

Southeast Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0054917

APS ID 1082630

Authorization ID 1429698

	Applicant and	Facility Information	
Applicant Name	Uwchlan Township Municipal Authority	Facility Name	Uwchlan Township Eagleview STP 480 Eagleview Boulevard Eagleview
Applicant Address	715 N Ship Road	Facility Address	Corporate Center
	Exton, PA 19341-1940	<u>_</u>	Exton, PA 19341-1940
Applicant Contact	Scott Greenly	Facility Contact	Renee Fegan
Applicant Phone	(610) 363-9450	Facility Phone	215-368-3375
Client ID	62675	Site ID	451220
Ch 94 Load Status	Not Overloaded	Municipality	Uwchlan Township
Connection Status	No Limitations	County	Chester
Date Application Rece	eived March 6, 2023	EPA Waived?	No
Date Application Acce	pted March 17, 2023	If No, Reason	Christina River Basin TMDL
Purpose of Application	n NPDES permit renewal.		

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from Gannett Fleming on behalf of Uwchlan Township Municipal Authority (Permittee) on March 6, 2023 for permittee's Eagleview STP (facility), located in Uwchlan Township, Chester County. This is a minor sewage facility with design flow of 0.475 MGD that discharges into Shamona Creek (HQ/TSF, MF) in state watershed 3-H. The current permit will expire on August 31, 2023. The terms and conditions of the current permit is administratively extended since the renewal application was not received at least 180 days prior to the expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this renewal: quarterly Total Zinc monitoring, quarterly Total Copper monitoring with schedule for limits, quarterly E-Coli monitoring.

Sludge use and disposal description and location(s): The aerobically digested biosolids are sent DELCORA and Pottstown for further treatment/ultimate disposal via a certified hauler.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
2/			
V		Reza H. Chowdhury, E.I.T. / Project Manager	December 12, 2023
X		Pravin Patel	
Λ		Pravin C. Patel, P.E. / Environmental Engineer Manager	12/12/2023

ischarge, Receiving Wate	rs and Water Supply Infor	mation				
Outfall No. 001		Design Flow (MGD)	0.475			
Latitude 40° 3' 45.00	"	Longitude	-75° 40' 32.00"			
Quad Name Downingto	own	Quad Code 1840				
Wastewater Description:	Sewage Effluent					
Receiving Waters Shan	nona Creek (HQ-TSF, MF)	Stream Code	00324			
NHD Com ID 2608	9296	RMI	2.8			
Drainage Area 0.82	mi ²	Yield (cfs/mi²)	0.23			
Q ₇₋₁₀ Flow (cfs) 0.189)	Q ₇₋₁₀ Basis	Please see below			
Elevation (ft) 431.	30	Slope (ft/ft)				
Watershed No. 3-H		Chapter 93 Class.	HQ-TSF, MF			
Existing Use TSF		Existing Use Qualifier	Ch 93			
Exceptions to Use		Exceptions to Criteria				
Assessment Status	Impaired					
Cause(s) of Impairment	FLOW REGIME MODIFIC	CATION, SILTATION				
Source(s) of Impairment	URBAN RUNOFF/STOR	RM SEWERS, URBAN RUNOFF/STORM SEWERS				
TMDL Status	Final	Name Christina Ri	ver Basin			
Background/Ambient Data		Data Source				
pH (SU)	7.0	Default				
Temperature (°C)	20	Default				
Hardness (mg/L)	257	Application data				
Other:						
Nearest Downstream Pub	ic Water Supply Intake	Downingtown Water Authority County	y, Downingtown, Chester			
PWS Waters E. Br. E	randywine Creek	Flow at Intake (cfs)				
PWS RMI 9.36		Distance from Outfall (mi) 4.78				

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

The nearest USGS StreamGage (gage number 01480700) data was analyzed to determine the low flow statistics at the discharge point. USGS's web based watershed delineation tool StreamStats (accessible at https://streamstats.usgs.gov/ss/, accessed on June 15, 2023) was utilized to determine the drainage area at discharge point. The StreamStats report shows the drainage area at the discharge point is 0.82 mi². Data from the streamgage shows Q₇₋₁₀, Q₁₋₁₀, and Q₃₀₋₁₀ to be 14.0 cfs, 12.3 cfs, and 17.8 cfs, respectively for the reporting year 1975-2008. The drainage area at this streamgage was found to be 60.6 mi². These values were obtained from the latest USGS streamflow report (1).

 $Q_{7\text{--}10}$ runoff rate (low flow yield): 14 cfs/60.6 mi² or 0.23 cfs/mi² $Q_{7\text{--}10}$ at Outfall 001: 0.23 * 0.82 or 0.189 cfs $Q_{30\text{--}10}\text{:}Q_{7\text{--}10}\text{:}$ 17.8/14 or 1.27

Q₁₋₁₀:Q₇₋₁₀: 12.3/14 or 0.88

⁽¹⁾ Stuckey, M.H., Roland, M.A., 2011, Selected streamflow statistics for streamgage locations in and near Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2011-1070, PP 11, PP 23.

PWS Intake:

The nearby downstream PWS intake is Downingtown Water Authority on E. Branch Brandywine Creek in Downingtown, Chester County, which is approximately 4.78 miles downstream of discharge point. Due to the distance, dilution, and effluent limitations, it is expected that the discharge will not adversely impact the PWS intake.

Wastewater Characteristics:

A pH of 7.19 (daily eDMR data, median July- September 2022) and default temperature of 25°C (Default per 391-2000-007) will be used for modeling, if needed. The application indicated the discharge hardness to be 280 mg/l.

Background data:

There is no WQN station near the discharge point. In absence of site-specific data, a default stream temperature of 20°C and stream pH of 7.0 will be used for modeling, if needed. The permittee collected additional sampling which shows stream hardness values to be 322 mg/l, 225 mg/l, and 225 mg/l, the average of which is 257 mg/l.

