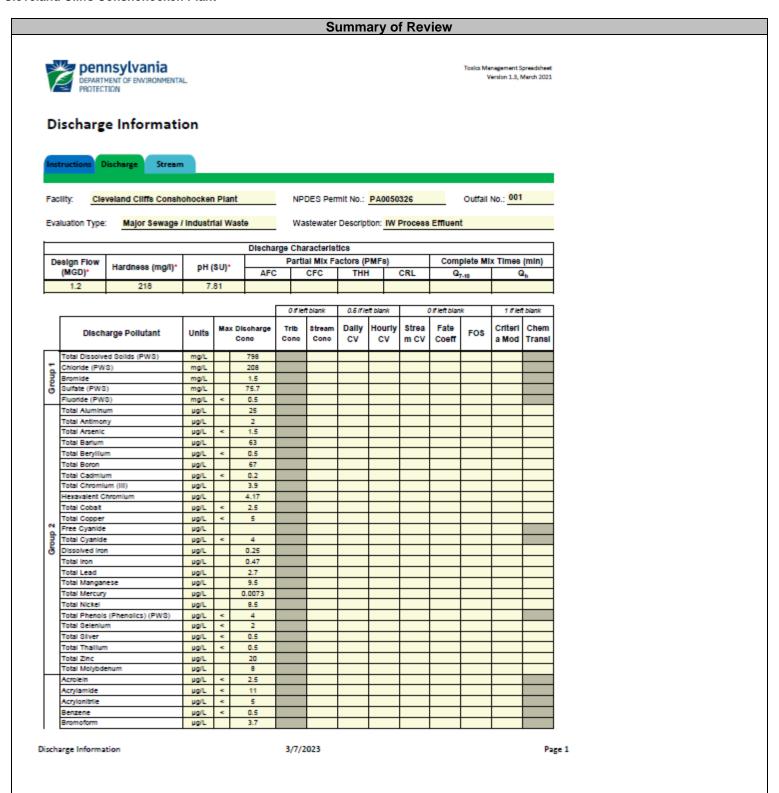
O&G:

Maximum daily limit (carbon steel) =
$$\frac{0.0568 \, lb}{1,000 \, lbs} \times 2310000 \, \frac{lbs}{day} = 131.208 \, \frac{lbs}{day}$$

Maximum daily limit (specialty steel) = $\frac{0.0250 \, lb}{1,000 \, lbs} \times 770000 \, \frac{lbs}{day} = 19.25 \, \frac{lbs}{day}$

Maximum daily limit (total) = 150.458 lbs/day

	Concentra	tions (mg/l)	Mass Unit	s (lbs/day)	Basis
Parameters	Monthly Avg.	Daily Max.	Monthly Avg.	Daily Max.	
Total Suspended Solids			225.533	601.37	BPT, 420.72 (c)(2) & (3)
Total Suspended Solids	30	60*			DRBC/existing
Oil & Grease				150.458	BPT, 420.72 (c)(2) & (3)
Oil & Grease	15	30 (inst.max.)			Chap. 95.2(2)(ii)
рН		Within the rang	e of 6.0 t0 9.0		BPT, 420.72 (c)(2) & (3) & Chap.95.2(1)


^{*}using the default multiplier 2.0

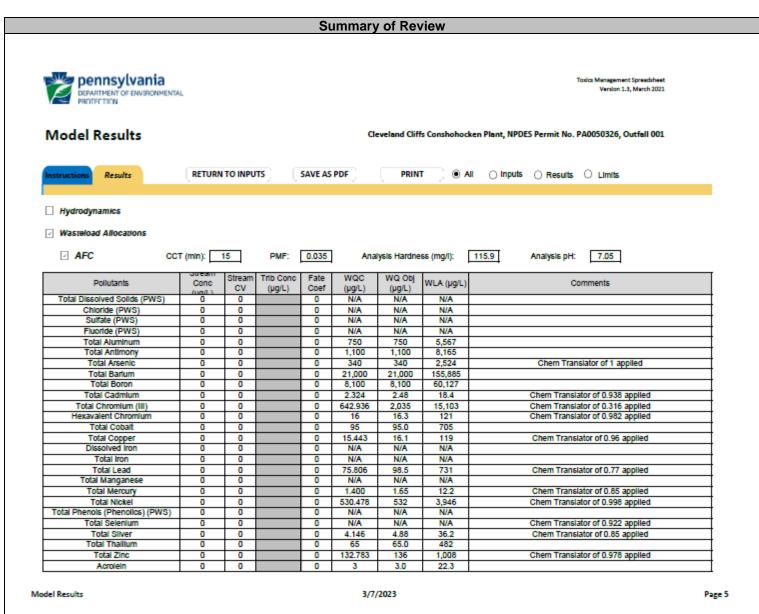
A "Reasonable Potential Analysis" using Toxic Management Spreadsheet (TMS) determined the following parameter is a candidate for limitation.

Parameter	Limit (ug/l)	SBC	Model	Comment
Acrylamide	16.8	Average Monthly	TMS	*

^{*} For Acrylamide, all three submitted results are ND using a method detection level of 11 ug/l. No Target QL existing according to the application instructions. Permittee confirmed that no acrylamide is used in the plate processing or in the currently approved chemical additives. There is no reason to believe this parameter is present in the discharge and it is not necessary to include in the permit.

See the below attached TMS report:

1	Carbon Tetrachloride	µg/L	<	1					
1	Chlorobenzene	µg/L	*	0.5					
1	Chlorodibromomethane	µg/L		0.89					
1	Chloroethane	µg/L	*	1					
1	2-Chioroethyl Vinyl Ether	µg/L	*	5					
1	Chloroform	µg/L	<	0.5					
1	Dichiorobromomethane	µg/L		0.5					
1			٧.	0.5					
1	1,1-Dichloroethane	µg/L	٧	0.5					
2	1,2-Dichloroethane	µg/L	٠,						
Group	1,1-Dichloroethylene	µg/L	-	0.5					
1 6	1,2-Dichloropropane	µg/L	*	0.5					
~	1,3-Dichloropropylene	µg/L	*	1					
1	1,4-Dioxane	µg/L	٧	3					
1	Ethylbenzene	µg/L	*	0.5					
1	Methyl Bromide	µg/L	*	1					
1	Methyl Chloride	µg/L	٧	1					
1	Methylene Chloride	μg/L	٧	1					
1	1,1,2,2-Tetrachioroethane	µg/L	٧	0.5					
1	Tetrachioroethylene	µg/L	*	0.5					
1	Toluene	µg/L	٧	0.5					
1	1,2-trans-Dichloroethylene	µg/L	*	0.5					
1	1,1,1-Trichioroethane	µg/L	*	0.5					
1	1,1,2-Trichloroethane	µg/L	*	0.5					
1	Trichloroethylene	µg/L	٧	0.5					
1	Vinyl Chloride	µg/L	*	0.5					
\vdash			-						
1	2-Chlorophenol	µg/L	*	3					
1	2,4-Dichlorophenol	µg/L	*	3					
1	2,4-Dimethylphenol	µg/L	*	3					
4	4,6-Dinitro-o-Cresol	µg/L	٧	6					
	2,4-Dinitrophenol	µg/L	*	6					
Group	2-Nitrophenol	µg/L	٧	3					
Ø	4-Nitrophenoi	µg/L	*	3					
1	p-Chioro-m-Cresol	µg/L	٧	3					
1	Pentachiorophenol	µg/L	*	6					
1	Phenol	µg/L	٧	8					
	2,4,6-Trichlorophenol	μg/L	٧	м					
	Acenaphthene	μg/L	٧	1.5					
1	Acenaphthylene	μg/L	٧	1.5					
1	Anthracene	µg/L	٧	1.5					
1	Benzidine	µg/L	*	4					
1	Benzo(a)Anthracene	µg/L	<	1.5					
1	Benzo(a)Pyrene	µg/L	*	1.5					
1	3,4-Benzofluoranthene	µg/L	*	1.5					
1	Benzo(ghl)Perylene	µg/L	*	1.5					
1	Benzo(k)Fluoranthene	µg/L	٧.	1.5					
1	Bis(2-Chioroethoxy)Methane	µg/L	٧.	3					
1			٧	3					
1	Bis(2-Chloroethyl)Ether	µg/L	٠,	3					
1	Bis(2-Chloroisopropyl)Ether	µg/L		3					
1	Bis(2-Ethylhexyl)Phthalate	µg/L	*						
1	4-Bromophenyl Phenyl Ether	µg/L	٧	3					
1	Butyl Benzyl Phthalate	µg/L	*	3					
1	2-Chioronaphthalene	µg/L	٧	3					
1	4-Chlorophenyl Phenyl Ether	µg/L	٧	3					
1	Chrysene	µg/L	٧	1.5					
1	Dibenzo(a,h)Anthrancene	µg/L	*	1.5					
1	1,2-Dichlorobenzene	µg/L	٧	1					
1	1,3-Dichlorobenzene	µg/L	٧	1	أرفا				
100	1,4-Dichlorobenzene	µg/L	٧	1					
9	3,3-Dichlorobenzidine	µg/L	*	3					
Group	Diethyl Phthalate	µg/L	*	3					
O	Dimethyl Phthalate	µg/L	~	3					
1	Di-n-Butyl Phthalate	µg/L	*	3					
1	2,4-Dinitrotoluene	µg/L	*	3					
I	a _i - cannomiserie	Part	-	3					


