

# Southeast Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

# NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0050644

APS ID 1096040

Authorization ID 1452910

|                       |        | Applicant and                | d Facility Information |                                        |
|-----------------------|--------|------------------------------|------------------------|----------------------------------------|
| Applicant Name        | Boro   | ugh of East Greenville       | Facility Name          | East Greenville Water Filtration Plant |
| Applicant Address     | 206 N  | lain Street                  | Facility Address       | 1200 Water Street                      |
|                       | East 0 | Greenville, PA 18041-1405    |                        | East Greenville, PA 18041-1405         |
| Applicant Contact     | Jame   | s Fry                        | Facility Contact       | Joel Pilgert                           |
| Applicant Phone       | (215)  | 679-5194X2                   | Facility Phone         | (215) 679-2012                         |
| Client ID             | 83527  | ,                            | Site ID                | 238201                                 |
| SIC Code              | 4941   |                              | Municipality           | East Greenville Borough                |
| SIC Description       | Trans  | . & Utilities - Water Supply | County                 | Montgomery                             |
| Date Application Rece | eived  | August 8, 2023               | EPA Waived?            | Yes                                    |
| Date Application Acce | epted  | September 13, 2023           | If No, Reason          |                                        |

#### **Summary of Review**

The Pa Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from Cowan Associates, Inc. (consultant) on August 8, 2023 on behalf of Borough of East Greenville (permittee) for East Greenville Water Filtration Plant (facility). This is a minor industrial waste facility with a design flow of 0.016 MGD that discharges into Perkiomen Creek (TSF, MF) in state watershed 3-E. The current permit will expire on February 29, 2024. The terms and conditions of the current permit is automatically extended since the renewal application is received at least 180 days prior to expiration date. Renewal NPDES permit application under Clean Water Program are not covered by PADEP's PDG per 021-2100-001. This fact sheet is developed in accordance with 40 CFR §124.56.

Changes to existing permit: None.

#### **Public Participation**

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Approve | Deny | Signatures                                                          | Date               |
|---------|------|---------------------------------------------------------------------|--------------------|
| V       |      | Reza H. Chowdhury, E.I.T. / Project Manager                         | September 14, 2023 |
| Х       |      | Pravin Patel Pravin C. Patel, P.E. / Environmental Engineer Manager | 09/18/2023         |

| scharge, Receiving           | g Water             | s and Water Supply Info | ormation                         |                      |
|------------------------------|---------------------|-------------------------|----------------------------------|----------------------|
|                              |                     |                         |                                  |                      |
| Outfall No. 001              |                     |                         | Design Flow (MGD)                | 0.016                |
| Latitude 40° 2               | 24' 23.22           | 11                      | Longitude                        | -75° 31' 18.15"      |
| Quad Name Ea                 | st Greer            | nville                  | Quad Code                        | 1541                 |
| Wastewater Descri            | ption:              | Filter backwash and sed | limentation basin cleaning water |                      |
|                              |                     |                         |                                  |                      |
| Receiving Waters             |                     | men Creek (TSF, MF)     | Stream Code                      | 01017                |
| NHD Com ID                   | 25971               |                         | RMI                              | 27.82                |
| Drainage Area                | 36.3 n              | าi <sup>2</sup>         | Yield (cfs/mi²)                  | 0.197                |
| Q <sub>7-10</sub> Flow (cfs) | 7.16                |                         | Q <sub>7-10</sub> Basis          | Please see below     |
| Elevation (ft)               | 313.3               |                         | Slope (ft/ft)                    |                      |
| Watershed No.                | 3-E                 |                         | Chapter 93 Class.                | TSF, MF              |
| Existing Use                 | TSF                 |                         | Existing Use Qualifier           |                      |
| Exceptions to Use            | None                |                         | Exceptions to Criteria           |                      |
| Assessment Status            | ;                   | Not Assessed            |                                  |                      |
| Cause(s) of Impairr          | ment                |                         |                                  |                      |
| Source(s) of Impair          | ment                |                         |                                  |                      |
| TMDL Status                  |                     | None proposed           | Name <b>N/A</b>                  |                      |
| De alcorro un d/Arobio       | nt Data             |                         | Data Source                      |                      |
| Background/Ambie             | ni Daia             | 7.0                     |                                  | Jk 707 204 2000 007  |
| pH (SU)                      |                     | 7.0                     | Previous fact sheet and defau    | iii per 391-2000-007 |
| Temperature (°C)             |                     | 20                      | Default per 391-2000-013         |                      |
| Hardness (mg/L)              |                     |                         | Application data                 |                      |
| Nearest Downstrea            | ım Publi            | c Water Supply Intake   | AQUA PA Main Division            |                      |
| PWS WatersI                  | Perkio <sub>m</sub> | en Creek                | Flow at Intake (cfs)             |                      |
| PWS RMI                      | 0.93                | <del></del>             | Distance from Outfall (mi)       | 26.89                |

Changes Since Last Permit Issuance: None

#### **Drainage Area:**

The discharge from Outfall 001 is into Perkiomen Creek at RMI 27.82. The drainage area upstream of the point of discharge is 36.3 mi<sup>2</sup> according to USGS PA StreamStats, accessible at <a href="https://streamstats.usgs.gov/ss/">https://streamstats.usgs.gov/ss/</a>

#### **Stream Flow:**

There is a dam (46-069) located just upstream of the discharge point (DP). However, no information regarding the minimum release rate could be retrieved. The nearest USGS Streamgage is 01472198 on Perkiomen Creek at Upper Hanover Township, PA which is approximately 1.77 miles downstream of the discharge point at RMI 26.15. Recent stream flow retrievals resulted in a Q<sub>7-10</sub>, Q<sub>1-10</sub>, and Q<sub>30-10</sub> of 7.5 cfs, 7.1 cfs, and 9.6 cfs, respectively, at this gage for record period of 1983-2008. These values were obtained from the latest USGS streamflow report <sup>(1)</sup>. The drainage area is reported to be 38.0 mi<sup>2</sup> at the gage station. The drainage area at DP is found to be 36.3 mi<sup>2</sup> from USGS StreamStats Version 3.0, accessed on November 28, 2018. The flow calculations are shown below:

 $Q_{7-10}$  runoff rate (yield) = 7.5/38 = 0.197 cfs/mi<sup>2</sup>.

 $\begin{array}{l} Q_{30\text{-}10}\text{: }Q_{7\text{-}10} = 9.6/7.5 = 1.28\text{:}1 \\ Q_{1\text{-}10}\text{: }Q_{7\text{-}10} = 7.1/7.5 = 0.95\text{:}1 \\ Q_{7\text{-}10} = 0.197^*36.3 = 7.15 \text{ cfs} \end{array}$ 

<sup>(1)</sup> Stuckey, M.H., Roland, M.A., 2011, Selected streamflow statistics for streamgage locations in and near Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2011-1070, 10p, 23p.

#### **PWS Intake:**

The nearest downstream public water supply is AQUA PA Main Division on Perkiomen Creek at RMI 0.93. It is approximately 26.89 miles downstream of the discharge. Due to the distance, dilution, and effluent limits the discharge is not expected to impact the water supply.

#### **Wastewater Characteristics:**

A median pH of 7.7 S.U. during July through September for the reporting years 2022-2023 from daily eDMR and a default temperature of 20°C (per 391-2000-013) will be used for modeling, if needed.

#### **Background/Ambient Stream Data:**

The stream background data was collected from application data, previous permit fact sheet, and from 391-2000-013 and 391-2000-007. The values are listed on page 2 of this report.

#### 303d Listed Streams:

The discharge from this facility is in Perkiomen Creek at 36.3 RMI in state watershed 3-E which is supporting its designated uses.

#### Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

#### **Class A Wild Trout Fisheries:**

No Class A Wild Trout Fisheries are impacted by this discharge.

| WQM Permit No.           | Issuance Date  |                                  |                              |            |
|--------------------------|----------------|----------------------------------|------------------------------|------------|
| TT QITT I CITITUTE       | issualise bate |                                  |                              |            |
|                          | Degree of      |                                  |                              | Avg Annual |
|                          |                |                                  |                              |            |
| Waste Type               | Treatment      | Process Type                     | Disinfection                 | Flow (MGD) |
| Waste Type<br>Industrial | _              | Process Type Sedimentation Tanks | Disinfection No Disinfection |            |
|                          | Treatment      |                                  |                              | Flow (MGD) |
|                          | Treatment      |                                  |                              | Flow (MGD) |

Changes Since Last Permit Issuance: None

#### **Other Comments:**

East Greenville Water Filtration Plant (WFP/facility) is owned and operated by Borough of East Greenville (permittee). The facility is in Upper Hanover Township, Montgomery County. The treated effluent is discharged to Perkiomen Creek in state watershed 3-E through outfall 001. The receiving stream has a Chapter 93 designation of TSF, MF.

The filtration plant is a well and surface water filtration plant which is permitted to discharge 16,000 GPD that is generated from the routine sand filter backwash and yearly sedimentation tank draining operation. The surface water is withdrawn from the creek just upstream of the State Road bridge and the discharge point is located downstream of the bridge. The plant was constructed in 1937 and has three intake pumps. The raw water is treated for odor control, pH adjustment, and chlorination. Coagulant aids are added for floc formation, which is removed either in sedimentation basins or in filters. The filters are backwashed after 65-75 hours of operation, based on time and/or pressure loss. Filter backwash is discharged to a settling tank, allowed to settle 4-5 days, and decanted by gravity to outfall 001. The discharge occurs approximately 1/week. On as-needed basis, the settling basin is dewatered and cleaned once a year. Sludge is transferred to the old plant settling tanks for thickening and sent to Pottstown WWTP. Decant is discharged through Outfall 001.

The permit application indicated no chemicals are added to the backwash water. Chlorine is used as mean of disinfection of the finished potable water which may end up in backwash water. TRC\_Spreadsheet will be utilized to see if the existing limits are still protective.

A process flow diagram is attached at Appendix.

#### Planned upgrade during the next permit cycle:

There is no planned upgrade to the facility in next permit cycle.

|                         | Compliance History                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Summary of DMRs:        | A summary of 12-month DMR data is presented on the next page.                                                                                                                                                                                                                                                                                                                                                               |
| Summary of Inspections: | <b>07/26/2023:</b> INCDT inspection conducted to investigate vandal that entered the wastewater tank area and released stored wastewater through the permitted outfall. No violations were observed. Standing water was clear with settled solids visible on the bottom.                                                                                                                                                    |
|                         | <b>05/18/2023:</b> RTPT conducted for a reported possible solids discharge due to recent WFP settling tank cleaning operations. No compliance issues were identified. The facility recently conducted routine sedimentation tank cleaning operations and was inspected by the DEP on April 18, 2023.                                                                                                                        |
|                         | <b>04/18/2023:</b> RTPT inspection conducted during settling tank cleaning operations. No compliance issues were identified.                                                                                                                                                                                                                                                                                                |
|                         | <b>11/10/2022:</b> CEI conducted. No compliance issues were identified. The facility conducted sedimentation tank cleaning operation during first week of May. A minor Manganese effluent concentration exceedance was reported. The cause may be decaying leaves that had fallen into the settling tanks. Flow in the receiving stream was clear and there was no indication of solids deposition at or below the outfall. |
|                         | <b>08/25/2021:</b> INCDT inspection conducted to investigate a water main break due to road excavation. Approximately 20,000 gallons of water was leaked into the ground and into sanitary sewer.                                                                                                                                                                                                                           |
|                         | <b>06/10/2021:</b> RTPT inspection conducted to observe settling tank cleaning operation. No violations were observed.                                                                                                                                                                                                                                                                                                      |
|                         | <b>11/04/2020:</b> CEI conducted. No violation noted. The facility wasn't in operation and didn't operate during first part of 2020. The plant normally operates when the source (Perkiomen Creek) has low TSS.                                                                                                                                                                                                             |
|                         | <b>12/04/2019:</b> CEI conducted. No violation observed. The plant wasn't in operation due to new DEP drinking water disinfection guidelines that will require the sedimentation tanks to be covered if the finished water temperature goes below approximately 54°F.                                                                                                                                                       |