Christina River Basin TMDL:

Christina River Basin has three EPA approved TMDLs: Nutrients and DO under Low-Flow condition, Nutrients and Low DO under High-Flow conditions, and Bacteria and Sediments. All effluent limits for Nutrients and DO are proposed in the draft permit are consistent with the TMDL for nutrients and DO for low-flow conditions, issued by the EPA in January 2001, and revised on October 2002, April 2006, and March 2012. In the TMDL document, Summary Table 14 included the following Waste Load Allocations (WLAs) based on a discharge flow of 0.475 MGD:

NPDES	FACILITY NAME	FLOW mg/l	CBOD ₅ mg/l	NH ₃ -N mg/l	TN mg/l	TP mg/l	DO mg/l	CBOD ₅ lb/day	NH ₃ -N lb/day	TN lb/day	TP lb/day	DO lb/day
PA0054 917	Uwchlan Eagleview STP	0.475	5.89	0.78	50	0.78	6	23.348	3.092	1,98.075	3.092	23.784

Also, effluent limits for Nutrients and DO are proposed in the draft permit are consistent with the TMDL for Nutrients and Low DO under High-Flow conditions:

Table 2-2. NPDES permit flows and loads for nutrients and CBOD5

NPDES Number	HSPF Subbasin	Flow (mgd)	CBOD5 (mg/L)	NH3-N (mg/L)				
PA0054917	B11	0.4750	5.89	0.78	0.78	10.59	1.40	1.40

Additionally, facility's discharge is listed in the TMDL for Bacteria and Sediments:

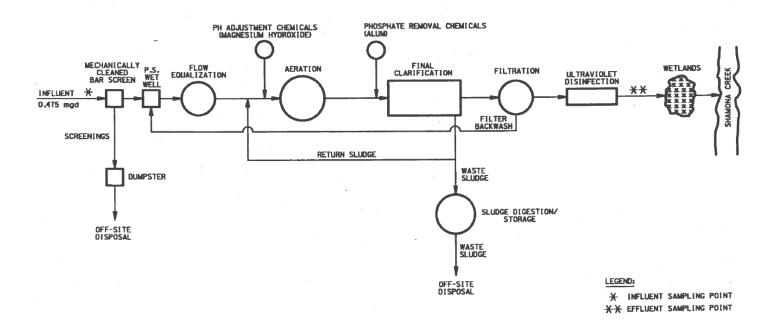
Table 2-2. Fecal coliform, *enterococci*, and TSS loads for NPDES facilities

	HSPF Subbasin	Flow	TSS	Fecal Coliform	Enterococci	TSS	Fecal Coliform	Enterococci
NPDES Number		(mgd)	(mg/L)	(cfu/100mL)	(cfu/100mL)	(kg/day)	(cfu/day)	(cfu/day)
PA0054917	B11	0.4750	20	200	100	35.96	3.596E+09	1.798E+09

Therefore, the current effluent limitations for nutrients, DO, sediments, and bacteria are consistent with all three Christina River Basin TMDLs WLAs. Existing limits will be carried over.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as High-Quality Trout Stocking (HQ-TSF) and Migratory Fishes (MF). This is a renewal application without any proposal of expansion; therefore, anti-degradation analysis wasn't performed.


Treatment Facility Summary Treatment Facility Name: Uwchlan Township Eagleview STP WQM Permit No. **Issuance Date** 1500405 08/18/2000 Degree of **Avg Annual** Disinfection **Waste Type Treatment Process Type** Flow (MGD) Secondary With Phosphorus Reduction **Extended Aeration** Ultraviolet 0.475 Sewage **Organic Capacity Biosolids Hydraulic Capacity Biosolids Treatment** (MGD) (lbs/day) **Load Status** Use/Disposal 0.475 990 Not Overloaded Aerobic Digestion Other WWTP

Changes Since Last Permit Issuance: None

Treatment Plant Description

Uwchlan Township Municipal Authority owns and operates a wastewater treatment plant named Uwchlan Township Eagleview WWTP. This is a minor sewage facility with a design flow of 0.475 MGD and organic loading capacity of 990 lbs. BOD₅/day. This is an extended aeration system with UV disinfection. The treated effluent is discharged to Shamona Creek in state watershed 3-H through a wetland. There are 11 discharge standpipes associated with the discharge. A process flow diagram is provided here:

OUTFALL NUMBER 001 SCHEMATIC OF WASTEWATER TREATMENT PLANT

The facility receives flow from the following contributing municipalities:

TRIBUTARY INFORMATION										
	Separate									
Municipalities Served	Flow Contribution (%)	(%)	(%)	Population						
Uwchlan Township	96	100		1,815 + Commercial						
Upper Uwchlan Township	4	100		Commercial						

There is no significant or categorial industrial or commercial facilities within the WWTP's service area; however, there are several small commercial facilities discharging into the WWTP's collection system.

The facility uses GPAC 2070 for phosphate removal and sodium hydroxide for pH adjustment.

<u>Biosolids Management:</u> The aerobically digested biosolids are sent DELCORA and Pottstown for further treatment/ultimate disposal via a certified hauler.

Summary of Inspection:

April 6, 2023: RTPT conducted. Violation noted from discharge of floating materials, scums, sheen, foam, oil, grease etc. The outfall didn't appear to be operating as designed. Effluent was creating stream channels through the wetland. Some of the standpipes are below grade. Septic solids were present throughout the wetlands but especially prevalent around the standpipes. The receiving stream had some solids present on the substrate.

October 26, 2022: CEI conducted. Violation noted from discharge of floating materials. Large deposits of solids observed around pipes, some pipes were level with ground, number 7 didn't appear to be discharging at all. Observable solids present on substrate of receiving stream in multiple locations.

November 8, 2021: CEI conducted. No violation noted. Effluent in the effluent tank appeared to be clear. Didn't observe any issues in the receiving stream.

October 28, 2020: CEI conducted. No violation noted. Recommended to change location of sand filter backwash return, improve air distribution in the EQ tank, and increase clarifier weir cleanings. Final effluent appeared to be clear in the effluent dosing tank. Minimal amount of floatable were observed in the tank.

April 17, 2020: RTPT conducted. No violation noted.

March 28, 2019: CEI conducted. No violation noted. Significant erosion was observed around some of the outfall structures as well as channeling leading away from these structures through the wetland area.