Discharge Information 3/7/2023 Page 2

2,6-Dinitrotoluene µg/L < Di-n-Octyl Phthalate µg/L 1,2-Diphenylhydrazine μg/L Fluoranthene 1.5 µg/L μg/L Hexachlorobenzene µg/L Hexachiorobutadiene 0.48 µg/L Hexachiorocyclopentadiene µg/L Hexachioroethane µg/L < 3 1.5 Indeno(1,2,3-cd)Pyrene µg/L < Isophorone µg/L 3 Naphthalene µg/L < 1.5 Nitrobenzene µg/L n-Nitrosodimethylamine • µg/L n-Nitrosodi-n-Propylamine < 3 µg/L n-Nitrosodiphenylamine µg/L Phenanthrene µg/L µg/L 1,2,4-Trichlorobenzene 0.41 μg/L 0.02 Aldrin μg/L 0.02 alpha-BHC µg/L 0.02 μg/L gamma-BHC 0.02 μg/L delta BHC 0.02 μg/L Chlordane µg/L 0.02 4,4-DDT 4,4-DDE µg/L 0.02 µg/L ~ 0.02 4,4-DDD µg/L ٨ 0.02 Dieldrin µg/L * 0.02 alpha-Endosulfan * 0.02 µg/L beta-Endosulfan µg/L * 0.02 Group 6 Endosulfan Sulfate < 0.02 µg/L < 0.02 μg/L Endrin Aldehyde 0.013 μg/L Heptachior Heptachior Epoxide 0.02 μg/L µg/L PCB-1016 PCB-1221 * 0.5 μg/L 0.5 µg/L PCB-1232 PCB-1242 0.5 µg/L 0.5 μg/L PCB-1248 μg/L ٨ 0.5 PCB-1254 µg/L < 0.5 PCB-1260 * µg/L 0.5 PCBs, Total Toxaphene µg/L < < 0.5 µg/L 2,3,7,8-TCDD ng/L ٨ Gross Alpha pCVL Total Beta pCVL Group Radium 226/228 pCVL < Total Strontium ٨ µg/L Total Uranium μg/L Osmotic Pressure mOs/kg

Summary of Review

Discharge Information 3/7/2023 Page 3

Summary of Review pennsylvania DEPARTMENT OF ENVIRONMENTAL Toxics Management Spreadsheet Version 1.3, March 2021 Stream / Surface Water Information Cleveland Cliffs Conshohocken Plant, NPDES Permit No. PA0050326, Outfall 001 nstructions Discharge Stream Receiving Surface Water Name: Schuylkill River No. Reaches to Model: 1 Statewide Criteria O Great Lakes Oriteria Apply Fish Criteria* ORSANCO Criteria Elevation PWS Withdrawal Location Stream Code DA (ml2)* Slope (ft/ft) (MGD) 000833 Point of Discharge 22.05 584.3 Yes End of Reach 1 000833 21.05 583.8 1770.8 Yes Q 7-10 LFY W/D Width Depth Velocit Flow (cfs) Tributary Stream Analysis Location RMI Time Stream Tributary (cfs/ml²)* Ratio (ft) y (fps) Hardness pH Hardness' pH' Hardness pH (ft) Point of Discharge 22 05 0.1 345.5 100 End of Reach 1 21.05 0.1 364 Q_h LFY Flow (cfs) W/D Width Depth Velocit Tributary Stream Analysis Location RMI Time (cfs/ml2) Stream Tributary Ratio (ft) (ff) y (fps) Hardness pH Hardness pН Hardness pH Point of Discharge 22.05 End of Reach 1 21.05 Stream / Surface Water Information 3/7/2023 Page 4

Acrylamide	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	650	650	4,825	
Benzene	0	0	0	640	640	4,751	
Bromoform	0	0	0	1,800	1,800	13,362	
Carbon Tetrachloride	0	0	0	2,800	2,800	20,785	
Chlorobenzene	0	0	0	1,200	1,200	8,908	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	133,615	
Chloroform	0	0	0	1,900	1,900	14,104	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1.2-Dichioroethane	0	0	0	15,000	15,000	111,346	
1,1-Dichloroethylene	0	ō	ō	7.500	7,500	55,673	
1,2-Dichloropropane	0	0	0	11,000	11,000	81.654	
1,3-Dichloropropylene	0	ō	ō	310	310	2,301	
Ethylbenzene	0	0	0	2.900	2,900	21,527	
Methyl Bromide	0	0	0	550	550	4.083	
Methyl Chloride	0	ō	ŏ	28,000	28,000	207.846	
Methylene Chloride	0	0	0	12,000	12,000	89.077	
1,1,2,2-Tetrachioroethane	0	0	0	1,000	1.000	7,423	
Tetrachioroethylene	0	0	Ö	700	700	5,196	
Toluene	0	0	0	1,700	1,700	12,619	
1,2-trans-Dichloroethylene	0	0	0	6.800	6.800	50,477	
1,1,1-Trichioroethane	0	0	0	3.000	3.000	22,269	
1.1.2-Trichloroethane	0	0	0	3,400	3,400	25,238	
	0	0	0	2.300	2,300	17.073	
Trichloroethylene Vinyl Chloride	0	0	8	2,300 N/A	2,300 N/A	17,073 N/A	
2-Chlorophenol	0	0	0	560	560	4,157	
2,4-Dichlorophenol	0	0	0	1,700 660	1,700 660	12,619 4,899	
2,4-Dimethylphenol	_	_					
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	594	
2,4-Dinitrophenol	0	0	0	660	660	4,899	
2-Nitrophenol	0	0	0	8,000	8,000	59,385	
4-Nitrophenol	0	0	0	2,300	2,300	17,073	
p-Chloro-m-Cresol	0	0	0	160	160	1,188	
Pentachiorophenol	0	0	0	9.196	9.2	68.3	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	3,415	
Acenaphthene	0	0	0	83	83.0	616	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	2,227	
Benzo(a)Anthracene	0	0	0	0.5	0.5	3.71	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	222,692	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	33,404	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	2,004	

