

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0050504

 APS ID
 1050908

 Authorization ID
 1374893

Applicant and Facility Information

Applicant Name	East Goshen Municipal Authority	Facility Name	Ridley Creek STP
Applicant Address	1580 Paoli Pike	Facility Address	1751 Towne Drive
	West Chester, PA 19380-6107	_	West Chester, PA 19380
Applicant Contact	Derek Davis	Facility Contact	Mark Miller
Applicant Phone	(610) 692-7171	Facility Phone	(610) 692-7171
Client ID	62683	Site ID	256818
Ch 94 Load Status	Not Overloaded	Municipality	East Goshen Township
Connection Status	No Limitations	County	Chester
Date Application Receiv	ved November 1, 2021	EPA Waived?	Yes
Date Application Accep	ted	If No, Reason	
Purpose of Application	Permit Renewal		

Summary of Review

Applicant requests renewal of an NPDES application for the continued discharge of treated sewage effluent from Ridley Creek STP to Ridley Creek and an irrigation pond at Applebrook Golf Course.

The treatment plant consists of an influent grinder and screen, 2,100 gpm (3.0 MGD) influent pumping station, four tank SBR system, post equalization tanks, effluent filtration, and UV disinfection, prior to discharge to the Ridley Creek. Also, there is aerobic sludge digestion and a dewatering centrifuge with polymer addition. Screenings and dewatered sludge are hauled off site for disposal at a properly permitted solid waste landfill. There are both influent and effluent flow meters at the treatment plant.

Wastewater treatment chemicals listed in the application are the following: Sodium Carbonate "Soda Ash", Aluminum Sulfate, Polymer, Ammonia, Bleach, 12.5% and "Strike".

The permittee is looking to replace the existing UV disinfection system with a new system and control panel. Also, in the process of replacing soda ash with caustic for pH and alkalinity control.

The facility serves the following municipalities: East Goshen Township, Willistown Township, and East Whiteland Township.

Outfall 001 is the regular discharge point. The outfall headwall discharges effluent to a wetland area, which eventually flows into Ridley Creek. Up to 0.135 MGD of treated effluent is pumped through the UV system to the golf course irrigation pond for summertime irrigation activities. Outfall 002 point of discharge is located at the irrigation pond. The spray irrigation for the Applebrook Golf Course is permitted under the WQM Permit # 1500410.

Based on the review of the eDMRs, the discharge is in compliance with the effluent limitations in the permit.

Approve	Deny	Signatures	Date
Х		Sara Abraham Sara Reji Abraham, E.I.T. / Project Manager	January 19, 2022
х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	01/20/2022

Summary of Review

Sludge use and disposal description and location(s): hauled off-site to dispose at a properly permitted solid waste landfill.

Application listed various commercial wastewater contributors that are connected to the sewer system.

Influent monitoring requirements for CBOD5, TSS and BOD5 are included in the draft permit to check compliance with the 85% removal requirement and Chapter 94 requirement. This requirement is consistent with other similar dischargers in the area.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Act 14 Notifications:

East Goshen Township	- October 27, 2021
Chester County Planning Commission	- October 27, 2021

Permit Conditions:

- A. No Stormwater
- B. Acquire Necessary Property Rights
- C. Proper Sludge Disposal
- D. Chlorine Optimization
- E. Operator Notification
- F. Total Flow Limit
- G. Fecal Coliform Reporting
- H. Solids Management

Discharge, Receiving Waters and Water Supply Information								
Outfall No. 002		Design Flow (MGD)	.135					
Latitude 40° 0' 19.11'	1	Longitude	-75° 32' 3.70"					
Quad Name West Che	ster	Quad Code	1941					
Wastewater Description:	Treated Sewage Effluent							
Receiving Waters Ridle	y Creek (HQ-TSF, MF)	Stream Code	00621					
NHD Com ID 2560	2045	RMI	_18.72					
Drainage Area 8.2 m	niles ²							
Q ₇₋₁₀ Flow (cfs) 0.96		Q7-10 Basis	Previous fact sheet					
Watershed No. 3-G		Chapter 93 Class.	HQ-TSF, MF					
Assessment Status	Impaired							
Cause(s) of Impairment	cause unknown, flow regime	e modification, siltation						
Source(s) of Impairment urban runoff/storm sew								
Nearest Downstream Public Water Supply Intake Borough of media water intake								

Discharge, Receiving Waters and Water Supply Information								
Outfall No. 001		Design Flow (MGD)	.75					
Latitude 39º 5	9' 3.91"	Longitude	-75º 31' 24.78"					
Quad Name We	est Chester	Quad Code	1941					
Wastewater Descrip	otion: Treated Sewage Effluent							
Receiving Waters	Ridley Creek (HQ-TSF, MF)	Stream Code	00621					
NHD Com ID	25621510	RMI						
Drainage Area	8.2 miles ²							
Q ₇₋₁₀ Flow (cfs)	0.96	Q7-10 Basis	Previous fact sheet, USGS gage # 01476480					
Elevation (ft)	358.68							
Watershed No.	3-G	Chapter 93 Class.	HQ-TSF, MF					
Assessment Status	Impaired							
Cause(s) of Impairn	nentcause unknown, flow regime	modification, siltation						
Source(s) of Impair	ment urban runoff/storm sewers							

Nearest Downstream Public Water Supply Intake

Borough of Media Water Intake

Treatment Facility Summary									
Treatment Facility Na	me: Ridley Creek STP								
WQM Permit No.	Issuance Date								
1502404	08/5/2008								
		1	Ι						
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)					
Sewage	Tertiary	Sequencing Batch Reactor W/Sol Removal	Ultraviolet	0.75					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
0.75	2,098	Not Overloaded	Aerobic Digestion	Landfill					

Compliance History

DMR Data for Outfall 001 (from December 1, 2020 to November 30, 2021)

Parameter	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20
Flow (MGD)												
Average Monthly	0.288	0.267	0.3	0.247	0.244	0.275	0.287	0.355	0.424	0.4	0.378	0.323
Flow (MGD)												
Daily Maximum	0.336	0.329	0.958	0.429	0.313	0.363	0.390	0.423	0.66	0.66	0.438	0.709
pH (S.U.)												
Minimum	7.03	7.07	7.08	7.11	7.25	6.8	6.86	6.73	7.06	6.75	6.77	6.56
pH (S.U.)												
Maximum	7.91	7.86	7.81	7.88	7.79	7.38	7.37	7.39	7.38	7.42	7.43	7.38
DO (mg/L)												
Minimum	8.53	8.29	8.29	8.1	7.92	7.72	7.87	8.28	8.41	7.86	8.42	7.46
CBOD5 (lbs/day)												
Average Monthly	< 5.0	< 5	< 5	6	< 5.0	8	7	< 8.0	13	< 12	11	6
CBOD5 (lbs/day)												
Weekly Average	< 5.0	6	10	7	6.0	10	9	11	23	19	19	11
CBOD5 (mg/L)												
Average Monthly	< 2.0	< 2	< 2	3	< 3.0	3	3.0	< 3.0	3.0	< 3.0	4	2
CBOD5 (mg/L)												
Weekly Average	< 2.0	3	4	4	3.0	5	4.0	4.0	4.0	5.0	5	4
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average				100								
Monthly	591	602	507	498	477	592	440	657	906	1121	848	696
BOD5 (mg/L)												
Raw Sewage Influent												
<pre> Average </pre>	240	200	220	0.47	245	0.44	212	220	252	222	266	269
	249	280	230	247	245	241	213	238	252	333	266	268
155 (IDS/day)	- 15	7	0	0	7.0	10	10	10	20	26	10	. 7
	< 15	/	0	9	7.0	12	13	19	20	20	13	< /
155 (IDS/04y) Row Sowago Influent												
kaw Sewage Innueni												
Monthly	831	848	673	705	561	835	768	717	1016	1010	800	678
TSS (lbs/day)	001	0+0	0/0	135		000	100	, , ,	1010	1013	003	0/0
Weekly Average	20	11	15	12	10	16	16	23	40	38	15	<u> </u>
TSS (mg/L)	20		10	14	10	10	10	20			10	
Average Monthly	< 6.0	3.5	3.8	4.2	3.5	4.8	5.5	6.7	6.8	7.7	4.3	< 5.8

TSS (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	352	397	308	392	289	338	343	258	268	303	255	260
TSS (mg/L)												
Weekly Average	8.5	5.0	6.0	6.0	5.0	6.0	6.0	7.7	8.3	12.0	5.0	< 6.6
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 3	< 1	< 1	< 1.0	< 1.0	< 2	< 3.0	< 2.0	< 1	< 27	< 5	< 2.0
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	5	< 1	1	2.0	1.0	10	39	5	3	136	136	15
Ammonia (lbs/day)												
Average Monthly	< 0.3	< 0.3	< 0.2	< 0.2	< 0.4	0.4	0.9	1.0	2.0	< 0.8	< 0.9	1.0
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.2	< 0.1	< 0.1	< 0.2	0.2	0.4	0.4	0.6	< 0.3	< 0.3	0.5
Total Phosphorus												
(lbs/day)												
Average Monthly	0.3	< 0.3	< 0.2	0.2	< 0.2	0.3	0.3	< 0.4	< 0.5	0.7	0.5	< 0.4
Total Phosphorus												
(mg/L)												
Average Monthly	0.1	< 0.1	< 0.1	0.1	< 0.1	0.1	0.1	< 0.1	< 0.1	0.2	0.2	< 0.2

DMR Data for Outfall 002 (from December 1, 2020 to November 30, 2021)

Parameter	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20
Flow (MGD)		0.04941		0.05223								
Average Monthly	0.0486	7	0.05229	7	0.04905	0.0489	0.0374				0.0420	0.14578
Flow (MGD)		0.05593		0.05961							0.15012	
Daily Maximum	0.0567	6	0.06248	6	0.05125	0.0553	0.162				8	0.18290
pH (S.U.)												
Minimum	7.03	7.07	7.08	7.11	7.25	6.8	6.86				6.77	6.56
pH (S.U.)												
Maximum	7.91	7.86	7.81	7.88	7.79	7.38	7.37				7.43	7.38
DO (mg/L)												
Minimum	8.53	8.29	8.29	8.1	7.92	7.72	7.87				8.42	7.46
CBOD5 (lbs/day)												
Average Monthly	< 5.0	< 0.9	< 5	1	< 3.0	8	2.0				3	3
CBOD5 (lbs/day)												
Weekly Average	< 5.0	1	10	2	3.0	10	3.0				3	4

CBOD5 (mg/L)										
Average Monthly	< 2.0	< 2	< 2	3	< 1.0	3	3.0		4	2
CBOD5 (mg/L)										
Weekly Average	< 2.0	3	4	4	1.0	5	4.0		5	4
TSS (lbs/day)										
Average Monthly	< 15	1	8	2	1.0	12	4.0		5	< 7
TSS (lbs/day)										
Weekly Average	20	2	15	3	2.0	16	7.0		5	9
TSS (mg/L)										
Average Monthly	< 6.1	3.5	3.8	4.2	3.5	4.8	5.5		4.3	< 5.8
TSS (mg/L)										
Weekly Average	8.5	5.0	6.0	6.0	5.0	6.0	6.0		5.0	< 6.6
Fecal Coliform										
(CFU/100 ml)										
Geometric Mean	< 3	< 1	< 1.0	< 1	< 1.0	< 2	< 3.0		< 5	< 2
Fecal Coliform										
(CFU/100 ml)										
Instantaneous										
Maximum	5	< 1	1.0	2.0	1.0	10	39		136	15
Ammonia (lbs/day)										
Average Monthly	< 0.3	< 0.06	< 0.2	< 0.03	< 0.08	0.4	0.3		< 0.7	0.6
Ammonia (mg/L)										
Average Monthly	< 0.1	< 0.2	< 0.1	< 0.1	< 0.2	0.2	0.4		< 0.3	0.5
Total Phosphorus										
(lbs/day)										
Average Monthly	0.3	< 0.05	< 0.2	0.04	< 0.05	0.3	0.1		0.1	< 0.2
Total Phosphorus										
(mg/L)										
Average Monthly	0.1	< 0.10	< 0.1	0.1	< 0.1	0.1	0.1		0.2	< 0.2

Compliance History

No Violations.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.75	
Wastewater D	Description: Sewage Effluent		Longitude	-75° 31° 26.33°	
	·····				
Outfall No.	002		Design Flow (MGD)	.135	
Latitude	40° 0' 19.00"		Longitude	-75º 32' 5.00"	
Wastewater D	escription:	Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual				
Chlorine*	0.5	Average Monthly	-	92a.48(b)(2)

*No TRC limit is needed as UV system is used for disinfection.

Water Quality-Based Limitations

Parameter	Limit (mg/l)	SBC	Model
CBOD5(05/01 to 10/31) *	10	Average Monthly	Existing Limit/WQM model
CBOD5(11/01 to 4/30)	20	Average Monthly	Existing /Seasonal limit
TSS	10	Average Monthly	Existing Limit
Dissolved Oxygen	5	Inst. Minimum	Existing limit/Chapter 93
NH3-N (5/1 to 10/31) *	2.5	Average Monthly	Existing limit/WQM model
NH3-N (11/1 to 4/31)	7.0	Average Monthly	Existing /Seasonal limit
pH	6.0 to 9.0 S	STD at all times	Chapter 95/93
Fecal Coliform (5/1 to			
9/30)	# 200/1000	Geo. Mean / IMax.	Existing limit/Chapter 92a
Fecal Coliform (10/1 to			
4/30)	# 2000/10,000	Geo. Mean / IMax	Existing limit/Chapter 92a
UV	Monitoring	Daily Minimum	SOP
Total N	Report	Average Monthly	SOP
Total Phosphorus	0.5	Average Monthly	Existing/BPJ
E-Coli	Report	Inst. Maximum	SOP

*The existing limits for CBOD₅and NH₃-N are based on water quality modeling and an anti-degradation (no measurable change) analysis conducted by SERO in 1999 for the proposed facility upgrade. No additional modeling or analysis is deemed necessary at this time, as conditions have not significantly changed. The DO limit is the minimum specified in Chapter 93 for HQ-TSF waters and is acceptable.

**Total Nitrogen, E-Coli and UV monitoring are new requirements included in the draft permit.

Best Professional Judgment (BPJ) Limitations

BPJ was used (in the past) to establish a technology-based requirement for TP in the permit of 0.5 mg/L, and the facility is capable of achieving this limit; to be consistent with anti-backsliding requirements the limit will remain in the permit.

A "Reasonable Potential Analysis" determined the following parameters were candidates for limitations/monitoring:

Parameter	Monthly Ave. Conc. (mg/l)	Maximum Daily Conc. (mg/l)	Inst. Max. (mg/l)	Recommendation/Basis
Total Copper*	16.4	25.6	41.0	TMS v.1.3
Total Zinc	Report	Report	Report	TMS v.1.3

*Only 3 samples are available. Quarterly monitoring is included to get more data to be evaluated at the next permit renewal.

Total Copper and Total Zinc monitoring are new requirements in the permit.

See the below TMS model report:

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Inst	tructions D	ischarge Stream													
Fac	ility: <mark>Rid</mark>	ley Creek STP					NP	DES Per	mit No.:	PA0050	504		Outfall	No.: 001	
Eva	luation Type:	Major Sewage /	Industr	ial W	aste		Wa	stewater	Descript	tion: trea	ited Sew	/age			
					Di	scharo	e Cha	racterist	lies						
	in Elm					301100 8	Darti	Mix E	notorr /			Com	alata Mi	Timor	(min)
	(MCD)	Hardness (mg/l)*	AFC	Faiu			mrsj	001	Com	piete Mi	k nines	(mm)			
	(MOD)	400	AFC					LFL	THE	<u>'</u>	URL	- প	7-10		h
	U./5	100		<i>(</i>											
						_									
							0 If lef	tblank	0.5 M le	ft blank	0) if left blan	k	111161	t blank
	Discha	arge Pollutant	Units	Units Max Discharge Conc			Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolve	d Solids (PWS)	mg/L		644										
5	Chloride (PW	S)	mg/L		131										
1	Bromide		mg/L	۲	0.2										
5	Sulfate (PWS)	mg/L		105	i									
	Fluoride (PWS	3)	mg/L												
	Total Aluminu	m	µg/L												
	Total Antimon	у	µg/L												
	Total Arsenic		µg/L												
	Total Barlum		µg/L												
	Total Berylliur	n	µg/L												
	Total Boron		µg/L												
	Total Cadmiu	m	µg/L			_									
	Total Chromiu	m (III)	µg/L			_									
	Hexavalent Cl	hromium	µg/L	$ \rightarrow $		_									
	Total Cobalt		µg/L	\rightarrow		_									
~	Total Copper		µg/L		15	_									
-	Free Cyanide		µg/L	\vdash		_									
ē	Total Cyanide		pg/L	\rightarrow		-									
0	Total Iron		ug/l			-									
	Total Lead		U0/1	<	1	-	_								
	Total Mangan	ese	U0/1	-	-	-									
	Total Mercury	coc	ug/L			-									
	Total Nickel		ug/L												
	Total Phenois	(Phenolics) (PWS)	µq/L												
	Total Seleniur	n	µg/L												
	Total Silver		µg/L												
	Total Thaillum	I	µg/L												
	Total Zinc		µg/L		61										
	Total Molybde	num	µg/L												
	Acrolein		µg/L	<											
	Acrylamide		µg/L	<											
	Acrylonitrile		µg/L	<											
	Benzene		µg/L	<											
	Bromoform		µg/L	<											

Discharge Information

1/12/2022

L	Carbon Tetrachioride	µg/L	<						
L	Chiorobenzene	ua/L							
L	Chiorodibromomethane	1000	-						
L	Chlorodhane	Pyr.	-	 			 	 	
L	Chloroethane	PG/L	۰						
L	2-Chioroethyl Vinyl Ether	µg/L	۷						
L	Chioroform	µg/L	۷						
L	Dichlorobromomethane	µg/L	۷						
L	1 1-Dichlomethane	unit							
L	1.2 Dishlorosthans	1000	-	 		-	 	 	
~	1,2-Dichloroeurarie	Pyrc	•	 			 	 	
5	1,1-Dichioroethylene	μg/L	۷						
2	1,2-Dichioropropane	µg/L	<						
0	1,3-Dichloropropylene	µg/L	۷						
L	1.4-Dioxane	ug/l	<						
L	Ethylhograph	1100	-						
L	Luiyibenzene	pg/L	<	 			 		
L	Methyl Bromide	μg/L	۷						
L	Methyl Chloride	µg/L	۷						
L	Methylene Chloride	µg/L	۷						
L	1.1.2.2-Tetrachioroethane	ua/L	<						
1	Tetrachiomethylene	Un/l	-						
1	Toluono	1000		 					
1	1 oluene	Pyr	<	 					
1	1,2-trans-Dichloroethylene	µg/L	<						
1	1,1,1-Trichloroethane	µg/L	<						
1	1,1,2-Trichloroethane	µg/L	<						
1	Trichioroethviene	U0/1	<						
1	Vind Chiodde	1000	-						
⊢	Vinyi Chionde	pg/L	~				 		
L	2-Chiorophenoi	μg/L	۲						
L	2,4-Dichiorophenoi	µg/L	•						
L	2,4-Dimethylphenol	µg/L	۷						
L	4.6-Dinitro-o-Cresol	UQ/L	<						
	2 4 Dinitrophonol	1100	-						
₽	2,4-billiophenoi	Py/L		 			 		
ē	2-Nitrophenol	PgyL	<						
ō	4-Nitrophenol	µg/L	۷						
L	p-Chioro-m-Cresol	µg/L	<						
L	Pentachiorophenol	µg/L	۷						
L	Phenol	un/l	~						
L	2 / C Trichlemohanal	1000	-						
⊢	2,4,6-1 nchiorophenoi	µg/L	۷						
L	Acenaphthene	µg/L	۷						
L	Acenaphthylene	µg/L	۷						
L	Anthracene	µa/L	۷						
L	Benzidine	ug/L	<						
L	Bonzo/a\Anthracono	1000	-	 					
L	Delizo(a)rululladelle	Pyrc	`	 			 		
1	benzo(a)Pyrene	µg/L	<						
1	3,4-Benzofluoranthene	µg/L	<						
1	Benzo(ghl)Perylene	µg/L	<						
1	Benzo(k)Fluoranthene	µg/L	<						
1	Bis(2-Chloroethoxy)Methane	U0/1	<						
1	Bic/2 (Chioroothul)Ethor	1000	-						
1	Dis(2-04010euty) jeuter	PUL	<	 					
1	Dis(2-Critoroisopropyi)Ether	pg/L	<						
1	Bis(2-Ethylhexyl)Phthalate	µg/L	<						
1	4-Bromophenyl Phenyl Ether	µg/L	<						
1	Butyl Benzyl Phthalate	µg/L	<						
1	2-Chioronaphthalene	UO/I	<						
1	A Objemshand Dravid City	1000	-						
1	4-Chlorophenyi Phenyi Ether	pg/L	<						
1	Chrysene	µg/L	<						
1	Dibenzo(a,h)Anthrancene	µg/L	<						
1	1,2-Dichlorobenzene	µq/L	<						
1	1.3-Dichlorobenzene	UQ/L	<						
	1 4-Dichlombenzene	1100	-						
2	2.2 Disblombonzidine	POPL -	-	 					
1	3,3-Dichlorobenzialne	pg/L	<			_			
18	Diethyl Phthalate	µg/L	<						
1 °	Dimethyl Phthalate	µg/L	<						
1	DI-n-Butyl Phthalate	µg/L	<						
1	2.4-Dinitrotoluene	UO/I	<						
	and a second provide the	1991							

Discharge Information

1/12/2022

Page 2

	2.6-Dinitrotoluene	UQ/L	<					
	Di-n-Octvi Phthalate	ua/L	<					
	1.2-Dinhenvihydrazine	100/	-					
	Euroanthone	1000	-	 			 	
	Filestan	Pyr.	-	 	 			
	Fluorene	μg/L	<					
	Hexachiorobenzene	μg/L	<					
	Hexachlorobutadiene	µg/L	۲					
	Hexachlorocyclopentadlene	µg/L	۷					
	Hexachloroethane	µg/L	۷					
	Indeno(1,2,3-cd)Pyrene	µg/L	۷					
	Isophorone	µg/L	۷					
	Naphthalene	µg/L	<					
	Nitrobenzene	UQ/L	۷					
	n-Nitrosodimethylamine	ua/L	<					
	n-Nitrosodi-n-Propylamine	ug/L	<					
	n-Nitrosodiobenvlamine	U0/1	<					
	Dhon anthrono	1000	-					
	Dyrana	100						
	1.2.4 Trichlombonzono	100						
	Aldrin	HOL .	<	 -				-
		Pyr	<	 	 		 	
	аірпа-вніс	µg/L	<					
	Deta-BHC	µg/L	<					
	gamma-BHC	µg/L	<					
	delta BHC	µg/L	۷					
	Chiordane	µg/L	۷					
	4,4-DDT	µg/L	۷					
	4,4-DDE	µg/L	۷					
	4,4-DDD	µg/L	۷					
	Dieldrin	µq/L	<					
	alpha-Endosulfan	ua/L	<					
	beta-Endosulfan	UQ/L	<					
9	Endosultan Sultate	ua/L	<					
5	Endrin	un/l						
2	Endrin Aldehvde	100/	-					
0	Hantachior	1000	-					
	Heptachior Frendric	Py/L	`	 				
	Replacitor Epoxide	µg/L	<	 	 			
	PCB-1016	µg/L	<	 				
	PCB-1221	µg/L	<					
	PCB-1232	µg/L	<				 	
	PCB-1242	µg/L	<					
	PCB-1248	µg/L	<					
	PCB-1254	µg/L	<					
	PCB-1260	µg/L	<					
	PCBs, Total	µg/L	•					
	Toxaphene	µg/L	•					
	2,3,7,8-TCDD	ng/L	<					
	Gross Alpha	pCI/L						
	Total Beta	pCI/L	<					
à	Radium 226/228	pCI/L	<					
2	Total Strontium	ua/l	<					
ō	Total Uranium	ug/l	<					
	Osmotic Pressure	mOsitra	-					
	Voltious Plessule	nicentg						

Discharge Information

1/12/2022

Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Ridley Creek STP, NPDES Permit No. PA0050504, Outfall 001

Instructions	Discharge	Stream

Receiving Surface W	ater Name: Rid	No. Reaches to Model: 1					
Location	Stream Code*	RMI	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	000621	18.72	359	8.2			Yes
End of Reach 1	000621	17.25	247	11.1			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

Location	DMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analy	sis
Location	POMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(daws)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	18.72	0.1	0.96									100	7		
End of Reach 1	17.25	0.1	1.32												

Q,	th statement of the sta														
Location	DMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analy:	sis
Location	r wii	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(daws)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	18.72														
End of Reach 1	17.25														

Stream / Surface Water Information

1/12/2022

DEPARTMENT OF ENVIRONMENTA PROTECTION	L							Toxics Management Spreadsheet Version 1.3, March 2021
Model Results							Ridley (Creek STP, NPDES Permit No. PA0050504, Outfall 001
Instructions Results	RETURN	TO INPU) (2 1	SAVE AS	PDF	PRINT	r 📄 🏵 A	NI () Inputs () Results () Limits
 ⊢ Hydrodynamics ✓ Wasteload Allocations 								
☑ AFC CC	T (min): 1.	518	PMF:	1	Ana	lysis Hardne	ss (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µa/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	ŇA	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	13.439	14.0	25.6	Chern Translator of 0.96 applied
Total Lead	0	0		0	64.581	81.6	149	Chem Translator of 0.791 applied
Total Zinc	0	0		0	117.180	120	219	Chem Translator of 0.978 applied
P CFC CC	T (min): 1.	518	PMF:	1	Ana	alysis Hardne	ess (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc (un/L)	Stream CV	(µg/L)	Fate Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.956	9.33	17.0	Chem Translator of 0.96 applied
Total Lead	0	0		0	2.517	3.18	5.81	Chem Translator of 0.791 applied
Total Zinc	0	0		0	118,139	120	219	Chem Translator of 0.986 applied
⊡ тнн сс	T (min): 1.	518	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	

Model Results

1/12/2022

NPDES Permit Fact Sheet Ridley Creek STP

Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
	T (min): 2.2	224	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.1	0.16	16.4	25.6	41.0	µg/L	16.4	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	140	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <- Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Lead	N/A	N/A	Discharge Conc < TQL

Model Results

1/12/2022

Page 6

Anti-Backsliding

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Deremeter	Mass Units (Ibs/day) ⁽¹⁾			Concentrati	Minimum ⁽²⁾	Required		
Farameter	Average	Weekly	Daily	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			5.0					
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab
CBOD5								24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
CBOD5								24-Hr
Nov 1 - Apr 30	125	188	XXX	20	30	40	1/week	Composite
CBOD5								24-Hr
May 1 - Oct 31	62	94	XXX	10	15	20	1/week	Composite
BOD5								24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
TSS	62	94	XXX	10.0	15.0	XXX	1/week	Composite
TSS								24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
Fecal Coliform (No./100 ml)				200				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	xxx	xxx	XXX	xxx	XXX	Report	1/quarter	Grab
				,,,,,,	,		., quarter	
UV intensity (mW/cm ²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
Ammonia								24-Hr
Nov 1 - Apr 30	44	XXX	XXX	7.0	XXX	14	1/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	16	XXX	XXX	2.5	XXX	5	1/week	Composite
								24-Hr
Total Phosphorus	3.0	XXX	XXX	0.5	XXX	1	1/week	Composite
	Report			Report				24-Hr
Total Copper	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
	Report			Report				24-Hr
Total Zinc	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Paramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
i arameter	Average Monthly	Weekly	Daily Minimum	Average	Weekly	Instant.	Measurement	Sample
	WOITIN	Bonort	wiininuni	wontiny	Average	Maximum	Frequency	туре
Flow (MGD)	Report	Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
	~~~	~~~	6.0	~~~	~~~	0.0	1/dov	Crob
рп (3.0.)	^^^		5 0	~~~		9.0	1/uay	Glab
DO	xxx	xxx	Inst Min	xxx	xxx	xxx	1/day	Grab
CBOD5								24-Hr
Nov 1 - Apr 30	125	188	XXX	20	30	40	1/week	Composite
CBOD5								24-Hr
May 1 - Oct 31	62	94	XXX	10	15	20	1/week	Composite
								24-Hr
TSS	62	94	XXX	10.0	15.0	XXX	1/week	Composite
Fecal Coliform (No./100 ml)				200				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	ххх	xxx	xxx	XXX	XXX	Report	1/quarter	Grab
UV intensity (mW/cm ² )	xxx	xxx	Report	xxx	xxx	xxx	1/dav	Measured
	7000	7000		7000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7001	., dd.j	24-Hr
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
Ammonia								24-Hr
Nov 1 - Apr 30	44	XXX	XXX	7.0	XXX	14	1/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	16	XXX	XXX	2.5	XXX	5	1/week	Composite
								24-Hr
Total Phosphorus	3.0	XXX	XXX	0.5	XXX	1	1/week	Composite

## Outfall 002, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Baramatar	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
	Report			Report				24-Hr
Total Copper	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
	Report			Report				24-Hr
Total Zinc	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite