

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0054526

 APS ID
 1093477

 Authorization ID
 1448488

Applicant and Facility Information

Applicant Name	UniTech Services Group, Inc.	Facility Name	UniTech Service Group
Applicant Address	401 North 3rd Avenue	Facility Address	401 N 3rd Avenue
	Royersford, PA 19468-1950		Royersford, PA 19468-1950
Applicant Contact	Glenn Roberts	Facility Contact	Glenn Roberts
Applicant Phone	(410) 382-7350	Facility Phone	(410) 382-7350
Client ID	33398	Site ID	452791
SIC Code	7218	Municipality	Royersford Borough
SIC Description	Services - Industrial Launderers	County	Montgomery
Date Application Recei	ved	EPA Waived?	Yes
Date Application Accept	ted September 14, 2023	If No, Reason	
Purpose of Application	NPDES permit renewal.		

Summary of Review

The Pa DEP received an NPDES permit renewal application from Keystone Engineering Group (consultant) on June 16, 2023 on behalf of UniTech Services Group, Inc. (permittee) for permittee's Royersford Facility (facility). It's a minor industrial waste facility without ELG that discharges into Schuylkill River (WWF, MF) in state watershed 3-D. The current permit will expire on December 31, 2023. The terms and conditions of the current permit is automatically extended since the renewal application is received at least 180 days prior to expiration date. Renewal NPDES permit application under Clean Water Program are not covered by PADEP's PDG per 021-2100-001. This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this permit: Color limits removed, and Total Copper limits will be applied.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	October 23, 2023
х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	10/24/2023

Quad Name Pho Wastewater Descrip Receiving Waters NHD Com ID	Schuylkill River (WWF, MF) 133228812	_ Design Flow (MGD) _ Longitude _ Quad Code Stream Code RMI	0 -75° 32' 47.00" 1741 00833
Latitude <u>40° 11</u> Quad Name <u>Pho</u> Wastewater Descrip Receiving Waters NHD Com ID	benixville otion: <u>Stormwater</u> Schuylkill River (WWF, MF) 133228812	Longitude Quad Code Stream Code	-75º 32' 47.00" 1741
Quad Name Pho Wastewater Descrip Receiving Waters NHD Com ID	benixville otion: <u>Stormwater</u> Schuylkill River (WWF, MF) 133228812	Quad Code	1741
Wastewater Descrip Receiving Waters NHD Com ID	otion: <u>Stormwater</u> Schuylkill River (WWF, MF) 133228812	Stream Code	
NHD Com ID	133228812		00833
NHD Com ID	133228812		00833
-		RMI	
ischarge, Receiving			43.12
	Waters and Water Supply Info	ormation	
Outfall No. 001		Design Flow (MGD)	.1
Latitude 40° 11	1' 22.00"	Longitude	-75º 32' 47.00"
Quad Name Pho	penixville	Quad Code	1741
Wastewater Descrip	otion: IW Process Effluent with	nout ELG	
Receiving Waters	Schuylkill River	Stream Code	00833
NHD Com ID	133228812	RMI	43.22
Drainage Area	1,190 mi ²	Yield (cfs/mi ²)	0.23
Q ₇₋₁₀ Flow (cfs)	275	Q7-10 Basis	USGS StreamStats
Elevation (ft)	93.01	Slope (ft/ft)	
Watershed No.	3-D	Chapter 93 Class.	
Existing Use	WWF, MF	Existing Use Qualifier	Ch. 93
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairm		BIPHENYLS (PCBS)	
Source(s) of Impairn			
TMDL Status	Final	Name Schuylkill Ri	ver PCB TMDL
Background/Ambien	nt Data	Data Source	
pH (SU)	7.0	Default	
Temperature (°C)	25	Default	
Hardness (mg/L)	100	Default	
Other:			
Nearest Downstrear	n Public Water Supply Intake	Phoenixville Water Departmer	nt Phoenixville Boro Chest
	Schuylkill River	Flow at Intake (cfs)	
	0.36 mile	Distance from Outfall (mi)	2.86

Changes Since Last Permit Issuance: Membrane Ultrafiltration (UF) Unit was added with existing treatment system to increase the cBOD5 removal efficiency. A pilot testing is ongoing to determine the efficiency of UF unit.

Streamflow:

USGS's web based watershed delineation tool StreamStats (accessible at <u>https://streamstats.usgs.gov/ss/</u>, accessed on October 12, 2023) was utilized to determine the drainage area at discharge point. The StreamStats report shows the drainage area at the discharge point is 1,190 mi². Data from the StreamStats shows Q₇₋₁₀ and Q₃₀₋₁₀ to be 275 cfs and 326 cfs, respectively.

$\begin{array}{c} Q_{7\text{-}10} \text{ runoff rate (low flow yield): } 275 \text{ cfs}/1190 \text{ mi}^2 \text{ or } 0.23 \text{ cfs}/\text{mi}^2 \\ Q_{30\text{-}10}\text{:}Q_{7\text{-}10}\text{: } 326/275 \text{ or } 1.19 \\ \text{Default } Q_{1\text{-}10}\text{:}Q_{7\text{-}10}\text{: } 0.64 \\ Q_{1\text{-}10}\text{: } 0.64^*275 \text{ or } 176 \text{ cfs} \end{array}$

PWS Intake:

The nearest downstream public water supply is Phoenixville Water Department's intake on Schuylkill River at RMI 40.36, in Phoenixville Borough, Chester County. Its approximately 2.86 miles downstream of Outfall 001. The permit will be crafted in a way that the discharge from this facility may not impact the PWS intake.

Wastewater Characteristics:

The 90th percentile pH of 7.1 was calculated from daily DMR during dry months July through September for the year 2022-2023. The application data indicated the maximum Total Hardness of 74.3 mg/l out of 3 samples and average temperature of 74^oF (23.63^oC).

Background data:

There's no nearby (within 10 miles) WQN station to collect site-specific stream data. In absence of site-specific data, default temperature of 25°C, stream hardness of 105 mg/l, and stream pH of 7.0 will be used for modeling, if needed.

Impairment Status of receiving stream (CWA Section 303(d)):

The receiving stream, Schuylkill River, is Fish Consumption impaired from PCBs. It is also Aquatic Life impaired from Urban Runoff/Storm sewers (cause unknown), Municipal Point Source Discharges (cause unknown), and Agriculture (cause unknown). A TMDL is finalized for Schuylkill River which is discussed in below section. The limits and permit terms and conditions will be developed in a way that the facility doesn't contribute to the existing impairment.

Schuylkill River Polychlorinated Biphenyls (PCBs) Total Maximum Daily Load (TMDL):

The receiving stream, Schuylkill River, is impaired for PCBs and has an EPA approved TMDL. This facility is listed in Segment E Subsegment 21 of the TMDL. Table B-1 assigned a Wasteload Allocation (WLA) of 1.33e⁻⁵ gram/day of PCB for this facility. The surface water quality criteria for PCBs in Schuylkill River is 0.044 ng/l or 44 pg/l, which is also EPA's TMDL target. The facility collected two PCB samples in the past and submitted the results to PADEP and Delaware River Basin Commission (DRBC). The sample results were higher than the surface water quality criteria which triggered annual dry weather PCBs monitoring requirement for Outfall 001 and annual wet weather PCBs monitoring for Outfall 002. The facility was collecting annual samples from both outfalls. These sample results will be analyzed and either continued monitoring will be carried over or numeric limits will be placed in the permit. It'll be addressed in more details on Development of Effluent Limits section of this report.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving stream is designated as Warm-Water Fishes (WWF) and Migratory Fishes (MF.) No High-Quality watershed is impacted by this discharge. No Exceptional-value watershed is impacted by this discharge.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

	Tr	eatment Facility Summar	у	
Freatment Facility Na	ame: Unitech Services Gro	qu		
WQM Permit No.	Issuance Date			
4615201 A-3	2/16/23			
4615201 A-2	8/27/21			
4615201 A-1	12/6/18			
4615201	8/3/15			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)

Industrial	Biological (Industrial Waste),Physical (Industrial Waste)	Filtration	Ultraviolet	0.08
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
		Load Status Not Overloaded	Biosolids Treatment Drying	

Treatment Plant Description

UniTech Services Group, Inc. (UniTech/permittee) owns and operates a licensed nuclear laundry facility in Royersford, PA. The facility launders and decontaminates clothing and personal protective equipment received from customers. Equipment employed by UniTech includes washer extractors, dryers, sorting tables, lint collectors, and a liquid wastewater treatment system.

Process wastewater gravity flows to an influent wet well and has a continuous recirculation system to provide adequate mixing within the wet well. Level actuated sump pumps transfer the process wastewater from the wet well to a 50-micron mesh vibrating shaker screen where coarse particles, primarily composed of lint, are separated. The shaker screen filtrate is then pumped to equalization tanks where further mixing and pH adjustment are provided. Next, the process wastewater is transferred to a fixed filmed bioreactor system which consists of three reactors operating in series. Draft tubes provide air to the biomass within the reactors. Aerobic bacteria attach to the fixed film and provide a high rate of biological treatment of organics. Chemical feed pumps deliver urea and carbon source solutions to maintain required nutrients level to sustain a healthy biomass. Scour aeration is used to prevent the biomass from clogging the fixed film media. Chemical feed equipment provides coagulant and flocculant, as needed, to aid settling of the discharge from the fixed film bioreactors. The process wastewater then gravity flows into two final clarifiers, which are operated in parallel. The final clarifiers remove biological solids. A RAS pump returns biomass to the first bioreactor on an as needed basis.

Clarified water then passes through a buffer tank where it is processed through a variable-flow pressurized filter system. This flow from the aerated bioreactors is diverted to the new UF system for solids removal purposes. After filtration the wastewater is then disinfected via an UV system and pumped to two final holdup tanks. Mixers within the holdup tanks keep the contents well mixed. Prior to final discharge to the stream outfall, a representative sample from both holdup tanks is collected.

Solids treatment consists of a sludge holding tank and an aerobic digester with settling capability. A decant pump inside the aerobic digester removes supernatant fluid prior to solids processing. Solids are processed using a plate-and-frame press for dewatering. After pressing, the filter cake is dropped into an electric drying oven for further reduction of moisture. The dry waste is then packaged, labeled, and then transported by a qualified low-level radiation waste (LLRW) processor who properly disposes of the waste solids.

The following chemicals are used for treatment of wastewater:

Chemical Name	Purpose	Max Usage Rate	Units	Acrylamide
Muriatic Acid	pH Neutralizer	10	lbs/day	
Aluminum Sulfate	Coagulant/Flocculant	25	lbs/day	
Polyaluminum Chloride	Coagulant/Flocculant	8	lbs/day	

Stormwater Outfall:

There are two stormwater-only outfalls, Outfall 002 and 003, associated with this facility. Outfall 002 is representative of Outfall 003. Outfall 002 has monitoring requirements in current permit which will be carried over in this renewal.

Compliance History

DMR Data for Outfall 001 (from August 1, 2022 to July 31, 2023)

Parameter	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22
Flow (MGD)												
Average Monthly	0.01	0.03	0.04	0.04	0.05	0.04	0.03	0.03	0.04	0.05	0.04	0.03
Flow (MGD)												
Daily Maximum	0.04	0.06	0.08	0.08	0.08	0.08	0.08	0.07	0.09	0.08	0.07	0.06
pH (S.U.)												
Instantaneous												
Minimum	6.15	6.17	6.44	6.45	6.55	6.3	6.15	6.1	6.34	6.52	6.58	6.7
pH (S.U.) IMAX	7.81	7.08	7.01	7.03	7.99	6.96	6.87	7.37	7.01	8.4	8.5	7.7
Color (Pt-Co Units)												
Average Monthly	15	15	15	15	25.0	17.5	13.75	10	12.5	10	10	12.5
Color (Pt-Co Units)												
Daily Maximum	15	15	15	15	35.0	25.0	15.0	10	15.0	10	10	15.0
CBOD5 (lbs/day)												
Average Monthly	0.87	< 1	0.41	1.49	0.82	2.85	1.92	1.69	1.03	2.87	3.14	1.83
CBOD5 (lbs/day)												
Industrial Influent												
Average Monthly	6.23	7.07	13.1	14.7	19.3	12.7	12.9	13.8	17.1	21.5	12.2	9.4
CBOD5 (lbs/day)												
Daily Maximum	1.74	< 1	0.82	1.79	0.87	6.93	3.02	2.57	1.64	8.5	7.71	3.18
CBOD5 (lbs/day)												
Industrial Influent												
Daily Maximum	6.92	7.1	15.7	17.0	24.2	15.4	21.1	25.7	25.2	29.4	15.5	18.5
CBOD5 (mg/L)												
Average Monthly	3.06	< 1.0	0.82	2.81	1.72	5.85	4.25	4.06	1.97	5.31	7.98	5.77
CBOD5 (mg/L)												
Industrial Influent												
Average Monthly	21.95	18.35	22.85	27.8	38.45	26.2	31.4	32.9	33.7	39.6	29.6	29.6
CBOD5 (mg/L)												
Daily Maximum	6.12	< 1.0	1.64	3.2	2.07	14.0	6.28	6.04	3.38	14.9	17.9	7.7
CBOD5 (mg/L)												
Industrial Influent												
Daily Maximum	24.4	20.1	24.6	30.4	42.9	28.3	37.2	49.8	44.2	58.8	37.2	43.9
CBOD5 % Removal												
(%)												
Minimum Monthly												
Average	85	85	85	85	85	85	85	85	85	85	85	85
TSS (lbs/day)												
Average Monthly	1.85	2.05	0.89	1.02	0.78	11.3	4.09	2.84	0.82	1.14	0.76	0.18

NPDES Permit No. PA0054526

TSS (lbs/day)												
Daily Maximum	3.41	3.39	1.27	1.48	1.13	39.5	8.89	4.27	1.15	1.72	1.08	0.22
TSS (mg/L)	-											_
Average Monthly	6.5	5.0	1.5	2.0	1.5	24.1	8.75	8.0	1.5	2.0	2.0	1.0
TSS (mg/L)												
Daily Maximum	12.0	8.0	2.0	3.0	2.0	80.0	14.0	12.0	2.0	3.0	3.0	1.0
Total Dissolved Solids												
(lbs/day)												
Average Monthly	217.1	150	206	177.6	171	165.8	149.1	76.2	195.4	175	117.4	90.9
Total Dissolved Solids												
(lbs/day)												
Daily Maximum	283.3	156	236	183.5	175	179.0	228.6	85.5	224.5	207	181.5	122.6
Total Dissolved Solids												
(mg/L)												
Average Monthly	764.5	389.0	362.0	337.5	355.0	313.8	414.0	215.0	362.5	307.0	285.0	490.5
Total Dissolved Solids												
(mg/L)												
Daily Maximum	997.0	410.0	370.0	347.0	416.0	354.0	556.0	242.0	392.0	362.0	422.0	568.0
Oil and Grease												
(lbs/day)												
Average Monthly	< 5.0	< 5.0	< 5.0	2.64	< 5.0	2.65	2.02	1.77	2.7	< 5.0	1.97	0.89
Oil and Grease (mg/L)												
Average Monthly	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ammonia (lbs/day)												
Average Monthly	1.86	0.77	0.78	0.47	0.29	0.09	0.17	0.04	0.04	0.1	0.19	0.39
Ammonia (mg/L)												
Average Monthly	6.56	1.91	1.28	0.9	0.56	0.16	0.56	0.115	0.08	0.18	0.47	1.89
Total Phosphorus												
(lbs/day)												
Average Monthly	0.24	0.5	0.65	0.39	0.33	0.35	0.29	0.156	0.11	0.29	0.44	0.16
Total Phosphorus												
(mg/L)												
Average Monthly	0.83	1.38	1.08	0.75	0.7	0.67	0.69	0.44	0.19	0.3	1.14	0.825
Total Copper (lbs/day)												
Average Quarterly		0.278			0.29			0.3			0.099	
Total Copper (lbs/day)												
Daily Maximum		0.278			0.29			0.3			0.099	
Total Copper (mg/L)												
Average Quarterly		0.559			0.59			0.596			0.691	
Total Copper (mg/L)		0 5			0							
Daily Maximum		0.559			0.59			0.596			0.691	
PCBs (Dry Weather)												
(pg/L)												
Daily Maximum								890				

NPDES Permit No. PA0054526

Acute WET -								
Ceriodaphnia Survival								
(TUa)								
Daily Maximum	GG		GG		50.0		GG	
Acute WET -								
Pimephales Survival								
(TUa)								
Daily Maximum	GG		GG		50.0		GG	

Compliance History

Effluent Violations for Outfall 001, from: September 1, 2022 To: July 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TSS	02/28/23	Daily Max	39.5	lbs/day	24.8	Lbs./day
TSS	02/28/23	Daily Max	80.0	mg/L	45	mg/L

Summary of Inspections:

12/3/2021: CEI conducted. No violation noted. The facility showed continued compliance with the permit.

Other Comments: None.

Existing Limits

For Outfall 001:

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Recorded	
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab	
Color (Pt-Co Units)	xxx	XXX	xxx	100	200	250	2/month	24-Hr Composite	
Carbonaceous Biochemical Oxygen Demand (CBOD5)	Report	Report	xxx	Report	Report	XXX	2/month	24-Hr Composite	
Carbonaceous Biochemical Oxygen Demand (CBOD5) Industrial Influent	Report	Report	XXX	Report	Report	XXX	2/month	24-Hr Composite	

			Effluent L	imitations			Monitoring Re	quirements
Deremeter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
CBOD5 Minimum % Removal (%)	85 Min Mo Avg	XXX	xxx	XXX	xxx	xxx	2/month	Calculation
Total Suspended Solids	13.8	24.8	xxx	25	45	50	2/month	24-Hr Composite
Total Dissolved Solids	834	1668	xxx	1000.0	2000.0	2500	2/month	24-Hr Composite
Oil and Grease	12.5	XXX	xxx	15.0	XXX	30	2/month	Grab
Ammonia-Nitrogen	8.3	XXX	xxx	10.0	xxx	20	2/month	24-Hr Composite
Total Phosphorus	1.7	xxx	XXX	2.0	XXX	4	2/month	24-Hr Composite
Copper, Total	Report Avg Qrtly	Report	xxx	Report Avg Qrtly	Report	XXX	1/quarter	24-Hr Composite
PCBs Dry Weather Analysis (pg/L)	XXX	XXX	XXX	XXX	Report	XXX	1/year	24-Hr Composite
Toxicity, Acute - Ceriodaphnia Survival (TUa)	XXX	XXX	XXX	XXX	Report	XXX	*	24-Hr Composite
Toxicity, Acute - Pimephales Survival (TUa)	XXX	XXX	XXX	xxx	Report	ххх	*	24-Hr Composite

For Outfall 002:

		Monitoring Requirement						
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Falanielei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Chemical Oxygen Demand (COD)	xxx	XXX	xxx	xxx	Report	xxx	1/6 months	Grab
Total Suspended Solids	xxx	XXX	xxx	xxx	Report	xxx	1/6 months	Grab
Oil and Grease	xxx	XXX	xxx	xxx	Report	xxx	1/6 months	Grab
PCBs Wet Weather Analysis (pg/L)	XXX	XXX	XXX	XXX	Report	xxx	1/year	Grab

Development of Effluent Limitations

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅ *	85% reduction			
CBOD5	(Min.)	Average Monthly	40 CFR 133.102 (a)(4)	
Oil and Grease	15	Average Monthly		Chapter 95.2
рН	6.0 to 9.0 STD	Min-Max	40 CFR 133.102 (c)	Chapter 95.2
TSS	30	Average Monthly	40 CFR 133.102 (b)	

*The 85% CBOD5 reduction is a requirement of the existing permit and carried over to the renewal. This is a DRBC basin wide percentage reduction requirement. The special condition to deviate the percentage reduction requirement when influent CBOD5 is less than 100 mg/l in the existing permit is also carried over to the new permit.

Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb./day) = concentration limit (mg/L) × design flow (MGD) × 8.34

Model input data

The following data will be used for modeling, as needed:

٠	Discharge pH	7.1	(90th percentile, July-Sep 2022-23, daily eDMR data)
٠	Discharge Temperature	23.63°C	(Application data)
٠	Discharge Hardness	74.3 mg/l	(Application data)
٠	Stream pH	7.0	(Default)
٠	Stream Temperature	25°C	(Default)
٠	Stream Hardness	105 mg/l	(Application data)

The following three nodes were used in modeling:

Node 1:	At the outfall 001 on So Elevation: Drainage Area: River Mile Index: Low Flow Yield: Q ₇₋₁₀ : Discharge Flow:	chuylkill River (00833) 93.01 ft (National Map-Advanced Viewer, 10/12/2023) 1,190 mi ² (StreamStats Version 3.0, 10/12/2023) 43.12 (PA DEP eMapPA) 0.23 cfs/mi ² 275 cfs 0.1 MGD
Node 2:	At confluence with Ming Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	go Creek (01609) 87.83 ft (National Map-Advanced Viewer, 10/12/2023) 1,200 mi ² (StreamStats Version 3.0, 10/12/2023) 41.3 (PA DEP eMapPA) 0.23 cfs/mi ² 0.0 MGD

WQM 7.0 Model

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q₇₋₁₀ and current background water quality levels of the stream.

<u>NH₃-N</u>

WQM 7.0 suggested existing limits are still protective. Current limits will be carried over.

CBOD5

WQM 7.0 suggests 25 mg/l (which is model input value) as average monthly limit to protect the water quality. Per SOP, if 25 mg/l limit is suggested by the model, a year-round monitoring will be sufficient. Current permit has monitoring requirements which will be carried over.

General Discussion on Toxics Management Spreadsheet (TMS)

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic as stated in PADEP's SOP titled *"Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers (DEP SOP No.: BCW-PMT-037, Revised May 20, 2021)"*:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

The statistical methodologies used in this spreadsheet are taken from EPA's *TSD* for Water Quality-based Toxics Control, Appendix E and are consistent with PADEP's technical guidance 391-2000-024. The pollutants are modeled through TMS and output from the TMS is provided below:

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (Ibs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.77	1.1	0.92	1.32	2.31	mg/L	0.92	AFC	Discharge Conc ≥ 50% WQBEL (RP)

Total Copper:

A Reasonable Potential (RP) was demonstrated for Total Copper. The model input value was 1.04 mg/l as AMEC and 0.365 as daily CoV based on quarterly data collected between January 2019 to June 2023. The model suggested 0.92 mg/l as Average Monthly Limit (AML), 1.32 mg/l Maximum Daily Limit (MDL) and 2.31 mg/l as Instantaneous Maximum (IMAX). The current permit has quarterly monitoring requirements. A review of the eDMR data from 2019 to June 2023

indicated that the facility will be meeting the limit approximately 90% of the time. A schedule may not be needed to meet the final WQBEL. The minimum monitoring frequency will be changed to 1/month to be consistent with other IW facilities with similar flows.

Total Dissolved Solids (TDS):

Historically PADEP utilized the following logics to determine limits/monitoring requirements for these special monitoring parameters:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs./day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.

PADEP has determined that they have sufficient data over the past 7 years of implementing the special monitoring logic for these parameters and it is no longer needed. DRBC's basin-wide criteria of 1,000 mg/l is the current limit and will be continued in this NPDES permit for consistency purpose.

Color:

The current permit has 100 pt-co unit average monthly limit in the permit. The color was modeled through the TMS with a model input value of 18.7 unit as AMEC and 0.351 as daily CoV from a dataset collected between February 2019 and September 2023. The model doesn't recommend limits or monitoring requirement since the discharge concentration is less than 10% of WQBEL (governing WQBEL is 58,294). Color is a concern if there is nearby PWS intake and the discharge is believed to affect the intake in terms of color. The nearby PWS intake is approximately 3 miles downstream and discharge is into much larger Schuylkill River with lots of dilution (as reflected in WQBEL). The facility indicated that they don't do any re-dying of clothes at this facility. If any cloth needs re-dying, they ship it to other states. Therefore, it is believed that the color discharge from this facility is not a concern for the aesthetic of the receiving stream or HHC at PWS intake. The current limits will be removed. This is backsliding but is justified by anti-backsliding prohibition exception as stated in CWA § 402(O)(2)(B)(i).

<u>pH:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

Current concentration-based AML, MDL, and IMAX limit of 25 mg/l, 45 mg/l, and 50 mg/l are based on radiological sediment concern in the receiving stream. The mass-based limits were calculated from long-term average discharge of 0.066 MGD. A review of flow data from January 2022 through September 2023 indicated 90th percentile flow of 0.068 MGD which is very close to the flow that was used few permits cycle back and still applicable. Therefore, current limits will be carried over.

Oil & Grease:

Pa Code 25 §§ 95.2(2) and 92a.41(c) has average monthly and daily max limit for Oil & Grease, or otherwise regulates their discharge in the receiving stream, which are the current limits and will be carried over.

Total Phosphorus:

The concern of Total Phosphorus is from the use of detergents in the laundering process. The current limits are based on Pa Code 25 § 96.5(c) which are still applicable and will be carried over.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Flow, Influent cBOD₅, and 85% cBOD5 reduction Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). DRBC's basin-wide 85% cBOD5 reduction criteria was applied in previous permits. To comply with 85% cBOD5 reduction, influent

cBOD5 was also added in previous permits. Current limits will be carried over. The special condition to deviate from the percentage reduction requirement when influent cBOD5 is less than 100 mg/l in the existing permit is also carried over in this renewal.

Schuylkill River PCB:

A review of the PCB data submitted from 2019 through 2022 indicated an average dry weather (outfall 001) PCB concentration of 10,014 pg/l and wet weather (outfall 002) PCB concentration of 833.3 pg/l. The maximum concentration of 18,100 pg/l was modeled through the TMS and no RP was demonstrated. However, since the discharge concentration is higher than Schuylkill River Water Quality Criteria for PCB of 44 pg/l, current monitoring will be continued.

Anti-Backsliding

Anti-backsliding prohibition is justified in sections where an exception is justified for the affected pollutant(s). For remaining pollutants, this prohibition isn't applicable since the proposed limits are at least as stringent as were in current permit.

Whole Effluent Toxicity (WET)

For Outfall 001, 🛛 Acute 🗌 Chronic WET Testing was completed:

For the permit renewal application (4 tests).

Quarterly throughout the permit term.

Quarterly throughout the permit term and a TIE/TRE was conducted.

Other: Annual

The dilution series used for the tests was: 100%, 60%, 30%, 2%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 2%.

Summary of Four Most Recent Test Results

TST Data Analysis

(NOTE – In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).

	Ceriodaphnia R	esults (Pass/Fail)	Pimephales Results (Pass/Fail)			
Test Date	Survival Reproduction		Survival	Growth		
5/18/19	Pass		Pass			
9/13/20	Pass		Pass			
7/31/21	Pass		Pass			
9/28/22	Pass		Pass			

* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

Comments:

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.063 Chronic Partial Mix Factor (PMFc): 0.439

1. Determine IWC – Acute (IWCa):

(Q_d x 1.547) / ((Q₇₋₁₀ x PMFa) + (Q_d x 1.547))

[(0.1 MGD x 1.547) / ((275 cfs x 0.063) + (0.1 MGD x 1.547))] x 100 = 0.89%

Is IWCa < 1%? XES INO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

Type of Test for Permit Renewal: Acute

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = 0.89 / 0.3 = 2.98%

2b. Determine Target IWCc (If Chronic Tests Required)

(Q_d x 1.547) / (Q₇₋₁₀ x PMFc) + (Q_d x 1.547)

[(Design Flow MGD x 1.547) / ((Q7-10 cfs x PMFc) + (Design Flow MGD x 1.547))] x 100 = TIWCc%

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 60%, 30%, 3%, and 1%.