Butyl Benzyl Phthalate	0	0	0	140	140	1,039	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	6,087	
1,3-Dichlorobenzene	0	0	0	350	350	2,598	
1,4-Dichlorobenzene	0	0	0	730	730	5,419	
3.3-Dichiorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	ō	0	4.000	4.000	29,692	
Dimethyl Phthalate	0	0	0	2,500	2,500	18,558	
Di-n-Butyl Phthalate	0	0	0	110	110	817	
2.4-Dinitrotoluene	ō	ō	0	1,600	1,600	11,877	
2.6-Dinitrotoluene	0	0	0	990	990	7,349	
1,2-Diphenylhydrazine	ō	ō	0	15	15.0	111	
Fluoranthene	0	0	0	200	200	1,485	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	ő	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	74.2	
Hexachiorocyclopentadiene	0	0	0	5	5.0	37.1	
Hexachloroethane	0	0	ő	60	60.0	445	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10.000	10.000	74.231	
Naphthalene	0	0	0	140	140	1,039	
Nitrobenzene	0	0	0	4.000	4,000	29,692	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	126,192	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	2,227	
Phenanthrene	0	0	0	5	5.0	37.1	
Pyrene	0	0	Ö	N/A	N/A	N/A	
1,2,4-Trichiorobenzene	0	0	0	130	130	965	
Aldrin	0	0	0	3	3.0	22.3	
alpha-BHC	0	0	ö	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	0.95	0.95	7.05	
Gamma-BHC Chlordane	0	0	0	2.4	2.4	17.8	
4,4-DDT	0	0		1.1	1.1	8.17	
			0				
4,4-DDE 4,4-DDD	0	0	0	1.1	1.1	8.17 8.17	
	_	_	-				
Dieldrin	0	0	0	0.24	0.24	1.78	
aipha-Endosulfan	0	0	0	0.22	0.22	1.63	
beta-Endosulfan	0	0	0	0.22	0.22	1.63	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.086	0.086	0.64	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.52	0.52	3.86	
Heptachior Epoxide	0	0	0	0.5	0.5	3.71	
Toxaphene	0	0	0	0.73	0.73	5.42	

Summary of Review CCT (min): 720 ☑ CFC PMF: 0.239 Analysis Hardness (mg/l): 102.59 Analysis pH: 7.01 WQ Obj Trib Conc WQC Stream Fate Pollutants Conc WLA (µg/L) Comments CV Coef (µg/L) (µg/L) (µg/L) Total Dissolved Solids (PWS) N/A 0 0 N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A 0 0 Total Aluminum 0 N/A N/A N/A Total Antimony 0 0 220 220 10.010 0 Total Arsenic 0 0 0 150 150 6,825 Chem Translator of 1 applied Total Barlum 0 0 0 4,100 4,100 186,552 Total Boron 0 0 0 1,600 1,600 72,801 0 0 Chem Translator of 0.908 applied Total Cadmium 0 0.250 0.28 12.5 0 75.685 88.0 4.004 Chem Translator of 0.86 applied Total Chromium (III) 0 0 0 0 0 10.4 473 Chem Translator of 0.962 applied Hexavalent Chromium 10 Total Cobalt 0 0 0 19 19.0 865 0 0 9.154 434 Chem Translator of 0.96 applied Total Copper 9.54 Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 1,500 1,500 280,669 WQC = 30 day average; PMF = 1 0 0 2.588 Total Lead 0 3.29 150 Chem Translator of 0.787 applied Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 41.2 Chem Translator of 0.85 applied Total Nickel 0 0 0 53.145 53.3 2,425 Chem Translator of 0.997 applied Total Phenois (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 4.600 4.99 227 Chem Translator of 0.922 applied Total Silver 0 0 0 N/A N/A N/A Chem Translator of 1 applied Total Thaillum 0 0 0 13 13.0 592 Total Zinc 0 0 0 120.730 122 5,571 Chem Translator of 0.986 applied 0 0 137 Acrolein 0 3.0 Acrylamide 0 0 0 N/A N/A N/A Acrylonitrile 0 0 0 130 130 5.915 Benzene Π 0 0 130 130 5,915 Bromoform 0 0 0 370 370 16,835 0 0 560 25,480 Carbon Tetrachioride 0 560 0 0 0 240 Chlorobenzene 240 10.920 Chlorodibromomethane 0 0 0 N/A N/A N/A 2-Chloroethyl Vinyl Ether 0 0 0 3,500 3,500 159.251 Chloroform 0 0 0 390 390 17,745 Dichlorobromomethane 0 0 0 N/A N/A N/A 0 0 141,051 0 3,100 3,100 1,2-Dichloroethane 0 0 0 1.500 1.500 68.251 1,1-Dichloroethylene 1,2-Dichloropropane 0 0 0 2,200 2,200 100,101 1,3-Dichloropropylene 0 0 0 61 61.0 2,776 0 0 0 580 580 26,390 Ethylbenzene

Methyl Bromide 0 0 0 110 110 5,005 Methyl Chloride 0 0 0 5,500 250,252 Methylene Chloride 0 0 0 2,400 109,201 1,1,2,2-Tetrachloroethane 0 0 210 210 9,555 Tetrachloroethylene 0 0 140 140 6,370	
Methylene Chloride 0 0 0 2,400 2,400 109,201 1,1,2,2-Tetrachloroethane 0 0 0 210 9,555	
1,1,2,2-Tetrachioroethane 0 0 0 0 210 210 9,555	
Tetrachiomethylene 0 0 0 140 140 6370	
Toluene 0 0 0 330 330 15,015	
1,2-trans-Dichloroethylene 0 0 0 1,400 1,400 63,701	
1,1,1-Trichioroethane 0 0 0 610 610 27,755	
1,1,2-Trichloroethane 0 0 0 680 680 30,940	
Trichioroethylene 0 0 0 450 450 20,475	
Vinyl Chloride 0 0 0 N/A N/A N/A	
2-Chlorophenol 0 0 0 110 110 5,005	
2.4-Dichlorophenol 0 0 0 340 340 15.470	
2,4-Dimethylphenol 0 0 0 130 130 5,915	
4,6-Dinitro-o-Cresol 0 0 0 16 16.0 728	
2,4-Dinitrophenol 0 0 0 130 130 5,915	
2-Nitrophenol 0 0 0 1.600 1.600 72.801	
4-Nitrophenol 0 0 0 470 470 21.385	
p-Chloro-m-Cresol 0 0 0 500 500 22,750	
Pentachlorophenol 0 0 0 7.055 7.06 321	
Phenol 0 0 0 N/A N/A N/A	
2.4.6-Trichlorophenol 0 0 0 91 91.0 4.141	
Acenaphthene 0 0 0 0 17 17.0 774	
Anthracene 0 0 0 N/A N/A N/A	
Benzidne 0 0 0 59 59.0 2.685	
Benzo(a)Anthracene 0 0 0 0.1 0.1 4.55	
Benzo(a)Pyrene 0 0 0 N/A N/A N/A	
3,4-Benzofluoranthene	
Benzo(k)Fluoranthene 0 0 0 N/A N/A N/A	
Bis(2-Chloroethyl)Ether 0 0 0 6,000 6,000 273,002	
Bis(2-Chloroisopropyl)Ether 0 0 0 N/A N/A N/A	
Bis(2-Ethylhexyl)Phthalate 0 0 0 910 910 41,405	
4-Bromophenyl Phenyl Ether 0 0 0 54 54.0 2,457	
Butyl Benzyl Phthalate 0 0 0 35 35.0 1,593	
2-Chloronaphthalene 0 0 0 N/A N/A N/A	
Chrysene 0 0 0 N/A N/A N/A	
Dibenzo(a,h)Anthrancene 0 0 0 N/A N/A N/A	
1,2-Dichlorobenzene 0 0 0 160 160 7,280	
1,3-Dichlorobenzene 0 0 0 0 69 69.0 3,140	
1.4-Dichlorobenzene 0 0 0 0 150 150 6.825	
3,3-Dichlorobenzidine 0 0 0 N/A N/A N/A	
Diethyl Phthalate 0 0 0 0 800 800 36,400	
2.004	
Difficulty Printailable U U U U U 300 22,750	
Dimethyl Phthalate 0 0 0 500 500 22,750	

