

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0054810

 APS ID
 1045284

 Authorization ID
 1364954

Applicant and Facility Information

Applicant Name	Upper Frederick Township	Facility Name	Perkiomen Crossing STP
Applicant Address	3205 Big Road P O Box 597	Facility Address	Valley Stream Drive
	Frederick, PA 19435-0597		Frederick, PA 19435-0597
Applicant Contact	Tracy Tackett	Facility Contact	Richard Sacks
Applicant Phone	(610) 754-6436	Facility Phone	(610) 828-3078
Client ID	93286	Site ID	484317
Ch 94 Load Status	Not Overloaded	Municipality	Upper Frederick Township
Connection Status	No Limitations	County	Montgomery
Date Application Recei	vedAugust 9, 2021	EPA Waived?	Yes
Date Application Accept	oted	If No, Reason	
Purpose of Application	Permit Renewal		

Summary of Review

The applicant requests renewal of an NPDES permit to discharge 0.04785 MGD of treated sewage from Perkiomen Crossing STP into Goshenhoppen Creek. The receiving stream, Goshenhoppen Creek which ultimately discharges to Perkiomen Creek watershed 3-E, is classified as Trout Stocking Fisheries.

The STP is an extended aeration system with two equalization tanks, two anoxic tanks, six aeration tanks, two clarifiers, tertiary filter, chlorine contact tank, post aeration tank, and one sludge holding tank.

The review of the recent e-DMR shows that the discharge is generally in compliance with the existing permit limits. There were few violations between 2016 to 2019 for effluent limits of NPDES permit. The Department (DEP) executed Consent assessment of Civil Penalty (CACP) dated April 8, 2021 resolving violations of the NPDES permit. There are no changes in the effluent, treatment units, stream designation etc. The proposed effluent limits are the same as the existing limits. The effluent monitoring for E. Coli is included in this permit renewal and is consistent with SOP. Influent monitoring for BOD5 and TSS were included based on Chapter 94 requirement and to check compliance with 85 percent removal requirement for secondary treatment. Effluent limits are based on previous WQM model, BAT, BPJ and are necessary to protect & maintain the water quality and designated use of the stream.

The influent samples are collected at the last collection system manhole located inside the treatment plant gate due to aeration in EQ tanks and the filter backwash and sludge decant returned to the in-ground EQ tank. The groundwater/spring discharge is monitored weekly for Flow and sampled quarterly for Fecal Coliform and discharged through outfall 002.

Sludge use and disposal description and location(s): The sewage sludge is sent to Pottstown Wastewater Treatment Plant for treatment and disposal.

Approve	Deny	Signatures	Date
х		Ketan Thaker Ketan Thaker / Project Manager	February 11, 2022
х		Pravin Patel	
		Pravin C. Patel, P.E. / Environmental Engineer Manager	02/11/2022

Summary of Review

Following are effluent limits:

PARAMETER	EFFLUENT LIMIT (mg/l) Av. Monthly	BASIS
CBOD5	10	BAT/existing
Total Suspended Solids	10	BAT/existing
Ammonia as N (5/1 to 10/31)	1.5	Previous WQM/existing
Ammonia as N (11/1 to 4/30)	4.5	Previous WQM/existing
Total Phosphorus	0.5	BPT/existing
Nitrite-Nitrate as N	10	BAT/existing
Dissolved Oxygen	6.0	Previous WQM/existing
Total Residual Chlorine	0.1	Existing
Fecal Coliform (#/100 ml)	#200/ 100 ml (Geo Mean)	Ch. 92a.47
pH (Standard Units – SU)	6.0 to 9.0 STD at all times	Ch. 92a.47, 95.2
Total Nitrogen	Report	Ch. 92a.61
E. Coli	Report	Ch. 92a.47, SOP

Act-14 notification to Upper Frederick Township on July 16, 2021. Act-14 notification to Montgomery County Planning Commission on July 28, 2021

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Informa	tion	
Outfall No. 001	Design Flow (MGD)	.04785
Latitude 40º 18' 2.51"	Longitude	-75º 29' 42.81"
Quad Name Perkiomenville	Quad Code	1642
Wastewater Description: Sewage Effluent		
Receiving Waters <u>Goshenhoppen Creek (TSF, MF)</u>	Stream Code	01310
NHD Com ID _25987420	RMI	2.98
Drainage Area 0.99 mi ²	Yield (cfs/mi ²)	
		Stream Stats (previous
Q ₇₋₁₀ Flow (cfs) 0.0293	_ Q7-10 Basis	factsheet)
Elevation (ft) 275	_ Slope (ft/ft)	
Watershed No. <u>3-E</u>	_ Chapter 93 Class.	TSF, MF
Existing Use	_ Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired		
Cause(s) of Impairment NUTRIENTS		
Source(s) of ImpairmentMUNICIPAL POINT SOURC	E DISCHARGES	
TMDL Status	Name	
5	Data Source	
pH (SU)		
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake PWS Waters	Flow at Intoka (afa)	<u>. </u>
· · · · · · · · · · · · · · · · · · ·	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	

Discharge, Receiving Waters an	nd Water Supply Information	ı					
Outfall No. 002		Design Flow (MGD)	0				
Latitude <u>40º 18' 2.51"</u>		Longitude	-75º 29' 42.81"				
Quad Name Perkiomenville)	Quad Code	1642				
Wastewater Description: Gro	oundwater / Spring Discharge	•					
Receiving Waters Goshenho	oppen Creek (TSF, MF)	Stream Code	01310				
NHD Com ID 25987420)	RMI	2.64				
Drainage Area		Yield (cfs/mi ²)					
Q ₇₋₁₀ Flow (cfs)		Q7-10 Basis					
Elevation (ft)		Slope (ft/ft)					
Watershed No. <u>3-E</u>		Chapter 93 Class.	TSF, MF				
Existing Use		Existing Use Qualifier					
Exceptions to Use		Exceptions to Criteria					
Assessment Status Im	paired						
Cause(s) of Impairment NL	JTRIENTS						
Source(s) of Impairment <u>MU</u>	UNICIPAL POINT SOURCE D	DISCHARGES					
TMDL Status		Name					
Background/Ambient Data	Data	a Source					
pH (SU)							
Temperature (°F)							
Hardness (mg/L)							
Other:							
Nearest Downstream Public Wa	ater Supply Intake						
PWS Waters	F	low at Intake (cfs)					
PWS RMI	C	Distance from Outfall (mi)					

	Tr	eatment Facility Summar	у	
reatment Facility Na	me: Perkiomen Crossing S	STP		
WQM Permit No.	Issuance Date			
4607404	8/16/2007			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Tertiary	Extended Aeration With Solids Removal	Hypochlorite	0.0479
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
0.04785	105	Not Overloaded	Aerobic Digestion	Other WWTP

Compliance History

DMR Data for Outfall 001 (from January 1, 2021 to December 31, 2021)

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
Flow (MGD)												
Average Monthly	0.041	0.043	0.043	0.045	0.042	0.038	0.039	0.039	0.039	0.043	0.043	0.043
Flow (MGD)												
Daily Maximum	0.052	0.058	0.065	0.086	0.079	0.055	0.063	0.055	0.064	0.079	0.064	0.065
pH (S.U.)												
Instantaneous												
Minimum	7.3	7.4	7.6	7.6	7.5	7.4	7.2	7.2	7.3	7.4	7.5	7.2
pH (S.U.)												
Instantaneous												
Maximum	8.0	7.8	7.7	7.8	7.8	8.0	7.8	7.8	7.8	7.8	7.9	8.1
DO (mg/L)												
Instantaneous												
Minimum	7.8	7.7	8.0	7.7	7.3	7.6	7.4	7.7	8.6	9.1	9.1	8.9
TRC (mg/L)												
Average Monthly	0.05	0.03	0.04	0.06	0.04	0.03	0.03	0.05	0.07	0.06	0.05	0.03
TRC (mg/L)												
Instantaneous												
Maximum	0.18	0.15	0.12	0.18	0.12	0.12	0.18	0.17	0.18	0.20	0.18	0.08
CBOD5 (lbs/day)												
Average Monthly	< 1.0	1.5	< 0.7	< 0.7	< 0.8	< 0.8	1.2	1.1	1.9	2.0	1.1	1.6
CBOD5 (lbs/day)												
Weekly Average	1.3	2.0	0.8	< 0.8	< 0.8	0.9	1.4	1.1	2.6	2.2	1.2	1.8
CBOD5 (mg/L)												
Average Monthly	< 3.2	3.6	< 2.2	< 2.0	< 2.0	< 2.4	2.7	3.2	4.9	5.7	3.1	3.9
CBOD5 (mg/L)												
Weekly Average	4.3	4.7	2.3	< 2.0	< 2.0	2.7	2.8	3.4	6.1	5.7	3.3	4.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	128	106	86	160	85	114	117	104	126	108	167	219
BOD5 (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	402	264	255	433	227	314	267	308	347	315	456	503
TSS (lbs/day)												
Average Monthly	< 1.4	< 1.6	< 1.3	< 1.5	< 1.5	< 1.4	< 1.7	< 1.4	< 1.5	< 1.4	< 1.6	< 1.7

TSS (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	119	65	45	78	86	100	99	52	66	33	169	111
TSS (lbs/day)												
Weekly Average	1.4	< 1.7	1.4	< 1.6	< 1.6	< 1.5	< 2.0	< 1.5	< 1.7	< 1.6	< 1.6	< 1.9
TSS (mg/L)												
Average Monthly	< 4.3	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.5	< 4.0
TSS (mg/L)												
Raw Sewage Influent												
 Average	0.07	450	100			074		4.40	474	05	400	
Monthly	367	159	132	209	228	274	226	148	174	95	460	262
TSS (mg/L)	4.5	4.0	1.0	1.0	4.0	4.0	4.0	4.0	4.0	4.0	5.0	4.0
Weekly Average	4.5	< 4.0	4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	5.0	4.0
Fecal Coliform												
(No./100 ml)					0							
Geometric Mean	< 1	< 1	< 1	< 1	< 3	< 1	< 1	< 1	< 2	< 14	< 1	< 1
Fecal Coliform												
(No./100 ml) Instantaneous												
Maximum	1	< 1	< 1	2	11	< 1	1	1	3	208	< 1	< 1
Nitrate-Nitrite (lbs/day)	1	< 1	< 1	2	11	< 1	1	1	3	200	< 1	< 1
Average Monthly	2.5	2.8	2.5	3.3	2.3	2.5	3.9	2.1	2.4	2.3	2.5	3.8
Nitrate-Nitrite (mg/L)	2.0	2.0	2.5	3.3	2.3	2.0	5.9	2.1	2.4	2.3	2.5	3.0
Average Monthly	7.8	6.9	7.4	8.7	6.0	6.9	8.8	6.3	6.6	6.6	7.1	9.0
Total Nitrogen (mg/L)	7.0	0.9	7.4	0.7	0.0	0.9	0.0	0.5	0.0	0.0	7.1	9.0
Average Monthly	8.66	7.98	7.41	9.24	6.93	7.99	10.27	7.35	7.86	9.46	8.06	10.16
Ammonia (lbs/day)	0.00	1.00		0.21	0.00	1.00	10.21	1.00	1.00	0110	0.00	10110
Average Monthly	< 0.03	< 0.04	< 0.03	< 0.04	< 0.04	< 0.04	< 0.2	< 0.03	< 0.04	< 0.6	< 0.04	0.2
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.6	< 0.1	< 0.1	< 2.0	< 0.1	0.4
Total Phosphorus												
(lbs/day)												
Average Monthly	0.08	0.08	0.05	0.06	< 0.06	0.08	< 0.1	0.1	0.1	0.1	0.08	0.09
Total Phosphorus												
(mg/L)												
Average Monthly	0.3	0.2	0.1	0.2	< 0.2	0.2	< 0.1	0.2	0.3	0.3	0.2	0.2

NPDES Permit Fact Sheet Perkiomen Crossing STP

DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
0.0053	0.0077	0.0112	0.0166	0.0219	0.0179	0.0116	0.0147	0.0134	0.029	0.0355	0.0168
27			< 1			< 1			49		
27			- 1			- 1			40		
	0.0053	0.0053 0.0077 27	0.0053 0.0077 0.0112 27	0.0053 0.0077 0.0112 0.0166 27 <1	0.0053 0.0077 0.0112 0.0166 0.0219 27 <1	0.0053 0.0077 0.0112 0.0166 0.0219 0.0179 27 <1	0.0053 0.0077 0.0112 0.0166 0.0219 0.0179 0.0116 27 <1	0.0053 0.0077 0.0112 0.0166 0.0219 0.0179 0.0116 0.0147 27 <1	0.0053 0.0077 0.0112 0.0166 0.0219 0.0179 0.0116 0.0147 0.0134 27 <1	0.0053 0.0077 0.0112 0.0166 0.0219 0.0179 0.0116 0.0147 0.0134 0.029 27 <1	0.0053 0.0077 0.0112 0.0166 0.0219 0.0179 0.0116 0.0147 0.0134 0.029 0.0355 27 <1

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
DO	ХХХ	xxx	6.0 Inst Min	XXX	XXX	ххх	1/day	Grab
TRC	XXX	xxx	xxx	0.10	XXX	0.20	1/day	Grab
CBOD5	4.0	6.0	xxx	10.0	15.0	20	2/month	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	xxx	2/month	24-Hr Composite
TSS Raw Sewage Influent	Report	xxx	xxx	Report	XXX	xxx	2/month	24-Hr Composite
TSS	4.0	6.0	xxx	10.0	15.0	20	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	200 Geo Mean	XXX	1000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	ХХХ	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Nitrate-Nitrite	4.0	xxx	XXX	10.0	XXX	20	2/month	24-Hr Composite
Total Nitrogen	ххх	xxx	XXX	Report	XXX	xxx	2/month	24-Hr Composite
Ammonia Nov 1 - Apr 30	1.8	xxx	xxx	4.5	XXX	9	2/month	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations										
Devementer	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required						
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type				
Ammonia								24-Hr				
May 1 - Oct 31	0.6	XXX	XXX	1.5	XXX	3	2/month	Composite				
								24-Hr				
Total Phosphorus	0.2	XXX	XXX	0.5	XXX	1	2/month	Composite				

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

				Monitoring Requirements					
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	ions (mg/L)	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	xxx	xxx	XXX	xxx	XXX	1/week	Estimate	
Fecal Coliform (No./100 ml)	XXX	xxx	xxx	Report Avg Qrtly	XXX	Report	1/quarter	Grab	

WQM Model

WQM 7.0 Effluent Limits

	SWP Basin Stre	eam Code		Stream Name	2		
	03E	1310		GOSHENHOPPEN	CREEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.980	Perkiomen Cross	PA0054810	0.048	CBOD5	10		
				NH3-N	1.5	3	
				Dissolved Oxygen			6

	SWP Basir			Stre	am Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03E	13	310 GOSH	IENHOPP	EN CREE	ĸ	2.98	30	275.00	0.99	0.00000	0.00	✓
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> Ip pH	Tem	<u>Stream</u> Ip pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.100	0.00	0.03	0.000	0.000	0.0	0.00	0.00) 2	0.00 7.0	00	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge Da	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	d Desi Dis Flo (mg	ov Res	erve Te ctor)isc emp °C)	Disc pH
Perkiomen Cross	PA0054810	0.0479	0.000	0.0	0000 (0.000	25.00	7.50
	Pa	rameter D	ata					
Par	ameter Name	Dis Cor		ib onc	Stream Conc	Fate Coef		
Fai	ameter Name	(mg	/L) (m	g/L)	(mg/L)	(1/days)		
CBOD5	CBOD5			2.00	0.00	1.50		
Dissolved Ox	Dissolved Oxygen			8.24	0.00	0.00		
NH3-N	NH3-N			0.00	0.00	0.70		

	SWF Basi			Stre	am Name		RMI	Elevat (ft))rainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd)	wal	Apply FC
	03E	1	310 GOSH	IENHOPP	EN CREE	<	1.80	0 25	50.00	1.62	0.00000		0.00	✓
					S	tream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>T</u> Temp	<u>ributary</u> pH	Tem	<u>Stream</u> p I	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
Q7-10	0.100	0.00	0.06	0.000	0.000	0.0	0.00	0.00	20.	00 7.0	0 (0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									
					D	ischarge	Data							
						Existing Disc	Permitte Disc	ed Design Disc	Reser	Diso ve Tem				

Input Data WQM 7.0

	Dis	charge Da	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve T ctor	emp	Disc pH
		0.0000	0.000	0.0	000 (0.000	0.00	7.00
	Par	ameter Da	ata					
Paran	eter Name				Stream Conc	Fate Coef		
T aran	leter Mame	(mg	/L) (m	g/L)	(mg/L)	(1/days)		
CBOD5		25	5.00	2.00	0.00	1.50		
Dissolved Oxyg	en	3	3.00	8.24	0.00	0.00		
NH3-N		25	5. 00	0.00	0.00	0.70		
	Param CBOD5 Dissolved Oxyge	Name Permit Number Par Parameter Name CBOD5 Dissolved Oxygen	Name Permit Number Existing Disc Flow (mgd) 0.0000 Parameter Da Disc Flow (mgd) 0.0000 Parameter Da Cor Parameter Name (mgd) CBOD5 25 Dissolved Oxygen	NamePermit NumberDisc Flow (mgd)Disc Flow (mgd)0.00000.0000Parameter DataDisc Parameter NameCBOD525.00Dissolved Oxygen3.00	Name Permit Number Flow Flow Flow (mgd) (m	NamePermit NumberExisting DiscPermitted DiscDesign DiscRes0.00000.00000.00000.00000.00000Parameter NameDisc ConcTrib ConcStream ConcParameter Name25.002.000.000CBOD525.002.000.000Dissolved Oxygen3.008.240.00	NamePermit NumberExisting DiscPermitted DiscDesign DiscII DiscNamePermit NumberFlow (mgd)Flow (mgd)Flow Flow (mgd)Flow Flow Flow (mgd)Flow 	Name Permit Number Existing Disc Flow (mgd) Permitted Design Disc Flow (mgd) <

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>				
		03E	1	310			GOSH	ENHOP	PEN CRE	EK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	-
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(ºC)		
Q7-1	0 Flow												
2.980	0.03	0.00	0.03	.074	0.00401	.357	5	14	0.06	1.239	23.56	7.29	
Q1-1	0 Flow												
2.980	0.02	0.00	0.02	.074	0.00401	NA	NA	NA	0.05	1.317	23.97	7.34	
Q30-	10 Flow	1											
2.980	0.04	0.00	0.04	.074	0.00401	NA	NA	NA	0.06	1.172	23.22	7.25	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

	<u>SWP Basin</u> 03E		<u>am Code</u> 1310			<u>ream Name</u> IHOPPEN CR	EEK	EK					
NH3-N	Acute Alloc	atior	ıs										
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
2.9	80 Perkiomen (Cross	5.37	3	5.37	3	0	0					
NH3-N	Chronic All	ocati	ons										
NH3-N RMI	Chronic All Discharge N		ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					

			<u>CBOD5</u> <u>NH3-N</u> <u>Dissolved O</u>			<u>l Oxygen</u>	Critical	Percent		
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	multiple	Baseline	multiple	Reach	Reduction	
2.98 P	erkiomen Cross	10	10	1.5	1.5	6	6	0	0	

WQM 7.0 D.O.Simulation

SWP Basin Str	SWP Basin Stream Code			Stream Name	
03E	1310		GOS	HENHOPPEN CREEK	
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperature (°C)	Analysis pH
2.980	0.04	8		23.558	7.290
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
5.001	0.35	7		13.996	0.058
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
7.69	0.92			1.07	0.920
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.647	23.58	30		Owens	6
Reach Travel Time (days)		Subreach	Results		
1.239	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.124	6.72	0.95	7.73	
	0.248	5.88	0.85	7.73	
	0.372	5.14	0.76	7.73	
	0.495	4.49	0.68	7.73	
	0.619	3.92	0.60	7.73	
	0.743	3.43	0.54	7.73	
	0.867	3.00	0.48	7.73	
	0.991	2.62	0.43	7.73	
	1,115	2.29	0.38	7.73	
	1.239	2.00	0.34	7.73	