Compliance History

DMR Data for Outfall 001 (from May 1, 2022 to April 30, 2023)

Parameter	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22
Flow (MGD)												
Average Monthly	0.179	0.175	0.163	0.173	0.143	0.0917	0.148	0.142	0.137	0.184	0.187	0.189
Flow (MGD)												
Daily Maximum	0.253	0.209	0.199	0.299	0.243	0.140	0.37	0.305	0.233	0.275	0.275	0.235
pH (S.U.)												
Instantaneous												
Minimum	6.78	6.74	6.71	6.39	6.55	6.92	6.97	6.79	6.93	7.0	7.0	6.9
pH (S.U.) IMAX	7.22	7.28	7.22	7.38	7.24	7.75	7.26	7.28	7.37	7.6	7.6	7.6
DO (mg/L)												
Instantaneous												
Minimum	6.04	5.06	9.12	8.51	9.22	8.95	8.19	7.52	7.19	7.0	7.0	7.2
CBOD5 (lbs/day)												
Average Monthly	5.8	14.3	8.8	7.2	3.3	< 2.5	< 5.5	3.5	< 3.4	8.1	< 4.3	< 5.6
CBOD5 (lbs/day)												
Weekly Average	10	22	18	18	4	5	8	5	8	15	5	8
CBOD5 (mg/L)												
Average Monthly	4	10	6	5	4	< 3	< 16	3	< 4	7	< 2	< 3
CBOD5 (mg/L)												
Weekly Average	7	15	12	10	5	6	31	5	8	16	4	5
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	414	443	447	390	259	283	277	468	251	379	493	715
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	309	326	319	268	339	323	312	415	286	277	357	428
TSS (lbs/day)												
Average Monthly	< 5.0	< 39.8	28.0	24.0	15.6	< 7.2	18.9	17.2	8.4	9.3	19.7	7.8
TSS (lbs/day)												
Raw Sewage Influent			4=0					400		40-	4=0	
Average Monthly	255	226	153	148	94	95	80	139	113	137	476	525
TSS (lbs/day)	0.7	404.0	60.0	05.0	20.0	477	25.5	40.0	47.0	04.4	54.5	104
Weekly Average	9.7	104.2	63.9	65.8	38.0	17.7	35.5	40.3	17.0	24.1	51.5	12.1
TSS (mg/L)			00	4.5	40		50	40	40		40	_
Average Monthly	< 4	< 28	20	15	16	< 8	53	13	10	9	12	5
TSS (mg/L)												
Raw Sewage Influent	400	400	440	404	400	4.40	00	400	404	0.5	240	240
Average Monthly	188	163	113	101	126	148	99	123	124	95	340	312
TSS (mg/L)	7	74	4.4	26	24	4.4	115	22	12	07	22	
Weekly Average	7	71	44	36	31	14	115	23	13	27	33	9

NPDES Permit No. PA0054917

NPDES Permit Fact Sheet Uwchlan Township Eagleview STP

Fecal Coliform												
(No./100 ml)												
Geometric Mean	59	< 1700	< 34	2777	96	13	< 75	39	< 16	25	< 10	< 19
Fecal Coliform												
(No./100 ml) IMAX	5000	20000	400	> 20000	8300	38	900	172	127	73	46	175
UV Intensity (µw/cm²)												
Daily Minimum	0.08	Е	0.1	0.01	0.3	0.01	0.001	0.2	0.5	0.6	0.6	0.6
UV Intensity (µw/cm²)												
Average Monthly	2.47	2.7	3.8	3.41	4.2	3.87	4.568	4.8	4.3	4	4.1	3.6
Total Nitrogen												
(lbs/day)												
Average Monthly	38	55	31	36	22	< 23	26	36	22	45	48	43
Total Nitrogen (mg/L)												
Average Monthly	28.49	40.15	23.99	24.26	22.57	< 25.82	33.25	31.64	27.22	35	26	27
Ammonia (lbs/day)												
Average Monthly	0.7	4.4	1.1	< 4.5	< 0.1	< 0.03	< 0.02	< 0.05	< 0.08	0.5	< 1.8	4.1
Ammonia (mg/L)												
Average Monthly	0.55	3.07	0.76	< 2.52	< 0.21	< 0.05	< 0.03	< 0.04	< 0.09	0.5	< 1.1	2.8
Total Phosphorus												
(lbs/day)												
Average Monthly	0.5	1.8	1.0	0.7	0.7	0.1	1.0	0.5	0.8	2.3	0.6	1.3
Total Phosphorus												
(mg/L)												
Average Monthly	0.4	1.35	0.76	0.46	0.74	0.24	1.31	0.45	0.87	1.7	0.3	8.0

Compliance History

Effluent Violations for Outfall 001, from: June 1, 2022 To: April 30, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
DO	03/31/23	Inst Min	5.06	mg/L	6.0	mg/L
CBOD5	07/31/22	Avg Mo	7	mg/L	6	mg/L
CBOD5	10/31/22	Avg Mo	< 16	mg/L	6	mg/L
CBOD5	07/31/22	Wkly Avg	16	mg/L	9	mg/L
CBOD5	10/31/22	Wkly Avg	31	mg/L	9	mg/L
TSS	03/31/23	Avg Mo	< 28	mg/L	20	mg/L
TSS	10/31/22	Avg Mo	53	mg/L	20	mg/L

NPDES Permit No. PA0054917

TSS	06/30/22	Wkly Avg	33	mg/L	30	mg/L
TSS	03/31/23	Wkly Avg	71	mg/L	30	mg/L
TSS	02/28/23	Wkly Avg	44	mg/L	30	mg/L
TSS	12/31/22	Wkly Avg	31	mg/L	30	mg/L
TSS	01/31/23	Wkly Avg	36	mg/L	30	mg/L
TSS	02/28/23	Wkly Avg	44	mg/L	30	mg/L
TSS	10/31/22	Wkly Avg	115	mg/L	30	mg/L
Fecal Coliform	03/31/23	Geo Mean	< 1700	No./100 ml	200	No./100 ml
Fecal Coliform	01/31/23	Geo Mean	2777	No./100 ml	200	No./100 ml
Fecal Coliform	03/31/23	IMAX	20000	No./100 ml	1000	No./100 ml
Fecal Coliform	01/31/23	IMAX	> 20000	No./100 ml	1000	No./100 ml
Fecal Coliform	12/31/22	IMAX	8300	No./100 ml	1000	No./100 ml
Fecal Coliform	04/30/23	IMAX	5000	No./100 ml	1000	No./100 ml
Ammonia	01/31/23	Avg Mo	< 2.52	mg/L	2.4	mg/L
Ammonia	03/31/23	Avg Mo	3.07	mg/L	2.4	mg/L
Ammonia	06/30/22	Avg Mo	< 1.1	mg/L	.8	mg/L
Total Phosphorus	07/31/22	Avg Mo	1.7	mg/L	.8	mg/L
Total Phosphorus	10/31/22	Avg Mo	1.31	mg/L	.8	mg/L
Total Phosphorus	08/31/22	Avg Mo	0.87	mg/L	.8	mg/L