				30	ummary	OI IVE	A ICAA				
2,6-Dinitrotoluene	0	0		0	200	200	9,100				
1,2-Diphenylhydrazine	0	0		0	3	3.0	137				
Fluoranthene	0	0		0	40	40.0	1,820				
Fluorene	0	0		0	N/A	N/A	N/A				
Hexachlorobenzene	0	0		0	N/A	N/A	N/A				
Hexachlorobutadiene	0	0		0	2	2.0	91.0				
Hexachiorocyclopentadiene	0	0		0	1	1.0	45.5				
Hexachloroethane	0	0		0	12	12.0	546				
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A				
Isophorone	0	0		0	2,100	2,100	95,551				
Naphthalene	0	0		0	43	43.0	1,957				
Nitrobenzene	0	0		0	810	810	36,855				
n-Nitrosodimethylamine	0	0		0	3,400	3,400	154,701				
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A				
n-Nitrosodiphenylamine	0	0		0	59	59.0	2,685				
Phenanthrene	0	0		0	1	1.0	45.5				
Pyrene	0	0		0	N/A	N/A	N/A				
1,2,4-Trichlorobenzene	0	0		0	26	26.0	1,183				
Aldrin	0	0		0	0.1	0.1	4.55				
alpha-BHC	0	0		0	N/A	N/A	N/A				
beta-BHC	0	0		0	N/A	N/A	N/A				
gamma-BHC	0	0		0	N/A	N/A	N/A				
Chlordane	0	0		0	0.0043	0.004	0.2				
4,4-DDT	0	0		0	0.001	0.001	0.046				
4,4-DDE	0	0		0	0.001	0.001	0.046				
4,4-DDD	0	0		0	0.001	0.001	0.046				
Dieldrin	0	0		0	0.056	0.056	2.55				
alpha-Endosulfan	0	0		0	0.056	0.056	2.55				
beta-Endosulfan	0	0		0	0.056	0.056	2.55				
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A				
Endrin	0	0		0	0.036	0.036	1.64				
Endrin Aldehyde	0	0		0	N/A	N/A	N/A				
Heptachlor	0	0		0	0.0038	0.004	0.17				
Heptachior Epoxide	0	0		0	0.0038	0.004	0.17				
Toxaphene	0	0		0	0.0002	0.0002	0.009				
	 _										
☑ THH CC	T (min): 7	720	PMF:	0.239	Ana	alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A	
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)		Co	mments	
	(unit)	CV	(µg/L)	Coef	(µg/L)	(µg/L)					
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A				
Chloride (PWS)	0	0		0	250,000	250,000	N/A				
Sulfate (PWS)	0	0		0	250,000	250,000	N/A				
Fluoride (PWS)	0	0		0	2,000	2,000	N/A				
Total Aluminum	0	0		0	N/A	N/A	N/A				

Total Antimony	0	0	0	5.6	5.6	255	
Total Arsenic	0	0	0	10	10.0	455	
Total Barlum	0	0	0	2,400	2,400	109,201	
Total Boron	0	0	0	3,100	3,100	141,051	
Total Cadmium	0	0	0	N/A	N/A	N/A	
Total Chromium (III)	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	300	300	13,650	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	45,500	
Total Mercury	0	0	0	0.050	0.05	2.28	
Total Nickel	0	0	0	610	610	27,755	
Total Phenois (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thaillum	0	0	0	0.24	0.24	10.9	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	3	3.0	137	
Acrylamide	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	N/A	N/A	N/A	
Benzene	0	0	0	N/A	N/A	N/A	
Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	0	100	100.0	4,550	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	259	
Dichiorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	1,502	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	ő	68	68.0	3.094	
Methyl Bromide	0	0	0	100	100.0	4,550	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachioroethane	0	0	0	N/A	N/A	N/A	
Tetrachioroethylene	0	0	ö	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	2,594	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	4,550	
1.1.1-Trichioroethane	0	0	0	10.000	10.000	455.004	
1,1,1-Trichioroethane	0	0	0	10,000 N/A	10,000 N/A	455,004 N/A	
1,1,2-Trichioroethane		U	U	N/A	N/A	N/A	l .

Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	1,365	
2,4-Dichlorophenol	0	0	0	10	10.0	455	
2,4-Dimethylphenol	0	0	0	100	100.0	4,550	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	91.0	
2,4-Dinitrophenol	0	0	0	10	10.0	455	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4.000	4.000	182,002	
2,4,6-Trichiorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	3,185	
Anthracene	0	0	0	300	300	13,650	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chlorolsopropyl)Ether	0	0	0	200	200	9,100	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	4.55	
2-Chloronaphthalene	0	0	0	800	800	36,400	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1.2-Dichlorobenzene	0	0	0	1.000	1.000	45,500	
1.3-Dichlorobenzene	0	0	0	7	7.0	319	
1.4-Dichlorobenzene	0	0	0	300	300	13,650	
3,3-Dichlorobenzidine	0	0	ō	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	27,300	
Dimethyl Phthalate	0	0	0	2,000	2,000	91,001	
Di-n-Butyl Phthalate	0	0	0	20	20.0	910	
2.4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2.6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	910	
Fluorene	0	0	0	50	50.0	2,275	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachiorocyclopentadiene	0	0	0	4	4.0	182	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	-	l ö	N/A	N/A	N/A	
macho (1,2,0-ou)r yielle				1907	DWG.	1907	l .

Isophorone	0	0		0	34	34.0	1,547	I
Naphthalene	0	0		ō	N/A	N/A	N/A	
Nitrobenzene	0	0		0	10	10.0	455	
n-Nitrosodimethylamine	0	0		ő	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		ő	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		ō	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	910	
1.2.4-Trichiorobenzene	0	0		ō	0.07	0.07	3.19	
Aldrin	0	0		ō	N/A	N/A	N/A	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		ō	4.2	4.2	191	
Chlordane	0	0		0	N/A	N/A	N/A	
4,4-DDT	0	0		0	N/A	N/A	N/A	
4,4-DDE	0	0		0	N/A	N/A	N/A	
4.4-DDD	0	0		0	N/A	N/A	N/A	
Dieldrin	0	0		0	N/A	N/A	N/A	
alpha-Endosulfan	0	0		0	20	20.0	910	
beta-Endosulfan	0	0		0	20	20.0	910	
Endosulfan Sulfate	0	0		0	20	20.0	910	
Endrin	0	0		0	0.03	0.03	1.37	
Endrin Aldehyde	0	0		0	1	1.0	45.5	
Heptachlor	0	0		0	N/A	N/A	N/A	
Heptachior Epoxide	0	0		0	N/A	N/A	N/A	
Toxaphene	0	0		0	N/A	N/A	N/A	
☑ CRL cc		720	PMF:	0.362	An	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(unit)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		Seminario
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barlum	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromlum (III)	0	0		0	N/A	N/A	N/A	
II and the second	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium				0	N/A	N/A	N/A	I .
Hexavalent Chromium Total Cobalt Total Copper	0	0		ŏ	N/A	N/A	N/A	

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenois (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thaillum	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylamide	0	0	0	0.07	0.07	16.8	
Acrylonitrile	0	0	0	0.06	0.06	14.4	
Benzene	0	0	0	0.58	0.58	139	
Bromoform	0	0	0	7	7.0	1,683	
Carbon Tetrachloride	0	0	0	0.4	0.4	96.2	
Chiorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	192	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	228	
1.2-Dichioroethane	0	0	ō	9.9	9.9	2.380	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	216	
1,3-Dichloropropylene	0	0	0	0.27	0.27	64.9	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	4,808	
1,1,2,2-Tetrachioroethane	0	0	0	0.2	0.2	48.1	
Tetrachioroethylene	0	0	0	10	10.0	2,404	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichioroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	ő	Ö	0.55	0.55	132	
Trichioroethylene	0	0	0	0.6	0.6	144	
Vinyl Chloride	0	0	0	0.02	0.02	4.81	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4.6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	

p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachiorophenol	0	0	0	0.030	0.03	7.21	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	361	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.024	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.24	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.024	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.24	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	2.4	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	7.21	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	76.9	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chioronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	28.9	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.024	
1.2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1.3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1.4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	12.0	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2.4-Dinitrotoluene	0	0	0	0.05	0.05	12.0	
2.6-Dinitrotoluene	0	0	0	0.05	0.05	12.0	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	7.21	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	ŏ	0	0.00008	0.00008	0.019	
Hexachlorobutadiene	0	0	0	0.0000	0.0000	2.4	
Hexachiorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachioroethane	0	0	0	0.1	0.1	24.0	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.24	
Indeno(1,2,3-cd)Pyrene Isophorone	0	0	0	0.001 N/A	0.001 N/A	0.24 N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A N/A	N/A N/A	
	_	_					
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.17	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	1.2 793	
n-Nitrosodiphenylamine	0		0	3.3	3.3		
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichiorobenzene	0	0	0	N/A	N/A	N/A	

Aldrin	0	0	0	0.0000008	8.00E-07	0.0002	
alpha-BHC	0	0	0	0.0004	0.0004	0.096	
beta-BHC	0	0	0	0.008	0.008	1.92	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0003	0.0003	0.072	
4,4-DDT	0	0	0	0.00003	0.00003	0.007	
4,4-DDE	0	0	0	0.00002	0.00002	0.005	
4,4-DDD	0	0	0	0.0001	0.0001	0.024	
Dieldrin	0	0	0	0.000001	0.000001	0.0002	
aipha-Endosulfan	0	0	0	N/A	N/A	N/A	
beta-Endosulfan	0	0	0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	N/A	N/A	N/A	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.000006	0.000006	0.001	
Heptachior Epoxide	0	0	0	0.00003	0.00003	0.007	
Toxaphene	0	0	0	0.0007	0.0007	0.17	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Acrylamide	0.17	0.26	16.8	26.3	42.1	µg/L	16.8	CRL	Discharge Conc ≥ 50% WQBEL (RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	3,568	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	255	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barlum	99,916	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllum	N/A	N/A	No WQS

Total Boron	38,539	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	11.8	µg/L	Discharge Conc < TQL
Total Chromium (III)	4,004	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	77.5		Discharge Conc s 10% WQBEL
Total Cobalt	452	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	76.5	µg/L	Discharge Conc s 10% WQBEL
Total Cyanide	N/A	μg/L N/A	No WQS
Dissolved Iron			
Total Iron	13,650	µg/L	Discharge Conc ≤ 10% WQBEL Discharge Conc ≤ 10% WQBEL
	280,669	µg/L	
Total Lead	150 45,500	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese		µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	2.28	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	2,425	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenois (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	227	µg/L	Discharge Conc < TQL
Total Silver	23.2	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	10.9	µg/L	Discharge Conc < TQL
Total Zinc	646	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	14.3	μg/L	Discharge Conc ≤ 25% WQBEL
Acrylonitrile	14.4	µg/L	Discharge Conc < TQL
Benzene	139	μg/L	Discharge Conc < TQL
Bromoform	1,683	μg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	96.2	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	4,550	μg/L	Discharge Conc < TQL
Chlorodibromomethane	192	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chioroethyl Vinyl Ether	85,642	μg/L	Discharge Conc < TQL
Chloroform	259	μg/L	Discharge Conc < TQL
Dichlorobromomethane	228	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	2,380	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	1,502	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	216	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	64.9	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	3,094	µg/L	Discharge Conc < TQL
Methyl Bromide	2,617	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	133,221	µg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	4,808	μg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachioroethane	48.1	μg/L	Discharge Conc « TQL
Tetrachioroethylene	2,404	µg/L	Discharge Conc < TQL
Toluene	2,594	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	4,550	µg/L	Discharge Conc < TQL
1,1,1-Trichioroethane	14,274	µg/L	Discharge Conc < TQL

1.1.2-Trichioroethane	132	ued	Discharge Conc < TQL
Trichioroethylene	144	µg/L	Discharge Conc < TQL
•		µg/L	2
Vinyl Chloride	4.81	µg/L	Discharge Conc < TQL
2-Chlorophenol	1,365	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	455	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	3,140	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	91.0	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	455	µg/L	Discharge Conc < TQL
2-Nitrophenol	38,063	μg/L	Discharge Conc < TQL
4-Nitrophenol	10,943	μg/L	Discharge Conc « TQL
p-Chloro-m-Cresol	761	µg/L	Discharge Conc < TQL
Pentachiorophenol	7.21	μg/L	Discharge Conc < TQL
Phenol	182,002	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	361	μg/L	Discharge Conc < TQL
Acenaphthene	395	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	13,650	µg/L	Discharge Conc < TQL
Benzidine	0.024	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.24	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.024	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.24	µg/L	Discharge Conc < TQL
Benzo(ghl)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	2.4	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	7.21	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	9,100	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	76.9	µg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	1,285	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	4.55	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	36,400	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	28.9	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.024	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	3,901	µg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichlorobenzene	319	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dichlorobenzene	3,473	µg/L	Discharge Conc ≤ 25% WQBEL
3,3-Dichiorobenzidine	12.0	µg/L	Discharge Conc < TQL
Diethyl Phthalate	19,032	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	11,895	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	523	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	12.0	µg/L	Discharge Conc « TQL
2,6-Dinitrotoluene	12.0	µg/L	Discharge Conc < TQL
DI-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	7.21	µg/L	Discharge Conc < TQL
Fluoranthene	910	µg/L	Discharge Conc < TQL
		F3-	

Fluorene	2,275	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.019	µg/L	Discharge Conc < TQL
Hexachiorobutadiene	2.4	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	23.8	µg/L	Discharge Conc < TQL
Hexachloroethane	24.0	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.24	µg/L	Discharge Conc < TQL
Isophorone	1,547	µg/L	Discharge Conc < TQL
Naphthalene	666	µg/L	Discharge Conc ≤ 25% WQBEL
Nitrobenzene	455	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.17	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	1.2	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	793	µg/L	Discharge Conc < TQL
Phenanthrene	23.8	µg/L	Discharge Conc < TQL
Pyrene	910		Discharge Cond < TQL
1.2.4-Trichiorobenzene	3.19	µg/L	Discharge Cond < TQL
Aldrin	0.0002	µg/L	Discharge Cond < TQL
		µg/L	2
alpha-BHC	0.096	μg/L	Discharge Conc < TQL
beta-BHC	1.92	μg/L	Discharge Conc < TQL
gamma-BHC	4.52	μg/L	Discharge Conc < TQL
delta BHC	N/A	N/A	No WQS
Chlordane	0.072	μg/L	Discharge Conc < TQL
4,4-DDT	0.007	μg/L	Discharge Conc < TQL
4,4-DDE	0.005	μg/L	Discharge Conc < TQL
4,4-DDD	0.024	μg/L	Discharge Conc < TQL
Dieldrin	0.0002	μg/L	Discharge Conc < TQL
alpha-Endosulfan	1.05	μg/L	Discharge Conc < TQL
beta-Endosulfan	1.05	µg/L	Discharge Conc < TQL
Endosulfan Sulfate	910	µg/L	Discharge Conc < TQL
Endrin	0.41	µg/L	Discharge Conc < TQL
Endrin Aldehyde	45.5	µg/L	Discharge Conc < TQL
Heptachlor	0.001	μg/L	Discharge Conc < TQL
Heptachior Epoxide	0.007	µg/L	Discharge Conc < TQL
PCB-1016	N/A	N/A	No WQS
PCB-1221	N/A	N/A	No WQS
PCB-1232	N/A	N/A	No WQS
PCB-1242	N/A	N/A	No WQS
PCB-1248	N/A	N/A	No WQS
PCB-1254	N/A	N/A	No WQS
PCB-1260	N/A	N/A	No WQS

Model Results 3/7/2023 Page 19

TDS: The current TDS limit of 1000 mg/l is carried over to the draft permit based on DRBC regulation. (DRBC docket # D-1979-026-3). Monitoring requirement for Color is also carried over to the draft permit.

The existing monitoring for Total Copper, Dissolved Iron, Total Iron, Total Sulfate, Chloride and Bromide are carried over to the draft permit. These parameters were included at the previous renewal when the facility was conducting its rolling mill operations.

Temperature: Existing instantaneous maximum limit of 110°F, based on DRBC regulations (Interpretive Guideline No. 1.B.a) for public safety is rolled over for this renewal. The limit is protective of the applicable Ch. 93 instream temperature criteria. Previous temperature spreadsheet results are included below. The narrative requirement that the discharge may not change the temperature of the receiving stream by more than 2°F in any one-hour period is included in Part C of the permit.