WET Limits

Has reasonable potential been determined? YES
NO

Will WET limits be established in the permit? \Box YES \boxtimes NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
CBOD5 Industrial Influent	Report	Report	xxx	Report	Report	XXX	2/month	24-Hr Composite
CBOD5	Report	Report	XXX	Report	Report	XXX	2/month	24-Hr Composite
CBOD5 % Removal (%)	85 Min Mo Avg	XXX	XXX	xxx	XXX	xxx	2/month	Calculation
TSS	13.8	24.8	xxx	25	45	50	2/month	24-Hr Composite
Total Dissolved Solids	834	1668	xxx	1000.0	2000.0	2500	2/month	24-Hr Composite
Oil and Grease	12.5	XXX	xxx	15.0	xxx	30	2/month	Grab
Ammonia	8.3	XXX	XXX	10.0	XXX	20	2/month	24-Hr Composite
Total Phosphorus	1.7	XXX	XXX	2.0	XXX	4	2/month	24-Hr Composite
Total Copper	0.77	1.1	XXX	0.92	1.32	2.31	1/month	24-Hr Composite
PCBs (Dry Weather) (pg/L)	XXX	XXX	XXX	XXX	Report	XXX	1/year	24-Hr Composite
Acute WET - Ceriodaphnia Survival (TUa)	XXX	XXX	xxx	Report Daily Max	xxx	XXX	See Permit	24-Hr Composite
Acute WET - Pimephales Survival (TUa)	ХХХ	XXX	XXX	Report Daily Max	XXX	XXX	See Permit	24-Hr Composite

Compliance Sampling Location: At Outfall 001 Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
COD	ххх	ххх	xxx	xxx	Report	ххх	1/6 months	Grab
TSS	ХХХ	ххх	XXX	XXX	Report	ххх	1/6 months	Grab
Oil and Grease	ХХХ	ххх	XXX	XXX	Report	xxx	1/6 months	Grab
PCBs (Wet Weather) (pg/L)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 002

Other Comments: None

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
Pennsylvania CSO Policy, 386-2000-002, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
Implementation Guidance Design Conditions, 386-2000-007, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
Design Stream Flows, 386-2000-003, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

7643016391714

PHOENIXVILLE, PA 2019

Theorem and produced to confirm with the test statement design and produced for some with their Population (2011), a metadata dat association with this product to a statement 0.6.18

... heater fr

PA0054526 at Outfall 001

Region D:	PA
Workspace D:	PA20231012112845377000
Olicked Point (Latitude, Longitude):	40.10077, 75.54824
Time:	2023 10 12 07:21:13 0400
Thingson and the second	And a second sec

Colapse All

 Basin Characteristics 			
Parameter Code	Perameter Description	Value	Delt .
89L0P0	Wean basis skope measured in degrees	6.3922	degrees
GARBON	Percentage of area of carbonate rock	18.1	percent
DRNAREA	Area that drains to a point on a atteam	1190	nguara milita
PRECIP	Mean Annual Presignation	46	inches
ROCKDEP	Depth to reak	4.4	feet
STROOM	Stream Density total length of atreams divided by drainage area	1.29	miles per square mile
URBAN	Percentage of basis with urban development	6.987	percent

> Low Flow Statistics

Low-Flow Statistics Parameters (24.2 Percent (288 square miles) Low Flow Region 1)								
Parameter Code	Parameter Name	Walue	Unite	Min Limit	Mex Limit			
DRNAREA	Drainage Area	1190	oquare miles	4.76	1156			
BSLOPO	Mean Basis Slape degrees	6.3922	degrees	1.7	6.4			
ROCKDEP	Depth to Rock	4.4	feet	4.18	8.21			
URBAN	Percent Urbes	6.957	percent	0	**			

Low Flow Statistics Parameters [75.8 Percent (905 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Setta .	Mis Lind	Max Limit
DENAREA.	Draisage Area	1190	aquare miles	4.92	1280
PRECIP	Mean Annual Precipitation	45	Inches	35	50.4
STRDON	Stream Denaity	1.39	miles per aquare mile	0.51	2.1
ROCKDEP	Depth to Rock	4.4	feet.	3.32	5.65
CARBON	Percent Carbonate	10.1	percent	0	99

Low Flow Statistics Disclaimers [24.2 Percent (288 square miles) Low Flow Region 1]

parameters is suitile the suggest	

Low Flow Statistics Flow Report [24.2 Percent (288 square miles) Low Flow Region 1]

and the second burdles is an even device state of the second s		
\$latisfic	Wajae	Unit
7 Day 2 Year Low Flow	901	1010/a
30 Day 2 Year Low Flow	365	1113/A
7 Day 10 Year Low Flow	187	1:10/a
30 Day 10 Year Low Flow	223	ftr10/4
50 Day 10 Year Low Flow	285	ft*3/a

Low Flow Statistics Flow Report [75.8 Percent (905 square miles) Low Flow Region 2]

PE: Prediction Distance Lawar, Plat. Prediction External Open, ASE: Average Standard Error of Prediction, SE: Standard Error (start - are report)					
Statistic	Value	Unit	34	ASCp	
7 Day 2 Year Low Playe	488	ft:"3/a	28	38	
30 Day 2 Year Low Flow	549	ft:*3/a	23	22	
7 Day 10 Year Low Flow	808	ft=3/s	81	81	
30 Day 10 Year Low Flow	359	ft:*3/#	46	45	
90 Day 10 Year Low Flow	440	ft:13/a	26	35	

Low Flow Statistics Flow Report [Area Averaged]

Statistic	Value	Unit
7 Day 2 Year Low Flow	426	0/10/6
30 Day 2 Year Low Flow	505	11*3/a
7 Day 10 Year Low Flow	275	ft/*3/x
30 Day 10 Year Low Flow	926	11°3/a
90 Day 10 Year Low Flow	423	01*0/x
authorized or unauthorized uza.		

and a second secon

Accellenging, McAug. 2020. Low filew, and reveal-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5159, 84 p. (http://pubs.augu.gov/sit/2006/5159/) Streamline Services Venice 1.22

3000 Strate With MARE AND Controls to strate and existing on a serie of existing the country to control to an advect on a serie of the chain were collected. Although these strates and associated metadata have been reviewed for accuracy and completeness and approved for elec-hypothe 21. Control and Strategy (SECE), no warranty expressed as implicitly the chain for after a control and approved for elec-hypothe 23. Control and Strategy (SECE), no warranty expressed as implicitly the chain for after a control as the purposes, nor or all computer systems, normality the act of the chain for advecting on the second systems and approved for elec-trol as a second s

(855 Software Originations: This software has been approved for values by the 1.5. Gaslogical Survey (3555), Although the software has been valighted to (gas as review, the USEs reserved the right is update the software in a review of sort and y and review for software in a been valighted to (gas as review, the USEs reserved the right is update the software in a review for software in a review

At node 2	
Region [2]	PA.
Workapace D:	PA28231005174550990000
Glicked Point (Latitude, Lengitude):	40.16717, 05.52852
Time:	2023 18:05 13:46:21 8483
Mining Parties of the second s	And and a second

Colume Al

P	Basin Characteristics			
	Parameter Code	Persenter Description	Webse	Unit
	BBLOPD	Mean basin alope measured in degrees	6.962	Cegress
	CARBON	Percentage of area of carbonate rock	17.98	percent.
	DRNAREA	Area that drains to a point on a stream	1200	oquare miles
	PRECIP	Mean Annual Precipitation	45	inches
	ROCKDEP	Depth to rock	4.4	feet
	STREEN	Stream Density total length of atxeams divided by drainage area	1.39	niles per square mile
	URBAN	Percentage of basis with urban development	7.0969	person.

> Low-Flow Statistics

Low Flow Statistics Parameters [24.8 Percent (299 square miles) Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Umit	Max Limit
DENAREA	Drainage Area	1200	oquere mileo	4.28	1150
BSLOPD	Meen Sealin Slope degrees	6.362	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.4	feet	4.12	5.21
URBAN	Percent Urben	7.0969	porcest	0	15

Low Flow Statistics Parameters [75.2 Percent (905 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units .	Min Limit	Max Limit
DRNAREA	Dreinage Area	1200	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	45	inches	35	50.4
STRDEN	Stream Density	1.89	miles per squate mile	0.51	8.1
ROCKDEP	Depth to Rock	4.4	feet.	9.82	5.65
CARDON	Percent Carbonate	17.85	percent	0	99

Low-Flow Statistics Disclaimers [24.8 Percent (299 square miles) Low Flow Region 1]

Due or more of the parameters to calcula the suggested steps. Estimates were estropolated with unknown errors.

Low Flow Statistics Flow Report	(24.8 Percent (299 square miles) Lo	w Flow Region 1]

Statistic	Value	petr.
7 Day 3 Year Low Flow	101	11°3/a
30 Bay 2 Year Low Flow	368	11*3/s
7 Day 10 Year Low Flow	166	ft*8/s
30 Bay 16 Year Low Flow	225	ft*3/a
90 Page 12 Marci Logi Blanc	166	0/3/2

Low Flow Statistics Flow Report [75.2 Percent (905 square miles) Low Flow Region 2]

PI: Prediction (nternal-Lower, Piz, Prediction (nternal-Upper, ASE): Average Standard Error of Prediction, SE: Standard Error (ather – see report)					
Statistic	Value	Unit	88	ASEp	
7 Day 2 Year Low Flow	469	T1*8/6	38	38	
30 Bey 2 Year Low Flow	553	ft*3/4	33	33	
7 Day 10 Year Low Flow	305	f1*0/a	51	51	
30 Buy 10 Year Low Flow	361	ft*8/6	45	46	
90 Day 10 Year Low Flow	443	11*3/a	36	36	
Low Flow Statistics Flow Report (Anex-Averaged)					
Statistic		Value	Unit .		

7 Day 2 Year Low Flow 426 $11^{+}0.01$ 30 Day 2 Year Low Flow 507 1113/6 7 Day 10 Year Low Flow 276 f(2/n)30 Day 10 Year Low Flow 927 $10^{+}0/\mu$ 50 Day 10 Year Low Flow 405 $11^{+}3.6$

USES Product Names Electedness. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Low-Roy Statistics Citations Application Version: 4.17.0

perpension of the second s

USES bota blackment triving of breakers tabled, wildeds, westables and waterials are considered to anticip the quality standards related to the purpose for which the data were collected. Attracy it there data are a suscindent transition to anticip the quality standards related to the purpose for which the data were collected. Attracy it there data are a suscindent transition to anticip the collar are a suscindent transition to a subject to a subject the purpose for a susceptible transition to a subject to a

USGS Software Tolkindmare Tolkindmare Tolkindmare and the been approved for release by the U.S. Geological Survey 25500. Although the otherwise tables and percent on least to the first or and with a difference on the set of the se

	SWP Basin			Stre	eam Name		RMI		/ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withdr (mg	rawal	Apply FC
	03F	8	833 SCHU	YLKILL R	IVER		43.12	20	93.01	1190.00	0.00000		0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> pppH	Tem	<u>Stream</u> 1p	pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10 Q1-10 Q30-10	0.230	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	0 2	5.00 7.0	DO	0.00	0.00	
					Di	ischarge	Data							
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc	Res N Fa	Dis erve Ten ctor (°C	np p	isc H		
		UniTe	ech	PA	0054526	0.100	0 0.100	0 0.10	000	0.000 2	4.00	7.10		
					Pa	arameter	Data							
				Paramete	r Name			Trib S Xonc	Stream Conc	Fate Coef				
						(m	ig/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				

10.00

0.00

0.00

0.70

Input Data WQM 7.0

Wednesday, October 18, 2023

NH3-N

NPDES Per	mit No.	PA0054526
-----------	---------	-----------

	SWF Basir			Stre	eam Name		RMI	Elev. (f	ation t)	Drainage Area (sq mi)	Sloj (ft/f	Withd	rawal	Apply FC
	03F	1	833 SCHU	YLKILL R	IVER		41.30	0	87.83	1200.0	0.00	000	0.00	~
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> Ip pł	ł	<u>Strear</u> Temp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.230	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	5.00 7	.00	0.00	0.00	
					Di	scharge I Existing Disc	Data Permitte Disc	ed Desig Disc			isc	Disc pH	I	
			Name	Per	mit Number		Flow (mgd)	Flow	Fa	ctor	mp °C)	pn		
						0.000	0.000	0 0.00	00	0.000	25.00	7.00		
					Pa	arameter l								
				Paramete	r Name	C	one C	ionc	tream Conc	Fate Coef				
	-					(m	g/L) (m	ng/L) (mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	im Code				Stream	<u>Name</u>					
		03F	1	833	SCHUYLKILL RIVER									
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
Q7-10	0 Flow													
43.120	273.70	0.00	273.70	.1547	0.00054	1.151	279.83	243.16	0.85	0.131	25.00	7.00		
Q1-10	0 Flow													
43.120	175.17	0.00	175.17	.1547	0.00054	NA	NA	NA	0.66	0.168	25.00	7.00		
Q30-	10 Flow													
43.120	325.70	0.00	325.70	.1547	0.00054	NA	NA	NA	0.94	0.119	25.00	7.00		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.19	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