Existing limits for Outfall 001

			Effluent L	imitations			Monitoring Re	quirements
Daniel and a second	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	6.0 Inst Min	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30 Carbonaceous Biochemical	46.8	70	XXX	12	18	24	1/week	24-Hr Composite
Oxygen Demand (CBOD5) May 1 - Oct 31	23.4	35	XXX	6	9	12	1/week	24-Hr Composite 24-Hr
Total Suspended Solids	79.2	118.8	XXX	20	30	40	1/week	Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200 Geo Mean	XXX	1000 *	1/week	Grab
Ultraviolet light intensity (μw/cm²)	XXX	XXX	Report	Report	XXX	XXX	1/day	Measured
Total Nitrogen	198	XXX	XXX	50	XXX	XXX	1/week	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	9.3	XXX	XXX	2.4	XXX	4.8	1/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	3.1	XXX	XXX	0.8	XXX	1.6	1/week	24-Hr Composite
Total Phosphorus Nov 1 - Mar 31	6.2	XXX	XXX	1.6	XXX	3.2	1/week	24-Hr Composite
Total Phosphorus Apr 1 - Oct 31	3.1	XXX	XXX	0.8	XXX	1.6	1/week	24-Hr Composite

	Develop	ment of Effluent Limitations	
Outfall No.	001	Design Flow (MGD)	.475
Latitude	40° 3' 45.00"	Longitude	-75° 40' 32.00"
Wastewater D	Description: Sewage Effluent	_	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	200 / 100 ml	Geo Mean	DRBC 4.30.4.A	
Fecal Coliform				
(10/1 – 4/30)	1,000 / 100 ml	IMAX (10% rule)	DRBC 4.30.4.A	
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

Water Quality-Based Limitations

Model input data

The following data will be used for modeling, as needed:

•	Discharge pH	7.19	(median July-Sep 2022, daily eDMR data)
•	Discharge Temperature	25°C	(Default data)
•	Discharge Hardness	280 mg/l	(Application data)
•	Stream pH	7.0	(Default data)
•	Stream Temperature	20°C	(Default data)
•	Stream Hardness	257 mg/l	(Application data)

The following three nodes were used in modeling:

Node 1: At the outfall 001 on Shamona Creek (00324)

Elevation: 431.3 ft (USGS National Map Advanced Viewer, 06/15/2023)

Drainage Area: 0.82 mi² (StreamStat Version 3.0, 06/15/2023)

River Mile Index: 2.8 (PA DEP eMapPA)

Low Flow Yield: 0.23 cfs/mi²

Q₇₋₁₀: 0.189 cfs
Discharge Flow: 0.475 MGD

Node 2: At confluence with UNT 00326 to Shamona Creek

Elevation: 419.85 ft (USGS USGS National Map Advanced Viewer, 06/15/2023)

Drainage Area: 1.31 mi² (StreamStat Version 3.0, 06/15/2023)

River Mile Index: 2.51 (PA DEP eMapPA)

Low Flow Yield: 0.23 cfs/mi² Discharge Flow: 0.0 MGD

WQM 7.0 Model

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q₇₋₁₀ and current background water quality levels of the stream.

NH₃-N

WQM 7.0 suggested NH₃-N limit of 0.8 mg/l as monthly average and 1.6 mg/l as IMAX limit during summer to protect water quality standards. These values are the same as existing permitted limits. The current limits for summer and winter season will be carried over.

CBOD5

WQM 7.0 suggests CBOD5 limit of 6.0 mg/l which is the same as existing limit. Existing limit will be carried over.

DO

WQM 7.0 suggests minimum DO of 6.0 mg/l which is the model input and same as existing limit. Existing limit will be carried over.

General Discussion on Toxics Management Spreadsheet (TMS)

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

- 1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
- 2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% 50% of the WQBEL.
- 3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

Output from the TMS is provided below:

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

itoi oumpiooimonum	

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.11	0.17	0.028	0.043	0.07	mg/L	0.028	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.28	AFC	Discharge Conc > 10% WQBEL (no RP)

Each of the pollutants is discussed below:

Total Copper:

The initial TMS model run recommended numeric limits for Total Copper based on two sample results as follows: Concentration-based Average Monthly Limit (AML) of 0.012 mg/l, Maximum Daily Limit (MDL) of 0.018 mg/l, and IMAX of 0.029 mg/l; and mass-based AML of 0.046 lbs./day and MDL of 0.072 lbs./day; based on a model input value of 0.019 mg/l (max of 2 sample results). This is a new pollutant with limits. A pre-draft survey was sent to the permittee, response of which included additional sampling for Total Copper.

The permittee collected 6 (six) additional samples, maximum of which is 0.151 mg/l which was considered as outlier since the influent results show a concentration of 0.106 mg/l (effluent > influent). The next highest value is 0.064 mg/l which was then entered into TMS and ran the report with a revised stream and discharge hardness of 257 mg/l and 280 mg/l, respectively. The TMS suggests limits requirements as 0.028 mg/l AML, 0.043 mg/l as MDL, and 0.07 mg/l as IMAX with corresponding 0.11 lbs./day as AML and 0.17 lbs./day as MDL. These limits will be applied in the permit with a compliance schedule.

Total Zinc:

Similarly, Initial TMS recommended numeric limits for Total Zinc based on two sample results as follows: Concentration-based Average Monthly Limit (AML) of 0.12 mg/l, Maximum Daily Limit (MDL) of 0.15 mg/l, and IMAX of 0.15 mg/l; and mass-based AML of 0.47 lbs./day and MDL of 0.6 lbs./day; based on a model input value of 0.062 mg/l (max of 2 sample results). This is a new pollutant with limits. A pre-draft survey was sent to the permittee, response of which included additional sampling for Total Zinc.

The permittee collected 6 (six) additional samples, maximum of which is 0.047 mg/l which was then entered into the TMS, with a revised stream and discharge hardness of 257 mg/l and 280 mg/l, respectively. The TMS suggests monitoring only for Total Zinc.

Additional Consideration:

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. Delaware River Basin Commission's (DRBC's) Water Quality Regulations at Section 4.30.4.A requires that during winter season from October through April, the instantaneous maximum concentration of fecal coliform organisms shall not be greater than 1,000 per 100 milliliters in more than 10 percent of the samples tested. Therefore, the summer limit is governed by DEP's regulation while winter limit is governed by DRBC's regulation. These are existing requirements and will be carried over in this renewal.

E. Coli:

Pa Code 25 § 92a. 61 requires monitoring of E. Coli. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends quarterly E. Coli monitoring for minor sewage dischargers with design flow ≥0.05 and <1.0 MGD. This requirement will be applied from this permit term.

<u>pH:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The current limits were based on TMDL and will be carried over.

UV Disinfection:

PADEP's SOP BCW-PMT-033 recommends UV parameter monitoring where UV is used as a method of disinfection, with the same frequency as would be if Chlorine is used for disinfection. The current permit has UV Intensity monitoring in uW/cm² and will be carried over.

Flow and Influent BOD₅ and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅ and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Anti-Backsliding

The proposed limits are at least as stringent as current permit; therefore, anti-backsliding isn't applicable. Removing "monitoring only" requirements aren't considered as back-sliding.

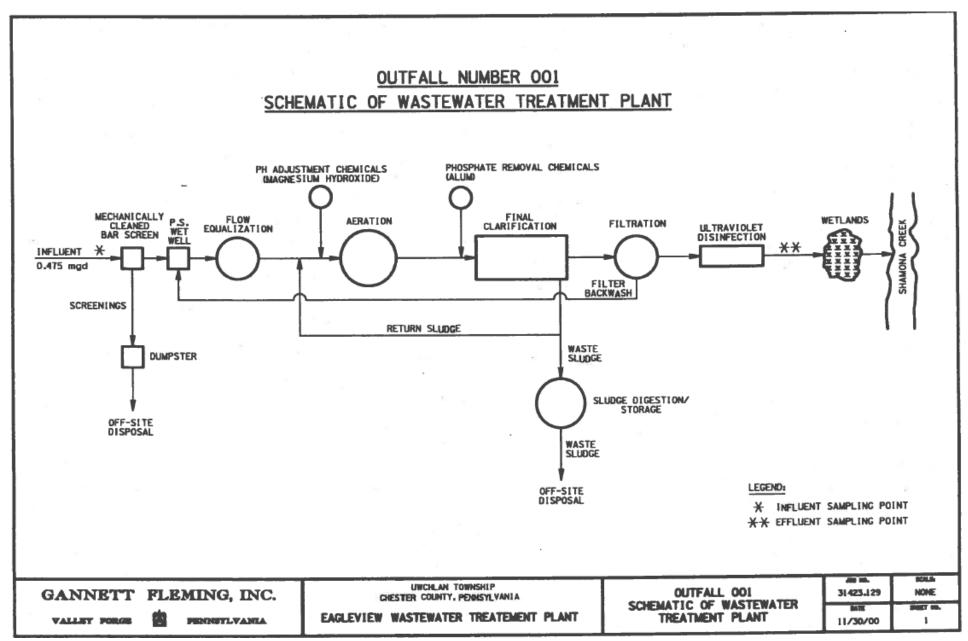
Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
			6.0					
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab
CBOD5								24-Hr
Nov 1 - Apr 30	46.8	70	XXX	12	18	24	1/week	Composite
CBOD5								24-Hr
May 1 - Oct 31	23.4	35	XXX	6	9	12	1/week	Composite
BOD5								24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
TSS								24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
TSS	79.2	118.8	XXX	20	30	40	1/week	Composite
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
UV Intensity (μw/cm²)	XXX	XXX	Report	Report	XXX	XXX	1/day	Measured
Total Nitrogen	198	XXX	XXX	50	XXX	XXX	1/week	Composite
Ammonia								24-Hr
Nov 1 - Apr 30	9.3	XXX	XXX	2.4	XXX	4.8	1/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	3.1	XXX	XXX	0.8	XXX	1.6	1/week	Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)


			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrations (mg/L)				Required
Faranietei	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Total Phosphorus								24-Hr
Nov 1 - Mar 31	6.2	XXX	XXX	1.6	XXX	3.2	1/week	Composite
Total Phosphorus								24-Hr
Apr 1 - Oct 31	3.1	XXX	XXX	0.8	XXX	1.6	1/week	Composite
				Report	Report			24-Hr
Total Copper (interim)	XXX	XXX	XXX	Avg Qrtly	Daily Max	XXX	1/quarter	Composite
	0.11	0.17		0.028	0.043			24-Hr
Total Copper (final)	Avg Qrtly	Daily Max	XXX	Avg Qrtly	Daily Max	0.07	1/quarter	Composite
				Report	Report			24-Hr
Total Zinc	XXX	XXX	XXX	Avg Qrtly	Daily Max	XXX	1/quarter	Composite

Compliance Sampling Location: At Outfall 001

Other Comments: None

	Tools and References Used to Develop Permit
	Tourne ou a service of the service o
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
<u> </u>	TRC Model Spreadsheet (see Attachment)
<u> </u>	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
$\overline{\boxtimes}$	Other: Christina River Basin TMDL documents

Process flow diagram


StreamStats data at Outfall 001

PA0054917 at Outfall 001

Region ID: PA
Workspace ID: PA20230615134503062000

Clicked Point (Latitude, Longitude): 40.06293, -75.67554

2023-06-15 09:45:29 -0400

Collapse All

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	2.4076	degrees
DRNAREA	Area that drains to a point on a stream	0.82	square miles
ROCKDEP	Depth to rock	5	feet
URBAN	Percentage of basin with urban development	8.1287	percent

arameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
RNAREA	Drainage Area	0.82	square miles	4.78	1150
SLOPD	Mean Basin Slope degrees	2.4076	degrees	1.7	6.4
OCKDEP	Depth to Rock	5	feet	4.13	5.21
RBAN	Percent Urban	8.1287	percent	0	89

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.101	ft*3/s
30 Day 2 Year Low Flow	0.149	ft*3/s
7 Day 10 Year Low Flow	0.036	ft*3/s
30 Day 10 Year Low Flow	0.0562	ft*3/s
90 Day 10 Year Low Flow	0.12	ft^3/s

Low-Flow Statistics Citations

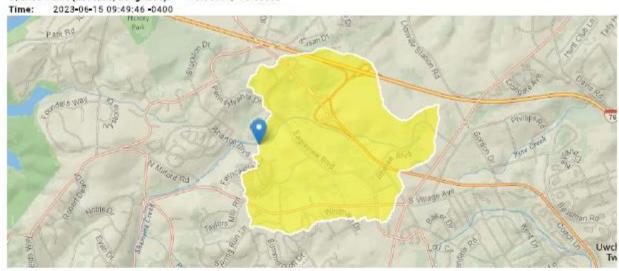
Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.15.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1


StreamStats data at node 2

PA0054917 at node 2

Region | D: PA

Workspace ID: PA20230615134926156000

Clicked Point (Latitude, Longitude): 40.06014, -75.68003

Collapse All

arameter Code	Parameter Description	Value	Unit
2043-2011-20	-20 Part 20 Pa	2002/10/12000	20000000
BSLOPD	Mean basin slope measured in degrees	2.6646	degrees
DRNAREA	Area that drains to a point on a stream	1.31	square miles
ROCKDEP	Depth to rock	5	feet
JRBAN	Percentage of basin with urban development	5.2787	percent

arameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
RNAREA	Drainage Area	1.31	square miles	4.78	1150
SLOPD	Mean Basin Slope degrees	2.6646	degrees	1.7	6.4
OCKDEP	Depth to Rock	5	feet	4.13	5.21
RBAN	Percent Urban	5.2787	percent	0	89

Low-Flow Statistics Flow Report	[Low Flow Region 1]	

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.174	ft*3/s
30 Day 2 Year Low Flow	0.252	ft^3/s
7 Day 10 Year Low Flow	0.065	ft*3/s
30 Day 10 Year Low Flow	0.0983	ft*3/s
90 Day 10 Year Low Flow	0.199	ft*3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.15.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

WQM 7.0

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Apply FC
	03H	3	324 SHAM	ONA CR	EEK		2.80	00 4	31.30	0.83	2 0.000	00	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	н т	<u>Strear</u> emp	m pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.230	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00 7	7.00	0.00	0.00	
					Di	scharge	Data]	
			Name	Per	mit Number	Disc	Disc Flow	Flow	Res Fa	erve Te ctor	isc emp °C)	Disc pH		
		Eagle	view STP	PA	0054917	0.475	0 0.475	0.475	50 (0.000	25.00	7.19		
					Pa	rameter	Data							
				Paramete	r Name	_			ream Conc	Fate Coef				
				aramete	rvaine	(m	ng/L) (n	ng/L) (r	ng/L)	(1/days)				
			CBOD5				6.00	2.00	0.00	1.50				
			Dissolved	Oxygen			6.00	8.24	0.00	0.00				
			NH3-N				0.80	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		With	VS drawal gd)	Apply FC
	03H	;	324 SHAM	IONA CRE	EEK		2.5	10	419.85	1.3	31 0.0	0000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p p	н	<u>Strea</u> Temp	m pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.230	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
					Di	scharge l	Data						1	
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd)	Dis Flo	c Res w Fa	erve T ctor	Disc Femp (°C)	Disc pH		
						0.000	0.000	0.0	000	0.000	25.00	7.00		
					Pa	rameter l	Data							
				Paramete	r Name	_		Trib Conc	Stream Conc	Fate Coef				
				aramete	rvaine	(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name				
		03H	;	324			SH	IAMONA	CREEK				
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
07.1	0 Flow												-
2.800		0.00	0.19	.7348	0.00748	.505	8.42	16.67	0.22	0.082	23.98	7.14	
Q1-1	0 Flow												
2.800	0.17	0.00	0.17	.7348	0.00748	NA	NA	NA	0.21	0.083	24.08	7.15	
Q30-	10 Flow	1											
2.800	0.24	0.00	0.24	.7348	0.00748	NA	NA	NA	0.22	0.079	23.77	7.14	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.88	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.27	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	8		

Friday, June 23, 2023 Version 1.0b Page 1 of 1

WQM 7.0 D.O.Simulation

SWP Basin St 03H	324		s	Stream Name		
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperatu	re (°C)	Analysis pH
2.800	0.47	5		23.979		7.144
Reach Width (ft)	Reach De	pth (ft)		Reach WDRati	io	Reach Velocity (fps)
8.422	0.50	5		16.669		0.217
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (m	g/L)	Reach Kn (1/days)
5.18	1.37	_		0.64		0.951
Reach DO (mg/L)	Reach Kr (Kr Equation		Reach DO Goal (mg/L)
6.458	30.30	01		Owens		6
Reach Travel Time (days)		Subreach	Results			
0.082	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
	0.008	5.11	0.63	6.80		
	0.016	5.05	0.63	7.07		
	0.024	4.98	0.62	7.28		
	0.033	4.91	0.62	7.44		
	0.041	4.85	0.61	7.57		
	0.049	4.78	0.61	7.67		
	0.057	4.72	0.60	7.67		
	0.065	4.65	0.60	7.67		
	0.073	4.59	0.59	7.67		
	0.082	4.53	0.59	7.67		

Friday, June 23, 2023 Version 1.0b Page 1 of 1

WQM 7.0 Wasteload Allocations

	03H	324			SI	HAMON	A CREEK	(
NH3-N	Acute Alloca	tions								
RMI	Discharge N	lame C	aseline riterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	n	ultiple WLA mg/L)	Critical Reach	Percent Reductio	
2.80	0 Eagleview ST	P	6.44	1.6	6.	44	1.6	0	0	_
NH3-N (Chronic Allo Discharge Na	Bas me Cri		Baseline WLA (mg/L)	Multiple Criterion (mg/L)	W	tiple /LA g/L)	Critical Reach	Percent Reduction	
2.80	0 Eagleview ST		1.35	.8		35	.8	0	0	_
Dissolve	ed Oxygen A	llocatio	ons							_
RMI	Discharge	e Name	_	BOD5 ne Multiple) (mg/L)	NH3 Baseline (mg/L)		Baselin		Critical	Percent Reduction
2.0	0 Eagleview ST	D		6 6	.8	.8	3 6	6	0	0

WQM 7.0 Effluent Limits

	SWP Basin 9	Stream Code 324	Stream Name SHAMONA CREEK					
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)	
2.800	Eagleview ST	P PA0054917	0.475	CBOD5	6			
				NH3-N	0.8	1.6		
				Dissolved Oxygen			6	

TMS

Toxics Management Spreadsheet Version 1.4, May 2023

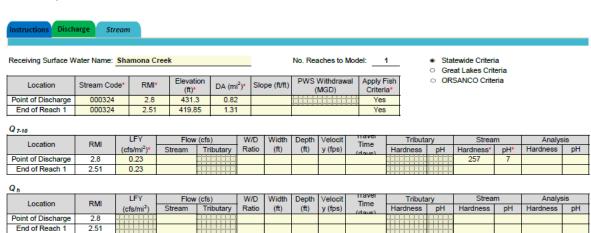
Discharge Information

Instruction	Disc	harge Stream		
Facility:	Eagle	riew STP	NPDES Permit No.: PA0054917	Outfall No.: 001
Evaluation	Type:	Major Sewage / Industrial Waste	Wastewater Description: Treated Sewage	
		Dischar	ge Characteristics	

	Discharge Characteristics										
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	Complete Mix Times (min)						
(MGD)*	riaruness (mg/i)	pii (30)	AFC CFC THH CRL Q ₇₋₁₀ Q								
0.475	280	7.19									

													blank
	Discharge Pollutant	Units	Max	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L											
20	Chloride (PWS)	mg/L											
8 B	Bromide	mg/L											
Group G B G	Sulfate (PWS)	mg/L											
	Fluoride (PWS)	mg/L											
Te	Total Aluminum	μg/L											
Te	Total Antimony	μg/L											
Te	Total Arsenic	μg/L											
Te	Total Barium	μg/L											
Te	Total Beryllium	μg/L											
Te	Total Boron	μg/L											
Te	Total Cadmium	μg/L											
Te	Total Chromium (III)	μg/L											
H	lexavalent Chromium	µg/L											
To	Total Cobalt	µg/L											
Te	Total Copper	mg/L		0.064									
7 F	ree Cyanide	μg/L											
Ĭ Te	Total Cyanide	µg/L											
	Dissolved Iron	µg/L											
	Total Iron	μg/L											
Te	Total Lead	mg/L	<	0.001									
To	Total Manganese	µg/L											
To	Total Mercury	µg/L											
To	Total Nickel	µg/L											
Te	Total Phenols (Phenolics) (PWS)	µg/L											
. –	Total Selenium	µg/L											
To	Total Silver	µg/L											
To	Total Thallium	μg/L											
To To	Total Zinc	mg/L		0.047									
	Total Molybdenum	µg/L											
-	Acrolein	µg/L	<										
A	Acrylamide	µg/L	<										
. –	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
В	Bromoform	µg/L	<										
C	Carbon Tetrachloride	μg/L	<										

	Chlorobenzene	μg/L						
	Chlorodibromomethane	μg/L	<					
	Chloroethane	μg/L	<					
	2-Chloroethyl Vinyl Ether	μg/L	<					
	Chloroform	μg/L	<					
	Dichlorobromomethane	μg/L	<					
	1,1-Dichloroethane	μg/L	<					
l	1,2-Dichloroethane	µg/L	<					
က္ခ	1,1-Dichloroethylene	µg/L	<					
Group	1,2-Dichloropropane		<					
ق		µg/L	-					
-	1,3-Dichloropropylene	μg/L	<					
	1,4-Dioxane	μg/L	<					
	Ethylbenzene	μg/L	<					
	Methyl Bromide	μg/L	<					
	Methyl Chloride	μg/L	<					
	Methylene Chloride	μg/L	<					
	1,1,2,2-Tetrachloroethane	μg/L	<					
	Tetrachloroethylene	μg/L	<					
1	Toluene	µg/L	<					
	1,2-trans-Dichloroethylene	µg/L	<					
	1,1,1-Trichloroethane	µg/L	<					
1	1.1.2-Trichloroethane	μg/L μg/L	<					
	-1-1-		<					
	Trichloroethylene	µg/L	-					
<u> </u>	Vinyl Chloride	μg/L	<					
	2-Chlorophenol	μg/L	<					
	2,4-Dichlorophenol	μg/L	<					
	2,4-Dimethylphenol	μg/L	<					
١.	4,6-Dinitro-o-Cresol	μg/L	<					
4	2,4-Dinitrophenol	μg/L	<					
Group	2-Nitrophenol	μg/L	<					
18	4-Nitrophenol	μg/L	<					
	p-Chloro-m-Cresol	μg/L	<					
	Pentachlorophenol	μg/L	<					
	Phenol	µg/L	<					
	2,4,6-Trichlorophenol	µg/L	<					
\vdash	Acenaphthene	µg/L	<					
			<					
	Acenaphthylene	μg/L	-					
	Anthracene	μg/L	<					
	Benzidine	μg/L	<					
	Benzo(a)Anthracene	μg/L	<					
	Benzo(a)Pyrene	μg/L	<					
	3,4-Benzofluoranthene	μg/L	<					
	Benzo(ghi)Perylene	μg/L	<					
	Benzo(k)Fluoranthene	μg/L	<					
	Bis(2-Chloroethoxy)Methane	μg/L	<					
	Bis(2-Chloroethyl)Ether	µg/L	<					
	Bis(2-Chloroisopropyl)Ether	μg/L	<					
	Bis(2-Ethylhexyl)Phthalate	µg/L	<					
	4-Bromophenyl Phenyl Ether	µg/L	<					
	Butyl Benzyl Phthalate	µg/L	<					
	2-Chloronaphthalene		<					
I	z-onioronaphinalene	μg/L	-					
l								
	4-Chlorophenyl Phenyl Ether	µg/L	<					
	4-Chlorophenyl Phenyl Ether Chrysene	μg/L	<					
	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene	μg/L μg/L	<					
	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene	µg/L µg/L µg/L	< <					
	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene	µg/L µg/L µg/L µg/L	< < <					
2	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	µg/L µg/L µg/L	< <					
np 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	µg/L µg/L µg/L µg/L	< < <					
roup 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	µg/L µg/L µg/L µg/L µg/L	< < < <					
g	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <					
Group 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <					
Group 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Din-Butyl Phthalate Din-Butyl Phthalate	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	<th></th> <th></th> <th></th> <th></th> <th></th>					
Group 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene	49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L	<th></th> <th></th> <th></th> <th></th> <th></th>					
Group 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Din-Butyl Phthalate Din-Butyl Phthalate	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	<td></td> <td></td> <td></td> <td></td> <td></td>					


	400:1 11 1 :		-	H						
	1,2-Diphenylhydrazine	μg/L	<		₩	-				
	Fluoranthene	μg/L	<	-						
	Fluorene	μg/L	<							
	Hexachlorobenzene	μg/L	<	#						
	Hexachlorobutadiene	μg/L	٧		ш					
	Hexachlorocyclopentadiene	μg/L	<							
	Hexachloroethane	μg/L	<	-	\square					
	Indeno(1,2,3-cd)Pyrene	μg/L	<		\Box					
	Isophorone	μg/L	<		\Box					
	Naphthalene	μg/L	<	#	##					
	Nitrobenzene	µg/L	<		\blacksquare	-				
			-		Ħ	-				
	n-Nitrosodimethylamine	μg/L	<		Ħ	_				
	n-Nitrosodi-n-Propylamine	μg/L	<	₩	₩					
	n-Nitrosodiphenylamine	μg/L	<							
	Phenanthrene	μg/L	٧		ш					
	Pyrene	μg/L	~							
	1,2,4-Trichlorobenzene	μg/L	<		\square	-				
	Aldrin	μg/L	<		ш					
	alpha-BHC	μg/L	<	#						
	beta-BHC	µg/L	<							
			<			1				
	gamma-BHC delta BHC	µg/L	<		Ħ	1				
		μg/L	_							
	Chlordane	μg/L	<	-						
	4,4-DDT	μg/L	<							
	4,4-DDE	μg/L	<							
	4,4-DDD	μg/L	<	++-						
	Dieldrin	μg/L	<		\square	-				
	alpha-Endosulfan	μg/L	<		##					
	beta-Endosulfan	μg/L	<							
9	Endosulfan Sulfate	µg/L	<	#	##					
읔	Endrin	µg/L	<	++	+++					
	Endrin Aldehyde		<	#	Ħ	-				
O	•	μg/L	_		ш	_				
	Heptachlor	μg/L	<		₩	_				
	Heptachlor Epoxide	μg/L	<	-						
	PCB-1016	μg/L	<							
	PCB-1221	μg/L	<		ш					
	PCB-1232	μg/L	<	+-						
	PCB-1242	μg/L	<		\square	-				
	PCB-1248	μg/L	<	11	\Box					
	PCB-1254	μg/L	<							
	PCB-1260	μg/L	<	#	##					
	PCBs, Total	µg/L	<	#						
	Toxaphene		~		Ħ					
	2,3,7,8-TCDD	μg/L ng/L	<	\rightarrow	##					
			_			_				
	Gross Alpha	pCi/L								
7	Total Beta	pCi/L	<	#						
3	Radium 226/228	pCi/L	<							
2	Radium 226/228 Total Strontium Total Uranium	μg/L	<	#						
9	Total Uranium	μg/L	<							
	Osmotic Pressure	mOs/kg		#						
					Ħ					
						_				
				1						

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Eagleview STP, NPDES Permit No. PA0054917, Outfall 001

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Eagleview STP, NPDES Permit No. PA0054917, Outfall 001

Instructions Results	RETUR	N TO INPUTS	SAV	E AS PDF	PRIN	т .	ΔII ∩	Inputs ()	Results	∩ Limits	
mod dections — Nesures	(1127011) (3/10	2710101		. , .	7		rtoodilo	Caraco	
☐ Hydrodynamics											
✓ Wasteload Allocations											
☑ AFC	CCT (min): 0	.131	PMF:	1 A	nalysis Hardne	ess (mg/l):	275.3	Ana	alysis pH:	7.14	
Pollutants	Stream Conc		rib Conc Fa (µg/L) Co		WQ Obj (µg/L)	WLA (µg	/L)		Co	omments	
Total Copper	0	0	(34.895	36.3	45.7		Ch	em Transl	ator of 0.96 applied	\neg
Total Lead	0					372				tor of 0.643 applied	
Total Zinc	0	0		276.380	283	355		Che	em Transla	tor of 0.978 applied	
☑ CFC		.131	PMF:	1 A	Analysis Hardn	ess (mg/l):	275.3	Ana	alysis pH:	7.14	
Pollutants	Conc		rib Conc Fa (µg/L) Co		WQ Obj (µg/L)	WLA (µg	/L)		Co	omments	
Total Copper	0	_		21.277		27.9				ator of 0.96 applied	
Total Lead	0	0			11.5	14.5				tor of 0.643 applied	
Total Zinc	0	0		278.641	1 283	355		Che	em Transla	tor of 0.986 applied	
☑ THH		.131	PMF:	1 A	Analysis Hardn	ess (mg/l):	N/A	Ana	alysis pH:	N/A	
Pollutants	Conc		rib Conc Fa (μg/L) Co		WQ Obj (µg/L)	WLA (µg	/L)		Co	omments	
Total Copper	0	0) N/A	N/A	N/A					
Total Lead	0	_) N/A	N/A	N/A					
Total Zinc	0	0) N/A	N/A	N/A					
☑ CRL	CCT (min): 0	.807	PMF:		Analysis Hardn	ess (mg/l):	N/A	Ana	alysis pH:	N/A	
Pollutants	Conc		rib Conc Fa (μg/L) Co		WQ Obj (µg/L)	WLA (µg	/L)		Co	nments	
Total Copper	0	0		N/A	N/A	N/A					
Total Lead	0	0) N/A	N/A	N/A					
odel Results	·			12	/12/2023						Page
Total Zinc	0	0		N/A	N/A	N/A					
□ Recommended WQBELs	_	quirements			•	•					
No. Samples/Month:	4										
	Mass	s Limits		Concentration	on Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis		Comments	
Total Copper	0.11	0.17	0.028	0.043	0.07	mg/L	0.028	CFC		arge Conc ≥ 50% WQBEL (RI	
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.28	AFC	Discha	rge Conc > 10% WQBEL (no f	RP)

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Lead	N/A	N/A	Discharge Conc < TQL

Other Pollutants without Limits or Monitoring