Thermal Discharge Recommended Permit Limits

Warm Water Fishes (WWF) Stream

Facility: Cleveland cliffs Conshohocken Plant

Permit Number: PA0050326 Stream: Sckuylkill River

WWF			WWF	WWF	¥
Ambient Stream	Ambient Stream	Target Maximum	Daily	Daily	
Temperature (°F)	Temperature (°F)	Stream Temp.1	WLA ²	WLA ³	at Discharge
	(Site-specific data)		(Million BTUs/day)	(°F)	Flow (MGD)
35	0	40	29,796	110.0	1.2
35	0	40	32,589	110.0	1.2
40	0	46	78,214	110.0	1.2
47	0	52	86,594	110.0	1.2
53	0	58	86,594	110.0	1.2
58	0	64	56,985	110.0	1.2
62	0	72	94,974	110.0	1.2
67	0	80	72,628	110.0	1.2
71	0	84	72,628	110.0	1.2
75	0 .	87	37,990	110.0	1.2
74	0	87	33,893	110.0	1.2
74	0	87	33,893	110.0	1.2
71	0	84	26,630	110.0	1.2
65	0	78	26,630	110.0	1.2
60	0	72	26,816	110.0	1.2
54	0	66	26,816	110.0	1.2
48	0	58	29,796	110.0	1.2
42	0	50	23,837	110.0	1.2
37	0	42	22,347	110.0	1.2
	Ambient Stream Temperature (°F) (Default) 35 35 40 47 53 58 62 67 71 75 74 74 71 65 60 54 48 42	Ambient Stream Temperature (°F) (Default) 35 35 40 40 47 53 58 62 67 71 0 75 74 0 71 0 75 74 0 71 0 65 0 0 0 54 48 0 42	Ambient Stream Ambient Stream Target Maximum Temperature (°F) (Default) Temperature (°F) (Site-specific data) Stream Temp.¹ 35 0 40 35 0 40 40 0 46 47 0 52 53 0 58 58 0 64 62 0 72 67 0 80 71 0 84 75 0 87 74 0 87 74 0 87 71 0 84 65 0 78 60 0 72 54 0 66 48 0 58 42 0 50	Ambient Stream Ambient Stream Target Maximum Daily Temperature (°F) (Default) (Site-specific data) (°F) (Million BTUs/klay) 35 0 40 29,796 35 0 40 32,589 40 0 46 78,214 47 0 52 86,594 53 0 58 86,594 58 0 64 56,985 62 0 72 94,974 67 0 80 72,628 71 0 84 72,628 75 0 87 33,893 74 0 87 33,893 71 0 84 26,630 65 0 78 26,630 65 0 72 26,816 64 0 66 26,816 65 0 78 26,630 60 0 72 26,816	Ambient Stream Ambient Stream Target Maximum Daily Daily Temperature (°F) (Default) Temperature (°F) Stream Temp.¹ WLA² WLA³ 35 0 40 29,796 110.0 35 0 40 32,589 110.0 40 0 46 78,214 110.0 47 0 52 86,594 110.0 53 0 58 86,594 110.0 58 0 64 56,985 110.0 62 0 72 94,974 110.0 67 0 80 72,628 110.0 71 0 84 72,628 110.0 74 0 87 33,893 110.0 71 0 87 33,893 110.0 74 0 87 33,893 110.0 71 0 84 26,630 110.0 65 0 78 26,630

¹ This is the maximum of the WWF WQ criterion or the ambient temperature. The ambient temperature may be either the design (median) temperature for WWF, or the ambient stream temperature based on site-specific data entered by the user. A minimum of 1°F above ambient stream temperature is allocated.

Thermal Discharge Limit Calc v1.0

8/25/2017

PCB: On April 7, 2007, the U.S. EPA, Region III established a Total Maximum Daily Load (TMDL) for PCBs for the Schuylkill River. The TMDL was established using a water quality criterion of 0.044 ng/l. According to the current permit requirement the permittee submitted one wet weather sample result from Outfall 004. The result shows a Total PCB concentration of 6700 pg/l in the discharge. The facility does not use PCBs in its industrial process and there are no PCB transformers at the site. An annual monitoring requirement for PCBs at Outfall 004 is included in the permit to reevaluate at the next permit renewal. The standard condition requiring PCB Monitoring is included in Part C of the permit.

TRC limits were developed at the last renewal, average monthly limit = 0.5 mg/l and an instantaneous maximum limit = 1.2 mg/l using the TRC Evaluation Spreadsheet. See below:

The WLA expressed in Million BTUs/day is valid for Case 1 scenarios, and disabled for Case 2 scenarios.

³ The WLA expressed in *F is valid only if the limit is tied to a daily discharge flow limit (may be used for Case 1 or Case 2). WLAs greater than 110°F are displayed as 110°F.

			Summar	y of Review	
nout appropria	te values in	A3:A9 and D3:D9			
	= Q stream		0.5	= CV Daily	
	= Q discha		0.5	= CV Hourly	
4	= no. samp		0.046	= AFC_Parti	al Mix Factor
0.3	= Chlorine	Demand of Stream	0.324	= CFC_Parti	al Mix Factor
	= Chlorine	Demand of Discharge	15	= AFC_Crite	ria Compliance Time (mi
0.5	= BAT/BPJ		720	_	ria Compliance Time (mi
0		r of Safety (FOS)	0	=Decay Coe	
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 18.764
PENTOXSD TRG PENTOXSD TRG	5.1a 5.1b	LTAMULT afc = LTA_afc=		5.1c 5.1d	LTAMULT cfc = 0.581 LTA_cfc = 10.909
I ENTOXOD TRO	3.16	LIA_alc-	1.020	3. Tu	LIA_010 - 10.808
Source		Effluen	t Limit Calcu	lations	
PENTOXSD TRG	5.1f		AML MULT =	1.720	
PENTOXSD TRG	5.1g	AVG MON L	IMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX L	IMIT (mg/l) =	1.170	
WLA afc	+ Xd + (A	AFC_tc)) + [(AFC_Yc*Q .FC_Yc*Qs*Xs/Qd)]*(1-F .(cvh^2+1))-2.326*LN(cvh/	OS/100)	e(-k*AFC_tc))
LTA_afc	wla_afc*LTA				
WLA_cfc		CFC_tc) + [(CFC_Yc*Q: FC_Yc*Qs*Xs/Qd)]*(1-I		e(-k*CFC_tc))
LTAMULT_cfc LTA_cfc	EXP((0.5*LN wla_cfc*LTA	(cvd^2/no_samples+1))-2 MULT_cfc	.326*LN(cvd	^2/no_samples	+1)^0.5)
AML MULT AVG MON LIMIT INST MAX LIMIT	MIN(BAT_BP	.N((cvd^2/no_samples+1) [,] 'J,MIN(LTA_afc,LTA_cfc)*, ion_limit/AML_MULT)/L	AML_MULT)	·	ples+1))

Chemical Additives listed in the application are Sodium hypochlorite solution, RL 124 (ChemTreat's trade name for Sodium bisulfite), CL4855, CM-1003-G and CL 6898.

Chemical additive notification is submitted for CL6898 with the application. All other additives were previously approved.

Stormwater: There are four stormwater Outfalls 002, 003, 004 and 005 are at the site. Most manufacturing operations are conducted indoors and not exposed to precipitation. However, some slabs, steel plates, and steel coils are stored outside prior to processing or shipment. Steel is exposed to precipitation as it is transported by railcar, and truck through the facility for different production processes. With the exception of steel, all raw materials are kept indoors or in tanks, unexposed to direct contact with precipitation. Outfalls are inspected annually.

Sampling is required at Outfall 004 only, which is considered representative of all stormwater outfalls. Pollutants to be sampled at Outfall 004 are based on current permit requirements and Appendix B (Primary Metals, applicable to facilities with SIC Code 3312) of the new General Permit for Discharges of Stormwater Associated with Industrial Activities. The current reporting requirements for pH, CBOD₅, COD, TSS, Oil and Grease, Total Arsenic, Total Cadmium, Total Chromium, Total Copper, Dissolved Iron, Total Iron, Total Lead, Total Manganese, and Total Nickel will remain in this permit renewal. Per new PAG-03 Appendix B Total Nitrogen and Total Phosphorous are added in this draft permit renewal.

According to the permittee the facility does not use Appendix B parameters, Total Aluminum and Total Zinc in any process lines in the plant. Therefore, these parameters are not included in the draft permit similar to the existing permit.

Semi-annual monitoring requirement is continued for the stormwater discharge. This requirement is consistent with the PAG03 General Permit.

Cooling Water Intake Structure:

The facility owns a cooling water intake structure on the Schuylkill River. The permittee reports that removal of a downstream dam in 2008 prevents sufficient water depth for effective operation of this surface water intake, and that the intake structure is no longer used. The facility reports that alterations to the structure would be necessary for its operation. Cleveland-Cliffs has stated that there are no current plans to make any needed modifications for operation of the intake, but does not wish to preclude possible use of the intake in the future following any necessary modifications.

Facility water needs are currently supplied by on-site wells (groundwater).