Other comments: None

# **Compliance History**

# DMR Data for Outfall 001 (from August 1, 2022 to July 31, 2023)

| Parameter                | JUL-23 | JUN-23  | MAY-23  | APR-23 | MAR-23 | FEB-23 | JAN-23 | DEC-22 | NOV-22  | OCT-22  | SEP-22  | AUG-22 |
|--------------------------|--------|---------|---------|--------|--------|--------|--------|--------|---------|---------|---------|--------|
| Flow (MGD)               |        |         | 0.01741 |        |        |        |        |        | 0.01862 |         | 0.01837 |        |
| Average Monthly          | 0.02   | 0.012   | 7       |        |        |        |        |        | 5       | 0.01575 | 5       | 0.02   |
| Flow (MGD)               |        |         |         |        |        |        |        |        |         |         |         |        |
| Special Effluent Gross   |        |         |         |        |        |        |        |        |         |         |         |        |
| Average Monthly          | GG     | GG      | GG      | 0.08   | GG     | GG     | GG     | GG     | GG      | GG      | GG      | GG     |
| Flow (MGD)               |        |         |         |        |        |        |        |        |         |         |         |        |
| Daily Maximum            | 0.02   | 0.01675 | 0.01975 |        |        |        |        |        | 0.0185  | 0.01575 | 0.0185  | 0.0215 |
| Flow (MGD)               |        |         |         |        |        |        |        |        |         |         |         |        |
| Special Effluent Gross   | 00     | 00      | 00      | 0.00   | 00     | 00     | 00     | 00     | 0.0     | 00      | 00      | 00     |
| Daily Maximum            | GG     | GG      | GG      | 0.08   | GG     | GG     | GG     | GG     | GG      | GG      | GG      | GG     |
| pH (S.U.)                |        |         |         |        |        |        |        |        |         |         |         |        |
| Instantaneous            | 6.50   | 6.52    | 6.41    |        |        |        |        |        | 6.95    | 6.7     | 7.04    | 7.33   |
| Minimum<br>pH (S.U.)     | 6.58   | 6.52    | 6.41    |        |        |        |        |        | 6.95    | 0.7     | 7.24    | 7.33   |
| Special Effluent Gross   |        |         |         |        |        |        |        |        |         |         |         |        |
| Instantaneous            |        |         |         |        |        |        |        |        |         |         |         |        |
| Minimum                  | GG     | GG      | GG      | 6.7    | GG     | GG     | GG     | GG     | GG      | GG      | GG      | GG     |
| pH (S.U.)                | - 00   | - 00    | - 00    | 0.7    | - 00   | - 00   | - 00   | - 00   | - 00    | - 00    | - 00    |        |
| Instantaneous            |        |         |         |        |        |        |        |        |         |         |         |        |
| Maximum                  | 7.66   | 7.29    | 7.95    |        |        |        |        |        | 7.49    | 7.44    | 7.77    | 7.59   |
| pH (S.U.)                |        | 7.20    | 1100    |        |        |        |        |        |         |         |         | 1100   |
| Special Effluent Gross   |        |         |         |        |        |        |        |        |         |         |         |        |
| Instantaneous            |        |         |         |        |        |        |        |        |         |         |         |        |
| Maximum                  | GG     | GG      | GG      | 8.2    | GG     | GG     | GG     | GG     | GG      | GG      | GG      | GG     |
| TRC (mg/L)               |        |         |         |        |        |        |        |        |         |         |         |        |
| Average Monthly          | 0.16   | 0.12    | 0.11    |        |        |        |        |        | 0.05    | 0.05    | 0.06    | 0.02   |
| TRC (mg/L)               |        |         |         |        |        |        |        |        |         |         |         |        |
| Special Effluent Gross   |        |         |         |        |        |        |        |        |         |         |         |        |
| Average Monthly          | GG     | GG      | GG      | 0.04   | GG     | GG     | GG     | GG     | GG      | GG      | GG      | GG     |
| TRC (mg/L)               |        |         |         |        |        |        |        |        |         |         |         |        |
| Instantaneous            | 0.40   | 2.24    |         |        |        |        |        |        |         |         |         | 2.24   |
| Maximum                  | 0.46   | 0.21    | 0.26    |        |        |        |        |        | 0.06    | 0.1     | 0.07    | 0.04   |
| TRC (mg/L)               |        |         |         |        |        |        |        |        |         |         |         |        |
| Special Effluent Gross   |        |         |         |        |        |        |        |        |         |         |         |        |
| Instantaneous<br>Maximum | GG     | GG      | GG      | 0.08   | GG     | GG     | GG     | GG     | GG      | GG      | GG      | GG     |
| TSS (lbs/day)            | - 66   | GG      | - 66    | 0.06   | GG     | - 66   | GG     | GG     | GG      | GG      | GG      | 96     |
| Average Monthly          | 1.00   | 0.58    | 0.57    |        |        |        |        |        | 0.16    | 0.5     | 1.1     | 0.3    |
| Average Monthly          | 1.00   | 0.36    | 0.57    |        |        |        |        |        | 0.10    | 0.5     | 1.1     | 0.5    |

| TSS (lbs/day)          |      |      |      |      |    |    |    |    |       |       |       |        |
|------------------------|------|------|------|------|----|----|----|----|-------|-------|-------|--------|
| Special Effluent Gross |      |      |      |      |    |    |    |    |       |       |       |        |
| Average Monthly        | GG   | GG   | GG   | 2.0  | GG | GG | GG | GG | GG    | GG    | GG    | GG     |
| TSS (lbs/day)          |      |      |      |      |    |    |    |    |       |       |       |        |
| Daily Maximum          | 1.17 | 0.60 | 1.09 |      |    |    |    |    | 0.16  | 0.8   | 1.1   | 0.5    |
| TSS (lbs/day)          |      |      |      |      |    |    |    |    |       |       |       |        |
| Special Effluent Gross |      |      |      |      |    |    |    |    |       |       |       |        |
| Daily Maximum          | GG   | GG   | GG   | 3.34 | GG | GG | GG | GG | GG    | GG    | GG    | GG     |
| TSS (mg/L)             |      |      |      |      |    |    |    |    |       |       |       |        |
| Average Monthly        | 6.0  | 7.0  | 3.7  |      |    |    |    |    | 1.0   | 4.0   | 7.0   | 2.0    |
| TSS (mg/L)             |      |      |      |      |    |    |    |    |       |       |       |        |
| Special Effluent Gross |      |      |      |      |    |    |    |    |       |       |       |        |
| Average Monthly        | GG   | GG   | GG   | 3.0  | GG | GG | GG | GG | GG    | GG    | GG    | GG     |
| TSS (mg/L)             |      |      |      |      |    |    |    |    |       |       |       |        |
| Daily Maximum          | 7.0  | 10.0 | 7.0  |      |    |    |    |    | 1.0   | 6.0   | 7.0   | 3.0    |
| TSS (mg/L)             |      |      |      |      |    |    |    |    |       |       |       |        |
| Special Effluent Gross |      |      |      |      |    |    |    |    |       |       |       |        |
| Daily Maximum          | GG   | GG   | GG   | 5.0  | GG | GG | GG | GG | GG    | GG    | GG    | GG     |
| Turbidity (NTU)        |      |      |      |      |    |    |    |    |       |       |       |        |
| Special Effluent Gross |      |      |      |      |    |    |    |    |       |       |       |        |
| Average Monthly        | GG   | GG   | GG   | 2.62 | GG | GG | GG | GG | GG    | GG    | GG    | GG     |
| Turbidity (NTU)        |      |      |      |      |    |    |    |    |       |       |       |        |
| Special Effluent Gross |      |      |      |      |    |    |    |    |       |       |       |        |
| Instantaneous          |      |      |      |      |    |    |    |    |       |       |       |        |
| Maximum                | GG   | GG   | GG   | 3.01 | GG | GG | GG | GG | GG    | GG    | GG    | GG     |
| Total Aluminum         |      |      |      |      |    |    |    |    |       |       |       |        |
| (lbs/day)              |      |      |      |      |    |    |    |    |       | 0.004 | 0.040 |        |
| Average Monthly        | 0.05 | 0.01 | 0.02 |      |    |    |    |    | 0.015 | 0.021 | 0.019 | 0.0164 |
| Total Aluminum         |      |      |      |      |    |    |    |    |       |       |       |        |
| (lbs/day)              |      |      |      |      |    |    |    |    |       |       |       |        |
| Special Effluent Gross | 00   | 00   | 00   | 0.00 | 00 | 00 | 00 | 00 | 00    | 00    | 00    | 00     |
| Average Monthly        | GG   | GG   | GG   | 0.26 | GG | GG | GG | GG | GG    | GG    | GG    | GG     |
| Total Aluminum         |      |      |      |      |    |    |    |    |       |       |       |        |
| (lbs/day)              | 0.00 | 0.04 | 0.00 |      |    |    |    |    | 0.000 | 0.000 | 0.000 | 0.0000 |
| Daily Maximum          | 0.09 | 0.01 | 0.03 |      |    |    |    |    | 0.022 | 0.033 | 0.026 | 0.0233 |
| Total Aluminum         |      |      |      |      |    |    |    |    |       |       |       |        |
| (lbs/day)              |      |      |      |      |    |    |    |    |       |       |       |        |
| Special Effluent Gross | 00   | 00   | 00   | 0.5  | 00 | 00 | 00 | 00 | 00    | 00    | 00    |        |
| Daily Maximum          | GG   | GG   | GG   | 0.5  | GG | GG | GG | GG | GG    | GG    | GG    | GG     |
| Total Aluminum         |      |      |      |      |    |    |    |    |       |       |       |        |
| (mg/L)                 | 0.00 | 0.00 | 0.44 |      |    |    |    |    | 0.40  | 0.40  | 0.40  | 0.40   |
| Average Monthly        | 0.30 | 0.09 | 0.14 |      |    |    |    |    | 0.10  | 0.16  | 0.13  | 0.10   |

| T                      |       |       |       |       |    |    |    | l   | I      |        | 1      |        |
|------------------------|-------|-------|-------|-------|----|----|----|-----|--------|--------|--------|--------|
| Total Aluminum         |       |       |       |       |    |    |    |     |        |        |        |        |
| (mg/L)                 |       |       |       |       |    |    |    |     |        |        |        |        |
| Special Effluent Gross | 00    | 00    | 00    | 0.00  | 00 | 00 | 00 | 0.0 | 00     | 00     | 00     | 00     |
| Average Monthly        | GG    | GG    | GG    | 0.39  | GG | GG | GG | GG  | GG     | GG     | GG     | GG     |
| Total Aluminum         |       |       |       |       |    |    |    |     |        |        |        |        |
| (mg/L)                 |       |       |       |       |    |    |    |     |        |        |        |        |
| Daily Maximum          | 0.53  | 0.13  | 0.21  |       |    |    |    |     | 0.14   | 0.25   | 0.17   | 0.13   |
| Total Aluminum         |       |       |       |       |    |    |    |     |        |        |        |        |
| (mg/L)                 |       |       |       |       |    |    |    |     |        |        |        |        |
| Special Effluent Gross |       |       |       |       |    |    |    |     |        |        |        |        |
| Daily Maximum          | GG    | GG    | GG    | 0.75  | GG | GG | GG | GG  | GG     | GG     | GG     | GG     |
| Total Iron (lbs/day)   |       |       |       |       |    |    |    |     |        |        |        |        |
| Average Monthly        | 0.011 | 0.003 | 0.01  |       |    |    |    |     | 0.0039 | 0.009  | 0.005  | 0.0034 |
| Total Iron (lbs/day)   |       |       |       |       |    |    |    |     |        |        |        |        |
| Special Effluent Gross |       |       |       |       |    |    |    |     |        |        |        |        |
| Average Monthly        | GG    | GG    | GG    | 0.04  | GG | GG | GG | GG  | GG     | GG     | GG     | GG     |
| Total Iron (lbs/day)   |       |       |       |       |    |    |    |     |        |        |        |        |
| Daily Maximum          | 0.017 | 0.004 | 0.024 |       |    |    |    |     | 0.0046 | 0.014  | 0.006  | 0.0036 |
| Total Iron (lbs/day)   |       |       |       |       |    |    |    |     |        |        |        |        |
| Special Effluent Gross |       |       |       |       |    |    |    |     |        |        |        |        |
| Daily Maximum          | GG    | GG    | GG    | 0.093 | GG | GG | GG | GG  | GG     | GG     | GG     | GG     |
| Total Iron (mg/L)      |       |       |       |       |    |    |    |     |        |        |        |        |
| Average Monthly        | 0.07  | 0.04  | 0.11  |       |    |    |    |     | 0.03   | 0.07   | 0.03   | 0.02   |
| Total Iron (mg/L)      |       |       |       |       |    |    |    |     |        |        |        |        |
| Special Effluent Gross |       |       |       |       |    |    |    |     |        |        |        |        |
| Average Monthly        | GG    | GG    | GG    | 0.06  | GG | GG | GG | GG  | GG     | GG     | GG     | GG     |
| Total Iron (mg/L)      |       |       |       |       |    |    |    |     |        |        |        |        |
| Daily Maximum          | 0.1   | 0.06  | 0.21  |       |    |    |    |     | 0.03   | 0.11   | 0.04   | 0.02   |
| Total Iron (mg/L)      |       |       |       |       |    |    |    |     |        |        |        |        |
| Special Effluent Gross |       |       |       |       |    |    |    |     |        |        |        |        |
| Daily Maximum          | GG    | GG    | GG    | 0.14  | GG | GG | GG | GG  | GG     | GG     | GG     | GG     |
| Total Manganese        |       |       |       |       |    |    |    |     |        |        |        |        |
| (lbs/day)              |       |       |       |       |    |    |    |     |        |        |        |        |
| Average Monthly        | 0.139 | 0.029 | 0.239 |       |    |    |    |     | 0.106  | 0.0447 | 0.0568 | 0.0086 |
| Total Manganese        |       |       |       |       |    |    |    |     |        |        |        |        |
| (lbs/day)              |       |       |       |       |    |    |    |     |        |        |        |        |
| Special Effluent Gross |       |       |       |       |    |    |    |     |        |        |        |        |
| Average Monthly        | GG    | GG    | GG    | 0.495 | GG | GG | GG | GG  | GG     | GG     | GG     | GG     |
| Total Manganese        |       |       |       |       |    |    |    |     |        |        |        |        |
| (lbs/day)              |       |       |       |       |    |    |    |     |        |        |        |        |
| Daily Maximum          | 0.207 | 0.032 | 0.311 |       |    |    |    |     | 0.125  | 0.0617 | 0.0741 | 0.0109 |
| Total Manganese        |       |       |       |       |    |    |    |     |        |        |        |        |
| (lbs/day)              |       |       |       |       |    |    |    |     |        |        |        |        |
| Special Effluent Gross |       |       |       |       |    |    |    |     |        |        |        |        |
| Daily Maximum          | GG    | GG    | GG    | 1.354 | GG | GG | GG | GG  | GG     | GG     | GG     | GG     |

#### NPDES Permit No. PA0050644

| Total Manganese (mg/L) |       |       |      |      |    |    |    |    |       |      |       |       |
|------------------------|-------|-------|------|------|----|----|----|----|-------|------|-------|-------|
| Average Monthly        | 0.835 | 0.325 | 1.69 |      |    |    |    |    | 0.685 | 0.34 | 0.372 | 0.05  |
| Total Manganese        |       |       |      |      |    |    |    |    |       |      |       |       |
| (mg/L)                 |       |       |      |      |    |    |    |    |       |      |       |       |
| Special Effluent Gross |       |       |      |      |    |    |    |    |       |      |       |       |
| Average Monthly        | GG    | GG    | GG   | 0.74 | GG | GG | GG | GG | GG    | GG   | GG    | GG    |
| Total Manganese        |       |       |      |      |    |    |    |    |       |      |       |       |
| (mg/L)                 |       |       |      |      |    |    |    |    |       |      |       |       |
| Daily Maximum          | 1.24  | 0.421 | 2.25 |      |    |    |    |    | 0.809 | 0.47 | 0.487 | 0.061 |
| Total Manganese        |       |       |      |      |    |    |    |    |       |      |       |       |
| (mg/L)                 |       |       |      |      |    |    |    |    |       |      |       |       |
| Special Effluent Gross |       |       |      |      |    |    |    |    |       |      |       |       |
| Daily Maximum          | GG    | GG    | GG   | 2.0  | GG | GG | GG | GG | GG    | GG   | GG    | GG    |

# **Compliance History**

Effluent Violations for Outfall 001, from: September 1, 2022 To: July 31, 2023

| Parameter       | Date SBC |           | DMR Value | Units | Limit Value | Units |
|-----------------|----------|-----------|-----------|-------|-------------|-------|
| Total Manganese | 05/31/23 | Avg Mo    | 1.69      | mg/L  | 1.0         | mg/L  |
| Total Manganese | 05/31/23 | Daily Max | 2.25      | mg/L  | 2.0         | mg/L  |

Other Comments: There was one average monthly and Daily Max violation noted for Total Manganese for the month of May 2023. The submitted Non Compliance Report Form didn't identify any cause or corrective actions for this non-compliance.

# **Existing Limits**

Outfall 001: Filter Backwash Water

|                               |                    |                            | Effluent L      | imitations         |               |                     | Monitoring Red            | quirements              |
|-------------------------------|--------------------|----------------------------|-----------------|--------------------|---------------|---------------------|---------------------------|-------------------------|
| Parameter                     | Mass Unit          | s (lbs/day) <sup>(1)</sup> |                 | Concentra          | tions (mg/L)  |                     | Minimum <sup>(2)</sup>    |                         |
|                               | Average<br>Monthly | Daily Maximum              | Minimum         | Average<br>Monthly | Daily Maximum | Instant.<br>Maximum | Measurement<br>Frequency  | Required<br>Sample Type |
| Flow (MGD)                    | Report             | Report                     | XXX             | XXX                | XXX           | XXX                 | Daily when<br>Discharging | Estimate                |
| pH (S.U.)                     | XXX                | XXX                        | 6.0<br>Inst Min | XXX                | XXX           | 9.0                 | 1/week                    | Grab                    |
| Total Residual Chlorine (TRC) | XXX                | XXX                        | XXX             | 0.5                | XXX           | 1.0                 | 1/week                    | Grab                    |
| Total Suspended Solids        | Report             | Report                     | XXX             | 30.0               | 60.0          | 75                  | 2/month                   | Grab                    |
| Aluminum, Total               | Report             | Report                     | XXX             | 4.0                | 8.0           | 10                  | 2/month                   | Grab                    |
| Iron, Total                   | Report             | Report                     | XXX             | 2.0                | 4.0           | 5                   | 2/month                   | Grab                    |
| Manganese, Total              | Report             | Report                     | XXX             | 1.0                | 2.0           | 2.5                 | 2/month                   | Grab                    |

# Outfall 001: Sedimentation Basin Cleaning water.

|                         |                    |                            | Effluent L          | imitations         |               |                     | Monitoring Re            | quirements              |
|-------------------------|--------------------|----------------------------|---------------------|--------------------|---------------|---------------------|--------------------------|-------------------------|
| Parameter               | Mass Unit          | s (lbs/day) <sup>(1)</sup> |                     | Concentra          | tions (mg/L)  |                     | Minimum (2)              |                         |
| , aramotor              | Average<br>Monthly | Daily Maximum              | Instant.<br>Minimum | Average<br>Monthly | Daily Maximum | Instant.<br>Maximum | Measurement<br>Frequency | Required<br>Sample Type |
| Flow (MGD)              | Report             | Report                     | XXX                 | XXX                | XXX           | XXX                 | Daily when discharging   | Estimate                |
| pH (S.U.)               | XXX                | XXX                        | 6.0                 | XXX                | XXX           | 9.0                 | See permit               | Grab                    |
| Total Residual Chlorine | XXX                | XXX                        | XXX                 | 0.5                | XXX           | 1.3                 | See permit               | Grab                    |
| Total Suspended Solids  | Report             | Report                     | XXX                 | 30                 | 60            | 75                  | See permit               | Grab                    |
| Total Aluminum          | Report             | Report                     | XXX                 | 4.0                | 8.0           | 10.0                | See permit               | Grab                    |
| Total Iron              | Report             | Report                     | XXX                 | 2.0                | 4.0           | 5.0                 | See permit               | Grab                    |
| Total Manganese         | Report             | Report                     | XXX                 | 1.0                | 2.0           | 2.5                 | See permit               | Grab                    |
| Turbidity (NTU)         | XXX                | XXX                        | XXX                 | 100                | XXX           | 100                 | See permit               | Grab                    |

|              | Development of Effluent Limitations      |                   |                 |  |  |  |  |  |
|--------------|------------------------------------------|-------------------|-----------------|--|--|--|--|--|
| Outfall No.  | 001                                      | Design Flow (MGD) | .016            |  |  |  |  |  |
| Latitude     | 40° 24' 25.00"                           | Longitude         | -75° 31' 17.00" |  |  |  |  |  |
| Wastewater D | escription: IW Process water without ELG | _                 |                 |  |  |  |  |  |

#### **Technology-Based Limitations**

A majority of industrial wastewaters generated from this water treatment plant is filter backwash. DEP's technical guidance no. 362-2183-003 addresses technology-based control requirements along with the following recommended Best Practicable Control Technology Currently Available (BPT) effluent requirements for WTP sludge and filter backwash:

| Parameter               | Limit (mg/l) | SBC             |
|-------------------------|--------------|-----------------|
| Suspended Solids        | 30           | Average Monthly |
| Suspended Solids        | 60           | Daily Maximum   |
| Iron, Total             | 2.0          | Average Monthly |
| iion, rotai             | 4.0          | Daily Maximum   |
| Aluminum Total          | 4.0          | Average Monthly |
| Aluminum, Total         | 8.0          | Daily Maximum   |
| Manganasa Tatal         | 1.0          | Average Monthly |
| Manganese, Total        | 2.0          | Daily Maximum   |
| Flow                    | Monitor      | Average Monthly |
| nU                      | 6.0          | Minimum         |
| pH                      | 9.0          | Maximum         |
| Total Residual Chlorine | 0.5          | Average Monthly |
| Total Residual Chiofine | 1.0          | Daily Maximum   |

#### **Water Quality-Based Limitations**

DEP's SOP no. BPNPSM-PMT-032 recommends the average monthly flow as a design flow in water quality modeling unless a different flow is determined to be more representative of site-specific conditions. The volume of effluent discharged from facilities such as water treatment plants is heavily depended upon the quality of source water as more backwashing is needed to maintain acceptable filter performance if the intake water quality is poor. As such, maximum flow is often used to account for the worst-case scenario (i.e., highest discharge events). Past three-year effluent flow data were analyzed. the average of the data was 0.025149 MGD with the 90<sup>th</sup> percentile of 0.0366 MGD and maximum of 0.1 MGD. Based on this, DEP has determined that 0.1 MGD will be used as a design flow in water quality modeling for this permit renewal. It is noteworthy that this design flow value should be once again reevaluated at the time of the subsequent permit renewal application review.

#### **WQM 7.0**

CBOD5 and NH3-N are not pollutants of concern for the water treatment waste as the discharge of these pollutants are not resulting from the water treatment process. Therefore, WQM 7.0 modeling is not necessary and permit requirements for these pollutants are not recommended.

#### **Total Residual Chlorine**

Chlorine is used for source water disinfection, injected at the headworks. Because of that, residual chlorine is expected to be present in the effluent discharged via Outfall 001. Accordingly, Total Residual Chlorine (TRC) effluent concentrations must be monitored and regulated per 25 Pa Code §92a.48(b). DEP's TRC CALC worksheet was utilized to determine if existing TBELs are still appropriate under the flow of 0.1 MGD. The worksheet showed that the existing TBEL is still adequate.

#### **Toxics**

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). Pollutant Group 2 was modeled through TMS. Either the maximum reported sample result or the long-term average value were the input into the model. The stream flow data were collected from previous fact sheet. Permit application indicated a discharge hardness of 150 mg/l. 90<sup>th</sup> percentile discharge pH for dry months for the years 2022-2023 is 7.678 S.U. The second node for modeling is the same as was used in previous fact sheet. The TMS model doesn't recommend any monitoring or limits requirements for toxics. The

Pasammandad WOREL a & Manitaring Paguiramenta

existing Total Aluminum, Total Iron, and Total Manganese limits will be carried over as more stringent TBEL. The model output is provided below:

| Recommended WyDELS & Monitoring Requirements |                                  |                 |     |     |      |       |                    |                |          |
|----------------------------------------------|----------------------------------|-----------------|-----|-----|------|-------|--------------------|----------------|----------|
| No. Samples/Month:                           |                                  |                 |     |     |      |       |                    |                |          |
|                                              | Mass Limits Concentration Limits |                 |     |     |      |       |                    |                |          |
| Pollutants                                   |                                  | MDL<br>lbs/day) | AML | MDL | IMAX | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments |
|                                              |                                  |                 |     |     |      |       |                    |                |          |
|                                              |                                  |                 |     |     |      |       |                    |                |          |

#### **Additional Considerations**

## Flow Monitoring

Flow monitoring will remain in the permit and is required by 40 CFR § 122.44(i)(1)(ii).

#### Total Dissolved Solids (TDS), Sulfate, Chloride, Bromide, and 1,4-Dioxane:

PADEP has determined that they have sufficient data over the past 7 years of implementing the special monitoring logic for these parameters and it is no longer needed. The current permit doesn't have monitoring requirements for these parameters and will not be imposed in this permit term.

#### **Mass Loading Effluent Limitations**

Existing mass loading monitoring requirements will be carried over for Total Suspended Solids, Total Iron, Total Manganese, and Total Aluminum.

#### **Anti-Degradation requirements**

The effluent limits for this discharge have been developed to ensure the existing in-stream uses and the level of water quality necessary to protect the existing uses are maintained and protected.

#### Anti-Backsliding Requirements

Unless stated otherwise in this fact sheet, all proposed effluent limits have developed for this permit renewal are at least as stringent as effluent limits developed for the previous permit renewal.

#### Sedimentation Basin Cleaning:

The Part C of the existing permit includes a special condition regarding the basin cleaning notification and sampling requirements. An additional stage titled "Special Effluent Gross" is created in WMS for the infrequent basin cleaning discharge. All parameters for "Final Effluent" stage are applicable to this stage. Existing monitoring requirements will be carried over.

#### **Anti-Backsliding**

The proposed limits and monitoring requirements are at least as stringent as the existing permit, therefore, anti-backsliding isn't applicable.

# **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

## Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Type of Effluent: Filter backwash

|                 |                          | Effluent Limitations |                 |                    |                        |                     |                          |                |  |
|-----------------|--------------------------|----------------------|-----------------|--------------------|------------------------|---------------------|--------------------------|----------------|--|
| Parameter       | Mass Units (lbs/day) (1) |                      |                 | Concentra          | Minimum <sup>(2)</sup> | Required            |                          |                |  |
| raiaiiictei     | Average<br>Monthly       | Daily max            | Minimum         | Average<br>Monthly | Daily<br>Maximum       | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |  |
| Flow (MCD)      | Danant                   | Damant               | VVV             | VVV                | VVV                    | VVV                 | Daily when               | Fatinanta      |  |
| Flow (MGD)      | Report                   | Report               | XXX             | XXX                | XXX                    | XXX                 | Discharging              | Estimate       |  |
| pH (S.U.)       | xxx                      | XXX                  | 6.0<br>Inst Min | XXX                | XXX                    | 9.0                 | 1/week                   | Grab           |  |
| TRC             | xxx                      | XXX                  | XXX             | 0.5                | XXX                    | 1.0                 | 1/week                   | Grab           |  |
| TSS             | Report                   | Report               | XXX             | 30                 | 60                     | 75                  | 2/month                  | Grab           |  |
| Total Aluminum  | Report                   | Report               | XXX             | 4.0                | 8.0                    | 10                  | 2/month                  | Grab           |  |
| Total Iron      | Report                   | Report               | XXX             | 2.0                | 4.0                    | 5                   | 2/month                  | Grab           |  |
| Total Manganese | Report                   | Report               | XXX             | 1.0                | 2.0                    | 2.5                 | 2/month                  | Grab           |  |

Compliance Sampling Location: At Outfall 001

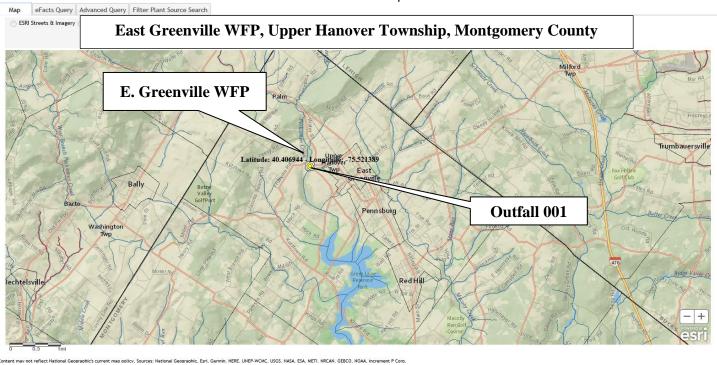
Other Comments: None

# **Proposed Effluent Limitations and Monitoring Requirements**

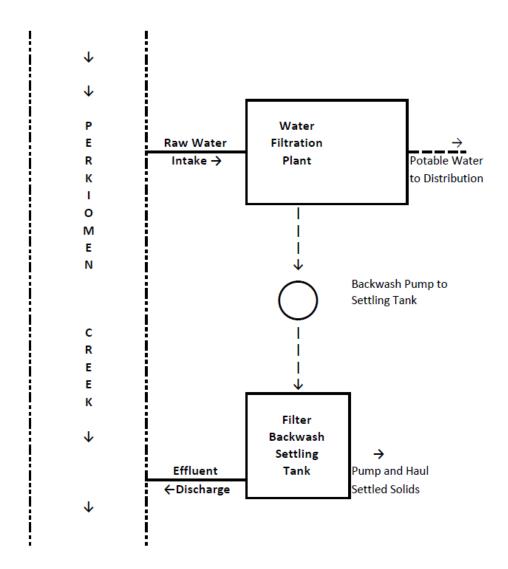
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

#### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Type of Effluent: Sedimentation Basin Cleaning Water


|                 |                                     | Monitoring Requirements |                 |                    |                        |                     |                           |                |
|-----------------|-------------------------------------|-------------------------|-----------------|--------------------|------------------------|---------------------|---------------------------|----------------|
| Parameter       | Mass Units (lbs/day) <sup>(1)</sup> |                         |                 | Concentrat         | Minimum <sup>(2)</sup> | Required            |                           |                |
| i didilictor    | Average<br>Monthly                  | Average<br>Weekly       | Minimum         | Average<br>Monthly | Daily<br>Maximum       | Instant.<br>Maximum | Measurement<br>Frequency  | Sample<br>Type |
| Flow (MGD)      | Report                              | Report<br>Daily Max     | XXX             | XXX                | XXX                    | XXX                 | Daily when<br>Discharging | Estimate       |
| pH (S.U.)       | XXX                                 | XXX                     | 6.0<br>Inst Min | XXX                | XXX                    | 9.0                 | See Permit                | Grab           |
| TRC             | XXX                                 | XXX                     | XXX             | 0.5                | XXX                    | 1.0                 | See Permit                | Grab           |
| TSS             | Report                              | Report                  | XXX             | 30                 | 60                     | 75                  | See Permit                | Grab           |
| Total Aluminum  | Report                              | Report                  | XXX             | 4.0                | 8.0                    | 10                  | See Permit                | Grab           |
| Total Iron      | Report                              | Report                  | XXX             | 2.0                | 4.0                    | 5                   | See Permit                | Grab           |
| Total Manganese | Report                              | Report                  | XXX             | 1.0                | 2.0                    | 2.5                 | See Permit                | Grab           |
| Turbidity (NTU) | XXX                                 | XXX                     | XXX             | 100                | XXX                    | 100                 | See Permit                | Grab           |

Compliance Sampling Location: At Outfall 001


Other Comments: Limits apply during sedimentation basin cleaning discharge. See Part C Sedimentation Basin Cleaning for sampling and notification requirements.

| Tools and References Used to Develop Permit                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WOM for Windows Model (occ Attackment                                                                                                                                                                              |
| WQM for Windows Model (see Attachment )                                                                                                                                                                            |
| Toxics Management Spreadsheet (see Attachment )                                                                                                                                                                    |
| TRC Model Spreadsheet (see Attachment )                                                                                                                                                                            |
| Temperature Model Spreadsheet (see Attachment )                                                                                                                                                                    |
| Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
| Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.                                                                                                             |
| Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.                                                                                                                                                |
| Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.                                                                                                                  |
| Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.                                                                                                                       |
| Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.                                                                                                      |
| Pennsylvania CSO Policy, 386-2000-002, 9/08.                                                                                                                                                                       |
| Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
| Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.                                                                                           |
| Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.                                                                                                                                              |
| Implementation Guidance Design Conditions, 386-2000-007, 9/97.                                                                                                                                                     |
| Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.                                                    |
| Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.                                                                             |
| Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.                                                                   |
| Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.                                                              |
| Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.                                                                                                                                    |
| Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.                                             |
| Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.                                                                                                                           |
| Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.                                                                                                                                              |
| Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.                                                                                                       |
| Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.       |
| Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.                                                                               |
| Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999. |
| Design Stream Flows, 386-2000-003, 9/98.                                                                                                                                                                           |
| Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.                                     |
| Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.                                                                                                                         |
| Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
| SOP:                                                                                                                                                                                                               |
| Other:                                                                                                                                                                                                             |

## Locational Map



#### Flow diagram



East Greenville Water Filtration Plant
Wastewater Discharge
Schematic Flow Diagram
NPDES PA 0050644

CAI/03008.24/7-25-18

#### **USGS StreamStats**

StreamStats Page 2 of 4

# East Greenville WFP at Discharge Point

Region ID: PA

Workspace ID: PA20181128151429844000

Clicked Point (Latitude, Longitude): 40.40567, -75.52240

Time: 2018-11-28 10:14:44 -0500



| Parameter |                                            |       |                 |
|-----------|--------------------------------------------|-------|-----------------|
| Code      | Parameter Description                      | Value | Unit            |
| DRNAREA   | Area that drains to a point on a stream    | 36.3  | square<br>miles |
| BSLOPD    | Mean basin slope measured in degrees       | 5.3   | degrees         |
| ROCKDEP   | Depth to rock                              | 4.9   | feet            |
| JRBAN     | Percentage of basin with urban development | 2     | percent         |

https://streamstats.usgs.gov/ss/

StreamStats

Page 3 of 4

| Low-Flow Statist  | Low-Flow Statistics Parameters [100 Percent (36.2 square miles) Low Flow Region 1] |       |                 |              |              |  |
|-------------------|------------------------------------------------------------------------------------|-------|-----------------|--------------|--------------|--|
| Parameter<br>Code | Parameter Name                                                                     | Value | Units           | Min<br>Limit | Max<br>Limit |  |
| DRNAREA           | Drainage Area                                                                      | 36.3  | square<br>miles | 4.78         | 1150         |  |
| BSLOPD            | Mean Basin Slope<br>degrees                                                        | 5.3   | degrees         | 1.7          | 6.4          |  |
| ROCKDEP           | Depth to Rock                                                                      | 4.9   | feet            | 4.13         | 5.21         |  |
| URBAN             | Percent Urban                                                                      | 2     | percent         | 0            | 89           |  |

Low-Flow Statistics Flow Report [100 Percent (36.2 square miles) Low Flow Region 1]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic               | Value | Unit   | SE | SEp |
|-------------------------|-------|--------|----|-----|
| 7 Day 2 Year Low Flow   | 10.2  | ft^3/s | 46 | 46  |
| 30 Day 2 Year Low Flow  | 12.4  | ft*3/s | 38 | 38  |
| 7 Day 10 Year Low Flow  | 5.45  | ft^3/s | 51 | 51  |
| 30 Day 10 Year Low Flow | 6.71  | ft^3/s | 46 | 46  |
| 90 Day 10 Year Low Flow | 9.33  | ft^3/s | 41 | 41  |

Low-Flow Statistics Citations

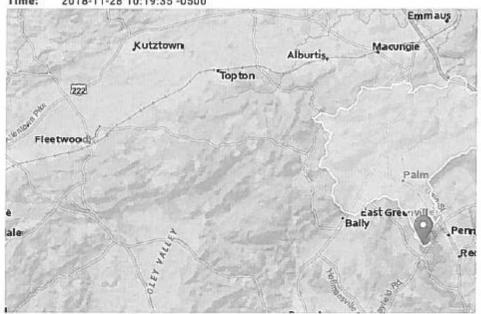
Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

https://streamstats.usgs.gov/ss/

StreamStats

Page 2 of 4


# E. Greenville WFP at Node 2

Region ID: PA

Workspace ID: PA20181128151920430000

Clicked Point (Latitude, Longitude): 40.38369, -75.51526

Time: 2018-11-28 10:19:35 -0500



| Parameter |                                            |       |                 |
|-----------|--------------------------------------------|-------|-----------------|
| Code      | Parameter Description                      | Value | Unit            |
| DRNAREA   | Area that drains to a point on a stream    | 38.2  | square<br>miles |
| BSLOPD    | Mean basin slope measured in degrees       | 5.2   | degrees         |
| ROCKDEP   | Depth to rock                              | 4.8   | feet            |
| URBAN     | Percentage of basin with urban development | 3     | percent         |

https://streamstats.usgs.gov/ss/

StreamStats

Page 3 of 4

| Low-Flo | w Statistics Parameters | [100 Percent (38.1 square miles) Low Flow Region 1] |
|---------|-------------------------|-----------------------------------------------------|
|         |                         |                                                     |

| Parameter<br>Code | Parameter Name              | Value | Units           | Min<br>Limit | Max<br>Limit |
|-------------------|-----------------------------|-------|-----------------|--------------|--------------|
| DRNAREA           | Drainage Area               | 38.2  | square<br>miles | 4.78         | 1150         |
| BSLOPD            | Mean Basin Slope<br>degrees | 5.2   | degrees         | 1.7          | 6.4          |
| ROCKDEP           | Depth to Rock               | 4.8   | feet            | 4.13         | 5.21         |
| URBAN             | Percent Urban               | 3     | percent         | 0            | 89           |

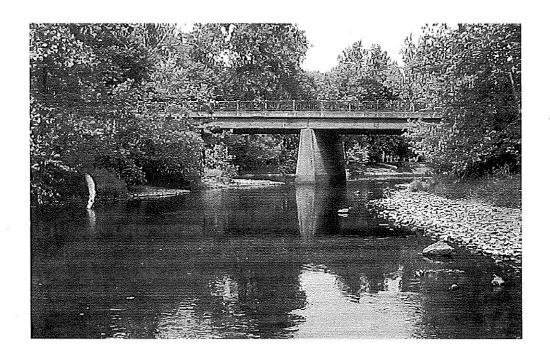
Low-Flow Statistics Flow Report [100 Percent (38.1 square miles) Low Flow Region 1]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic               | Value | Unit   | SE | SEp |
|-------------------------|-------|--------|----|-----|
| 7 Day 2 Year Low Flow   | 9.76  | ft^3/s | 46 | 46  |
| 30 Day 2 Year Low Flow  | 12.1  | ft^3/s | 38 | 38  |
| 7 Day 10 Year Low Flow  | 5.13  | ft^3/s | 51 | 51  |
| 30 Day 10 Year Low Flow | 6.43  | ft*3/s | 46 | 46  |
| 90 Day 10 Year Low Flow | 9.14  | ft^3/s | 41 | 41  |

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)


USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

https://streamstats.usgs.gov/ss/



Prepared in cooperation with the Pennsylvania Department of Environmental Protection

# **Selected Streamflow Statistics for Streamgage Locations** in and near Pennsylvania



Open-File Report 2011–1070

U.S. Department of the Interior U.S. Geological Survey

#### 10 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in ducinial degrees, mi<sup>-1</sup>, square miles]

| Streamgage<br>number | Streamgage name                                           | Latitude | Longitude | Drainage<br>area<br>(mi²) | Regulated |
|----------------------|-----------------------------------------------------------|----------|-----------|---------------------------|-----------|
| 01465780             | Poquessing Creek above Byberry Creek at Phila., Pa.       | 40.070   | -74.975   | 13,2                      | N         |
| 01465798             | Poquessing Creek at Grant Ave. at Philadelphia, Pa.       | 40.057   | -74.985   | 21.4                      | N         |
| 01465850             | South Branch Rancocas Creek at Vincentown, N.J.           | 39.94    | -74.763   | 64.5                      | N         |
| 01466500             | McDonalds Branch in Byrne State Forest, N.J.              | 39.885   | -74.505   | 2.35                      | N         |
| 01467000             | North Branch Rancoeas Creek at Pemberton, N.J.            | 39.97    | -74.684   | 118                       | N         |
| 01467042             | Pennypack Creek at Pine Road, at Philadelphia, Pa,        | 40.090   | -75.069   | 37.9                      | N         |
| 01467048             | Pennypack Creek at Lower Rhawn St Bdg, Phila., Pa.        | 40.050   | -75.033   | 49.8                      | N         |
| 01467050             | Wooden Bridge Run at Philadelphia, Pa.                    | 40.055   | -75.022   | 3.35                      | N         |
| 01467081             | South Branch Pennsauken Creek at Cherry Hill, N.J.        | 39.942   | -75.001   | 8,98                      | N         |
| 01467086             | Tacony Creek ab Adams Avenue, Philadelphia, Pa.           | 40.047   | -75.111   | 16.7                      | N         |
| 01467087             | Frankford Creek at Castor Ave, Philadelphia, Pa.          | 40.016   | -75.097   | 30,4                      | N         |
| 01467089             | Frankford Creek at Torresdale Ave., Phila., Pa.           | 40.007   | -75.092   | 33.8                      | N         |
| 01467150             | Cooper River at Haddonfield, N.J.                         | 39.903   | -75.021   | 17.0                      | N         |
| 01467500             | Schuylkill River at Pottsville, Pa.                       | 40.684   | -76.186   | 53,4                      | N         |
| 01468500             | Schuylkill River at Landingville, Pa.                     | 40.629   | -76.125   | 133                       | N         |
| 01469500             | Little Schuylkill River at Tamaqua, Pa.                   | 40.807   | -75.972   | 42.9                      | N         |
| 01470500             | Schuylkill River at Berne, Pa.                            | 40.523   | -75.998   | 355                       | N         |
| 01470756             | Maiden Creek at Virginville, Pa.                          | 40.514   | -75.883   | 159                       | N         |
| 01470779             | Tulpehocken Creek near Bernville, Pa,                     | 40.413   | -76.172   | 66.5                      | N         |
| 01470853             | Furnace Creek at Robesonia, Pa.                           | 40.340   | -76.143   | 4,18                      | N         |
| 01470960             | Tulpehocken Creek at Blue Marsh Dansite near Reading, Pa. | 40.371   | -76.025   | 175                       | Y         |
| 01471000             | Tulpehocken Creek near Reading, Pa.                       | 40,369   | -75,979   | 211                       | Y         |
| 01471510             | Schuylkill River at Reading, Pa.                          | 40.335   | -75.936   | 880                       | Y         |
| 01471875             | Manntawny Creek rear Spangsville, Pa.                     | 40.340   | -75.742   | 56.9                      | N         |
| 01471980             | Manatawny Creek near Pottstown, Pa                        | 40,273   | -75,680   | 85.5                      | N         |
| 01472000             | Schuylkill River at Pottstown, Pts.                       | 40.242   | -75.652   | 1.147                     | Y         |
| 01472157             | French Creek near Phoenixville, Pn.                       | 40.151   | -75.601   | 59.1                      | N         |
| 01472174             | Pickering Creek near Chester Springs, Pa.                 | 40,090   | -75.630   | 5.98                      | N         |
| 01472198)            | Perkiomen Greek af East Greenville, Pay                   | 40.394   | -75.515   | 58.0                      | N         |
| 01472199             | West Branch Perkiomen Creek at Hillegass, Pa.             | 40,374   | -75,522   | 23.0                      | N         |
| 01472500             | Perkiomen Creek neur Frederick, Pa.                       | 40.275   | -75.455   | 152                       | N         |
| 01472620             | East Branch Perkiomen Creek near Dublin. Pa.              | 40,404   | -75.234   | 4.05                      | LF        |
| 01472810             | East Branch Perkiomen Creek near Schwenksville, Pa.       | 40.259   | -75.429   | 58.7                      | LF        |
| 01473000             | Perkiomen Creek at Graterford, Pa.                        | 40.230   | -75.452   | 279                       | LF        |
| 01473120             | Skippack Creek near Collegeville, Pa                      | 40.165   | -75.433   | 53.7                      | N         |
| 01473169             | Valley Creek at Pa. Tumpike Br near Valley Forge, Pa.     | 40.079   | -75,461   | 20.8                      | N         |
| 01473500             | Schuylkill River at Norristown, Pa.                       | 40, 111  | -75.347   | 1,760                     | N         |
| 01473900             | Wissahickon Creek at Fort Washington, Pa                  | 40, 124  | -75.220   | 40.8                      | N         |
| 01473950             | Wissahickon Creek at Bells Mill Rd. Phila., Pa.           | 40.080   | -75.226   | 53.6                      | N         |
| 11473980             | Wissohickon Creek at Livezey Lane, Phila., Pa.            | 40.050   | -75.214   | 59.2                      | N         |
| 01474000             | Wissahickon Creek at Mouth, Philadelphia, Pa.             | 40.015   | -75.207   | 64.0                      | N         |
| 01474500             | Schuylkill River at Philadelphia. Pa                      | 39.968   | -75.189   | 1,893                     | N         |
| 01475000             | Mantua Creek at Pitman, N J.                              | 39.737   | -75.113   | 6.05                      | N         |
| 11475300             | Darby Creek at Waterloo Mills near Devon, Pa.             | 40.023   | -75.422   | 5.15                      | N         |
| 01475510             | Darby Creek near Darby, Pa.                               | 39.929   | -75.272   | 37.4                      | N         |

Table 2 23

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[fit'/s, cubic feet per second, —, statistic not computed, <, less than [

| Streamgage<br>number | Period of record<br>used in<br>analysis! | Number of<br>years used in<br>analysis | 1-day,<br>10-year<br>(it <sup>3</sup> /s) | 7-day.<br>10-year<br>(ft³/s) | 7-day,<br>2-year<br>(fe <sup>1</sup> /s) | 30-day,<br>10-year<br>(81%) | 30-day,<br>2-year<br>(ft <sup>1</sup> /s) | 90-day<br>10-yea<br>(ft³/s) |
|----------------------|------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------|------------------------------------------|-----------------------------|-------------------------------------------|-----------------------------|
| 01472174             | 1969-1984                                | 16                                     | 1.2                                       | 1.5                          | 2.4                                      | 1.8                         | 3.1                                       | 2.                          |
| 01472198             | 1983-2008                                | 26                                     | 7.1                                       | 7.5                          | 12.9                                     | 4.6                         | 15.4                                      | 13.                         |
| 01472199             | 1983-2008                                | 26                                     | 3.8                                       | 4.5                          | 6.8                                      | 5.1                         | 8.3                                       | 7.                          |
| 01472500             | 1886-1915                                | .28                                    | 1000                                      | 14.5                         | 24.0                                     | 20,6                        | 34.9                                      | 33.                         |
| 01472620             | 1985-2008                                | 24                                     | 0                                         | 0 -                          | 7.2                                      | 1,                          | 7.3                                       |                             |
| 01472810             | 1992-2008                                | 15                                     | 12.9                                      | 18.8                         | 36.0                                     | 33.7                        | 49.2                                      | 49.                         |
| 01473000             | 1916-1956                                | 41                                     | 9.5                                       | 14.8                         | 32.1                                     | 24.1                        | 44.7                                      | 41.                         |
| 01473000             | -1958-2008                               | 51                                     | 28.5                                      | 33.9                         | 61.6                                     | 42.5                        | 77.4                                      | 53.                         |
| 01473120             | 19681994                                 | 27                                     | 1.4                                       | 1.9                          | 4.4                                      | 3.2                         | 6.8                                       | 5.                          |
| 01473169             | 1984-2008                                | 25                                     | 8.5                                       | 9.2                          | 13.2                                     | 10.5                        | 15.5                                      | 13.                         |
| 01473500             | 1929-2008                                | 9                                      | 182                                       | 220                          | 422                                      | 247                         | 518                                       | 328                         |
| 01473900             | 1963-2008                                | 14                                     | 5.2                                       | 6.1                          | 11.3                                     | 7,6                         | 14.2                                      | 9.                          |
| 01473950             | 1967-1981                                | 15                                     | 9.1                                       | 11.1                         | 19.1                                     | 14.5                        | 24.0                                      | 19.                         |
| 01474000             | 1967-2008                                | 42                                     | 13.7                                      | 16.6                         | 25.6                                     | 21.4                        | 32.9                                      | 30.                         |
| 01474500             | 1933-2008                                | 76                                     | 58.7                                      | 108                          | 376                                      | 180                         | 515                                       | 320                         |
| 01475000             | 1942-2006                                | 37                                     | 3.5                                       | 4.1                          | 6.1                                      | 4.8                         | 7.0                                       | 5.                          |
| 01475300             | 1974-1997                                | 24                                     | 1.0                                       | 1.2                          | 2.1                                      | 1,6                         | 2.9                                       | 2.                          |
| 01475510             | 1965-1990                                | 26                                     | 9.3                                       | 11,5                         | 18,8                                     | 15.5                        | 24.2                                      | 22.                         |
| 01475530             | 1966-1981                                | 19                                     | 1.2                                       | 1.3                          | 2.0                                      | 1,8                         | 2,8                                       | 2.                          |
| 01475550             | 1965-1990                                | 25                                     | -1                                        | .6-                          | 4.4                                      | 2.9                         | 8,5                                       | 8.                          |
| 01475850             | 1983-2008                                | 26                                     | 1.5                                       | 2.2                          | 4.6                                      | 3,4                         | 6.5                                       | 5.                          |
| 01476480             | 1988-2008                                | 19                                     | 2.3                                       | 3.5                          | 8.5                                      | 5.8                         | 11.5                                      | 9                           |
| 01476500             | 1933-1954                                | 22                                     | 3.9                                       | 4.9                          | 11.4                                     | 6.4                         | 14.4                                      | 9.                          |
| 01477000             | 1933-2007                                | 73                                     | 10.4                                      | 12.4                         | 24.9                                     | 15.7                        | 31.0                                      | 22.                         |
| 01477120             | 1967-2008                                | 42                                     | 6.5                                       | 7.1                          | 12.9                                     | 8.5                         | 15.0                                      | 11                          |
| 01477800             | 1947-2008                                | 62                                     | .2                                        | .2                           | .6                                       | .5                          | 1.2                                       | - 1.                        |
| 01478000             | 1944-2008                                | 65                                     | .6                                        | 1.5                          | 3.6                                      | 2.3                         | 5.0                                       | 4.                          |
| 01478500             | 1953-1979                                | 23                                     | 9.8                                       | 10.7                         | 24.1                                     | 13.5                        | 29.1                                      | 19                          |
| 01479000             | 1933-2008                                | 65                                     | 12.3                                      | 13.7                         | 30,3                                     | 18.0                        | 36.8                                      | 27.                         |
| 01479820             | 1989-2008                                | 20                                     | 3,2                                       | 4.1                          | 12.5                                     | 5.6                         | 14.6                                      | 10.                         |
| 01480000             | 1944-2008                                | 65                                     | 8.5                                       | 9.8                          | 17.7                                     | 12.6                        | 21.1                                      | 17.                         |
| 01480015             | 1990-2008                                | 19                                     | 9,0                                       | 11,0                         | 20.1                                     | 14.7                        | 24.5                                      | 18.                         |
| 01480100             | 1965-1980                                | 16                                     | .3                                        | .4                           | 1.2                                      | 1.2                         | 2.0                                       | 2.                          |
| 01480300             | 1962-2008                                | 47                                     | 2.6                                       | 3,0                          | 6.2                                      | 3.9                         | 7.4                                       | 5.                          |
| 01480500             | 1945-1993                                | 30                                     | 7,3                                       | 8,3                          | 14.5                                     | 10.4                        | 18.4                                      | 14.                         |
| 01480500             | 1995-2008                                | 14                                     | 4.8                                       | 5.2                          | 12.3                                     | 6.6                         | 14.8                                      | 9                           |
| 01480617             | 1971-2008                                | 38                                     | 12.1                                      | 14.0                         | 23.3                                     | 16.6                        | 27.8                                      | 22.                         |
| 01480675             | 1968-2008                                | 41                                     | .6                                        | .6                           | 1,7                                      | .9                          | 2.3                                       | 1,                          |
| 01480685             | 1975-2008                                | 34                                     | .5                                        | .9                           | 3.7                                      | 2.4                         | 7.4                                       | 5.                          |
| 01480700             | 1975-2008                                | 34                                     | 12.3                                      | 14.0                         | 22.3                                     | 17.8                        | 28.4                                      | 21.5                        |
| 01430800             | 1960-1968                                | 9                                      | 11.5                                      | 12.1                         | 19.8                                     | 14.6                        | 23.8                                      | 19.                         |
| 01480870             | 1973-2008                                | 36                                     | 24.0                                      | 26.5                         | 36.8                                     | 31.0                        | 44.5                                      | 38.                         |
| 01481000             | 1913-1973                                | 51                                     | -                                         | 68,5                         | 117                                      | 79.0                        | 136                                       | 102                         |
| 01481000             | 1975-2008                                | 34                                     | 60.0                                      | 63.8                         | 117                                      | 76.9                        | 138                                       | 100                         |
| 01481500             | 21 97 5-2008                             | 34                                     | 64.2                                      | 68.3                         | 128                                      | 84,5                        | 154                                       | 117                         |

## Toxics Management Spreadsheet (TMS)



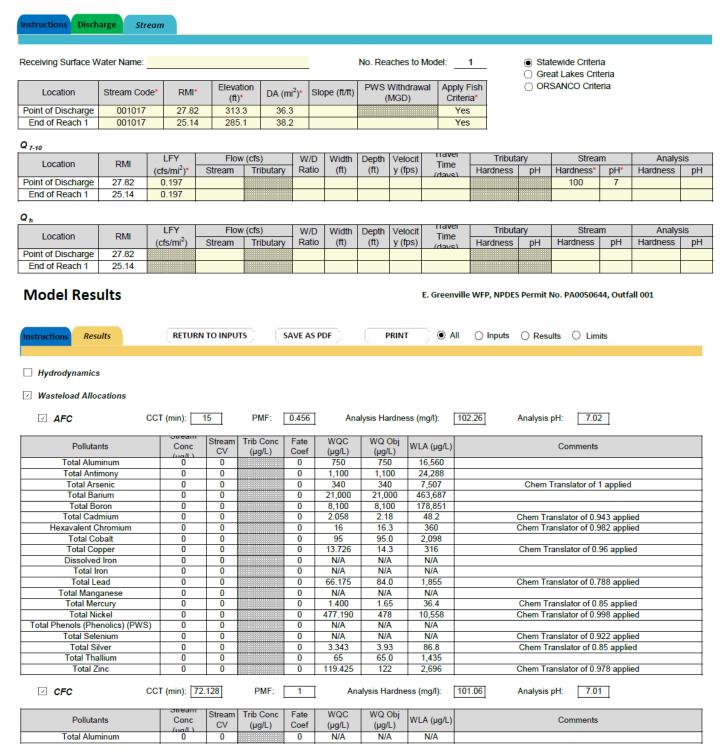
Toxics Management Spreadsheet Version 1.4, May 2023

# **Discharge Information**

| Instructions | Discharg   | e Stream         |                |                         |                 |                  |
|--------------|------------|------------------|----------------|-------------------------|-----------------|------------------|
|              |            |                  |                |                         |                 |                  |
| Facility:    | E. Greenvi | le WFP           |                | NPDES Permit No.: PA    | 0050644         | Outfall No.: 001 |
| Evaluation T | ype: Ma    | jor Sewage / Inc | dustrial Waste | Wastewater Description: | WFP backwash wa | ater             |

|             | Discharge Characteristics |          |                                                  |               |                          |  |  |  |  |  |  |
|-------------|---------------------------|----------|--------------------------------------------------|---------------|--------------------------|--|--|--|--|--|--|
| Design Flow | Hardness (mg/l)*          | pH (SU)* | P                                                | artial Mix Fa | Complete Mix Times (min) |  |  |  |  |  |  |
| (MGD)*      | Hardness (mg/l)           | рн (30)  | AFC CFC THH CRL Q <sub>7-10</sub> Q <sub>h</sub> |               |                          |  |  |  |  |  |  |
| 0.1         | 150                       | 7.678    |                                                  |               |                          |  |  |  |  |  |  |

|       |                                 |       |    |                     |              |                | 0.5 if le   | eft blank    | (             | ) if left blan | k   | 1 if left blank  |  |
|-------|---------------------------------|-------|----|---------------------|--------------|----------------|-------------|--------------|---------------|----------------|-----|------------------|--|
|       | Discharge Pollutant             | Units | Ma | x Discharge<br>Conc | Trib<br>Conc | Stream<br>Conc | Daily<br>CV | Hourly<br>CV | Strea<br>m CV | Fate<br>Coeff  | FOS | Criteri<br>a Mod |  |
|       | Total Dissolved Solids (PWS)    | mg/L  |    |                     |              |                |             |              |               |                |     |                  |  |
| 1     | Chloride (PWS)                  | mg/L  |    |                     |              |                |             |              |               |                |     |                  |  |
| Group | Bromide                         | mg/L  |    |                     |              |                |             |              |               |                |     |                  |  |
| 5     | Sulfate (PWS)                   | mg/L  |    |                     |              |                |             |              |               |                |     |                  |  |
|       | Fluoride (PWS)                  | mg/L  |    |                     |              |                |             |              |               |                |     |                  |  |
|       | Total Aluminum                  | μg/L  |    | 151                 |              |                |             |              |               |                |     |                  |  |
|       | Total Antimony                  | μg/L  | ٧  | 3                   |              |                |             |              |               |                |     |                  |  |
|       | Total Arsenic                   | μg/L  |    | 5                   |              |                |             |              |               |                |     |                  |  |
|       | Total Barium                    | μg/L  |    | 78                  |              |                |             |              |               |                |     |                  |  |
|       | Total Beryllium                 | μg/L  | ٧  | 1                   |              |                |             |              |               |                |     |                  |  |
|       | Total Boron                     | μg/L  | ٧  | 200                 |              |                |             |              |               |                |     |                  |  |
|       | Total Cadmium                   | μg/L  | ٧  | 1                   |              |                |             |              |               |                |     |                  |  |
|       | Total Chromium (III)            | μg/L  |    |                     |              |                |             |              |               |                |     |                  |  |
|       | Hexavalent Chromium             | μg/L  | <  | 0.25                |              |                |             |              |               |                |     |                  |  |
|       | Total Cobalt                    | μg/L  | ٧  | 5                   |              |                |             |              |               |                |     |                  |  |
|       | Total Copper                    | μg/L  |    | 1                   |              |                |             |              |               |                |     |                  |  |
| 2     | Free Cyanide                    | μg/L  |    |                     |              |                |             |              |               |                |     |                  |  |
| Group | Total Cyanide                   | μg/L  | <  | 10                  |              |                |             |              |               |                |     |                  |  |
| 5     | Dissolved Iron                  | μg/L  |    | 40                  |              |                |             |              |               |                |     |                  |  |
|       | Total Iron                      | μg/L  |    | 50                  |              |                |             |              |               |                |     |                  |  |
|       | Total Lead                      | μg/L  |    | 2                   |              |                |             |              |               |                |     |                  |  |
|       | Total Manganese                 | μg/L  |    | 1263                |              |                |             |              |               |                |     |                  |  |
|       | Total Mercury                   | μg/L  | <  | 0.2                 |              |                |             |              |               |                |     |                  |  |
|       | Total Nickel                    | μg/L  | <  | 1                   |              |                |             |              |               |                |     |                  |  |
|       | Total Phenols (Phenolics) (PWS) | μg/L  |    | 2                   |              |                |             |              |               |                |     |                  |  |
|       | Total Selenium                  | μg/L  | ٧  | 1                   |              |                |             |              |               |                |     |                  |  |
|       | Total Silver                    | μg/L  | ٧  | 1                   |              |                |             |              |               |                |     |                  |  |
|       | Total Thallium                  | μg/L  |    | 0.3                 |              |                |             |              |               |                |     |                  |  |
|       | Total Zinc                      | μg/L  |    | 124                 |              |                |             |              |               |                |     |                  |  |
|       | Total Molybdenum                | μg/L  | <  | 3                   |              |                |             |              |               |                |     |                  |  |
|       | Acrolein                        | μg/L  | ٧  |                     |              |                |             |              |               |                |     |                  |  |
|       | Acrylamide                      | μg/L  | <  |                     |              |                |             |              |               |                |     |                  |  |
|       | Acrylonitrile                   | μg/L  | <  |                     |              |                |             |              |               |                |     |                  |  |
|       | Benzene                         | μg/L  | ٧  |                     |              |                |             |              |               |                |     |                  |  |
|       | Bromoform                       | μg/L  | ٧  |                     |              |                |             |              |               |                |     |                  |  |


Discharge Information 9/14/2023 Page 1

|          |                                  |      |   | 888 |  |  |  |  |  |
|----------|----------------------------------|------|---|-----|--|--|--|--|--|
|          | Carbon Tetrachloride             | μg/L | < |     |  |  |  |  |  |
|          | Chlorobenzene                    | μg/L |   |     |  |  |  |  |  |
|          | Chlorodibromomethane             | μg/L | < |     |  |  |  |  |  |
|          | Chloroethane                     | μg/L | < |     |  |  |  |  |  |
|          | 2-Chloroethyl Vinyl Ether        | μg/L | < |     |  |  |  |  |  |
|          | Chloroform                       | μg/L | < |     |  |  |  |  |  |
|          | Dichlorobromomethane             | μg/L | < |     |  |  |  |  |  |
|          | 1,1-Dichloroethane               | μg/L | < |     |  |  |  |  |  |
| က        | 1,2-Dichloroethane               | μg/L | < |     |  |  |  |  |  |
| ۵        | 1,1-Dichloroethylene             | μg/L | < |     |  |  |  |  |  |
| Group    | 1,2-Dichloropropane              | μg/L | < |     |  |  |  |  |  |
| ō        | 1,3-Dichloropropylene            | μg/L | < |     |  |  |  |  |  |
|          | 1,4-Dioxane                      |      | < |     |  |  |  |  |  |
|          |                                  | μg/L | < |     |  |  |  |  |  |
|          | Ethylbenzene                     | μg/L | _ |     |  |  |  |  |  |
|          | Methyl Bromide                   | μg/L | < |     |  |  |  |  |  |
|          | Methyl Chloride                  | μg/L | < |     |  |  |  |  |  |
|          | Methylene Chloride               | μg/L | < |     |  |  |  |  |  |
|          | 1,1,2,2-Tetrachloroethane        | μg/L | < |     |  |  |  |  |  |
|          | Tetrachloroethylene              | μg/L | < |     |  |  |  |  |  |
|          | Toluene                          | μg/L | < |     |  |  |  |  |  |
|          | 1,2-trans-Dichloroethylene       | μg/L | ٧ |     |  |  |  |  |  |
|          | 1,1,1-Trichloroethane            | μg/L | < |     |  |  |  |  |  |
|          | 1,1,2-Trichloroethane            | μg/L | < |     |  |  |  |  |  |
|          | Trichloroethylene                | μg/L | < |     |  |  |  |  |  |
|          | Vinyl Chloride                   | μg/L | < |     |  |  |  |  |  |
| $\vdash$ | 2-Chlorophenol                   | μg/L | < |     |  |  |  |  |  |
|          | 2,4-Dichlorophenol               | μg/L | < |     |  |  |  |  |  |
|          | 2,4-Dimethylphenol               | μg/L | < |     |  |  |  |  |  |
|          | 4,6-Dinitro-o-Cresol             | μg/L | < |     |  |  |  |  |  |
| 4        | -                                |      | < |     |  |  |  |  |  |
| Group    | 2,4-Dinitrophenol                | μg/L | _ |     |  |  |  |  |  |
| 2        | 2-Nitrophenol                    | μg/L | < |     |  |  |  |  |  |
| ര        | 4-Nitrophenol                    | μg/L | < |     |  |  |  |  |  |
|          | p-Chloro-m-Cresol                | μg/L | < |     |  |  |  |  |  |
|          | Pentachlorophenol                | μg/L | < |     |  |  |  |  |  |
|          | Phenol                           | μg/L | < |     |  |  |  |  |  |
| L        | 2,4,6-Trichlorophenol            | μg/L | < |     |  |  |  |  |  |
|          | Acenaphthene                     | μg/L | < |     |  |  |  |  |  |
|          | Acenaphthylene                   | μg/L | < |     |  |  |  |  |  |
|          | Anthracene                       | μg/L | < |     |  |  |  |  |  |
|          | Benzidine                        | μg/L | < |     |  |  |  |  |  |
|          | Benzo(a)Anthracene               | μg/L | < |     |  |  |  |  |  |
|          | Benzo(a)Pyrene                   | μg/L | < |     |  |  |  |  |  |
|          | 3,4-Benzofluoranthene            | μg/L | < |     |  |  |  |  |  |
|          | Benzo(ghi)Perylene               | μg/L | < |     |  |  |  |  |  |
|          | Benzo(k)Fluoranthene             | μg/L | < |     |  |  |  |  |  |
|          | Bis(2-Chloroethoxy)Methane       | μg/L | < |     |  |  |  |  |  |
|          | Bis(2-Chloroethyl)Ether          | μg/L | < |     |  |  |  |  |  |
|          | Bis(2-Chloroisopropyl)Ether      | μg/L | < |     |  |  |  |  |  |
|          | Bis(2-Ethylhexyl)Phthalate       | µg/L | < |     |  |  |  |  |  |
|          | 4-Bromophenyl Phenyl Ether       | μg/L | < |     |  |  |  |  |  |
|          | Butyl Benzyl Phthalate           | μg/L | < |     |  |  |  |  |  |
|          | 2-Chloronaphthalene              | μg/L | < |     |  |  |  |  |  |
|          | 4-Chlorophenyl Phenyl Ether      | μg/L | < |     |  |  |  |  |  |
|          |                                  |      | < |     |  |  |  |  |  |
|          | Chrysene Dibonzo(a h)Anthroncono | µg/L | < |     |  |  |  |  |  |
|          | Dibenzo(a,h)Anthrancene          | μg/L | _ |     |  |  |  |  |  |
|          | 1,2-Dichlorobenzene              | μg/L | < |     |  |  |  |  |  |
|          | 1,3-Dichlorobenzene              | μg/L | < |     |  |  |  |  |  |
| 2        | 1,4-Dichlorobenzene              | μg/L | < |     |  |  |  |  |  |
| dn       | 3,3-Dichlorobenzidine            | μg/L | < |     |  |  |  |  |  |
| Group    | Diethyl Phthalate                | μg/L | < |     |  |  |  |  |  |
| 9        | Dimethyl Phthalate               | μg/L | < |     |  |  |  |  |  |
|          | Di-n-Butyl Phthalate             | μg/L | < |     |  |  |  |  |  |
|          | 2,4-Dinitrotoluene               | μg/L | < |     |  |  |  |  |  |

|          |                                              |        |   | 000000000000000000000000000000000000000 |   |  |  |  |  |
|----------|----------------------------------------------|--------|---|-----------------------------------------|---|--|--|--|--|
|          | 2,6-Dinitrotoluene                           | μg/L   | < |                                         |   |  |  |  |  |
|          | Di-n-Octyl Phthalate                         | μg/L   | < |                                         |   |  |  |  |  |
|          | 1,2-Diphenylhydrazine                        | μg/L   | < |                                         |   |  |  |  |  |
|          | Fluoranthene                                 | μg/L   | < |                                         |   |  |  |  |  |
|          | Fluorene                                     | μg/L   | < |                                         |   |  |  |  |  |
|          | Hexachlorobenzene                            | μg/L   | < |                                         |   |  |  |  |  |
|          | Hexachlorobutadiene                          | μg/L   | < |                                         |   |  |  |  |  |
|          | Hexachlorocyclopentadiene                    | μg/L   | < |                                         |   |  |  |  |  |
|          | Hexachloroethane                             | μg/L   | < |                                         |   |  |  |  |  |
|          | Indeno(1,2,3-cd)Pyrene                       | μg/L   | < |                                         |   |  |  |  |  |
|          | Isophorone                                   | μg/L   | < |                                         |   |  |  |  |  |
|          | Naphthalene                                  | μg/L   | < |                                         |   |  |  |  |  |
|          | Nitrobenzene                                 | μg/L   | < |                                         |   |  |  |  |  |
|          | n-Nitrosodimethylamine                       | μg/L   | < |                                         |   |  |  |  |  |
|          | n-Nitrosodi-n-Propylamine                    | μg/L   | < |                                         |   |  |  |  |  |
|          | n-Nitrosodiphenylamine                       | μg/L   | < |                                         |   |  |  |  |  |
|          | Phenanthrene                                 | μg/L   | < |                                         |   |  |  |  |  |
|          | Pyrene                                       | μg/L   | < |                                         |   |  |  |  |  |
|          | 1.2.4-Trichlorobenzene                       | μg/L   | < |                                         |   |  |  |  |  |
|          | Aldrin                                       | µg/L   | < |                                         |   |  |  |  |  |
|          | alpha-BHC                                    | μg/L   | < |                                         |   |  |  |  |  |
|          | beta-BHC                                     | μg/L   | < |                                         |   |  |  |  |  |
|          | gamma-BHC                                    | μg/L   | < |                                         |   |  |  |  |  |
|          | delta BHC                                    | µg/L   | < |                                         |   |  |  |  |  |
|          | Chlordane                                    | μg/L   | < |                                         |   |  |  |  |  |
|          | 4,4-DDT                                      | μg/L   | < |                                         |   |  |  |  |  |
|          | 4,4-DDE                                      | μg/L   | < |                                         |   |  |  |  |  |
|          | 4,4-DDD                                      |        | < |                                         |   |  |  |  |  |
|          |                                              | μg/L   | < |                                         |   |  |  |  |  |
|          | Dieldrin                                     | μg/L   | < |                                         |   |  |  |  |  |
|          | alpha-Endosulfan                             | µg/L   | < |                                         |   |  |  |  |  |
| 9        | beta-Endosulfan                              | μg/L   | _ |                                         |   |  |  |  |  |
| <u>a</u> | Endosulfan Sulfate                           | μg/L   | < |                                         |   |  |  |  |  |
| Group    | Endrin                                       | μg/L   | < |                                         |   |  |  |  |  |
| ര        | Endrin Aldehyde                              | μg/L   | < |                                         |   |  |  |  |  |
|          | Heptachlor                                   | μg/L   | < |                                         |   |  |  |  |  |
|          | Heptachlor Epoxide                           | μg/L   | < |                                         |   |  |  |  |  |
|          | PCB-1016                                     | μg/L   | < |                                         |   |  |  |  |  |
|          | PCB-1221                                     | μg/L   | < |                                         |   |  |  |  |  |
|          | PCB-1232                                     | μg/L   | < |                                         |   |  |  |  |  |
|          | PCB-1242                                     | μg/L   | < |                                         |   |  |  |  |  |
|          | PCB-1248                                     | μg/L   | < |                                         |   |  |  |  |  |
|          | PCB-1254                                     | μg/L   | < |                                         |   |  |  |  |  |
|          | PCB-1260                                     | μg/L   | < |                                         |   |  |  |  |  |
|          | PCBs, Total                                  | μg/L   | < |                                         |   |  |  |  |  |
|          | Toxaphene                                    | μg/L   | < |                                         |   |  |  |  |  |
|          | 2,3,7,8-TCDD                                 | ng/L   | < |                                         |   |  |  |  |  |
|          | Gross Alpha                                  | pCi/L  |   |                                         |   |  |  |  |  |
| 7        | Total Beta                                   | pCi/L  | < |                                         |   |  |  |  |  |
| g        | Radium 226/228 Total Strontium Total Uranium | pCi/L  | < |                                         |   |  |  |  |  |
| 2        | Total Strontium                              | μg/L   | < |                                         |   |  |  |  |  |
| ٥        | Total Oraniani                               | μg/L   | < |                                         |   |  |  |  |  |
|          | Osmotic Pressure                             | mOs/kg |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         |   |  |  |  |  |
|          |                                              |        |   |                                         | 1 |  |  |  |  |

#### Stream / Surface Water Information

E. Greenville WFP, NPDES Permit No. PA0050644, Outfall 001



| T-1-1 A-1                       | _ | ^ | E0000000000000000000000000000000000000 | ^ | 220     | 220   | 40 200  |                                  |
|---------------------------------|---|---|----------------------------------------|---|---------|-------|---------|----------------------------------|
| Total Antimony                  | 0 | 0 |                                        | 0 | 220     | 220   | 10,390  |                                  |
| Total Arsenic                   | 0 | 0 |                                        | 0 | 150     | 150   | 7,084   | Chem Translator of 1 applied     |
| Total Barium                    | 0 | 0 |                                        | 0 | 4,100   | 4,100 | 193,625 |                                  |
| Total Boron                     | 0 | 0 |                                        | 0 | 1,600   | 1,600 | 75,561  |                                  |
| Total Cadmium                   | 0 | 0 |                                        | 0 | 0.248   | 0.27  | 12.9    | Chem Translator of 0.909 applied |
| Hexavalent Chromium             | 0 | 0 |                                        | 0 | 10      | 10.4  | 491     | Chem Translator of 0.962 applied |
| Total Cobalt                    | 0 | 0 |                                        | 0 | 19      | 19.0  | 897     |                                  |
| Total Copper                    | 0 | 0 |                                        | 0 | 9.037   | 9.41  | 445     | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0 | 0 |                                        | 0 | N/A     | N/A   | N/A     |                                  |
| Total Iron                      | 0 | 0 |                                        | 0 | 1,500   | 1,500 | 70,838  | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0 | 0 |                                        | 0 | 2.546   | 3.22  | 152     | Chem Translator of 0.789 applied |
| Total Manganese                 | 0 | 0 |                                        | 0 | N/A     | N/A   | N/A     |                                  |
| Total Mercury                   | 0 | 0 |                                        | 0 | 0.770   | 0.91  | 42.8    | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0 | 0 |                                        | 0 | 52.472  | 52.6  | 2,485   | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0 | 0 |                                        | 0 | N/A     | N/A   | N/A     |                                  |
| Total Selenium                  | 0 | 0 |                                        | 0 | 4.600   | 4.99  | 236     | Chem Translator of 0.922 applied |
| Total Silver                    | 0 | 0 |                                        | 0 | N/A     | N/A   | N/A     | Chem Translator of 1 applied     |
| Total Thallium                  | 0 | 0 |                                        | 0 | 13      | 13.0  | 614     |                                  |
| Total Zinc                      | 0 | 0 |                                        | 0 | 119.198 | 121   | 5,709   | Chem Translator of 0.986 applied |

| ☑ THH Co                        | CT (min): 72   | 2.128        | PMF:                | 1            | Ana           | alysis Hardne    | ess (mg/l): | N/A Analysis pH: N/A |
|---------------------------------|----------------|--------------|---------------------|--------------|---------------|------------------|-------------|----------------------|
| Pollutants                      | Conc<br>(ug/L) | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (μg/L)  | Comments             |
| Total Aluminum                  | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Antimony                  | 0              | 0            |                     | 0            | 5.6           | 5.6              | 264         |                      |
| Total Arsenic                   | 0              | 0            |                     | 0            | 10            | 10.0             | 472         |                      |
| Total Barium                    | 0              | 0            |                     | 0            | 2,400         | 2,400            | 113,341     |                      |
| Total Boron                     | 0              | 0            |                     | 0            | 3,100         | 3,100            | 146,399     |                      |
| Total Cadmium                   | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Hexavalent Chromium             | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Cobalt                    | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Copper                    | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Dissolved Iron                  | 0              | 0            |                     | 0            | 300           | 300              | 14,168      |                      |
| Total Iron                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Lead                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Manganese                 | 0              | 0            |                     | 0            | 1,000         | 1,000            | 47,226      |                      |
| Total Mercury                   | 0              | 0            |                     | 0            | 0.050         | 0.05             | 2.36        |                      |
| Total Nickel                    | 0              | 0            |                     | 0            | 610           | 610              | 28,808      |                      |
| Total Phenols (Phenolics) (PWS) | 0              | 0            |                     | 0            | 5             | 5.0              | N/A         |                      |
| Total Selenium                  | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Silver                    | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Thallium                  | 0              | 0            |                     | 0            | 0.24          | 0.24             | 11.3        |                      |
| Total Zinc                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |

Model Results 9/14/2023 Page 6

☑ CRL CCT (min): 23.699 PMF: N/A N/A 1 Analysis Hardness (mg/l): Analysis pH: WQC Trib Conc Fate WQ Obj WLA (µg/L) Pollutants Conc Comments CV (µg/L) Coef (µg/L) (µg/L) Total Aluminum N/A 0 0 0 N/A N/A 0 0 0 N/A N/A N/A **Total Antimony** Total Arsenic 0 0 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A N/A Total Boron 0 0 0 N/A N/A N/A 0 0 N/A N/A N/A Total Cadmium Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Lead 0 0 N/A N/A N/A Total Manganese 0 0 N/A N/A N/A 0 Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A Total Zinc 0 0 0 N/A N/A N/A

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

|            | Mass             | Limits           |     | Concentra | ition Limits |       |                    |                |          |
|------------|------------------|------------------|-----|-----------|--------------|-------|--------------------|----------------|----------|
| Pollutants | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML | MDL       | IMAX         | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments |
|            |                  |                  |     |           |              |       |                    |                |          |
|            |                  |                  |     |           |              |       |                    |                |          |

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants     | Governing<br>WQBEL | Units | Comments                   |
|----------------|--------------------|-------|----------------------------|
| Total Aluminum | 10,614             | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Antimony | 264                | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Arsenic  | 472                | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Barium   | 113,341            | μq/L  | Discharge Conc ≤ 10% WQBEL |

Model Results 9/14/2023 Page 7

| Total Beryllium                 | N/A    | N/A  | No WQS                     |  |
|---------------------------------|--------|------|----------------------------|--|
| Total Boron                     | N/A    | N/A  | Discharge Conc < TQL       |  |
| Total Cadmium                   | 12.9   | μg/L | Discharge Conc ≤ 10% WQBEL |  |
| Hexavalent Chromium             | N/A    | N/A  | Discharge Conc < TQL       |  |
| Total Cobalt                    | 897    | μg/L | Discharge Conc ≤ 10% WQBEL |  |
| Total Copper                    | 202    | μg/L | Discharge Conc ≤ 10% WQBEL |  |
| Total Cyanide                   | N/A    | N/A  | No WQS                     |  |
| Dissolved Iron                  | 14,168 | μg/L | Discharge Conc ≤ 10% WQBEL |  |
| Total Iron                      | 70,838 | μg/L | Discharge Conc ≤ 10% WQBEL |  |
| Total Lead                      | 152    | μg/L | Discharge Conc ≤ 10% WQBEL |  |
| Total Manganese                 | 47,226 | μg/L | Discharge Conc ≤ 10% WQBEL |  |
| Total Mercury                   | 2.36   | μg/L | Discharge Conc < TQL       |  |
| Total Nickel                    | 2,485  | μg/L | Discharge Conc < TQL       |  |
| Total Phenols (Phenolics) (PWS) |        | μg/L | PWS Not Applicable         |  |
| Total Selenium                  | 236    | μg/L | Discharge Conc < TQL       |  |
| Total Silver                    | 55.7   | μg/L | Discharge Conc ≤ 10% WQBEL |  |
| Total Thallium                  | 11.3   | μg/L | Discharge Conc ≤ 10% WQBEL |  |
| Total Zinc                      | 1,728  | μg/L | Discharge Conc ≤ 10% WQBEL |  |
| Total Molybdenum                | N/A    | N/A  | No WQS                     |  |
|                                 |        |      |                            |  |

# TRC\_Spreadsheet

# TRC\_CALC

| TRC EVALUATION                                                                                                                                                                                  |                                                                                                  |                                      |                                          |                        |                     |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|------------------------|---------------------|--|--|
| Input appropriate values in A3:A9 and D3:D9                                                                                                                                                     |                                                                                                  |                                      |                                          |                        |                     |  |  |
| 7.15                                                                                                                                                                                            | 7.15 = Q stream (cfs)                                                                            |                                      |                                          | .5 = CV Daily          |                     |  |  |
| 0.1                                                                                                                                                                                             | 0.1 = Q discharge (MGD)                                                                          |                                      | 0.5                                      | = CV Hourly            |                     |  |  |
| 30 = no. samples                                                                                                                                                                                |                                                                                                  | 1                                    | = AFC_Partial Mix Factor                 |                        |                     |  |  |
| 0.3 = Chlorine Demand of Stream                                                                                                                                                                 |                                                                                                  | 1                                    | = CFC_Partial Mix Factor                 |                        |                     |  |  |
| 0 = Chlorine Demand of Discharge                                                                                                                                                                |                                                                                                  | 15                                   | = AFC_Criteria Compliance Time (min)     |                        |                     |  |  |
| 0.5 = BAT/BPJ Value                                                                                                                                                                             |                                                                                                  | 720                                  | 720 = CFC_Criteria Compliance Time (min) |                        |                     |  |  |
| 0 = % Factor of Safety (FOS)                                                                                                                                                                    |                                                                                                  |                                      |                                          | =Decay Coefficient (K) |                     |  |  |
| Source Reference AFC Calculations                                                                                                                                                               |                                                                                                  |                                      | Reference                                | CFC Calculations       |                     |  |  |
| TRC                                                                                                                                                                                             | 1.3.2.iii                                                                                        | WLA afc =                            | WLA afc = 14.763                         |                        | WLA cfc = 14.385    |  |  |
| PENTOXSD TRG                                                                                                                                                                                    | 5.1a                                                                                             | LTAMULT afc = 0.373                  |                                          | 5.1c                   | LTAMULT cfc = 0.581 |  |  |
| PENTOXSD TRG                                                                                                                                                                                    | 5.1b                                                                                             | LTA_afc= 5.501                       |                                          | 5.1d                   | LTA_cfc = 8.363     |  |  |
| Source                                                                                                                                                                                          | Effluent Limit Calculations                                                                      |                                      |                                          |                        |                     |  |  |
| PENTOXSD TRG                                                                                                                                                                                    | 5.1f AML MULT = 1.231                                                                            |                                      |                                          |                        |                     |  |  |
| PENTOXSD TRG                                                                                                                                                                                    | 5.1g                                                                                             | AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ |                                          |                        |                     |  |  |
| INST MAX LIMIT (mg/l) = 1.635                                                                                                                                                                   |                                                                                                  |                                      |                                          |                        |                     |  |  |
| WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))<br>+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)                                                                                        |                                                                                                  |                                      |                                          |                        |                     |  |  |
| LTAMULT afc                                                                                                                                                                                     | EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)                                                     |                                      |                                          |                        |                     |  |  |
| LTA_afc                                                                                                                                                                                         | fc wla_afc*LTAMULT_afc                                                                           |                                      |                                          |                        |                     |  |  |
| WLA_cfc                                                                                                                                                                                         | (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc) )<br>+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) |                                      |                                          |                        |                     |  |  |
| LTAMULT_cfc<br>LTA_cfc                                                                                                                                                                          | EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc           |                                      |                                          |                        |                     |  |  |
| AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))  AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)  INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc) |                                                                                                  |                                      |                                          |                        |                     |  |  |