<u>sv</u>	<u>WP Basin</u> 03F		<u>am Code</u> 833		so	<u>Stream</u> CHUYLKI	<u>Name</u> LL RIVEF	R		
NH3-N Ad	cute Alloc	ation	s							
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterio (mg/L	on \	ultiple VLA ng/L)	Critical Reach	Percent Reductio	
43.120	UniTech		11.07	20) 11	.07	20	0	0	_
NH3-N CH	nronic All	ocatio	ons							
RMI	Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Mult Wi (mg	ĹĂ	Critical Reach	Percent Reduction	
43.120	UniTech		1.37	10) 1	.37	10	0	0	_
Dissolved	Oxvgen	Alloc	ations							_
				BOD5	<u>NH</u>	<u>3-N</u>	Dissolv	ed Oxygen	Orthoga	Dement
RMI	Dischar	ge Nam	ne Baselin (mg/L	ne Multiple .) (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	e Multiple (mg/L)	Critical Reach	Percent Reductio
43.12	UniTeeh			25 25	10	10	3	3	0	0
			wc	QM 7.0	D.O.S					
	/P Basin		<u>WC</u> m Code	<u>≬M 7.0</u>		Stream	Name			
			wc	<u>≬M 7.0</u>		Stream		8		
<u>sw</u>	<u>/P Basin</u> 03F RMI	8	<u>WC</u> m Code 133 otal Discharg	e Flow (mgd	so	<u>Stream</u> CHUYLKI lysis Tem	Name LL RIVEF		Analysi	
<u>sw</u> 	<u>/P Basin</u> 03F RMI 3.120	8	MC m Code 133 otal Discharg 0.1	e Flow (mgd 00	so	<u>Stream</u> CHUYLKI lysis Tem 24.9	Name LL RIVEF perature ((°C)	7.00	00
<u>SW</u> 43 <u>Reach</u>	<u>/P Basin</u> 03F RMI	8	<u>WC</u> m Code 133 otal Discharg	e Flow (mgd 00 epth (ft)	so	<u>Stream</u> CHUYLKI lysis Tem	Name LL RIVEF perature (999 VDRatio	(°C)		00 Docity (fps)
<u>SW</u> 43 <u>Reach</u> 279 <u>Reach CB</u>	<u>/P Basin</u> 03F RMI 3.120 Width (ft) 9.826 30D5 (mg/L)	8 <u>T</u>	MC m Code 333 otal Discharg 0.11 <u>Reach Cc</u> 1.1 <u>Reach Kc</u>	e Flow (mgd 00 epth (ft) 51 . (1/days)	S ()) <u>Ana</u>	Stream CHUYLKI lysis Tem 24.9 Reach V 243. Reach NH	Name LL RIVEF perature (999 VDRatio 156 3-N (mg/L	<u>(°C)</u>	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u>	00 <u>ocity (fps)</u> 50 <u>(1/days)</u>
<u>SW</u> 43 <u>Reach</u> 27' <u>Reach CB</u> 2	/P Basin 03F 3.120 Width (ft) 9.826 30D5 (mg/L) 2.01	8 <u>T</u>	MCC m Code 333 otal Discharg 0.1 Reach D 1.1 Reach Kc 0.0	e Flow (mgd 00 epth (ft) 51 .(1/days) 09	S ()) <u>Ana</u>	Stream CHUYLKI lysis Tem 24.9 Reach V 243. ceach NH 0.0	Name LL RIVER operature (999 VDRatio 156 3-N (mg/L 01	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u> 1.02	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28
<u>SW</u> 43 <u>Reach</u> 271 <u>Reach CE</u> 2 <u>Reach C</u>	/P Basin 03F RMI 3.120 Width (ft) 9.826 30D5 (mq/L) 2.01 DO (mg/L)	8 <u>T</u>	MC m Code 333 otal Discharg 0.11 <u>Reach Cc</u> 1.1 <u>Reach Kc</u>	e Flow (mgd 00 epth (ft) 51 .(1/days) 09 (1/days)	S ()) <u>Ana</u>	Stream CHUYLKI lysis Tem 24.9 Reach V 243. Reach NH	Name LL RIVER operature (999 VDRatio 156 3-N (mg/L 01 uation	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u>	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28
<u>SW</u> 43 <u>Reach</u> 271 <u>Reach CE</u> 2 <u>Reach C</u>	/P Basin 03F RMI 3.120 Width (ft) 9.826 30D5 (mq/L) 2.01 DO (mq/L) .240	8 <u>T</u>	MC m Code 333 otal Discharg 0.1 Reach D 1.1 Reach Kc 0.0 Reach Kr	e Flow (mgd 00 epth (ft) 51 (1/days) 09 (1/days) 07	50)) <u>Ana</u> <u>R</u>	Stream CHUYLKI lysis Tem 24.9 Reach V 243. Reach NH 0,0 Kr Eg	Name LL RIVER operature (999 VDRatio 156 3-N (mg/L 01 uation	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u> 1.02 Reach DO G	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28
<u>SW</u> 43 <u>Reach</u> 279 <u>Reach C</u> 2 <u>Reach I</u> 8. <u>Reach Trav</u>	/P Basin 03F RMI 3.120 Width (ft) 9.826 30D5 (mq/L) 2.01 DO (mq/L) .240	8 <u>T</u>	MC m Code 333 otal Discharg 0.1 Reach D 1.1 Reach Kc 0.0 Reach Kr	e Flow (mgd 00 epth (ft) 51 (1/days) 09 (1/days) 07 Subreact	50)) <u>Ana</u> <u>R</u>	Stream CHUYLKI lysis Tem 24.9 Reach V 243. Reach NH 0,0 Kr Eg	Name LL RIVER operature (999 VDRatio 156 3-N (mg/L 01 uation	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u> 1.02 Reach DO G	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28
<u>SW</u> 43 <u>Reach</u> 279 <u>Reach C</u> 2 <u>Reach I</u> 8. <u>Reach Trav</u>	/P Basin 03F 3.120 Width (ft) 9.826 30D5 (mg/L) 2.01 DO (mg/L) .240 el Time (day	8 <u>T</u>	MC Code 333 otal Discharg 0.11 Reach D 1.1 Reach Kr 0.0 Reach Kr 2.4 TravTime	e Flow (mgd 00 51 (1/days) 09 (1/days) 07 Subreact ○ CBOD5 (mg/L)	SC) <u>Anal</u> <u>R</u> Results NH3-N	Stream CHUYLKI lysis Tem 24.1 Reach V 243. teach NH 0.1 Kr Eg Tsivo D.O.	Name LL RIVEF perature (999 VDRatio 156 3-N (mg/L 01 uation oglou	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u> 1.02 Reach DO G	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28
<u>SW</u> 43 <u>Reach</u> 279 <u>Reach C</u> 2 <u>Reach I</u> 8. <u>Reach Trav</u>	/P Basin 03F 3.120 Width (ft) 9.826 30D5 (mg/L) 2.01 DO (mg/L) .240 el Time (day	8 <u>T</u>	MCC m Code 333 otal Discharg 0.1 Reach D 1.1 Reach Kc 0.0 Reach Kr 2.4 TravTime (days) 0.01 0.01 0.020	e Flow (mgd 00 epth (ft) 51 (1/days) 09 (1/days) 07 Subreact ○ CBOD5 (mg/L) 3 2.01 6 2.01	SC <u>Anal</u> <u>Results</u> <u>NH3-N</u> (mg/L) 0.01 0.01	Stream CHUYLKI lysis Tem 24.3 Reach V 243.3 Leach NH 0.1 Kr Egr Tsivo D.O. (mg/L) 7.54 7.54	Name LL RIVEF uperature (999 VDRatio 156 3-N (mg/L 01 uation bglou	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u> 1.02 Reach DO G	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28
<u>SW</u> 43 <u>Reach</u> 279 <u>Reach C</u> 2 <u>Reach I</u> 8. <u>Reach Trav</u>	/P Basin 03F 3.120 Width (ft) 9.826 30D5 (mg/L) 2.01 DO (mg/L) .240 el Time (day	8 <u>T</u>	MCC m Code 333 otal Discharg 0.1 Reach D 1.1 Reach Kc 0.0 Reach Kr 2.4 TravTime (days) 0.01 0.020 0.030	e Flow (mgd 00 epth (ft) 51 (1/days) 09 (1/days) 07 Subreact CBOD5 (mg/L) 3 2.01 5 2.01 9 2.01	SC) Anal Results NH3-N (mg/L) 0.01 0.01 0.01	Stream CHUYLKI Iysis Tem 24.9 Reach V 243. 243. 243. 243. 243. 243. 0.1 Kr Eq Tsivo D.O. (mg/L) 7.54 7.54 7.54	Name LL RIVEF 999 VDRatio 156 3-N (mg/L 01 uation bglou	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u> 1.02 Reach DO G	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28
<u>SW</u> 43 <u>Reach</u> 279 <u>Reach C</u> 2 <u>Reach I</u> 8. <u>Reach Trav</u>	/P Basin 03F 3.120 Width (ft) 9.826 30D5 (mg/L) 2.01 DO (mg/L) .240 el Time (day	8 <u>T</u>	MCC m Code 333 0tal Discharg 0.1 Reach D 1.1 Reach Kc 0.0 Reach Kr 2.4 TravTime (days) 0.01 0.020 0.032 0.052	e Flow (mgd 00 epth (ft) 51 (1/days) 09 (1/days) 07 Subreact CBOD5 (mg/L) 3 2.01 5 2.01 9 2.01 2 2.01	SC) Anal Results NH3-N (mg/L) 0.01 0.01 0.01	Stream CHUYLKI lysis Tem 24.9 Reach V 243. 243. 243. 243. 243. 243. 0.1 Kr Eq Tsivo D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54	Name LL RIVEF 999 VDRatio 156 3-N (mg/L 01 uation oglou	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u> 1.02 Reach DO G	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28
<u>SW</u> 43 <u>Reach</u> 279 <u>Reach C</u> 2 <u>Reach I</u> 8. <u>Reach Trav</u>	/P Basin 03F 3.120 Width (ft) 9.826 30D5 (mg/L) 2.01 DO (mg/L) .240 el Time (day	8 <u>T</u>	MCC m Code 333 otal Discharg 0.1 Reach D 1.1 Reach Kc 0.0 Reach Kr 2.4 TravTime (days) 0.01 0.020 0.030	te Flow (mgd) 00 epth (ft) 51 (1/days) 09 (1/days) 07 Subreact CBOD5 (mg/L) 3 2.01 5 2.01 9 2.01 5 2.01	SC) Anal Results NH3-N (mg/L) 0.01 0.01 0.01	Stream CHUYLKI lysis Tem 24.9 Reach V 243. leach NH C. Kr Eq Tsivo D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54 7.54	Name LL RIVEF 999 <u>VDRatio</u> 156 <u>3-N (mg/L</u> 01 <u>uation</u> oglou 4 4 4	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u> 1.02 Reach DO G	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28
<u>SW</u> 43 <u>Reach</u> 279 <u>Reach C</u> 2 <u>Reach I</u> 8. <u>Reach Trav</u>	/P Basin 03F 3.120 Width (ft) 9.826 30D5 (mg/L) 2.01 DO (mg/L) .240 el Time (day	8 <u>T</u>	MCC m Code i33 otal Discharg 0.11 Reach D 1.1 Reach KC 0.0 Reach KC 2.4 TravTime (days) 0.013 0.024 0.033 0.055 0.065	te Flow (mgd) 00 epth (ft) 51 (1/days) 09 (1/days) 07 Subreact CBOD5 (mg/L) 3 2.01 5 2.01 5 2.01 5 2.01 8 2.01	SC) Anal Results NH3-N (mg/L) 0.01 0.01 0.01 0.01 0.01 0.01	Stream CHUYLKI lysis Tem 24.9 Reach V 243. 243. 243. 243. 243. 243. 0.1 Kr Eq Tsivo D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54	Name LL RIVEF 999 <u>VDRatio</u> 156 <u>3-N (mq/L</u> 01 uation bglou	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u> 1.02 Reach DO G	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28
<u>SW</u> 43 <u>Reach</u> 279 <u>Reach C</u> 2 <u>Reach I</u> 8. <u>Reach Trav</u>	/P Basin 03F 3.120 Width (ft) 9.826 30D5 (mg/L) 2.01 DO (mg/L) .240 el Time (day	8 <u>T</u>	MCC m Code i33 otal Discharg 0.11 Reach Mr 1.11 Reach KC 0.00 Reach Kr 2.4 TravTime (days) 0.012 0.033 0.052 0.066 0.074	Subreact 00 epth (ft) 51 .(1/days) 09 (1/days) 07 Subreact CBOD5 (mg/L) 3 2.01 5 2.01 5 2.01 5 2.01 5 2.01 2 2.01 2 2.01	SC) Anal Results NH3-N (mg/L) 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Stream CHUYLKI lysis Tem 24.9 Reach V 243. teach NH C.4 Kr Egu Tsivo D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	Name LL RIVEF 999 <u>VDRatio</u> 156 <u>3-N (mg/L</u> 01 uation oglou	(°C)	7.00 <u>Reach Velo</u> 0.85 <u>Reach Kn</u> 1.02 Reach DO G	00 <u>ocity (fps)</u> 50 <u>(1/days)</u> 28

WQM 7.0 Effluent Limits

	<u>SWP Basin</u> 03F	<u>Stream Code</u> 833		<u>Stream Name</u> SCHUYLKILL RI	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
43.120	UniTech	PA0054526	0.100	CBOD5	25		
				NH3-N	10	20	
				Dissolved Oxygen			3

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Inst	tructions D	ischarge Stream													
Fac	ility: Uni	Tech Services Grou	р				NPI	DES Peri	mit No.:	PA0054	526		Outfall	No.: 001	
Eva	luation Type:	Major Sewage /	Industr	ial W	/aste		Wa	stewater	Descript	tion: Tre	ated IW				
						-									
					Discha	rae (Cha	racterist	tics						
	esign Flow					_		al Mix Fa		PMEs)		Com	olete Mi	x Times	(min)
	(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC			CFC	THH	-	CRL		7-10		λ.
	0.1	74.3	7	4	AIC			crc		•	URL	<u> </u>	7-10		4h
	0.1	74.5	1	.1											
						<u> </u>									
						0	if lef	ft blank	0.5 if le	ft blank	(0 if left blan	k	1 if lef	t blank
				Ма	x Discharge	Tri	ь	Stream	Daily	Hourly	Strea	Fate		Criteri	Chem
	Discha	arge Pollutant	Units	ma	Conc	Co		Conc	CV	CV	m CV	Coeff	FOS	a Mod	
					-		-								
		ed Solids (PWS)	mg/L												
P.	Chloride (PW	S)	mg/L												
Group	Bromide		mg/L				#								
ō	Sulfate (PWS		mg/L				#								
	Fluoride (PW		mg/L												
	Total Aluminu		µg/L		30		#								
	Total Antimon	У	µg/L		24										
	Total Arsenic		µg/L		5										
	Total Barium		µg/L		30		#							L	
	Total Berylliur	n	µg/L	<	1										
	Total Boron		µg/L	<	200		#								
	Total Cadmiu		µg/L	<	0.2										
	Total Chromiu		µg/L												
	Hexavalent C	hromium	µg/L	<	0.29			<u> </u>							
	Total Cobalt		µg/L		0.3				0.365						
2	Total Copper		mg/L		1.04				0.305						
9	Free Cyanide Total Cyanide		µg/L		9			-							
Group	Dissolved Iror		µg/L µg/L		0.1			-							
0	Total Iron		µg/L µg/L		130										
	Total Lead		µg/L		2										
	Total Mangan	ese	µg/L		13			-							
	Total Mercury		µg/L	<	0.02										
	Total Nickel		µg/L		10.7										
		(Phenolics) (PWS)	µg/L	<	2										
	Total Seleniur		µg/L	<	1										
	Total Silver		µg/L	<	0.3										
	Total Thallium	1	µg/L	<	3										
	Total Zinc		µg/L		422										
L	Total Molybde	num	µg/L	<	3										
	Acrolein		µg/L	<											
	Acrylamide		µg/L	<											
	Acrylonitrile		µg/L	<											
	Benzene		µg/L	<											
	Bromoform		µg/L	٨											

Discharge Information

Page 1

	h			 				 	 	 	
	Carbon Tetrachloride	µg/L	<	ļ.			_				
	Chlorobenzene	µg/L		ļ.			-				
1	Chlorodibromomethane	µg/L	<	Ĺ	Ħ						
	Chloroethane	µg/L	<	ł	H	Ħ					
1	2-Chloroethyl Vinyl Ether	µg/L	<	R	Ħ		-				
1	Chloroform	µg/L	<	t	Ħ	Ħ	-			<u> </u>	
1	Dichlorobromomethane		<	ŧ.	Ħ	Ħ			 	<u> </u>	
1		µg/L		⊬	₩	┿					
	1,1-Dichloroethane	µg/L	<	 ļ,							
e	1,2-Dichloroethane	µg/L	<	ľ.	Π						
Group	1,1-Dichloroethylene	µg/L	<	t	H						
2	1,2-Dichloropropane	µg/L	<	H	H		-				
0	1,3-Dichloropropylene	µg/L	<		H						
1	1.4-Dioxane	µg/L	<	tt.	Ħ	#					
	Ethylbenzene	µg/L	<	tt	Ħ						
	Methyl Bromide	µg/L	<		╈	++	-				
				R	H	₩					
	Methyl Chloride	µg/L	<	 ŧ.	Ħ	#			 		
	Methylene Chloride	µg/L	<	ł.	H						
	1,1,2,2-Tetrachloroethane	µg/L	<	P.			_				
	Tetrachloroethylene	µg/L	<	ļ.		-11					
	Toluene	µg/L	<	ji.							
	1,2-trans-Dichloroethylene	µg/L	<	t	H						
	1,1,1-Trichloroethane	µg/L	<	R	H						
	1,1,2-Trichloroethane	µg/L	<	th.	Ħ	Ħ					
	Trichloroethylene		<	ŧ.	Ħ	Ħ	-				
		µg/L		┢	₩	╈					
⊢	Vinyl Chloride	µg/L	<	 P	\square						
	2-Chlorophenol	µg/L	<	Ľ.		11					
	2,4-Dichlorophenol	µg/L	<	t	H						
1	2,4-Dimethylphenol	µg/L	<	╟╴	H		-				
	4,6-Dinitro-o-Cresol	µg/L	<	-	H		-				
4	2,4-Dinitrophenol	µg/L	<		Ц						
	2-Nitrophenol	µg/L	<	t	Ħ						
Group	4-Nitrophenol	µg/L	<	tt	Ħ						
0	p-Chloro-m-Cresol	µg/L	<	H	H	++			 	<u> </u>	
	Pentachlorophenol		<	H	Ħ	₩					
		µg/L		ŧ.	Ħ	₩			 		
	Phenol	µg/L	<		H				 		
\vdash	2,4,6-Trichlorophenol	µg/L	<	⊬	₩	₩				L	
	Acenaphthene	µg/L	<	Ţ							
	Acenaphthylene	µg/L	<	t							
	Anthracene	µg/L	<	t							
1	Benzidine	µg/L	<	H	Ħ	Ħ					
1	Benzo(a)Anthracene	µg/L	<	R	Ħ						
	Benzo(a)Pyrene	µg/L	<	ŧ.	Ħ	Ħ	-				
	3,4-Benzofluoranthene	µg/L	<	th.	H	**	-				
			<								
	Benzo(ghi)Perylene	µg/L									
	Benzo(k)Fluoranthene	µg/L	<	1	F						
	Bis(2-Chloroethoxy)Methane	µg/L	<	ţ,	Ħ	Ţ					
	Bis(2-Chloroethyl)Ether	µg/L	<								
	Bis(2-Chloroisopropyl)Ether	µg/L	<	H	H						
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	Į.	Π		-				
	4-Bromophenyl Phenyl Ether	µg/L	<	ļ.			-				
	Butyl Benzyl Phthalate	µg/L	<	t							
	2-Chloronaphthalene	µg/L	<	ħ	Ħ	Ħ					
	4-Chlorophenyl Phenyl Ether	µg/L	<								
	Chrysene	µg/L	<			Ħ					
						Ħ					
	Dibenzo(a,h)Anthrancene	µg/L	<								
	1,2-Dichlorobenzene	µg/L	<				_				
	1,3-Dichlorobenzene	µg/L	<								
50	1,4-Dichlorobenzene	µg/L	<								
Group	3,3-Dichlorobenzidine	µg/L	<								
ē	Diethyl Phthalate	µg/L	<								
G	Dimethyl Phthalate	µg/L	<	Ĥ-	P	-11	-				
	Di-n-Butyl Phthalate	µg/L	<	ţĻ.	Ħ		-				
1	2,4-Dinitrotoluene	µg/L	<		H						
	12. T-Difficulture		-	Dim.	1	111					

Discharge Information

	2,6-Dinitrotoluene	µg/L	<						
	Di-n-Octyl Phthalate	µg/L	۸						
	1,2-Diphenylhydrazine	µg/L	<						
	Fluoranthene	µg/L	<						
	Fluorene	µg/L	<						
	Hexachlorobenzene	µg/L	<						
	Hexachlorobutadiene		<						
		µg/L	<						
	Hexachlorocyclopentadiene	µg/L							
	Hexachloroethane	µg/L	<						
	Indeno(1,2,3-cd)Pyrene	µg/L	<						
	Isophorone	µg/L	<						
	Naphthalene	µg/L	<						
	Nitrobenzene	µg/L	<						
	n-Nitrosodimethylamine	µg/L	<						
	n-Nitrosodi-n-Propylamine	µg/L	<						
	n-Nitrosodiphenylamine	µg/L	<						
	Phenanthrene		<						
		µg/L	<						
	Pyrene	µg/L							
	1,2,4-Trichlorobenzene	µg/L	<						
	Aldrin	µg/L	<						
	alpha-BHC	µg/L	<						
	beta-BHC	µg/L	<						
	gamma-BHC	µg/L	<						
	delta BHC	µg/L	<						
	Chlordane	µg/L	<						
	4.4-DDT	µg/L	<						
	4,4-DDE		<						
		µg/L							
	4,4-DDD	µg/L	<						
	Dieldrin	µg/L	<						
	alpha-Endosulfan	µg/L	<						
	beta-Endosulfan	µg/L	<						
90	Endosulfan Sulfate	µg/L	<						
Group (Endrin	µg/L	٨						
ē	Endrin Aldehyde	µg/L	<						
-	Heptachlor	µg/L	<						
	Heptachlor Epoxide	µg/L	<						
	PCB-1016	µg/L	<						
	PCB-1221		<						
		µg/L							
	PCB-1232	µg/L	<						
	PCB-1242	µg/L	<						
	PCB-1248	µg/L	<						
	PCB-1254	µg/L	<						
	PCB-1260	µg/L	<						
	PCBs, Total	µg/L	<	0.00181					
	Toxaphene	µg/L	<						
	2,3,7,8-TCDD	ng/L	<						
	Gross Alpha	pCi/L							
	Total Beta	pCi/L	<						
		pCi/L	<						
B	Radium 226/228 Total Strontium Total Uranium								
ő		µg/L	<						
-		µg/L	<						
	Osmotic Pressure	mOs/kg							
	Color	Pt-Co		18.7		0.351			

Discharge Information

10/23/2023

Page 3

Receiving Surface Water Name:

No. Reaches to Model: 1

 Statewide Criteria
 Great Lakes Criteria ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	000833	43.12	93.01	1190			Yes
End of Reach 1	000833	41.3	87.83	1200			Yes

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	sis
Location	1 XIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	43.12	0.23										105	7		
End of Reach 1	41.3	0.23													

Qh

Location	Location RMI		Flow (cfs)		W/D	Width	Depth	Velocit Time		Inbutan		Stream		Analysis	
Location	r sivii	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	43.12														
End of Reach 1	41.3														

Hydrodynamics

✓ Wasteload Allocations

Total Selenium Total Silver

Total Thallium

Total Zinc

PCBs, Total

Color

0

0

0

0

0

0

0

0

0

0

Heavalent Chromium 0 0 16 16.3 18/42 Chem Translator of 0.962 applies Total Copper 0 0 95 95.0 10,739 Chem Translator of 0.962 applied Dissolved iron 0 0 0 14.037 14.6 1,653 Chem Translator of 0.962 applied Total Copper 0 0 0 NAA NAA NAA NAA Total Iron 0 0 0 67.911 86.6 9,788 Chem Translator of 0.784 applied Total Marcury 0 0 0 1.400 1.55 166 Chem Translator of 0.982 applied Total Mercury 0 0 0 1.400 1.55 156 Chem Translator of 0.982 applied Total Mercury 0 0 0 N/A N/A N/A N/A Total Steelenium 0 0 0 N/A N/A N/A Chem Translator of 0.982 applied Total Applied 0 0 3.483 4.1 <td< th=""><th></th><th>T (min):</th><th>15</th><th>PMF:</th><th>0.063</th><th>Ana</th><th>lysis Hardne</th><th>:ss (mg/l):</th><th>104.73 Analysis pH: 7.00</th></td<>		T (min):	15	PMF:	0.063	Ana	lysis Hardne	:ss (mg/l):	104.73 Analysis pH: 7.00
Total Aurinium 0 750 750 64,782 Total Ansenic 0 0 1,100 1,100 124,347 Total Ansenic 0 0 340 38,434 Chem Translator of 1 applied Total Barium 0 0 21,000 2,1000 2,373,582 Chem Translator of 0.942 applied Total Cardmum 0 0 2,000 21,000 2,373,582 Chem Translator of 0.942 applied Total Cardmum 0 0 16 16.3 1,424 Chem Translator of 0.942 applied Total Cobalt 0 0 14.037 14.6 1,653 Chem Translator of 0.982 applied Total Ansganese 0 0 N/A N/A N/A N/A Total Manganese 0 0 1,400 1,65 166 Chem Translator of 0.983 applied Total Manganese 0 0 1,400 1,65 166 Chem Translator of 0.992 applied Total Manganese 0 0 N/A N/A N/A	Pollutants	Conc						WLA (µg/L)	Comments
Total Arsenic 0 0 340 34,40 38,434 Chem Translator of 1 applied Total Baron 0 0 0 27,050 27,75,892 Total Cadmium 0 0 2,106 2,273,582 Chem Translator of 0.942 applied Hexavaleri Chromium 0 0 0 16 16.3 1,842 Chem Translator of 0.942 applied Total Cobat 0 0 0 16 16.3 1,842 Chem Translator of 0.962 applied Total Cobat 0 0 0 14.037 14.6 1,553 Chem Translator of 0.962 applied Total Angenese 0 0 N/A N/A N/A N/A Total Magnese 0 0 1.400 1.85 166 Chem Translator of 0.85 appled Total Magnese 0 0 1.400 1.85 166 Chem Translator of 0.85 appled Total Sheen 0 0 1.400 1.85 166 Chem Translator of 0.85 appled Total Almanium 0	Total Aluminum		0		0	750	750	84,782	
Total Barium 0 0 21,000	Total Antimony	0	0		0	1,100	1,100	124,347	
Total Boron 0 0 0 8,100 8,100 8,100 8,100 8,100 9,106 2,24 253 Chem Translator of 0.942 applied Total Cobat 0 0 16 18.3 1,842 Chem Translator of 0.942 applied Total Cobat 0 0 95 95.0 10,739 Chem Translator of 0.96 applied Dissolved fron 0 0 0 144.037 14.6 1,653 Chem Translator of 0.96 applied Dissolved fron 0 0 0 N/A N/A N/A N/A Total Maganese 0 0 N/A N/A N/A N/A Total Maganese 0 0 1.400 1.85 186 Chem Translator of 0.928 applied Total Mickel 0 0 1.400 1.85 186 Chem Translator of 0.928 applied Total Silver 0 0 0 N/A N/A N/A N/A Total Silver 0 0 3.483 4.1<	Total Arsenic	0	0		0	340	340	38,434	Chem Translator of 1 applied
Total Cadmium 0 0 2106 224 253 Chem Translator of 0.942 applied Total Cobiat 0 0 16 16.3 1,842 Chem Translator of 0.962 applied Total Cobiat 0 0 16 16.3 1,842 Chem Translator of 0.962 applied Total Cobiat 0 0 14.037 14.6 1,653 Chem Translator of 0.962 applied Total Lead 0 0 14.037 14.6 1,653 Chem Translator of 0.784 applied Total Marganese 0 0 14.001 155 186 Chem Translator of 0.784 applied Total Mercury 0 0 14.001 155 186 Chem Translator of 0.85 applied Total Mercury 0 0 14.100 155 186 Chem Translator of 0.923 applied Total Meruly 0 0 14.4 1463 Chem Translator of 0.923 applied Total Marganese 0 0 14.4 1463 Chem Translator of 0.923 applied Total Silver <td< td=""><td>Total Barium</td><td>0</td><td>0</td><td></td><td>0</td><td>21,000</td><td>21,000</td><td>2,373,892</td><td></td></td<>	Total Barium	0	0		0	21,000	21,000	2,373,892	
Hexavalent Chromium 0 0 16 16.3 18/42 Chem Translator of 0.962 applies Total Copper Total Copper 0 0 95 95.0 10.739 Chem Translator of 0.962 applied Dissolved iron 0 0 0 14.037 14.6 1,653 Chem Translator of 0.962 applied Total Copper 0 0 N/A N/A N/A N/A Total Reagenee 0 0 0 N/A N/A N/A Total Mercury 0 0 0 1.400 1.65 166 Chem Translator of 0.982 applied Total Mercury 0 0 0 0.488.89 455.151 Chem Translator of 0.982 applied Total Steprint 0 0 0 N/A N/A N/A Total Steprint 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 3.483 4.1 463 Chem Translator of 0.928 applied Total Aluminum 0	Total Boron	0	0		0	8,100	8,100	915,644	
Total Cobait 0 0 95 96.0 10,739 Total Copper 0 0 14.037 14.6 1,653 Chem Translator of 0.96 applied Desolved iron 0 0 14.037 14.6 1,653 Chem Translator of 0.96 applied Total Iron 0 0 14.07 N/A N/A N/A Total Marganese 0 0 14.00 1.66 9,788 Chem Translator of 0.784 applied Total Marganese 0 0 1.400 1.65 186 Chem Translator of 0.58 applied Total Mercury 0 0 1.400 1.65 186 Chem Translator of 0.928 applied Total Steinium 0 0 0 N/A N/A N/A N/A Total Steinium 0 0 3.483 4.1 463 Chem Translator of 0.928 applied Total Steinium 0 0 121.859 125 14.085 Chem Translator of 0.978 applied Total Aluminum 0 0	Total Cadmium	0	0		0	2.106	2.24	253	Chem Translator of 0.942 applied
Total Copper 0 0 14.037 14.6 1,653 Chem Translator of 0.96 applied Dissolved Iron 0 0 0 N/A N/A N/A N/A Total Iron 0 0 0 0 0 N/A N/A N/A Total Maganese 0 0 0 0 0 7.86 Chem Translator of 0.784 applied Total Mercury 0 0 0 1.400 1.65 166 Chem Translator of 0.998 applied Total Mercury 0 0 0 1.468.899 4.88 55,151 Chem Translator of 0.922 applied Total Selver 0 0 0 0.486.899 4.1 483 Chem Translator of 0.935 applied Total Silver 0 0 0 0.486.899 125 14.085 Chem Translator of 0.976 applied Total Silver 0 0 0 121.859 125 14.085 Chem Translator of 0.976 applied Total Aluminum 0 0 1	Hexavalent Chromium	0	0		0	16	16.3	1,842	Chem Translator of 0.982 applied
Dissolved Iron 0 0 N/A N/A N/A N/A N/A Total Iron 0 0 0 0 0 N/A N/A N/A Total Iron 0 0 0 67.911 86.6 9,788 Chem Translator of 0.784 applied Total Manganese 0 0 0 1.65 166 Chem Translator of 0.35 applied Total Mercury 0 0 0 1.48 0 0.486.899 488 55.151 Chem Translator of 0.325 applied Total Selenium 0 0 0 N/A N/A N/A Chem Translator of 0.922 applied Total Silver 0 0 0 0 12.1859 125 14.085 Chem Translator of 0.978 applied Total Zinc 0 0 0 12.1859 125 14.085 Chem Translator of 0.978 applied Color 0 0 N/A N/A N/A N/A N/A Color 0 0	Total Cobalt	0	0		0	95	95.0	10,739	
Total Iron 0 0 N/A N/A N/A N/A Total Lead 0 0 0 67.911 86.6 9,788 Chem Translator of 0.784 applied Total Mercury 0 0 1.40 1.86.6 9,788 Chem Translator of 0.85 applied Total Mercury 0 0 1.400 1.65 186 Chem Translator of 0.989 applied Total Nickel 0 0 0 N/A N/A N/A Total Steenium 0 0 0 3.483 4.1 463 Chem Translator of 0.989 applied Total Steenium 0 0 0 3.483 4.1 463 Chem Translator of 0.978 applied Total Taillium 0 0 0 121.859 125 14.085 Chem Translator of 0.978 applied Total Altinim 0 0 0 121.859 125 14.085 Chem Translator of 0.978 applied Color 0 0 121.859 125 14.085 Chem Translator of 0	Total Copper	0	0		0	14.037	14.6	1,653	Chem Translator of 0.96 applied
Total Lead 0 0 67.911 86.6 9,788 Chem Translator of 0.784 applied Total Manganese 0 0 1.400 0 N/A N/A N/A Total Mercury 0 0 1.400 1.65 186 Chem Translator of 0.784 applied Total Mickel 0 0 4.868.99 488 55,151 Chem Translator of 0.929 applied Total Selenium 0 0 4.868.99 488 55,151 Chem Translator of 0.922 applied Total Selenium 0 0 3.483 4.1 463 Chem Translator of 0.922 applied Total Zinc 0 0 1.418.59 125 14,005 Chem Translator of 0.978 applied PCBs, Total 0 0 1.418.59 125 14,005 Chem Translator of 0.978 applied PCBs, Total 0 0 1.4289 Analysis Hardness (mg/l) 104.96 Analysis pH: 7.00 Dolitionse Stream Trib Conc Fate WQC WQ Obj MLA (mg/L)<	Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Marganese 0 0 N/A N/A N/A N/A N/A Total Mercury 0 0 0 1400 1.65 186 Chem Translator of 0.98 applied Total Mercury 0 0 486.899 488 55,151 Chem Translator of 0.923 applied Total Selenium 0 0 N/A N/A N/A N/A Total Selenium 0 0 0 3.483 4.1 463 Chem Translator of 0.922 applied Total Tallum 0 0 0 121.859 125 14(.085 Chem Translator of 0.978 applied Total Zinc 0 0 121.859 125 14(.085 Chem Translator of 0.978 applied Color 0 0 N/A N/A N/A N/A Color 0 0 N/A N/A N/A N/A Color 0 0 N/A N/A N/A N/A N/A Color 0 0	Total Iron	0	0		0	N/A	N/A	N/A	
Total Marganese 0 0 N/A N/A N/A N/A N/A Total Mercury 0 0 0 1400 1.65 186 Chem Translator of 0.98 applied Total Mercury 0 0 486.899 488 55,151 Chem Translator of 0.923 applied Total Selenium 0 0 N/A N/A N/A N/A Total Selenium 0 0 0 3.483 4.1 463 Chem Translator of 0.922 applied Total Tallum 0 0 0 121.859 125 14(.085 Chem Translator of 0.978 applied Total Zinc 0 0 121.859 125 14(.085 Chem Translator of 0.978 applied Color 0 0 N/A N/A N/A N/A Color 0 0 N/A N/A N/A N/A Color 0 0 N/A N/A N/A N/A N/A Color 0 0									Chem Translator of 0.784 applied
Total Mercury 0 0 1400 1.65 186 Chem Translator of 0.85 applied Total Nickel 0 0 486.899 488 55,151 Chem Translator of 0.98 applied Total Silver 0 0 0 N/A N/A N/A N/A Total Silver 0 0 0 3.483 4.1 463 Chem Translator of 0.92 applied Total Silver 0 0 0 65 65.0 7,348 Chem Translator of 0.978 applied Total Zinc 0 0 0 121.859 125 14,085 Chem Translator of 0.978 applied Color 0 0 0 N/A N/A N/A N/A Color 0 0 0 N/A N/A N/A N/A Color 0 0 0 N/A N/A N/A N/A Color 0 0 0 0 14.00 1.68.5 Chem Translator of 1.97.98 Co									
Total Nicker 0 0 486.899 488 55,151 Chem Translator of 0.998 applied Total Penols (Pherolics) (PWS) 0 0 N/A N/A N/A N/A Total Silver 0 0 0 3.483 4.1 463 Chem Translator of 0.922 applied Total Silver 0 0 0 3.483 4.1 463 Chem Translator of 0.978 applied Total Zinc 0 0 0 121.859 125 14,085 Chem Translator of 0.978 applied PCBs, Total 0 0 0 N/A N/A N/A N/A Color 0 0 0 N/A N/A N/A N/A VCBs, Total 0 0 N/A N/A N/A N/A Color 0 0 N/A N/A N/A N/A Color CCT (min): T20 PMF: 0.439 Analysis Hardness (mg/l): 104.96 Analysis pH: 7.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Chem Translator of 0.85 applied</td></td<>									Chem Translator of 0.85 applied
Stream Trib Conc Fate WQC WQ Obj Util A fundity Constraints Coll Artistics 0					-				
Total Selenium 0 0 N/A N/A N/A N/A Chem Translator of 0.922 applied Total Silver 0 0 3.483 4.1 463 Chem Translator of 0.85 applied Total Thallium 0 0 65 65.0 7.348 Chem Translator of 0.978 applied Total Zinc 0 0 0 121.859 125 14,085 Chem Translator of 0.978 applied PCBs, Total 0 0 0 N/A N/A N/A N/A Color 0 0 0 0 N/A N/A N/A N/A Total Atimony 0 0 0 1400 116,588 Chem Translator of 1 applied Total Asenic 0		_	-		_				
Total Silver 0 0 3.483 4.1 463 Chem Translator of 0.85 applied Total Thallium 0 0 65 65.0 7,348 Chem Translator of 0.978 applied Total Zinc 0 0 0 0 0 121.859 125 14,085 Chem Translator of 0.978 applied PCBs, Total 0 0 0 0 N/A N/A N/A N/A Color 0 0 0 N/A N/A N/A N/A N/A Color 0 0 N/A N/A N/A N/A N/A Color 0 0 N/A N/A N/A N/A N/A Color Corr 0 0 N/A N/A N/A N/A Total Auminum 0 0 0 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400									Chem Translator of 0.922 applied
Total Thallium 0 0 65 65.0 7,348 Total Zinc 0 0 0 121.859 125 14,085 Chem Translator of 0.978 applied PCBs, Total 0 0 0 0 N/A N/A N/A Color 0 0 0 N/A N/A N/A N/A Color 0 0 N/A N/A N/A N/A N/A CFC CCT (min): 720 PMF: 0.439 Analysis Hardness (mg/l): 104.96 Analysis pH: 7.00 Dollutants Stream Trib Conc Fate WQC WQ Obj M/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A N/A Total Antimony 0 0 0 150 150 116,588 Chem Translator of 1 applied Total Boron 0 0 1,600 1,243,605 Chem Translator of 0.907 applied Total Bor	Total Silver	0	0		0	3.483	4.1	463	
Total Zinc 0 0 121.859 125 14,085 Chem Translator of 0.978 applied PCBs, Total 0 </td <td>Total Thallium</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>65</td> <td>65.0</td> <td>7.348</td> <td></td>	Total Thallium	0	0		0	65	65.0	7.348	
PCBs, Total 0 0 N/A N/A N/A N/A N/A Color 0 0 0 0 0 N/A N/A N/A N/A Color 0 0 0 0 N/A N/A N/A N/A Core CCFC CCT (min): 720 PMF: 0.439 Analysis Hardness (mg/l): 104.96 Analysis pH: 7.00 Doll-tracte Stream Trib Conc Fate WQC WQC (lg/L) (lg/L) Commante Total Auminum 0 0 N/A N/A N/A N/A M/A Total Auminum 0 0 0 120 220 170.996 Commante Commante Total Arsenic 0 0 150 150 116,588 Chem Translator of 1 applied Total Barium 0 0 0.254 0.28 218 Chem Translator of 0.907 applied Total Cadmium 0 0 0.254 <t< td=""><td>Total Zinc</td><td>0</td><td>0</td><td></td><td>0</td><td>121.859</td><td>125</td><td>14.085</td><td>Chem Translator of 0.978 applied</td></t<>	Total Zinc	0	0		0	121.859	125	14.085	Chem Translator of 0.978 applied
Color 0 0 Here 0 N/A N/A N/A N/A Image: CFC CCT (min): 720 PMF: 0.439 Analysis Hardness (mg/l): 104.96 Analysis pH: 7.00 Image: Delivitante Conc Stream Trib Conc Fate WQC WQ Obj IMI A (unit N Commente Image: Delivitante Conc Conc Conc Fate WQC WQ Obj IMI A (unit N Commente Image: Delivitante Conc Conc Fate WQC WQ Obj IMI A (unit N Commente Image: Delivitante Conc CV (µg/L) Coef (µg/L) WIP L Commente Image: Delivitante Conc CV (µg/L) Coef (µg/L) (µg/L) Commente Image: Delivitante Conc CV (µg/L) Coef (µg/L) (µg/L) Commente Image: Delivitante Conc Conc Coef (µg/L) (µg/L) Coef Coef			0		0				
CFC CCT (min): 720 PMF: 0.439 Analysis Hardness (mg/l): 104.96 Analysis pH: 7.00 Dollutante Stream Trib Conc Fate WQC WQ Obj 1MI A (unl) Commente Total Aluminum 0 0 0 N/A N/A N/A Commente Total Aluminum 0 0 0 150 150 116,588 Chem Translator of 1 applied Total Aritimony 0 0 220 220 170,996 Chem Translator of 1 applied Total Barium 0 0 0 150 150 116,588 Chem Translator of 0.907 applied Total Boron 0 0 0 0.254 0.28 218 Chem Translator of 0.907 applied Total Cobalt 0 0 0 19.01 14,768 Chem Translator of 0.962 applied Total Cobalt 0 0 0 19.334 9.72 7,557 Chem Translator of 0.963 applied Total Copper 0 0									
Doluments CV (µg/L) Coef (µg/L) (µg/L) <th></th> <th>T (min):</th> <th>720</th> <th>DME</th> <th>0.420</th> <th></th> <th>alunia Hardos</th> <th></th> <th>104.00 Apply pH: 7.00</th>		T (min):	720	DME	0.420		alunia Hardos		104.00 Apply pH: 7.00
Institution CV (LgGL) Coler (LgGL) (LgGL)<	CFC CC						-		104.96 Analysis pH: 7.00
Total Antimony 0 0 220 220 170,996 Total Arsenic 0 0 0 150 116,588 Chem Translator of 1 applied Total Baron 0 0 0 4,100 4,100 3,186,738 Total Boron 0 0 0 1,600 1,600 1,243,605 Total Cadmium 0 0 0 0 10 10.4 8,080 Chem Translator of 0.907 applied Hexavalent Chromium 0 0 0 19 19.0 14,768 Total Cobalt 0 0 0 1,500 1,507 7,557 Chem Translator of 0.96 applied Dissolved Iron 0 0 0 14,768 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 1,500 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 2,653 3.38 2,630 Chem Translator of 0.784 applied Total Manganese 0 0	Dollutante						-		Commente
Total Arsenic 0 0 150 150 116,588 Chem Translator of 1 applied Total Barium 0 0 0 4,100 4,100 3,186,738	Dollutante Foliulai ila	Conc Conc (unl.)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)		Commente
Total Barium 0 0 4,100 4,100 3,186,738 Total Boron 0 0 0 1,600 1,243,605 Total Cadmium 0 0 0 0,254 0.28 218 Chem Translator of 0.907 applied Hexavalent Chromium 0 0 0 10 10.4 8,080 Chem Translator of 0.962 applied Total Cobalt 0 0 0 19 19.0 14,768 Total Copper 0 0 0 9.334 9.72 7,557 Chem Translator of 0.96 applied Dissolved Iron 0 0 0 1,500 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 1,500 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 0,770 0.91 704 Chem Translator of 0.85 applied Total Manganese 0 0 0,770 0.91 704 Chem Translator of 0.997 applied <td>Dollutante Policianis Total Aluminum</td> <td></td> <td>Stream CV 0</td> <td>Trib Conc (µg/L)</td> <td>Fate Coef 0</td> <td>WQC (µg/L) N/A</td> <td>WQ Obj (µg/L) N/A</td> <td>WLA (uo/L) WLA (µy/L) N/A</td> <td>Commente</td>	Dollutante Policianis Total Aluminum		Stream CV 0	Trib Conc (µg/L)	Fate Coef 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A	WLA (uo/L) WLA (µy/L) N/A	Commente
Total Boron 0 0 1,600 1,600 1,243,605 Total Cadmium 0 0 0 0.254 0.28 218 Chem Translator of 0.907 applied Hexavalent Chromium 0 0 0 0 10 10.4 8,080 Chem Translator of 0.907 applied Total Cobalt 0 0 0 19 19.0 14,768 Total Copper 0 0 0 9.334 9.72 7,557 Chem Translator of 0.962 applied Dissolved Iron 0 0 0 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Iron 0 0 0 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Iron 0 0 0 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 2,853 3.38 2,630 Chem Translator of 0.784 applied Total Marganese 0 0 0.770 0.91 704 Chem Translator of 0.979 applied	Dollutante Foliadanis Total Aluminum Total Antimony	Conc Conc (und) 0	Stream CV 0	Trib Conc (µg/L)	Fate Coef 0	WQC (µg/L) N/A 220	WQ Obj (µg/L) N/A 220	N/I A (114/L) WEA (119/L) N/A 170,996	Commente
Total Cadmium 0 0 0.254 0.28 218 Chem Translator of 0.907 applied Hexavalent Chromium 0 0 0 10 10.4 8,080 Chem Translator of 0.962 applied Total Cobalt 0 0 0 19 19.0 14,768 Total Copper 0 0 0 9.334 9.72 7,557 Chem Translator of 0.96 applied Dissolved Iron 0 0 0 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 0 0.770 0.91 704 Total Marganese 0 0 0 0.770 0.91 704 Chem Translator of 0.96 applied Total Marganese 0 0 0 54.181 54.3 42,239 Chem Translator of 0.97 applied Total Nickel 0 0 0 54.181 54.3 42,239	Dollistante ruinutains Total Aluminum Total Antimony Total Arsenic	Conc Conc (und) 0	Stream CV 0 0	Trib Conc (µg/L)	Fate Coef 0	WQC (µg/L) N/A 220 150	WQ Obj (μg/L) N/A 220 150	м/ А (ца/) wca (цус) N/A 170,996 116,588	Commente
Hexavalent Chromium 0 0 10 10.4 8,080 Chem Translator of 0.962 applied Total Cobalt 0 0 0 19 19.0 14,768 Total Cobalt 0 0 0 9.334 9.72 7,557 Chem Translator of 0.962 applied Dissolved Iron 0 0 0 9.334 9.72 7,557 Chem Translator of 0.96 applied Total Iron 0 0 0 1,500 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 1,500 2,655 3.46 WQC = 30 day average; PMF = 1 Total Manganese 0 0 N/A N/A N/A Total Mercury 0 0 0.770 0.91 704 Chem Translator of 0.85 applied Total Nickel 0 0 0 54.181 54.3 42,239 Chem Translator of 0.997 applied Total Selenium 0 0 0 N/A N/A N/A	Dollistante ruinutains Total Aluminum Total Antimony Total Arsenic		Stream CV 0 0	Trib Conc (µg/L)	Fate Coef 0 0	WQC (µg/L) N/A 220 150	WQ Obj (μg/L) N/A 220 150	м/ А (ца/) wca (цус) N/A 170,996 116,588	Commente
Hexavalent Chromium 0 0 10 10.4 8,080 Chem Translator of 0.962 applied Total Cobalt 0 0 19 19.0 14,768 Total Cobalt 0 0 9.334 9.72 7,557 Chem Translator of 0.962 applied Dissolved Iron 0 0 9.334 9.72 7,557 Chem Translator of 0.96 applied Total Iron 0 0 0 1,500 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 2,653 3.38 2,630 Chem Translator of 0.784 applied Total Manganese 0 0 0 0.770 0.91 704 Chem Translator of 0.85 applied Total Mercury 0 0 0.770 0.91 704 Chem Translator of 0.97 applied Total Nickel 0 0 0 N/A N/A Total Selenium 0 0 0 N/A N/A Chem Translator of 0.927 applied	Dollutante Folicitante Total Aluminum Total Antimony Total Ansenic Total Barium	Sueam Conc (uol) 0 0 0	Stream CV 0 0 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0	WQC (µg/L) N/A 220 150 4,100	WQ Obj (µg/L) N/A 220 150 4,100	N/A (100/1) N/A 170,996 116,588 3,186,738	Commente
Total Copper 0 0 9.334 9.72 7,557 Chem Translator of 0.96 applied Dissolved Iron 0 0 0 0 N/A N/A N/A Total Iron 0 0 0 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 2,653 3.38 2,630 Chem Translator of 0.784 applied Total Manganese 0 0 0 0 0,070 0.91 704 Chem Translator of 0.985 applied Total Nickel 0 0 0 54.181 54.3 42,239 Chem Translator of 0.997 applied Total Selenium 0 0 0 N/A N/A N/A	Dollutante Foliotante Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron	Stream Conc (und) 0 0 0 0 0	Stream CV 0 0 0 0 0 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 1,600	WQ Obj (µg/L) N/A 220 150 4,100 1,600	N/A (1997) N/A 170,996 116,588 3,186,738 1,243,605	Commente
Total Copper 0 0 9.334 9.72 7,557 Chem Translator of 0.96 applied Dissolved Iron 0 0 0 0 N/A N/A N/A Total Iron 0 0 0 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 2,653 3.38 2,630 Chem Translator of 0.784 applied Total Manganese 0 0 0 0 0,070 0.91 704 Chem Translator of 0.985 applied Total Nickel 0 0 0 54.181 54.3 42,239 Chem Translator of 0.997 applied Total Selenium 0 0 0 N/A N/A N/A	Dollutante Foliolarius Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium	Sueam Conc (un/t) 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 1,600 0.254	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.28	N/A (10/1) N/A 170,996 116,588 3,186,738 1,243,605 218	Commente Commente Chem Translator of 1 applied
Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 2,653 3.38 2,630 Chem Translator of 0.784 applied Total Manganese 0 0 0 0,770 0.91 704 Chem Translator of 0.85 applied Total Nickel 0 0 0 54.181 54.3 42,239 Chem Translator of 0.997 applied Total Selenium 0 0 0 N/A N/A N/A	Dollistante Fondanio Total Aluminum Total Antimony Total Ansenic Total Barium Total Boron Total Boron Total Cadmium Hexavalent Chromium	Sueam Conc (und) 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 1,600 0.254 10	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.28 10.4	N/A (1091) N/A 170,996 116,588 3,186,738 1,243,605 218 8,080	Commente Comments Chem Translator of 1 applied Chem Translator of 0.907 applied
Total Iron 0 0 1,500 1,500 2,655,346 WQC = 30 day average; PMF = 1 Total Lead 0 0 0 2,653 3.38 2,630 Chem Translator of 0.784 applied Total Manganese 0 0 0 0 N/A N/A N/A Total Mercury 0 0 0 0.770 Chem Translator of 0.85 applied Total Mercury 0 0 0 54.181 54.3 42,239 Chem Translator of 0.997 applied Total Phenolis (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 4.600 4.99 3,878 Chem Translator of 0.922 applied	Dollutante Folialants Total Aluminum Total Antenic Total Arsenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobait	Stream (und) 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0	WQC (μg/L) N/A 220 150 4,100 1,600 0.254 10 19	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.28 10.4 19.0	N/A (1991) N/A 170,996 116,588 3,186,738 1,243,605 218 8,080 14,768	Comments Comments Chem Translator of 1 applied Chem Translator of 0.907 applied Chem Translator of 0.902 applied
Total Lead 0 0 2.653 3.38 2.630 Chem Translator of 0.784 applied Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 0.770 0.91 704 Chem Translator of 0.784 applied Total Mercury 0 0 0 0.770 0.91 704 Chem Translator of 0.85 applied Total Nickel 0 0 54.181 54.3 42,239 Chem Translator of 0.997 applied total Phenolics) (PWS) 0 0 N/A N/A N/A Total Selenium 0 0 4.600 4.99 3,878 Chem Translator of 0.922 applied	Dollutante Foliutante Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Cadmium Hexavalent Chomium Total Cobalt Total Cobper	Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 1,600 0.254 10 19 9.334	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.28 10.4 19.0 9.72	N/A (100/1) N/A 170,996 116,588 3,186,738 1,243,605 218 8,080 14,768 7,557	Commente Commente Chem Translator of 1 applied Chem Translator of 0.907 applied Chem Translator of 0.962 applied
Total Manganese 0 0 N/A N/A N/A Total Mercury 0 0 0 0.770 0.91 704 Chem Translator of 0.85 applied Total Nickel 0 0 0 54.181 54.3 42,239 Chem Translator of 0.997 applied Total Phenols (Phenolics) (PWS) 0 0 N/A N/A N/A Total Selenium 0 0 4.600 4.99 3,878 Chem Translator of 0.922 applied	Dollistante Functianits Total Aluminium Total Antimony Total Arsenic Total Baron Total Boron Total Cadmium Hexavalent Chromium Total Copper Dissolved Iron	Stream Conc Conc Conc Conc Conc Conc Conc Conc	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 1,600 0.254 10 19 9,334 N/A	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.28 10.4 19.0 9.72 N/A	N/A 170,996 116,588 3,186,738 1,243,605 218 8,080 14,768 7,557 N/A	Companie Comments Chem Translator of 1 applied Chem Translator of 0.907 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied
Total Mercury 0 0 0 0.770 0.91 704 Chem Translator of 0.85 applied Total Nickel 0 0 0 54.181 54.3 42,239 Chem Translator of 0.997 applied Total Nickel 0 0 0 N/A N/A N/A Total Selenium 0 0 0 4.600 4.99 3,878 Chem Translator of 0.922 applied	Dollutante Functions Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Codmium Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Iron	Suream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 1,600 0.254 10 19 9.334 N/A 1,500	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.28 10.4 19.0 9.72 N/A 1,500	N/A 170,996 116,588 3,186,738 1,243,605 218 8,080 14,768 7,557 N/A 2,655,346	Chem Translator of 1 applied Chem Translator of 0.907 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied Chem Translator of 0.96 applied
Total Nickel 0 0 54.181 54.3 42,239 Chem Translator of 0.997 applied Total Phenolics) (PWS) 0 0 N/A N/A N/A Total Selenium 0 0 4.600 4.99 3,878 Chem Translator of 0.922 applied	Dollutante Futurants Total Aluminum Total Antenic Total Barium Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Icad	Sueam (und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 1,600 0.254 10 19 9.334 N/A N/A 1,500 2.653	WQ Obj (µg/L) N/A 220 150 4,100 0.28 10.4 19.0 9.72 N/A 1,500 3.38	N/A 170,996 116,588 3,186,738 1,243,605 218 8,080 14,768 7,557 N/A 2,655,346 2,630	Commente Commente Comments Chem Translator of 1 applied Chem Translator of 0.907 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied
Total Selenium 0 0 N/A N/A N/A Total Selenium 0 0 4.600 4.99 3,878 Chem Translator of 0.922 applied	Dollistante Fulicitants Total Aluminum Total Antimony Total Arsenic Total Baron Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobper Dissolved Iron Total Lead Total Lead Total Manganese	Sueam Cone (m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 1,600 0.254 10 19 9.334 N/A 1,500 2.653 N/A	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.28 10.4 19.0 9.72 N/A 1,500 3.38 N/A	WLA (use) N/A 170,996 116,588 3,186,738 3,186,738 1,243,605 218 8,080 14,768 7,557 N/A 2,655,346 2,630 N/A	Chem Translator of 0.907 applied Chem Translator of 0.907 applied Chem Translator of 0.962 applied Chem Translator of 0.966 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.784 applied
Total Selenium 0 0 0 4.600 4.99 3,878 Chem Translator of 0.922 applied	Dollistante Functions Total Aluminum Total Antimony Total Ansenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Iron Total Iron Total Anganese Total Mercury	Sueam (md) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 0.254 10 19 9.334 N/A 1,500 2.653 N/A 0.770	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.28 10.4 19.0 9.72 N/A 1,500 3.38 N/A 0.91	MI A (use) V WLA (use) V 170,996 116,588 3,186,738 1,243,605 218 8,080 14,768 7,557 N/A 2,655,346 2,630 N/A 704	Chem Translator of 0.907 applied Chem Translator of 0.907 applied Chem Translator of 0.962 applied Chem Translator of 0.966 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.784 applied Chem Translator of 0.784 applied
	Dollutants Folicitants Total Aluminum Total Antimony Total Ansenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Mercury Total Mercury Total Nickel	Sueam (and) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 1,600 0.254 10 19 9.334 N/A 1,500 2.653 N/A 0.770 54.181	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.28 10.4 19.0 9,72 N/A 1,500 3.38 N/A 0,91 0,91 54.3	MLA (usf) N/A 170,996 116,588 3,186,738 1,243,605 218 8,080 14,768 7,557 N/A 2,655,346 2,630 N/A 2,655,346 2,630 N/A 70 42,239	Chem Translator of 0.907 applied Chem Translator of 0.907 applied Chem Translator of 0.962 applied Chem Translator of 0.966 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.784 applied
Total Silver 0 0 N/A N/A N/A Cham Translator of 1 applied	Dollutante Futurante Total Aluminum Total Antenic Total Barium Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Lead Total Manganese Total Mercury Total Nickel iotal Phenols (Phenolics) (PWS)	Sueam (min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream C∨ 0	Trib Conc (µg/L)	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A 220 150 4,100 1,600 0.254 10 19 9.334 N/A 1,500 2.653 N/A 0.770 54.181 N/A	WQ Obj (µg/L) N/A 220 150 0.28 10.4 19.0 9.72 N/A 1,500 3.38 N/A 9.71 54.3 N/A	MLA (usfl X) N/A 170,996 116,588 1,243,605 218 8,080 14,768 7,557 N/A 2,655,346 2,630 N/A 704 42,239 N/A	Chem Translator of 0.962 applied Chem Translator of 0.962 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.784 applied Chem Translator of 0.85 applied Chem Translator of 0.85 applied

N/A

13

123.086

0.014

N/A

0

0

0

0

0

N/A

13.0

125

0.014

N/A

Ň/A

10,104

97,027

10.9

N/A

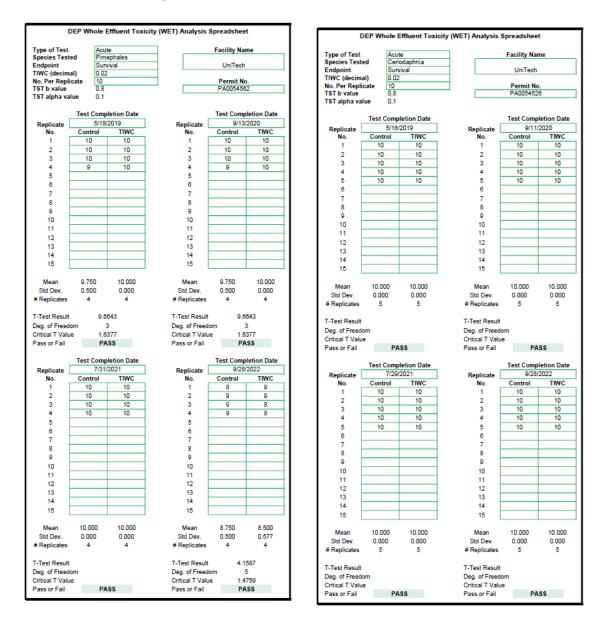
Chem Translator of 1 applied

Chem Translator of 0.986 applied

THH CC	T (min): 7	20	PMF:	0.439	Ana	alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc (un/L)	Stream CV	Trib Conc (µq/L)	Fate Coef	WQC (µq/L)	WQ Obj (µg/L)	WLA (µg/L)		Con	nments
Total Aluminum	0	0		0	N/A	N/A	N/A			
Total Antimony	0	0		0	5.6	5.6	4,353			
Total Arsenic	0	0		0	10	10.0	7,773			
Total Barium	0	0		0	2,400	2,400	1.865.408			
Total Boron	0	0		0	3,100	3,100	2,409,485			
Total Cadmium	0	0		0	N/A	N/A	N/A			
Hexavalent Chromium	0	0		0	N/A	N/A	N/A			
Total Cobalt	0	0		0	N/A	N/A	N/A			
Total Copper	0	0		0	N/A	N/A	N/A			
Dissolved Iron	0	0		0	300	300	233,176			
Total Iron	0	0		0	N/A	N/A	N/A			
Total Lead	0	0		0	N/A	N/A	N/A			
Total Manganese	0	0		0	1,000	1,000	777,253			
Total Mercury	0	0		0	0.050	0.05	38.9			
Total Nickel	0	0		0	610	610	474,124			
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A			
Total Selenium	0	ŏ		0	N/A	N/A	N/A			
Total Colonant		Ŭ			14/1					
Total Silver	0	0		0	N/A	N/A	N/A			
Total Thallium	0	0		0	0.24	0.24	187			
Total Zinc	0	0		0	0.24 N/A	0.24 N/A	107 N/A			
	-									
PCBs, Total Color	0	0		0	N/A 75	N/A 75.0	N/A 58,294			
00101										
				-			00,201			
CRL CC	· · ·	20	PMF:	0.673		lysis Hardne		N/A	Analysis pH:	N/A
✓ CRL CC Pollutants	Conc	20 Stream CV		-				N/A		N/A
_	Sucam	Stream	PMF:	0.673 Fate	Ana	lysis Hardne WQ Obj	ss (mg/l):	N/A		
Pollutants	Conc (ucl.)	Stream CV	PMF: Trib Conc (µg/L)	0.673 Fate Coef	Ana WQC (µg/L)	llysis Hardne WQ Obj (µg/L)	ss (mg/l): WLA (µg/L)	N/A		
Pollutants Total Aluminum	Conc (ucl.)	Stream CV 0	PMF: Trib Conc (µg/L)	0.673 Fate Coef 0	Ana WQC (µg/L) N/A	llysis Hardne WQ Obj (µg/L) N/A	wla (µg/l): WLA (µg/l)	N/A		
Pollutants Total Aluminum Total Antimony	Conc (ucl) 0 0	Stream CV 0	PMF: Trib Conc (µg/L)	0.673 Fate Coef 0 0	Ana WQC (µg/L) N/A N/A	llysis Hardne WQ Obj (µg/L) N/A N/A	wla (µg/l): WLA (µg/l) N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Arsenic	Conc (und) 0 0	Stream CV 0 0	PMF: Trib Conc (µg/L)	0.673 Fate Coef 0 0 0	Ana WQC (µg/L) N/A N/A N/A	lysis Hardne WQ Obj (μg/L) N/A N/A N/A	ss (mg/l): WLA (μg/L) N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium	Conc (ual) 0 0 0 0	Stream CV 0 0 0	PMF: Trib Conc (µg/L)	0.673 Fate Coef 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A	wla (μg/l): WLA (μg/l) N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron	Conc (und) 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0	PMF: Trib Conc (µg/L)	0.673 Fate Coef 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A	ss (mg/l): WLA (µg/L) N/A N/A N/A N/A N/A	N/A _		
Pollutants Total Aluminum Total Antimony Total Ansenic Total Barium Total Boron Total Cadmium	Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0.673 Fate Coef 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A	SS (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Hexavalent Chromium	Suean Conc (unit) 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A	Ilysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	SS (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antinony Total Arsenic Total Baron Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt	Stream Conc (ind) 0	Stream CV 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	Ilysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	SS (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Ansenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper	Stream Conc (und) 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	Ilysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	SS (mg/l): N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Ansenic Total Barium Total Barium Total Cadmium Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Copper Dissolved Iron	Stream Conc (und) 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Ilysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ss (mg/l): N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antinony Total Arsenic Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron	Sueam Conc (ual) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Ilysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SS (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Ansenic Total Barium Total Barium Total Cadmium Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Icoa Total Icoa Total Anganese	Stream Conc (ind) 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	lysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ss (mg/l): WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Lead	Stream Conc (inst) 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	lysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ss (mg/l): N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Aluminum Total Arsenic Total Barium Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Lead Total Lead Total Lead Total Marganese Total Mercury Total Nickel	Juean Conc (ual) 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ilysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ss (mg/l): N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Antimony Total Ansenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Manganese Total Manganese Total Marcury Total Nickel Total Phenols (Phenolics) (PWS)	Conc (wat) 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ane WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Ilysis Hardnee WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ss (mg/l): N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Ansenic Total Barium Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Manganese Total Manganese Total Manganese Total Mercury Total Nickel Total Selenium	Juent Conc (unit) 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Ilysis Hardnee WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ss (mg/l): N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antinony Total Arsenic Total Arsenic Total Baron Total Baron Total Cadmium Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Lead Total Manganese Total Mercury Total Manganese Total Mercury Total Nickel Total Selenium Total Selenium Total Selenium	Sugartity Cone (north) 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Ilysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ss (mg/l): N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antinony Total Arsenic Total Arsenic Total Barium Total Cobal Total Copper Dissolved Iron Total Lead Total Nercury Total Nickel Total Phenols (Phenolics) (PWS) Total Silver Total Total Total Linum	Sugart Conc (wet) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ane WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Iysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SS (mg/l): WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antimony Total Antimony Total Antimony Total Antimony Total Antimony Total Barium Total Barium Total Common Total Cadmium Hexavalent Chromium Total Copper Dissolved Iron Total Iron Total Iron Total Manganese Total Marganese Total Nickel Total Selenium Total Silver Total Silver Total Thallium Total Zinc	Conc Guell Conc Guell O O O O O O O O O O O O O O O O O O	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ane WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Ilysis Hardnee WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SS (mg/l): N/A N/A N/A N/A N/A N/A N/A N/A	N/A		
Pollutants Total Aluminum Total Antinony Total Arsenic Total Barium Total Barium Total Barium Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Icad Total Lead Total Marganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS) Total Silver Total Total Silver Total Total Total Silver Total Total Total Total	Sugart Conc (wet) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0.673 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Ane WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Iysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SS (mg/l): NLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A		

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4


	Mass	Limits		Concentra	tion Limits				
Pollutants	AML MDL (lbs/day) (lbs/day)		AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.77	1.1	0.92	1.32	2.31	mg/L	0.92	AFC	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge

concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments		
Total Aluminum	54,342	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Antimony	4,353	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Arsenic	7,773	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Barium	1,521,569	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Beryllium	N/A	N/A	No WQS		
Total Boron	N/A	N/A	Discharge Conc < TQL		
Total Cadmium	N/A	N/A	Discharge Conc < TQL		
Hexavalent Chromium	N/A	N/A	Discharge Conc < TQL		
Total Cobalt	6,883	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Cyanide	N/A	N/A	No WQS		
Dissolved Iron	233,176	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Iron	2,655,346	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Lead	2,630	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Manganese	777,253	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Mercury	38.9	µg/L	Discharge Conc < TQL		
Total Nickel	35,349	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL		
Total Selenium	3,878	µg/L	Discharge Conc < TQL		
Total Silver	297	µg/L	Discharge Conc < TQL		
Total Thallium	187	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Zinc	9,028	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Molybdenum	N/A	N/A	No WQS		
PCBs, Total	0.28	µg/L	Discharge Conc < TQL		
Color	58,294	Pt-Co	Discharge Conc ≤ 10% WQBEL		

	WET S	ummary and	Evaluation						
Facility Name	UniTech								
Permit No.	PA0054562								
Design Flow (MGD)	0.1								
Q ₇₋₁₀ Flow (cfs)	275								
PMFa	0.063								
PMF	0.439								
			Test Result	s (Pass/Fail)					
		Test Date	Test Date	Test Date	Test Date				
Species	Endpoint	5/18/19	9/13/20	7/31/21	9/28/22				
Pimephales	Survival	PASS	PASS	PASS	PASS				
				s (Pass/Fail)					
		Test Date 5/16/19	Test Date 9/11/20	Test Date 7/29/21	Test Date 9/28/22				
Species	Endpoint								
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS				
			Tost Result	s (Pass/Fail)					
		Test Date	Test Date	Test Date	Test Date				
Species	Endpoint	Test Bate	Teorbate	1000 Date	Test Date				
	Lingpoint								
	1	Test Results (Pass/Fail)							
		Test Date	Test Date	Test Date	Test Date				
Species	Endpoint								
Reasonable Potentia	I? NO								
Redsonable Potentia	II NO								
Permit Recommenda	tions								
Test Type	Acute								
TIWC	3	% Effluent							
Dilution Series		30, 60, 100	% Effluent						
Permit Limit	None	55, 55, 100	in Lindont						
Permit Limit Species									
. chine chine opoolog									