Cleveland-Cliffs reports that if modifications to the structure were made to enable operation, the design intake flow (DIF) would most likely be 2.0 mgd or less based on the existing production operations and existing recycling systems at the facility (i.e., existing quench and temper and hot rolling mill).

Under 40 CFR 125.90 and 125.91, cooling water intake structures with a design intake flow of 2.0 mgd or less must meet CWA Section 316(b) requirements on a case-by-base Best Professional Judgement basis, and are not subject to the requirements of 40 CFR 125.94 to 125.99 and the associated application requirements at 40 CFR 122.21(r) (required under 125.95).

Based on the following exisiting information provided by the permittee, the facility's existing cooling water recycle systems and low percentage of source water withdrawal may constitute Best Technology Available on a BPJ basis for entrainment reduction and impingement mortality.

- No cooling water is used on a once-through basis under both current operations and under full production operations. All cooling water is recycled.
- Under full production operations, the facility operates several cooling water recycle systems.
- At a design intake flow of 2.0 mgd, the calculated reduction in cooling water withdrawal over once-through needs due to recycle and / or use of an alternate water source (wells) is 32.8 mgd or 94%.
- At a design intake flow of 2.0 mgd, the intake would withdraw approximately 0.1% of the source water mean annual flow, which is less than the 5% threshold required of a new facility subject to 40 CFR 125.84.

A BTA determination will not be included in the permit because the design intake flow is not currently under 2 MGD. If the permittee wishes to start operation of the intake during this permit term the permittee must submit an NPDES permit amendment request and this permit must be amended with respect to CWA Section 316(b) prior to operation of the intake. The amendment request should include confirmation of the information above and/or other information needed to make a BPJ BTA determination. Alternatively, if the design intake flow is greater 2 MGD the permittee will include all information as required by 40CFR 122.21(r).

Discharge, Receiving	Waters and Water Supply Informa	ation	
Outfall No. 001		Design Flow (MGD)	1.2
Latitude 40° 5'	21.66"	Longitude	-75° 19' 16.53"
Quad Name Nor	ristown	Quad Code	1843
Wastewater Descrip	tion: <u>IW Process Effluent with EL</u>	.G	
Receiving Waters	Schuylkill River (WWF, MF)	Stream Code	00833
NHD Com ID	133228923	RMI	22.05
Drainage Area	1770 mi ²	Yield (cfs/mi²)	0.195
Q ₇₋₁₀ Flow (cfs)	345.5*	Q ₇₋₁₀ Basis	Previous fact sheet
Elevation (ft)	583.8	Slope (ft/ft)	
Watershed No.	3-F	Chapter 93 Class.	WWF, MF
Assessment Status	Impaired		
Cause(s) of Impairm	nent polychlorinated biphenyls (g	ocbs)	
Source(s) of Impairr	ment source unknown		
TMDL Status	Final	Name Schuylkill Ri	ver PCB TMDL
	_		

^{*} Previous permit calculations for Q7-10 were used in this permit renewal. Q7-10 = 345.5 cfs (based on Schuylkill River at Pottstown, USGS 01472000, where Q7-10 = 261.7 cfs/1147 mi 2 = 0.228 cfsm, from 1929-1987). This value was used for the watershed except for the Perkiomen basin where, based on the Graterford gage, USGS 01473000, Q7-10 = 18.7 cfs/279 mi 2 = 0.067 cfsm, from 1916-1988. Applied at the mouth, where DA = 362 mi 2 , the Q7-10 for Perkiomen basin = 24.3 cfs. Therefore, Q7-10 = (0.228 cfsm x 1408.8 mi 2) + (0.067 cfsm x 362 mi 2) = 345.5 cfs.

Discharge, Receiving	y Waters a	and Water Supply Information	on		
Outfall No. 002			Design F	low (MGD)	0
Latitude 40° 5'	21.81"		Longitud	е	-75° 19' 16.55"
Quad Name Noi	rristown		Quad Co	ode	1843
Wastewater Descrip	Vastewater Description: Stormwater				
Receiving Waters	Schuylki	ll River (WWF, MF)	Stream Cod	le	00833
NHD Com ID	1332289	23	RMI		22.05
Watershed No.	3-F		Chapter 93	Class.	WWF, MF
Assessment Status	<u> Ir</u>	mpaired			
Cause(s) of Impairm	nent <u>p</u>	olychlorinated biphenyls (pcb	s)		
Source(s) of Impairr	Source(s) of Impairment source unknown				
TMDL Status	F	inal	Name	Schuylkill Ri	ver PCB TMDL

Discharge, Receiving Water	s and Water Supply Information	on	
Outfall No. 003 Latitude 40° 5' 16.89" Quad Name Norristown Wastewater Description:		Design Flow (MGD) Longitude Quad Code	0 -75° 19' 15.95" 1843
	ylkill River (WWF, MF) 28923	Stream Code RMI Chapter 93 Class.	00833 21.95 WWF, MF
Assessment Status Cause(s) of Impairment Source(s) of Impairment TMDL Status	Impaired polychlorinated biphenyls (pcb source unknown Final	s)	ver PCB TMDL

Outfall No. 004		Design Flow (MGD)	0
Latitude 40° 5	5' 4.58"	Longitude	-75º 19' 14.47"
Quad Name No	rristown	Quad Code	1843
Wastewater Descri	ption: Stormwater		
	O	01	00000
Receiving Waters	Schuylkill River (WWF, MF)	Stream Code	00833
	133228929	Stream Code RMI	21.75
Receiving Waters NHD Com ID Watershed No.	•		
NHD Com ID Watershed No.	133228929 3-F	RMI	21.75
NHD Com ID Watershed No. Assessment Status	133228929 3-F Impaired	RMI Chapter 93 Class.	21.75
NHD Com ID	133228929 3-F Impaired ment polychlorinated biphenyls (RMI Chapter 93 Class.	21.75

outfall No. 005			Design Flow (MGD)	0
Latitude 40° 4	' 58.52"		Longitude	-75º 19' 12.31"
Quad Name No	rristown		Quad Code	1843
Wastewater Descri	ption: S	Stormwater		
Receiving Waters	Schuylk	ill River (WWF, MF)	Stream Code	00833
	1332289	929	RMI	21.70
NHD Com ID	100220	720		
NHD Com ID Watershed No.	3-F	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Chapter 93 Class.	WWF, MF
	3-F	mpaired	Chapter 93 Class.	WWF, MF
Watershed No.	3-F			WWF, MF
Watershed No. Assessment Status	3-F	mpaired		WWF, MF

Treatment Facility Summary Treatment Facility Name: Cleveland Cliffs Conshohocken Plant Avg Annual Flow (MGD) Degree of Treatment Waste Type Industrial Process Type Disinfection

Hypochlorite

1.2

Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
(11105)	(IDO/GG)	Loud Otatao	Bioconao moatmont	Occi Diopocai
		Not Overloaded		

Compliance History

DMR Data for Outfall 001 (from December 1, 2021 to November 30, 2022)

Parameter	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21
Flow (MGD)												
Average Monthly	0.270	0.339	0.376	0.370	0.479	0.500	0.542	0.486	0.465	0.440	0.352	0.381
Flow (MGD)												
Daily Maximum	0.499	0.516	0.620	0.790	0.789	0.654	0.661	0.659	0.584	0.518	0.418	0.428
pH (S.U.)												
Instantaneous												
Minimum	7.74	6.87	7.41	7.52	7.38	7.53	7.50	7.70	7.73	7.27	7.7	7.83
pH (S.U.)												
Instantaneous												
Maximum	8.11	7.62	8.25	8.16	8.08	7.85	7.77	7.84	8.11	7.90	8.0	8.10
TRC (mg/L)												
Average Monthly	< 0.03	0.03	< 0.03	< 0.02	< 0.02	< 0.04	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	< 0.02
TRC (mg/L)												
Instantaneous												
Maximum	0.05	0.07	0.06	0.02	0.02	0.12	0.02	0.02	0.02	0.13	0.02	0.02
Color (Pt-Co Units)												
Daily Maximum			< 5			5			5			5
Temperature (°F)												
Instantaneous												
Maximum	68.9	63.1	82.6	73.9	73.6	73.2	71.1	65.5	66.2	57.7	56.3	59.5
TSS (lbs/day)												
Average Monthly	< 17	< 14	< 22	< 23	< 23	< 24	35	< 27	< 26	< 30	< 39	< 17
TSS (lbs/day)												
Daily Maximum	35	< 16	26	< 33	< 33	30	42	30	45	51	86	19
TSS (mg/L)												
Average Monthly	< 6	< 5	< 6.4	< 5	< 5	< 5.4	7.8	< 5.8	6.6	< 8	< 13.5	< 5.2
TSS (mg/L)												
Daily Maximum	10	< 5	9	< 5	5	6	9	7	10	13	29	6
Total Dissolved Solids												
(mg/L)												
Average Quarterly			666.0			524.0			640.0			700.0
Total Dissolved Solids												
(mg/L)												
Daily Maximum			666.0			524.0			640.0			700.0
Oil and Grease												
(lbs/day)												
Average Monthly	< 10	< 5	< 10	< 9	< 9	< 9	< 9	< 9	< 7	< 11	< 6	< 7
Oil and Grease (mg/L)												
Average Monthly	< 3.8	< 1.9	< 2.7	< 1.9	< 1.9	< 1.9	< 1.9	< 1.9	< 1.8	< 3.1	< 1.9	< 2

Oil and Grease (mg/L) Instantaneous Maximum	< 3.9	< 1.9	< 3.9	< 1.9	< 2	< 2	< 2	< 1.9	< 2	< 4.5	< 2	< 2.2
Total Copper (mg/L)												
Daily Maximum			< 0.0016			< 0.0016			< 0.0016			< 0.0016
Dissolved Iron (mg/L)												
Daily Maximum			< 0.02			< 0.02			< 0.02			< 0.02
Total Iron (mg/L)												
Daily Maximum			0.07			0.08			0.12			0.09
Sulfate (mg/L)												
Daily Maximum			75.7			63.6			62.6			53.90
Chloride (mg/L)												
Daily Maximum			205			185			184			200
Bromide (mg/L)												
Daily Maximum			1.30			150			1.10			0.40

DMR Data for Outfall 002 (from December 1, 2021 to November 30, 2022)

Parameter	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21
pH (S.U.)												
Daily Maximum						GG						GG
CBOD5 (mg/L)												
Daily Maximum						GG						GG
COD (mg/L)												
Daily Maximum						GG						GG
TSS (mg/L)												1
Daily Maximum						GG						GG
Oil and Grease (mg/L)												1
Daily Maximum						GG						GG
Total Arsenic (mg/L)												1
Daily Maximum						GG						GG
Total Cadmium (mg/L)												1
Daily Maximum						GG						GG
Total Chromium												1
(mg/L)												1
Daily Maximum						GG						GG
Total Copper (mg/L)												1
Daily Maximum						GG						GG
Dissolved Iron (mg/L)												1
Daily Maximum						GG						GG
Total Iron (mg/L)												1
Daily Maximum						GG						GG
Total Lead (mg/L)												1
Daily Maximum						GG						GG

Total Manganese						
(mg/L)						
Daily Maximum			GG			GG
Total Nickel (mg/L)						
Daily Maximum			GG			GG

DMR Data for Outfall 003 (from December 1, 2021 to November 30, 2022)

Parameter	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21
pH (S.U.)												
Daily Maximum						GG						GG
CBOD5 (mg/L)												
Daily Maximum						GG						GG
COD (mg/L)												
Daily Maximum						GG						GG
TSS (mg/L)												
Daily Maximum						GG						GG
Oil and Grease (mg/L)												
Daily Maximum						GG						GG
Total Arsenic (mg/L)												
Daily Maximum						GG						GG
Total Cadmium (mg/L)												
Daily Maximum						GG						GG
Total Chromium												
(mg/L)												
Daily Maximum						GG						GG
Total Copper (mg/L)												
Daily Maximum						GG						GG
Dissolved Iron (mg/L)												
Daily Maximum						GG						GG
Total Iron (mg/L)												
Daily Maximum						GG						GG
Total Lead (mg/L)												
Daily Maximum						GG						GG
Total Manganese												
(mg/L)												
Daily Maximum						GG						GG
Total Nickel (mg/L)												
Daily Maximum						GG						GG

DMR Data for Outfall 004 (from December 1, 2021 to November 30, 2022)

Parameter	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21
pH (S.U.)												
Daily Maximum						7.9						8.3

CBOD5 (mg/L)		
Daily Maximum	6.5	8.7
COD (mg/L)		
Daily Maximum	< 15	< 15
TSS (mg/L)		
Daily Maximum	19	28
Oil and Grease (mg/L)		
Daily Maximum	< 4.2	< 3.7
Total Arsenic (mg/L)		
Daily Maximum	< 0.0015	< 0.0015
Total Cadmium (mg/L)		
Daily Maximum	0.00032	0.00045
Total Chromium		
(mg/L)		
Daily Maximum	0.0028	0.0034
Total Copper (mg/L)		
Daily Maximum	0.0120	0.016
Dissolved Iron (mg/L)		
Daily Maximum	< 0.02	< 0.02
Total Iron (mg/L)		
Daily Maximum	0.79	1.7
Total Lead (mg/L)		
Daily Maximum	0.0082	0.014
Total Manganese		
(mg/L)		
Daily Maximum	0.0250	0.031
Total Nickel (mg/L)		
Daily Maximum	0.0056	0.0089
PCBs (Wet Weather)		
(pg/L)		
Daily Maximum		GG

DMR Data for Outfall 005 (from December 1, 2021 to November 30, 2022)

Parameter	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21
pH (S.U.)												
Daily Maximum						GG						GG
CBOD5 (mg/L)												
Daily Maximum						GG						GG
COD (mg/L)												
Daily Maximum						GG						GG
TSS (mg/L)												
Daily Maximum						GG						GG
Oil and Grease (mg/L)												
Daily Maximum						GG						GG

Total Arsenic (mg/L)		
Daily Maximum	GG	GG
Total Cadmium (mg/L)		
Daily Maximum	GG	GG
Total Chromium		
(mg/L)		
Daily Maximum	GG	GG
Total Copper (mg/L)		
Daily Maximum	GG	GG
Dissolved Iron (mg/L)		
Daily Maximum	GG	GG
Total Iron (mg/L)		
Daily Maximum	GG	GG
Total Lead (mg/L)		
Daily Maximum	GG	GG
Total Manganese		
(mg/L)		
Daily Maximum	GG	GG
Total Nickel (mg/L)		
Daily Maximum	GG	GG

Proposed Effluent Limitations and Monitoring Requirements

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Monitoring Requirements					
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Parameter	Average	Daily		Average	Daily	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/day	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/week	Grab
pri (3.0.)		^^^	IIISU IVIIII		^^^	9.0	1/Week	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.2	1/week	Grab
Color (Pt-Co Units)	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab
Temperature (deg F)	XXX	XXX	XXX	XXX	XXX	110	1/week	I-S
, , , ,								24-Hr
Total Suspended Solids	225.5	601.4	XXX	30.0	60.0	75	1/week	Composite
	10008			1000.0				24-Hr
Total Dissolved Solids	Avg Qrtly	20016	XXX	Avg Qrtly	2000.0	2500	1/quarter	Composite
	_		15	Report				
Oil and Grease	Report	150.5	Avg Mo	Daily Max	XXX	30	1/week	Grab
	2007	2004		2006		2007		24-Hr
Copper, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite
Iron Discolved	VVV	VVV	VVV	VVV	Danaut	VVV	1/00.00	24-Hr
Iron, Dissolved	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite 24-Hr
Iron, Total	XXX	XXX	XXX	XXX	Report	xxx	1/quarter	Composite
iion, rotai	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	24-Hr
Sulfate, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite
							.,,	24-Hr
Chloride	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite
Bundle	VVV	VVV	VVV	VVV	December	V////	4/	24-Hr
Bromide	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite

Proposed Effluent Limitations and Monitoring Requirements

Outfall 004, Effective Period: Permit Effective Date through Permit Expiration Date.

			Monitoring Requirements					
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
i didilietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Oil and Grease	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Arsenic, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Cadmium, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Chromium, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Copper, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Dissolved	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Manganese, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Nickel, Total	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
PCBs Wet Weather Analysis (pg/L)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab