

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonFacility Type
Municipal
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0052485

 APS ID
 959961

Authorization ID 1215010

Applicant Name	Mour	ntain Springs Investors LLC	Facility Name	Mountain Springs MHP
Applicant Address	РО В	ox 365	Facility Address	3450 Mountain Road
	Shart	lesville, PA 19554-0365	<u> </u>	Hamburg, PA 19526
Applicant Contact	Sherr	y Dautrich	Facility Contact	Mike Huey
Applicant Phone	(610)	488-6859	Facility Phone	(610) 488-6859
Client ID	33610	06	Site ID	261157
Ch 94 Load Status	Not C	verloaded	Municipality	Upper Bern Township
Connection Status			County	Berks
Date Application Rece	eived	November 28, 2017	EPA Waived?	Yes
Date Application Acce	pted	February 5, 2018	If No, Reason	

Summary of Review

Mountain Springs Investors LLC applied for renewal of NPDES permit number PA0052485 for Mountain Springs Mobile Home Park and Camping Resort on Mountain Road in Upper Bern Township, Berks County. This permit is for the discharge of sewage effluent from Mountain Springs MHP treatment facility, which serves the Mountain Springs Mobile Home Park. There is a single outfall (001) to an unnamed tributary to Mill Creek in watershed 3-B in the Delaware River Basin. The current permit became effective on July 1, 2013 and expired on June 30, 2018 and has been administratively extended since then. The application was received on time by the Southcentral Regional Office on November 28, 2017 and accepted as administratively complete on February 5, 2018.

The treatment facility currently consists of a comminutor/bar screen, equalization tank, aeration tank, clarifier, two (2) sand filters, chlorine contact tank, sludge holding tank and an outfall weir. Effluent is then conveyed by gravity in a pipe to the Unnamed Tributary (UNT) to Mill Creek. Chemical treatment throughout the process train consists of sodium hypochlorite for disinfection in the chlorine contact tank and sodium bisulfite for dichlorination of the effluent before it is discharged. Samples are taken by an automatic sampler and manual grab samples from just upstream of the discharge weir. Waste sludge and biosolids are hauled away by a local septic service contractor, and screenings and other solids are dewatered and properly disposed of by a local sanitation service.

The treatment plant serves 89 mobile homes, 119 camp sites, and laundry facilities. The campground also has space for up to 173 camper/RV units, from which the facility will accept sewage for a fee. The renewal application is not proposing any changes to the design hydraulic or organic capacity of the facility. DEP Central Office staff visited the facility on September 4, 2019 to verify the location and condition of the treatment equipment and Outfall 001 (see Attachment D for pictures).

Approve	Deny	Signatures	Date
X		/s/	
		Zachary R. Steckler, E.I.T. / Project Manager	August 27, 2019
X		/s/	
		Sean Furjanic, P.E. / Environmental Program Manager	January 10, 2020

Summary of Review

The following changes are being proposed for this permit:

- Outfall 001
 - Reduction of Total Residual Chlorine average monthly and instantaneous maximum limits
 - Increase in monitoring requirements for Fecal Coliform

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Outfall No. 001			Design Flow (MGD)	.035
Latitude 40° 3	31' 41.19)"	Longitude	-76º 4' 57.13"
Quad Name			Quad Code	
Wastewater Descr	iption:	Sewage Effluent		
	l Inna	med Tributary to Mill Creek		
Receiving Waters	(TSF,		Stream Code	2193
NHD Com ID	25960)884	RMI	0.95
Drainage Area	0.63 r	mi ²	Yield (cfs/mi ²)	0.0715
Q ₇₋₁₀ Flow (cfs)	0.045	0	Q ₇₋₁₀ Basis	StreamStats
Elevation (ft)	580		Slope (ft/ft)	
Watershed No.	3-B		Chapter 93 Class.	TSF, MF
Existing Use			Existing Use Qualifier	
Exceptions to Use			Exceptions to Criteria	
Assessment Status	S	Impaired		
Cause(s) of Impair	ment	PATHOGENS		
Source(s) of Impai	rment	SOURCE UNKNOWN		
TMDL Status		None	Name	
Nearest Downstrea	am Publi	c Water Supply Intake	Borough of Pottstown Water a	and Sewer Authority
PWS Waters	Schuylk	ill River	Flow at Intake (cfs)	381
PWS RMI	57		Distance from Outfall (mi)	44

Drainage Area

The facility discharges to an unnamed tributary to Mill Creek at RMI 0.95, measured from the confluence with the nearest downstream surface water to the discharge point. The approximate drainage area upstream of the discharge was determined to be 0.63 square miles according to USGS PA StreamStats available at https://streamstats.usgs.gov/ss/.

Stream Flow

For the Q_{7-10} calculation, a StreamStats analysis was performed for a point (40.52230, -76.05047) on Mill Creek approximately 2.86 miles downstream from the outfall location (see Attachment C). Because Outfall 001 is located close to the headwaters of the UNT to Mill Creek, a point downstream was needed to meet the minimum drainage area requirement for StreamStats to run a basin analysis. According to StreamStats, the delineated watershed has a Q_{7-10} flow of 0.454 cfs and a drainage area of 6.35 mi², which results in a Low Flow Yield (LFY) of 0.0715 cfs/mi². This information was used to obtain a Q_{7-10} flow of 0.045 cfs based on a drainage area of 0.63 mi² for the outfall point.

LFY = $0.454 \text{ cfs}/6.35 \text{ mi}^2 = 0.0715 \text{ cfs/mi}^2$ Q₇₋₁₀ = 0.63 * 0.0715 cfs = 0.045 cfs

Mill Creek

25 Pa Code §93.9 classifies Mill Creek as a TSF/MF waterway. Mill Creek is currently identified on eMAP as impaired for recreational uses due to pathogens of unknown origin. It is currently assessed as attaining uses for aquatic life designations. There is currently no Total Maximum Daily Load (TMDL) developed or planned for Mill Creek, so there is no Waste Load Allocation (WLA) for any pollutants of concern for this facility.

Public Water Supply Intake

The nearest downstream public water supply intake is the Borough of Pottstown Water and Sewer Authority intake located on the Schuylkill River in West Pottsgrove Township, Chester County, approximately 44 miles from the discharge. Considering the distance and nature of the effluent, the discharge is not expected to significantly affect the water supply.

Class A Wild Trout Streams

The receiving stream is not a Class A Wild Trout stream; therefore, no Class A Wild Trout Fishery is impacted by this discharge.

Treatment Facility Na	Tre me: Mountain Springs MHP	atment Facility Summa	ry	
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary with Ammonia Reduction	Extended Aeration	Sodium Hypochlorite	0.010
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.035	72.975	Not Overloaded	Aerobic Digestion	Other WWTP

Changes Since Last Permit Issuance: In 2018, the facility increased the number of directly connected camp sites from 90 to 119. Flow monitoring since the expansion has not shown a significant impact on the facility's average flow.

Other Comments: The existing permit effluent limitations are outlined in the table below.

				Monitoring Re	quirements			
Discharge	Mass Units	s (lbs/day)		Concentration	ns (mg/L)		Minimum	Required
Parameters	Average	Average Daily Average Weekly Instant.					Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
D.O.	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.64	1/day	Grab
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab
CBOD ₅	XXX	XXX	XXX	25	XXX	50	2/month	Grab
NH ₃ -N								
(5/1 - 10/31)	XXX	XXX	XXX	8.0	XXX	16	2/month	8-Hr Comp
NH ₃ -N								
(11/1 – 4/30)	XXX	XXX	XXX	20	XXX	40	2/month	8-Hr Comp
Fecal Coliform								
(CFU/100 ml)				200				
(5/1 - 9/30)	XXX	XXX	XXX	Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform								
(CFU/100 ml)				2,000			_, .	
(10/1 - 4/30)	XXX	XXX	XXX	Geo Mean	XXX	10,000	2/month	Grab

Compliance History

Summary of Inspections

The facility was inspected four times during the preceding permit cycle, most recently on 6/28/2016, with no violations noted at any inspection. The inspection report from 6/28/2016 contained the following notes/recommendations:

- Expand daily operation log to include visual observations, problems and concerns, weather observations
- Update phone list to include regional inspector's phone number
- Update phone list to include DEP 24-Hour Emergency Response: 1-866-825-0208
- Clean unused comminutor bypass bar screen of present rags and debris

Summary of Non-Compliance

All instances of non-compliance with permit effluent limitations during the preceding permit period, and DMR data for the period from 7/1/2018 to 6/30/2019 are summarized in the tables below. At this time, there are no open violations associated with this facility, and the permittee has no history of enforcement actions.

Reporting Period End Date	Parameter	Sample Value	Permit Limits	Units	SBC
1/31/2014	Fecal Coliform	12600	10000	CFU/100 ml	Instantaneous Maximum
9/30/2014	Fecal Coliform	> 20000	1000	CFU/100 ml	Instantaneous Maximum
3/31/2015	Total Suspended Solids	450	60	mg/L	Instantaneous Maximum
3/31/2015	Total Suspended Solids	< 68	30	mg/L	Average Monthly
3/31/2015	Carbonaceous Biochemical Oxygen Demand (CBOD5)	70.3	50	mg/L	Instantaneous Maximum
3/31/2015	Fecal Coliform	> 20000	10000	CFU/100 ml	Instantaneous Maximum
6/30/2015	Fecal Coliform	1900	1000	CFU/100 ml	Instantaneous Maximum
2/29/2016	Fecal Coliform	20000	10000	CFU/100 ml	Instantaneous Maximum
4/30/2016	Fecal Coliform	11100	10000	CFU/100 ml	Instantaneous Maximum
7/31/2016	Fecal Coliform	> 20000	1000	CFU/100 ml	Instantaneous Maximum
7/31/2017	Ammonia-Nitrogen	24.5	16	mg/L	Instantaneous Maximum
7/31/2017	Fecal Coliform	6100	1000	CFU/100 ml	Instantaneous Maximum
7/31/2017	Ammonia-Nitrogen	8.57	8	mg/L	Average Monthly
8/31/2017	pH	5.64	6	S.U.	Minimum
7/31/2018	Dissolved Oxygen	4.6	5	mg/L	Minimum
8/31/2018	Fecal Coliform	13100	1000	CFU/100 ml	Instantaneous Maximum
9/30/2018	Fecal Coliform	2000	1000	CFU/100 ml	Instantaneous Maximum
3/31/2019	Fecal Coliform	17200	10000	CFU/100 ml	Instantaneous Maximum

NPDES Permit Fact Sheet Mountain Springs MHP

DMR Data for Outfall 001 (from July 1, 2018 to June 30, 2019)

Parameter	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18	AUG-18	JUL-18
Flow (MGD)												
Average Monthly	0.01035	0.01057	0.01214	0.01013	0.00846	0.00936	0.00888	0.01084	0.01018	0.0113	0.01183	0.01027
Flow (MGD)												
Daily Maximum	0.01603	0.02011	0.09853	0.06043	0.01725	0.02968	0.02056	0.01905	0.01921	0.01828	0.02924	0.01734
pH (S.U.)												
Minimum	6.54	6.3	7.05	6.94	6.71	6.75	6.2	6.96	6.36	6.19	6.71	6.94
pH (S.U.)												
Maximum	7.28	7.23	8.02	7.43	7.49	7.1	7.21	7.42	7.19	7.46	7.61	7.94
DO (mg/L)												
Minimum	6.8	7.0	6.0	5.5	6.8	7.0	7.0	7.1	7.0	5.2	5.6	4.6
TRC (mg/L)												
Average Monthly	< 0.02	< 0.04	< 0.01	< 0.02	< 0.01	< 0.01	< 0.03	0.03	0.06	< 0.05	< 0.06	0.07
TRC (mg/L)												
Instantaneous												
Maximum	0.06	0.21	0.04	0.11	0.03	0.03	0.08	0.18	0.19	0.50	0.13	0.15
CBOD5 (mg/L)												0.4
Average Monthly	< 2	< 2	< 2.4	2.1	< 2.1	< 2	6.3	< 10	< 2	< 2	< 6.2	< 2.1
CBOD5 (mg/L)												
Instantaneous		. 0	2.7	0.0	0.4	. 0	7.5	40	. 0		40.4	0.4
Maximum TCC (re-r/L)	< 2	< 2	2.1	2.2	2.1	< 2	7.5	18	< 2	< 2	10.4	2.1
TSS (mg/L)	< 4.2	< 4.6	6.4	6.2	5.2	< 7.4	< 14	< 4	< 4.8	< 4	< 9	< 4
Average Monthly TSS (mg/L)	< 4.2	< 4.0	0.4	0.2	5.2	< 7.4	< 14	< 4	< 4.0	< 4	< 9	< 4
Instantaneous												
Maximum	4.4	5.2	8.4	6.8	5.6	10.8	46	< 4	5.6	< 4	14	< 4
Fecal Coliform	7.7	0.2	0.4	0.0	3.0	10.0	70	_ ` -	3.0	_ \	17	
(CFU/100 ml)												
Geometric Mean	5	< 1	< 6	< 131	< 1	< 2	282	102	26	118	114	35
Fecal Coliform			, ,	1.0.								
(CFU/100 ml)												
Instantaneous												
Maximum	11	2	39	17200	< 1	4	585	291	224	2000	13100	45
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.18	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.16
Ammonia (mg/L)												
Instantaneous												
Maximum	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.25	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.22

Development of Effluent Limitations					
Outfall No.	001	Design Flow (MGD)	.035		
Latitude	40° 31' 43.00"	Longitude	-76° 6' 3.00"		
Wastewater D	Description: Sewage				

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform	· · · · · · · · · · · · · · · · · · ·			
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Because Water Quality Modeling had not been completed since 2007, the discharge data was run through the WQM 7.0 model and determined that the CBOD5 and NH3-N limitations listed below are technically adequate and appropriate. The table below shows input/output of the WQM 7.0 modeling.

		Effluent Limitations					
Parameter	Discharge Concentration (mg/L)	30-day Average (mg/L)	Maximum (mg/L)	Minimum (mg/L)			
CBOD ₅	25	25	XXX	XXX			
NH ₃ -N	8	8	16	XXX			
Dissolved Oxygen	5	XXX	XXX	5			

a. Flow

Flow monitoring remains unchanged and is as required by 25 PA Code §§ 92a.27 and 92a.61.

b. pH

The required pH limits remain unchanged and are in accordance with 25 PA Code § 92a.47.

c. Dissolved Oxygen (DO)

The minimum BPJ limit of 5.0 mg/L remains unchanged and is in accordance with 25 PA Code § 93.7 DO₃ for the designated use of TSF/MF.

d. TRC

The Department's TRC calculator was used to calculate the required Total Residual Chlorine limit. Previous TRC modeling used an annual average flow rate for the receiving stream. Due to the intermittent nature of the stream, the Q_{7-10} flow of 0.045 cfs was used, resulting in an average monthly limit of 0.43 mg/L and an instantaneous maximum of 1.42 mg/L. Because this is more stringent than the BAT limit, this value will be assigned to the permit.

- e. CBOD₅ / TSS
 - Based on the Technology Based Limits and the Water Quality Modeling results, the existing CBOD₅ is protective of water quality. Accordingly, CBOD₅ and TSS limits remain unchanged and are as required by 25 PA Code § 92a.47(a)(1).
- f. Ammonia Nitrogen (NH₃-N)

As shown in the WQM 7.0 modeling output, Water Quality Based Effluent Limits (WQBELs) are required for NH₃-N. The modeling output limit supported maintaining the existing monthly average limit of 8.0 mg/L, so that value will be applied to the new permit. Therefore, the Ammonia Nitrogen limit remains unchanged, and is in accordance with 25 PA Code § 93.7(a). While the facility does have one reported incident of noncompliance from August 2017, a review of the eDMR data from the previous permit issuance date to present showed that in that time period, they only exceeded the effluent limit in August 2017, and there was only one other instance that exceeded a concentration of 1.33 mg/L.

- g. Fecal Coliform
 - Per 25 PA Code § 92a.47(a)(5), from October through April, a monthly average discharge limitation for fecal coliform of 2,000 CFU/100 mL as a geometric mean and an instantaneous maximum effluent limitation not greater than 10,000 CFU/100 mL are required. The limits required for the period from May through September are a monthly average of 200 CFU/100 mL as a geometric mean and an instantaneous maximum of 1,000 CFU/100 mL. According to the previous fact sheet, the current permit reduced the sampling method for fecal coliform monitoring from an 8-hour composite to grab sample as a result of improved fecal coliform results over the previous permit period and to be consistent with sampling methods in the DEP Permit Writer's Manual. Based on the number of non-compliance dates and the variability observed in the DMR data from the issuance of the current permit to present, it is recommended that the permit increase sampling from 2 grab samples per month to 4 grab samples per month for fecal coliform to capture a more representative sample for the facility and determine if further action may need to be taken in the future.
- h. Total Nitrogen / Total Phosphorous
 DEP's SOP no. BPNPSM-PMT-033 for Establishing Effluent Limitations for Individual Sewage Permits
 recommends monitoring requirements for Total Phosphorus and Total Nitrogen for all sewage facilities with
 design flows greater than 2,000 gpd. Therefore, a routine monitoring for Total Nitrogen and Total Phosphorus is
 recommended to be introduced for this permit renewal.

Anti-Backsliding

Effluent limitations for all parameters are to remain at their current limits or have more stringent limits applied; therefore, the proposed permit limits meet anti-backsliding requirements.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat		Minimum ⁽²⁾	Required	
rai ametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.43	XXX	1.42	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	25	XXX	50	2/month	Grab
Total Suspended Solids	XXX	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	4/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	4/month	Grab
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	20	XXX	40	2/month	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	8.0	xxx	16	2/month	8-Hr Composite
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab

Compliance Sampling Location: Outfall 001

	Tools and References Used to Develop Permit
\square	WQM for Windows Model (see Attachment A)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment B)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	 SOP: New and Reissuance Sewage Individual NPDES Permit Applications, 10/13. Establishing Effluent Limitations for Individual Sewage Permits, BCW-PMT-003, 1/19.
\square	Other: eMapPA, USGS StreamStats (see Attachment C), Site Visit Pictures (see Attachment D)

Attachment A - WQM 7.0 Modeling Results

WQM 7.0 Effluent Limits

	SWP Basin Stre	2187		Stream Name	30		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.950	Mountain Sp MHP	PA0052485	0.010	CBOD5	25		
				NH3-N	8	16	
				Dissolved Oxygen			5

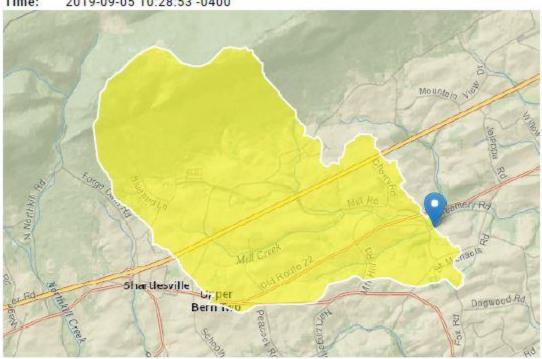
Archived Data Inputs WQM 7.0 - Version 1.0b

	SWP Basin	Strea Cod		Stre	am Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slop (ft/ft	Withd	rawal	Apply FC
	03B	21	187 MILL (CREEK			0.9	50	580.00	0.6	3 0.00	000	0.00	V
188		ēs.			Str	ream Dat	a							
Design Cond,	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip pł	1	<u>Strear</u> Temp	<u>n</u> pH	
A.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.072	0.00 0.00 0.00	0.05 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	75.0	6.00	0.0)8 2	0.00	7.00	0.00	0.00	
(8)					Di	scharge l	Data	1			92-1-1-E]	
			Name	Per	mit Number	Existing Disc	Permitt Disc Flow (mgd)	Dis Flo	sc Res	erve To	lisc emp °C)	Disc pH		
		Moun	tain Sp Mi	HP PAG	0052485	0.010	0.000	0.0	0000	0.000	20.00	7.00		
				10	Pa	rameter	Data							
			9	Paramete	r Name			Frib Conc	Stream Conc	Fate Coef	8			
				alamete	I Ivaile	(m	ig/L) (r	ng/L)	(mg/L)	(1/days)				
	-		CBOD5			8	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				8.00	0.00	0.00	0.70	93			

Attachment B - TRC Model Spreadsheet

INC EVALU	ATION					
		B4:B8 and E4:E7				
0.045	= Q stream (cfs)	0.5	= CV Daily		
0.01	= Q discharg	e (MGD)	0.5	= CV Hourly		
30	= no. sample	s	1	= AFC_Partial N	lix Factor	
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial M	ix Factor	
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria (Compliance Time (min)	
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)		
0	= % Factor o	of Safety (FOS)	0	Decay Coeffici	ent (K)	
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.916	
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581	
PENTOXSD TRG	5.1b	LTA_afc=	0.353	5.1d	$LTA_cfc = 0.532$	
Source	2010-27-6-5	Effluent	Limit Cal	culations		
PENTOXSD TRG	5.1f	AM	L MULT =	1.231		
PENTOXSD TRG	5.1g	AVG MON LIMIT	$\Gamma (mg/l) =$	0.434	AFC	
		INST MAX LIMI	$\Gamma (mg/I) =$	1.420		
NLA afc LTAMULT afc	+ Xd + (AFC	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(MULT_afc	OS/100)			
_TA_afc						
	The state of the s	FC_tc) + [(CFC_Yc*Qs* C_Yc*Qs*Xs/Qd)]*(1-F		e(-k*CFC_tc))		
WLA_cfc	+ Xd + (CFC		OS/100)			
NLA_cfc _TAMULT_cfc	+ Xd + (CFC	C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1	OS/100)			
WLA_cfc _TAMULT_cfc _TA_cfc	+ Xd + (CFC EXP((0.5*LN) wla_cfc*LTA EXP(2.326*LI	C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1 MULT_cfc N((cvd^2/no_samples	OS/100)))-2.326*l +1)^0.5)-	_N(cvd^2/no_sai	mples+1)^0.5)	
WLA_cfc _TAMULT_cfc _TA_cfc	+ Xd + (CFC EXP((0.5*LN) wla_cfc*LTA EXP(2.326*LI MIN(BAT_BP	C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1 MULT_cfc	OS/100)))-2.326*I +1)^0.5)- fc)*AML_	_N(cvd^2/no_sar 0.5*LN(cvd^2/no MULT)	mples+1)^0.5)	

Attachment C - StreamStats Analysis Report


StreamStats Report for Mill Creek Watershed

Region ID: PA

Workspace ID: PA20190905142836588000

Clicked Point (Latitude, Longitude): 40.52230, -76.05047

Time: 2019-09-05 10:28:53 -0400

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	6.35	square miles
PRECIP	Mean Annual Precipitation	48	inches
STRDEN	Stream Density total length of streams divided by drainage area	1.09	miles per square mile
ROCKDEP	Depth to rock	3.7	feet
CARBON	Percentage of area of carbonate rock	0	percent

Code	Parameter Description	Value	Unit
STORAGE	Percentage of area of storage (lakes ponds reservoirs wetlands)	0	percent

Parameter Code	Parameter Name	Value	Units		Min Limit	Max Limit
DRNAREA	Drainage Area	6.35	square	miles	4.93	1280
PRECIP	Mean Annual Precipitation	48	inches		35	50.4
STRDEN	Stream Density	1.09	miles p	er square	0.51	3.1
-0.00 or 1 no encountry -	POLYC ARM DICHES DISHOELAND A	00274257				ECE
ROCKDEP	Depth to Rock	3.7	feet		3.32	5.65
CARBON Low-Flow Statis	Percent Carbonate	0	percent	-W	0	99
CARBON Low-Flow Statis PII: Prediction I SE: Standard Er	Percent Carbonate	0 2) on Interva	percent	-W	0	99 Prediction
CARBON Low-Flow Statis PII: Prediction I SE: Standard Er Statistic	Percent Carbonate stics Flow Report Low Flow Region 2 Interval-Lower, Plu: Prediction (other see report)	0 2) on Interva	percent	Ep: Standar	O d Error of	99
CARBON Low-Flow Statis PII: Prediction I SE: Standard Er Statistic 7 Day 2 Year	Percent Carbonate stics Flow Report Low Flow Region 2 Interval-Lower, Plu: Prediction (other see report) Low Flow	0 리 on Interva V	percent I-Upper, S	Ep: Standar Unit	0 d Error of SE	99 Prediction SEp
PII: Prediction I	Percent Carbonate stics Flow Report Low Flow Region 2 Interval-Lower, Plu: Prediction for (other see report) Low Flow Ar Low Flow	0 on Interva V 1	percent I-Upper, S /alue .22	Ep: Standar Unit ft^3/s	0 d Error of SE 38	99 Prediction SEp 38
CARBON Low-Flow Statis PII: Prediction I SE: Standard Er Statistic 7 Day 2 Year 30 Day 2 Yea 7 Day 10 Yea	Percent Carbonate stics Flow Report Low Flow Region 2 Interval-Lower, Plu: Prediction for (other see report) Low Flow Ar Low Flow	0 on Interva V 1	percent I-Upper, S /alue .22 .73	Ep: Standar Unit ft*3/s ft*3/s	0 d Error of SE 38 33	99 Prediction SEp 38 33

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

	Parameter	Name	Value	Units		Min	Limit Max Lin
DRNAREA	Drainage A	rea	6.35	squar	re miles	1.72	1280
STORAGE	Percent Sto	orage	0	perce	ent	0	21.2
Peak-Flow Statistics	Flow Report _{[Peal}	k Flow Region	11]				
PII: Prediction Interv			on Interv	al-Uppe	r, SEp: S	tandard	Error of Prediction
SE: Standard Error (d Statistic	ther see rep	ort) Value	s III	nit	SE	CEn	Equiv. Yrs.
Statistic		value	e UI	ш	SE	SEp	Equiv. 115.
2 Year Peak Floor	1	344	ft	'3/s	33	33	3
5 Year Peak Floor	1	605	ft	3/s	31	31	6
		815	ft	3/s	31	31	9
10 Year Peak Floo	od						
10 Year Peak Floo 50 Year Peak Floo		1370	ft	`3/s	36	36	13
	od	1370 1650	7 3000	3/s 3/s	36 38	36 38	13 13

Roland, M.A., and Stuckey, M.H.,2008, Regression equations for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2008-5102, 57p. (http://pubs.usgs.gov/sir/2008/5102/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

Attachment C - Site Visit Pictures

1 - Outfall 001 and UNT to Mill Creek

2 - Overflow Weir & Sample Point