

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0057657
1025915
1331608

Applicant and Facility Information

Applicant Name	Kendal Crosslands Communities	Facility Name	Kendall Crosslands STP
Applicant Address	PO Box 100	Facility Address	1109 E Baltimore Pike
	Kennett Square, PA 19348-0100		Kennett Square, PA 19348-2366
Applicant Contact	Joseph Deckman	Facility Contact	Joseph Deckman
Applicant Phone	(610) 388-5018	Facility Phone	(610) 388-5018
Client ID	26611	Site ID	496305
Ch 94 Load Status	Not Overloaded	Municipality	Kennett Township
Connection Status	No Limitations	County	Chester
Date Application Received October 21, 2020		EPA Waived?	Yes
Date Application Accepted November 30, 2020		If No, Reason	

Purpose of Application

NPDES permit renewal for stream discharge.

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application for Kendal Crosslands STP (facility) from Kendal Crosslands Community (permittee) on October 21, 2020. The facility is in Upper Kennett Township, Chester County. This is a minor facility with design flow of 0.125 MGD. The treated effluent discharges through Outfall 001 into a culvert to UNT to Bennetts Run, WWF/MF, at RMI 0.83. The existing permit will expire on February 28, 2021. The terms and conditions were automatically extended since the renewal application was received at least 180 days prior to permit expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56

Changes in the permit: Average monthly TRC limit became more stringent.

Sludge use and disposal description and location(s): Hauled off to DELCORA and Pottstown WWTP

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	February 23, 2021
Х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	02/24/2021

Discharge, Receiving Waters and Water Supply Infor	mation				
Outfall No. 001	Design Flow (MGD)	0.125			
Latitude 39° 52' 32"	Longitude	-75º 39' 21"			
Quad Name Unionville	Quad Code	1940			
Wastewater Description: Sewage Effluent					
Receiving Waters Bennetts Run (WWF, MF)	Stream Code	00050			
NHD Com ID26092142	RMI	0.83			
Drainage Area 0.0422 mi ²	Yield (cfs/mi²)	0.22			
Q ₇₋₁₀ Flow (cfs) 0.07 (previous PR, Winter only)	Q7-10 Basis				
Elevation (ft) 401.15	Slope (ft/ft)				
Watershed No. 3-H	Chapter 93 Class.	WWF, MF			
Existing Use	Existing Use Qualifier				
Exceptions to Use	Exceptions to Criteria				
Assessment Status Not Assessed					
Cause(s) of Impairment					
Source(s) of Impairment					
TMDL Status	Name				
Background/Ambient Data	Data Source				
pH (SU) 7.0	Default per 391-2000-013				
Temperature (°C) 25	Default per 391-2000-013 for WWF				
Hardness (mg/L)100	Default				
Other:					
Nearest Downstream Public Water Supply Intake	None between discharge and DE border				
PWS Waters	Flow at Intake (cfs)				
PWS RMI	Distance from Outfall (mi)				

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

Streamflow data was collected from the nearest downstream USGS stream gage 01481000 located in Brandywine Creek at Chadds Ford, PA. Q₇₋₁₀, Q₁₋₁₀, and Q₃₀₋₁₀ values at this gage are 63.8 cfs, 60.0 cfs, and 76.9 cfs respectively for the reporting years of 1975-2008. The drainage area was found to be 287 mi². These values were obtained from the latest USGS streamflow report ⁽¹⁾. The drainage area at the discharge point was found to be 0.0422 mi² from USGS StreamStats Version 3.0 Flow Statistics Ungaged Site Report on February 22, 2021.

 $\begin{array}{l} Q_{7\text{-}10} \text{ runoff rate} = 63.8 \mbox{ cfs}/287 \mbox{ mi}^2 = 0.22 \mbox{ cfs}/mi^2 \\ Q_{7\text{-}10} = 0.22 \mbox{ cfs}/mi^2 * 0.0422 \mbox{ mi}^2 = 0.009 \mbox{ cfs} \\ Q_{1\text{-}10}/Q_{7\text{-}10} = 60 \mbox{ cfs}/63.8 \mbox{ cfs} = 0.94 \\ Q_{30\text{-}10}/Q_{7\text{-}10} = 76.9 \mbox{ cfs}/63.8 \mbox{ cfs} = 1.21 \end{array}$

The existing permit has Q₇₋₁₀ value of 0.07 cfs for winter months which will be used for modeling, if needed.

⁽¹⁾ Stuckey, M.H., Roland, M.A., 2011, Selected streamflow statistics for streamgage locations in and near Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2011-1070, 23p, 37p.

PWS Intake:

There is no downstream PWS intake from the discharge point to Delaware border.

Wastewater Characteristics:

A default pH of 7.0 and a default temperature of 20°C (per 391-2000-013) will be used for modeling, if needed. Default Hardness value of 100 mg/l will be used for modeling, if needed.

Background data:

The nearest downstream WQN stations from Outfall 001 is WQN105. Stream data were collected from WQN station for parameters pH, Total Hardness, and Temperature. The median pH, Total Hardness, and Temperature for the months July-September between years 1999-2019 is 7.4 S.U., 108 mg/l, and 22.4°C, respectively. These values will be used in the modeling, if needed.

Christina River Basin TMDL:

The facility is located within Christina River Basin TMDL. The Christina River Basin Total Maximum Daily Load (TMDL) for Nutrients and Dissolved Oxygen for Low-Flow Conditions was issued by the Environmental Protections Agency (EPA) on January 19, 2001 and subsequently revised on October 2002 and April 2006. Furthermore, DEP prepared, and EPA acknowledged an Alternative Reduction Scenario for the Christina River Basin for Low Flow TMDL dated June 27, 2012 to reassigned some of the allocations within the dischargers by keeping the total load to the basin the same. The Christina River Basin also has an approved High-Flow TMDL for Bacteria and Sediment (dated September 2006) for Fecal Coliform, enterococci, and TSS, flows and loads for nutrients and CBOD5. The high flow TMDL allocations were not adjusted at the time when low flow TMDL under an "Alternative Reduction Scenario" was developed. Since the Christina River Low-Flow TMDL is the driver for the Christina River High-Flow TDML especially for nutrients, it is assumed that compliance with the low flow TMDL satisfies the compliance of the high flow TMDL.

The facility doesn't have an approved WLA in the TMDL.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Warm Water Fishes (WWF) and Migratory Fishes (MF.) No High-Quality stream or Exceptional Value water is impacted by this discharge; therefore, no Antidegradation Analysis is performed for the discharge.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

Treatment Facility Summary								
Treatment Facility Na	me: Kendal Crosslands ST	Р						
WQM Permit No.	Issuance Date							
1599417 A-1	12/14/2018							
1599417	02/10/2000							
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
Sewage	Tertiary	Aerated Lagoon With Solids Removal	Hypochlorite	0.125				
	· · · ·							
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal				
0.125	260	Not Overloaded	Drying	Other WWTP				

Changes Since Last Permit Issuance: None

Other Comments:

Treatment Plant Description

Kendall Crosslands STP is a minor STP with a design flow of 0.125 MGD that discharges treated sewage to an UNT to Bennetts Run, which is a tributary to Brandywine Creek. This facility normally uses lagoon treatment and spray irrigation (under WQM permit number 1599417). The stream discharge is a secondary or emergency disposal method of treated wastewater where land application is the primary method of disposal.

As stated in the application, raw sewage enters the plant, flowing through a comminutor/manual bar screen. It then enters a single basin SBR system, flows to a polishing pond, and is then pumped to a flocculation tank. Prior to the flocculation tank, alum is added for phosphorus removal. Following the flocculation tank, the wastewater flows through a cloth disk filter to a storage lagoon, then a chlorine contact tank. It then goes through dechlorination before being discharged through one of two discharge options: stream discharge to Outfall 001 or by spray discharge.

Most recent inspection report (January 7, 2020) indicates the treatment process consists of a comminutor, SBR, floc tanks, Aqua Disk-Filter, Storage lagoon, and polishing pond.

The contributors to the facility are as follows:

Municipalities conved	Flow contribution (9)	Type of Sewer System			
wunicipalities served	Flow contribution (%)	Separate (%)	Combined (%)		
Kennett Township (Kendal at Longwood)	47	100	0		
Pennsbury Township (Crosslands and Cartmel)	53	100	0		

The following chemicals are used for wastewater treatment purpose:

Chemical name	Purpose	Maximum use rate	Units
Sodium Hypochlorite	Disinfection	15-50	Gpd
Aluminum Sulfate	Flocculation	10	Gpd
Sodium Bisulfate	Dechlorination	2.5	gpd

The facility has a short-term plan to upgrade existing Reed Bed drain lines and plant new Common Phragmites Reed Rootstock.

Biosolids Management:

Sludge hauled off site either to DELCORA WWTP or Pottstown WWTP.

Summary of Inspection:

01/07/2020: RTPT conducted. No violation noted.

03/06/2018: RTPT conducted. No violation noted.

<u>03/10/2016</u>: RTPT conducted. SBR had a heavy mat of solids on the surface. It was recommended that measures should be taken to control surface scum and prevent it from carrying over during the decant cycle.

<u>08/26/2015</u>: RTNC conducted. No violation noted. There were some erosion channels within the wooded area. They did not originate exclusively near the spray heads and appeared to have been caused by rain events and not a result of land application.

Compliance History

DMR Data for Outfall 002 (from January 1, 2020 to December 31, 2020)

Parameter	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20
pH (S.U.)												
Instantaneous												
Minimum	7.6	7.4	6.8	6.8	6.6	6.8	6.8	8.5	7.7	7.5	8.0	7.4
pH (S.U.)												
Instantaneous												
Maximum	7.6	7.4	6.8	6.9	6.6	6.8	6.8	8.5	7.7	7.5	8.4	8.5
CBOD5 (mg/L)												
Average Monthly	< 2.0	< 2.0	19.8	4.3	4.5	3.3	8.6	3.2	< 2.0	9.0	5.3	< 2.0
TSS (mg/L)												
Average Monthly	5.0	< 5.0	11.0	< 5.0	9.0	< 5.0	18.0	16.0	21.0	10.0	17.0	17.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 1	< 1	< 1	< 1	1	< 1	< 2	< 1	< 1	< 1	< 1	< 1

DMR Data for Outfall 1599417 (from January 1, 2020 to December 31, 2020)

Parameter	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20
Flow (GPD)												
Influent Average												
Monthly	69516	72706	71635	68000	65376	61714	66067	61677	65730	69194	62031	58332

Existing Effluent Limitations and Monitoring Requirements

The table below summarizes effluent limitations and monitoring requirements specified in the existing final NPDES permit that was in effect between March 1, 2016 to February 28, 2021.

		Monitoring Requirements						
Paramotor	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	xxx	xxx	xxx	xxx	ххх	Continuous	Metered
рН (S.U.)	XXX	xxx	6.0	xxx	xxx	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	6.0	xxx	ххх	ххх	1/day	Grab
Total Residual Chlorine	XXX	XXX	xxx	0.1	XXX	0.2	1/day	Grab
CBOD5	21	XXX	XXX	20	XXX	40	1/week	24-Hr Composite
Total Suspended Solids	21	XXX	XXX	20	xxx	40	1/week	24-Hr Composite
Fecal Coliform (No./100 ml)	ХХХ	XXX	XXX	200	XXX	1,000	1/week	Grab
Ammonia-Nitrogen May 1 - Oct 31	2.1	XXX	xxx	2.0	XXX	4.0	1/week	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	6.3	xxx	xxx	6.0	xxx	12.0	1/week	24-Hr Composite
Total Phosphorus	2.1	XXX	XXX	2.0	xxx	4.0	1/week	24-Hr Composite
Total Copper	0.013	0.025	xxx	0.012	0.024	0.03	1/month	24-Hr Composite
Total Zinc	0.08	0.17	xxx	0.08	0.16	0.2	1/month	24-Hr Composite

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.125
Latitude	39º 52' 32.00"		Longitude	-75º 39' 21.00"
Wastewater De	escription:	Sewage Effluent	_	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: These standards apply, subject to Water Quality Analysis and BPJ where applicable.

Water Quality-Based Limitations

WQM 7.0:

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q₇₋₁₀ and historic background water quality levels of the river. The following data were used in the attached computer model of the stream:

٠	Discharge pH	7.0	(Default per 391-2000-013)
٠	Discharge Temperature	20°C	(Default per 391-2000-013)
٠	Discharge Hardness	100 mg/l	(Default)
٠	Stream pH	7.4	(WQN_105, median July-Sep, 1999-2019)
٠	Stream Temperature	22.4°C	(WQN_105, median July-Sep, 1999-2019)
٠	Stream Hardness	108 mg/l	(WQN_105, median July-Sep, 1999-2019)

The following nodes were considered in modeling:

Node 1:	Outfall 001 at UNT to	b Bennetts Run (00050)
	Elevation:	401.15 ft (USGS National Map viewer, 02/22/2021)
	Drainage Area:	0.0422 mi ² (StreamStat Version 3.0, 02/22/2021)
	River Mile Index:	0.83 (PA DEP eMapPA)
	Low Flow Yield:	0.22 cfs/mi ²
	Discharge Flow:	0.125 MGD

Node 2:At confluence with Bennetts Run (00047)
Elevation:245.12 ft (USGS National Map viewer, 02/22/2021)

Drainage Area:	0.51 mi ² (StreamStat Version 3.0, 02/22/2021)
River Mile Index:	0.0 (PA DEP eMapPA)
Low Flow Yield:	0.22 cfs/mi ²
Discharge Flow:	0.0 MGD

Ammonia (NH₃-N), Carbonaceous Biochemical Oxygen Demand (CBOD5), & Dissolved Oxygen (DO):

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q_{7-10} and current background water quality levels of the stream.

<u>NH₃-N:</u>

WQM 7.0 suggested NH₃-N limit of 2.0 mg/l as monthly average and 4.0 mg/l as IMAX limit during summer to protect water quality standards. These values are the same as existing permitted limits. Recent DMR data show that the plant is meeting the permit limits. The average monthly mass loading is calculated to be 2.1 lbs./day. The existing winter season limits of 6.0 mg/l as average monthly and 12.0 mg/l as IMAX limit will be carried over in this renewal. Winter average monthly mass limit was calculated as 6.3 lbs./day. All these values are the same as existing permit and will be carried over.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 20 mg/l. The IMAX value is 40 mg/l. The average monthly mass loading is calculated as 21 lbs/day. These values are the same as existing permit and will be carried over.

Dissolved Oxygen (DO):

The existing permit has a minimum DO of 6.0 mg/l. WQM 7.0 output file supports the existing limit and will be carried over.

Toxics:

Based on the monitoring data (maximum concentrations) reported on the application, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

The existing permit has Total Copper average monthly, daily max, and imax limit of 0.012 mg/l, 0.024 mg/l, and 0.03 mg/l, respectively. Average monthly and daily max mass limits are 0.013 lbs./day and 0.025 lbs./day, respectively. Total Zinc has an average monthly, daily max, and imax limit of 0.08 mg/l, 0.16 mg/l, and 0.2 mg/l, respectively. The average monthly and daily max mass loads are 0.08 lbs./day and 0.17 lbs./day, respectively. The maximum concentration reported in the application for Total Copper and Total Zinc are 0.003 mg/l and 0.016 mg/l. These values are utilized in the TMS to conduct a Reasonable Potential (RP) Analysis. The output from model shows no RP were demonstrated for both parameters. Therefore, the existing limits will be carried over since none of the exception in federal Anti-degradation policy were met.

Additional Considerations

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a) requires a technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml. The facility has year-round geo-mean limit of 200/100 ml and IMAX of 1000/100 ml. These limits will be carried over in this renewal.

<u>рН:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 § 95.2(1)) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 20 mg/L average monthly and 40 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly limits are calculated to be 21 lbs./day, which will be carried over in this renewal.

<u>Total Phosphorus:</u> The existing permit has average monthly and IMAX limit of 2.0 mg/l and 4.0 mg/l. The average monthly mass limit is 2.1 lbs./day. Existing limits will be carried over in this renewal.

Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.06 mg/l would be needed to prevent toxicity concerns at the discharge point for Outfall 001. The Instantaneous Maximum (IMAX) limit is 0.2 mg/l. The existing permit has AML limit of 0.1 mg/l and IMAX limit of 0.2 mg/l. The Average monthly limit is more stringent compared to existing limit. The facility uses Sodium Bisulfate for dechlorination. It is believed that the facility has technology in place to meet more stringent average monthly limit. Therefore, it is recommended that the average monthly limit of 0.06 will be placed in this renewal.

Flow:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Best Professional Judgement (BPJ):

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Flow (MGD)	Report	xxx	xxx	xxx	xxx	XXX	Continuous	Metered
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			6.0					
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	xxx	XXX	0.06	XXX	0.2	1/day	Grab
	7007	7000	7000	0.00	7000	0.2	irday	24-Hr
CBOD5	21	XXX	XXX	20	XXX	40	1/week	Composite
								24-Hr
TSS	21	XXX	XXX	20	XXX	40	1/week	Composite
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200	XXX	1000	1/week	Grab
Ammonia								24-Hr
Nov 1 - Apr 30	6.3	XXX	XXX	6.0	XXX	12	1/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	2.1	XXX	XXX	2.0	XXX	4	1/week	Composite
								24-Hr
Total Phosphorus	2.1	XXX	XXX	2.0	XXX	4	1/week	Composite
		0.025			0.024			24-Hr
Total Copper	0.013	Daily Max	XXX	0.012	Daily Max	0.03	1/month	Composite
		0.17			0.16			24-Hr
Total Zinc	0.08	Daily Max	XXX	0.08	Daily Max	0.2	1/month	Composite

Compliance Sampling Location: At Outfall 001

Other Comments: None

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
TDC Madel Careadahast (see Attachment)
Treverse weeks and the set (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Lechnical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0057657

PA0057657 at Outfall 001

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): Time: PA 20210223012035827000 39.87615, 75.65166 2021-02-22 20:20:51-0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.0422	square miles
BSLOPD	Mean basin slope measured in degrees	4.4925	degrees
ROCKDEP	Depth to rock	5	feet
URBAN	Percentage of basin with urban development	54.3956	percent

rameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0422	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	4.4925	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
URBAN	Percent Urban	54.3955	percent	0	89
on Flow Statistics Disela	MARKS and Include of				
LUW FILW Statistics Discla	Laboration and and an U				
One or more of the pare	meters is outside the supposted range. Estimate	s were extrapolated with	unknown errors		
One or more of the para low-Flow Statistics Flow R	instance more major of the suggested range. Estimate eports where here so of the suggested range.	a were extrepolated with	unknown errors		
One or more of the pers Low-Flow Statistics Flow R Statistic	meters is outside the supported range. Estimate	s were extrapolated with	unknown errors Value	Uni	t
One or more of the para Low Flow Statistics Flow R Statistic 7 Day 2 Year Low Flow	meters is outside the suggested range. Estimate aportune Review of	s were extrapolated with	unknown errors Value 0.0228	Uni ft^	t 8/s
One or more of the para Low Flow Statistics Flow R Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flow	inclusion we make it imeters is outside the suggested range. Estimate sport[une Rewington () i W	s were extrapolated with	Value 0.0228 0.0299	Uni 1149 1149	t 3/s
One or more of the per- Low-Flow Statistics Flow R Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flo 7 Day 10 Year Low Flo	inclusion we make it meters is outside the suggested range. Estimate sports with the suggest of r W W	s were extrapolated with	Value 0.0228 0.0299 0.0107	Uni 1143 1144 1144	t 3/s 3/s
One or more of the per- Low-Flow Statistics Flow R Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flo 7 Day 10 Year Low Flo 30 Day 10 Year Low Flo	instancement maker of meters is outside the suggested range. Estimate apports	s were extrapolated with	Value 0.0228 0.0299 0.0107 0.0148	Uni 114 114 114 114	t 8/s 8/s

StreamStats at Node 2

Basin Characteristics					
Parameter Code	Parameter Description			Value	Unit
DRNAREA	Area that drains to a point on a st	ream		0.51	square miles
CARBON	Percentage of area of carbonate rock			0	percent
BSLOPD	Mean basin slope measured in degrees			5.2435	degrees
ROCKDEP	Depth to rock	Depth to rock			feet
URBAN	Percentage of basin with urban de	evelopment		26.5827	percent
Low-Flow Statistics Param	of Edit Sig. one Flow Region 1]				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.51	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	5.2435	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
URBAN	Percent Urban	26.5827	percent	0	89
Low Flow Statistics Disclai	M015),.cw.Row Region 1]				
One or more of the para	meters is outside the suggested range. Estimate	s were extrapolated with	unknown errors		
Low Flow Statistics Flow R	eporture Reviegion ()				
Statistic			Value		Jnit
7 Day 2 Year Low Flow			0.23	,	t*3/s
30 Day 2 Year Low Flo	w		0.286	1	t*3/s

 30 Day 10 Year Low Flow
 0.266
 113/5

 7 Day 10 Year Low Flow
 0.115
 ft*3/s

 30 Day 10 Year Low Flow
 0.149
 ft*3/s

 90 Day 10 Year Low Flow
 0.214
 ft*3/s

https://streamstats.usgs.gov/ss/

2/22/2021

TRC_CALC

TRC EVALUA	TION				
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9			
0.07	= Q stream (cfs)	0.5	= CV Daily	
0.125	= Q discharg	e (MGD)	0.5	= CV Hourly	
30	= no. sample	s	1	= AFC_Partial N	lix Factor
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)
0	= % Factor o	of Safety (FOS)		=Decay Coeffic	ient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	0.134	1.3.2.iii	WLA cfc = 0.124
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	0.050	5.1d	LTA_cfc = 0.072
Source		Effluer	nt Limit Calcul	ations	
PENTOXSD TRG	5.1f		AML MULT =	1.231	
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.062	AFC
		INST MAX	LIMIT (mg/l) =	0.202	
WI A afc	(019/0/	EC. to)) + [(AEC. Yo*Os* 019)	Od*e(.k*AEC	te))	
The are	+ Xd + (AF)	C Yc*Qs*Xs/Qd)]*(1-FOS/10)))))		
LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+	-, 1)^0.5)		
LTA_afc	wla afc*LTA	MULT afc	.,,		
-	-	-			
WLA_cfc	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs*.011/0	d*e(-k*CFC_t	tc))	
	+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)		
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.320	5*LN(cvd^2/nd	_samples+1)^0	.5)
LTA_cfc	wla_cfc*LTA	MULT_cfc			
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.5	5)-0.5*LN(cvd/	2/no_samples+	1))
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AM	L_MULT)		
INST MAX LIMIT	1.5*((av_moi	n_limit/AML_MULT)/LTAMUL	T_afc)		

	SWF Basi	o Strea n Cod	ie Ie	Stre	am Name		RMI	Elev: (f	ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03H		50 Trib 00	050 to Be	ennetts Rur	n	0.83	30 4	401.15	0.04	0.00000	0.00	~
					St	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.220	0.00	0.00	0.000	0.000	0.0	0.00	0.00	2	2.40 7.4	40 (0.00 0.00	
21-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Di	ischarge D	ata					
Nan	ne Permit Number	Existing Disc r Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reser Fact	rve T or	Disc Temp (°C)	Disc pH
Kendall STR	PA0057657	0.1250	0.1250	0.125	0 0.	000	20.00	7.00
	Pa	arameter D	ata					
		Dis Co	c Trit nc Cor	b Str nc C	ream Conc	Fate Coef		
	Parameter Name	(mg	y/L) (mg	/L) (m	ng/L) ((1/days)		
CBOD	05	2	0.00	2.00	0.00	1.50		
Disso	lved Oxygen		6.00 8	8.24	0.00	0.00		
NH3-I	N		2.00 0	0.00	0.00	0.70		

	SWP Basir	9 Strea n Cod	am le	Stream Name			RMI		tion)	Drainage Area (sq mi)	Slope (ft/ft)	P\ With (m	WS drawal 1gd)	Apply FC	
	03H		50 Trib 00	0050 to Be	ennetts Run		0.00	00 2	45.12	0.51	0.000	00	0.00	V	
					St	ream Dat	a								
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	т	<u>Strea</u> emp	m pH		
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C)			
}7-10 }1-10 }30-10	0.220	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	22	2.40 7.	40	0.00	0.00		
					Di	scharge l	Data						7		
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Res Fac	Di erve Tei ctor (°	sc mp C)	Disc pH			
						0.000	0.000	0.000	00 0	0.000	25.00	7.00	-		
					Pa	arameter l	Data								
				Parameter	Name	Di C	isc 1 onc C	frib St Conc C	ream Conc	Fate Coef					
				raramete	rvanne	(m	g/L) (n	ng/L) (n	ng/L)	(1/days)					
			CBOD5				25.00	2.00	0.00	1.50					
			Dissolved	Oxygen			3.00	8.24	0.00	0.00					

25.00

0.00

0.00

0.70

Input Data WQM 7.0

NH3-N

WQM 7.0 Hydrodynamic Outputs													
	SW	P Basin	Strea	m Code				Stream	Name				
		03H		50			Trib 00	050 to E	ennetts F	Run			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-1	0 Flow												
0.830	0.01	0.00	0.01	.1934	0.03560	.481	2.07	4.31	0.20	0.250	20.11	7.01	
Q1-1	0 Flow												
0.830	0.01	0.00	0.01	.1934	0.03560	NA	NA	NA	0.20	0.250	20.10	7.01	
Q30-	10 Flow												
0.830	0.01	0.00	0.01	.1934	0.03560	NA	NA	NA	0.20	0.249	20.13	7.01	

Tuesday, February 23, 2021

Version 1.0b

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0057657

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.94	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.21	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

Tuesday, February 23, 2021

Version 1.0b

	03H	50		<u>50</u> Trib 0005	ream Name 0 to Bennetts	Run	
NH3-N	Acute Allocatio	ns					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.8	30 Kendall STP	9.53	4	9.53	4	0	0
NH3-N	Chronic Allocat	ions					
		Baseline	Baseline	Multiple	Multiple	Critical	Percent
RMI	Discharge Name	Criterion (mg/L)	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L)	Reach	Reduction

(mg/L) (mg/L)

20

(mg/L)

1.99

(mg/L)

6

(mg/L) 6

0

0

(mg/L)

1.99

20

Tuesday, February 23, 2021

0.83 Kendall STP

Version 1.0b

SWP Basin	Stream Code			Stream Nar	ne					
03H	50		Trib 0							
RMI	Total Discharge	Flow (mgd) Anal	lysis Tempera	ature (°C)	Analysis pH				
0.830	0.12	5		20.110		7.012				
Reach Width (ft)	Reach De	pth (ft)		Reach WDR	atio	Reach Velocity (fps)				
2.075	0.48	1		4.311		0.203				
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N	(mg/L)	Reach Kn (1/days)				
19.18	1.49	1		1.90		0.706				
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	n	Reach DO Goal (mg/L)				
6.103	28.91	15		Owens		6				
Reach Travel Time (days)	Subreach	Results							
0.250	TravTime	CBOD5	NH3-N	D.O.						
	(days)	(mg/L)	(mg/L)	(mg/L)						
	0.025	18.47	1.87	6.81						
	0.050	17.79	1.84	7.18						
	0.075	17.14	1.80	7.39						
	0.100	16.51	1.77	7.51						
	0.125	15.90	1.74	7.60						
	0.150	15.32	1.71	7.67						
	0.175	14.75	1.68	7.73						
	0.200	14.21	1.65	7.78						
	0.225	13.69	1.62	7.83						
	0.250	13.18	1.59	7.88						

Tuesday, February 23, 2021

Version 1.0b

		WQW	1.0 ET	riuent Limits	5		
	SWP Basin	Stream Code		Stream Name			
	03H	50					
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.830	Kendall STP	PA0057657	0.125	CBOD5	20		
				NH3-N	1.99	3.98	
				Dissolved Oxygen			6

WQM 7.0 Effluent Limits

Tuesday, February 23, 2021

Version 1.0b

Toxics Management Spreadsheet Version 1.2, February 2021

Discharge Information

Instructions	Discharge	Stream				
Facility: Ke	ndall Cross	slands STP		NPDES Permit No.:	PA0057657	Outfall No.: 001
Evaluation Type	e: Major	Sewage / Inc	lustrial Waste	Wastewater Descrip	tion: Treated effluent	

Discharge Characteristics															
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	P	Partial Mix Factors (PMFs) Complete Mix Times (min											
	naruness (mg/i)		AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh							
0.125	100	7													

Discharge Pollutant Units Max Discharge Conc Trib Conc Stream Conc Daily CV Hourly CV Strea m CV Fate m CV Fos Criteri a Mod Che ra Total Dissolved Solids (PWS) mg/L 316							0 If le	ft blank	0.5 lf k	eft blank	6) if left blan	k	1 li let	t blank
Total Dissolved Solids (PWS) mg/L 316 Image: Chloride (PWS) mg/L Image: Chloride (PWS)		Discharge Pollutant	Units	Ма	x Discharge Conc	1 C	Frib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
Chloride (PWS) mg/L mg/L<	1	Total Dissolved Solids (PWS)	mg/L		316										
Bromide mg/L	2	Chloride (PWS)	mg/L												
Sulfate (PWS) mg/L	5	Bromide	mg/L					-							
Fluoride (PWS) mg/L Total Aluminum µg/L	5	Sulfate (PWS)	mg/L					-							
Total Aluminum µg/L Image: Constraint of the second secon	L	Fluoride (PWS)	mg/L					_							
Total Antimony µg/L Image: Constraint of the strength of the strengt of the strenge strength of the strength of the strength of the s		Total Aluminum	µg/L												
Total Arsenic µg/L Image: Constraint of the second		Total Antimony	µg/L												
Total Barium µg/L Image: Constraint of the state of		Total Arsenic	µg/L												
Total Beryllium µg/L Image: Constraint of the second seco		Total Barium	µg/L				itti								
Total Boron µg/L Image: Constraint of the second s		Total Beryllium	µg/L					-							
Total Cadmium µg/L Image: Comparison of the c	1	Total Boron	µg/L				┝─┼	_							
Total Chromium (III) µg/L l l l l l l l l l l l l l l l l l l l	1	Total Cadmium	µg/L					_							
		Total Chromium (III)	µg/L												
Hexavalent Chromium µg/L local		Hexavalent Chromium	µg/L												
Total Cobalt µg/L log		Total Cobalt	µg/L												
Total Copper µg/L 3	1	Total Copper	µg/L		3										
Pree Cyanide µg/L	03	Free Cyanide	µg/L												
Total Cyanide µg/L	l a	Total Cyanide	µg/L					-							
5 Dissolved Iron µg/L	5	Dissolved Iron	µg/L					-							
Total Iron µg/L		Total Iron	µg/L					_							
Total Lead µg/L land land land land land land land land	1	Total Lead	µg/L												
Total Manganese µg/L low		Total Manganese	µg/L												
Total Mercury µg/L I I I I I I I I I I I I I I I I I I I		Total Mercury	µg/L												
Total Nickel µg/L		Total Nickel	µg/L												
Total Phenols (Phenolics) (PWS) µg/L		Total Phenols (Phenolics) (PWS)	µg/L												
Total Selenium µg/L	1	Total Selenium	µg/L					-							
Total Silver µg/L		Total Silver	µg/L					_							
Total Thallium µg/L L L L L L L L L L L L L L L L L L L		Total Thallium	µg/L												
Total Zinc µg/L 16 l l l l l l l l l l l l l l l l l l		Total Zinc	µg/L		16										
Total Molybdenum µg/L l l l l l l l l l l l l l l l l l l l		Total Molybdenum	µg/L												
Acrolein µg/L <		Acrolein	µg/L	<											
Acrylamide µg/L <		Acrylamide	µg/L	<		_	H								
Acrylonitrile µg/L <		Acrylonitrile	µg/L	<				-							
Benzene µg/L <		Benzene	µg/L	<				-							
Bromoform µg/L <		Bromoform	µg/L	<											

1	Carbon Tetrachloride	ua/L	<							
	Chlorobenzene	uo/	-	⊨	++	-				
	Chlorodihromomothano	ug/	-			<u> </u>				
	Chlorodbromomediane	pg/L		 ⊢	+	<u> </u>				$ \rightarrow $
	Chioroethane	µg/L	<		i	<u> </u>		 		
	2-Chloroethyl Vinyl Ether	µg/L	<			-				
	Chloroform	µg/L	<							
	Dichlorobromomethane	µg/L	<							
	1,1-Dichloroethane	µg/L	<							
-	1.2-Dichloroethane	ug/L	<	F	+++	-				
à	1 1-Dichlomethylene	ug/l	<	⊨	++	-				
5	1.2.Dishloronronane	ual	-			-				
6	1.2 Dichlosopropane	Pg/L		 -						+++
	1,3-Dichloropropylene	µg/L	<u> </u>	 ⊨	÷	<u> </u>				
	1,4-Dioxane	µg/L	<		\vdash					
	Ethylbenzene	µg/L	<							
	Methyl Bromide	µg/L	<							
	Methyl Chloride	µg/L	<							
	Methylene Chloride	ua/L	<	F	÷					
	1.1.2.2-Tetrachloroethane	ug/L	<	F		-				
	Tetrachloroethylene	ual	6			<u> </u>				
1	Toluono	ug/L	-	-						
	1 Outerie Dicklassethalens	pg/L		 ⊨	÷	<u> </u>				
	1,2-trans-Dichloroethylene	µg/L	<	 ⊢	╞╤┼	<u> </u>				\vdash
	1,1,1-Trichloroethane	µg/L	<							
	1,1,2-Trichloroethane	µg/L	<							
	Trichloroethylene	µg/L	<			1				
	Vinyl Chloride	µg/L	<							
	2-Chlorophenol	ug/L	<			-				
	2.4-Dichlorophenol	ual	6	⊢	++	<u> </u>				
	2.4 Dimethylahonol	P8/L			+	1				\square
	2,4-Dimetryphenol	pg/L		 ⊨	+++	<u> </u>				
-	4,0-Dinitro-o-Cresol	µg/L	<	 ⊢	+++	<u> </u>				
d	2,4-Dinitrophenol	µg/L	<							
6	2-Nitrophenol	µg/L	<							
5	4-Nitrophenol	µg/L	<		itt					
	p-Chloro-m-Cresol	µg/L	<			-				
	Pentachlorophenol	ua/L	<							
	Phenol	ug/l	<	\vdash	++	<u> </u>				
	2.4.8-Trichlorophanol	ugl	6	F		<u> </u>				
	Accessible ac	pg/L		 ⊨	╞╤╪					
	Acenaphinene	µg/L	<u> </u>		++	<u> </u>				
	Acenaphthylene	µg/L	<							
	Anthracene	µg/L	<							
	Benzidine	µg/L	<		iti					
	Benzo(a)Anthracene	µg/L	<			-				
	Benzo(a)Pyrene	µg/L	<							
	3.4-Benzofluoranthene	ug/L	<	\vdash						
1	Benzo(dhi)Pervlene	uo/l	<	F						
1	Benzo(k)Eluoranthene	ugi	-		<u> </u>	-				
1	Dis/2 Chloroothow Mathema	Part		 -						
1	Dis(2-Onloroethoxy)/vietnane	HQ/L	~		\vdash	-				
1	Bis(2-Chioroethyl)Ether	µg/L	<							
1	Bis(2-Chloroisopropyl)Ether	µg/L	<							
	Bis(2-Ethylhexyl)Phthalate	µg/L	<							
	4-Bromophenyl Phenyl Ether	µg/L	<							
1	Butyl Benzyl Phthalate	µg/L	<							
	2-Chloronaphthalene	ua/L	<							
1	4-Chlorophenyl Phenyl Ether	uo/l	<							
1	Chrysene	uol	e	F	+++					
1	Dihenze(a h)Anthronocca	Part				-				
1	1.0 Disklasshassa	HQ/L	~	-						
1	1,2-Dichlorobenzene	µg/L	<			1				
1	1,3-Dichlorobenzene	µg/L	<							
\$	1,4-Dichlorobenzene	µg/L	<							
đ	3,3-Dichlorobenzidine	µg/L	<							
2	Diethyl Phthalate	µg/L	<							
O	Dimethyl Phthalate	µg/L	<							
1	Di-n-Butyl Phthalate	µo/l	<	F						
1	2.4-Dinitrotoluene	uol	e			-				
1	a, contra overdente	PS-L		1						

Discharge Information

	2,6-Dinitrotoluene	µg/L	<			Т						Γ
	Di-n-Octvl Phthalate	µa/L	<		Ħ	t					=	F
	1.2-Diphenvlhvdrazine	ua/L	<		Ħ	t	 				_	t
	Fluoranthene	ua/L	<			t	 					t
	Fluorene	ua/L	<			t	 					t
	Hexachlorobenzene	uo/l	<		F	+					_	f
	Hexachlorobutadiene	uo/l	<		H	t	 				_	f
	Hexachlorocyclonentadiene	10/	~		\vdash	+	 				_	H
	Hexachloroethane	ug/L	-		\vdash	÷	 				_	ł
	Indepo(1.2.3.ed)Pyrana	ug/L	-			÷	 				_	t
	Iconhomoo	Hall	-			+	 				_	t
	Nanhthalene	ug/L	-		\vdash	+	 				_	H
	Nitrohonzono	ug/L	-	 -	H	+	 				_	F
	n Nitrosodimethylamine	µg/L	-		H	╋	 			 H	-	F
	n-Nitrosodi ne Prendamine	µg/L	-			+	 				_	+
	n-Nitrosodi-H-Propylamine	µg/L	-	 -		+	 					-
	Dhanasthanan	µg/L				+	 				_	ł
	Phenanthrene	µg/L	~			+	 					
	Pyrene 4.0.4 Tricklasshare	µg/L	<		\square		 					F
	1,2,4-Trichlorobenzene	µg/L	<		Ħ	+	 				_	Ē
	Aldrin	µg/L	<		Ħ	+	 				_	F
	alpha-BHC	µg/L	<		╞═┼	+	 				_	+
	Deta-BHC	µg/L	<		$ \rightarrow $	+	 	 				-
	gamma-BHC	µg/L	<			+	 	 				Ļ
	delta BHC	µg/L	<			+	 					
	Chlordane	µg/L	<				 					Ē
	4,4-DDT	µg/L	<			1	 					È
	4,4-DDE	µg/L	<			+	 		 			ł
	4,4-DDD	µg/L	<									-
	Dieldrin	µg/L	<			4						L
	alpha-Endosulfan	µg/L	<									
	beta-Endosulfan	µg/L	<									
p 6	Endosulfan Sulfate	µg/L	<									Ē
on	Endrin	µg/L	<									
σ	Endrin Aldehyde	µg/L	<									
	Heptachlor	µg/L	<			_						
	Heptachlor Epoxide	µg/L	<									
	PCB-1016	µg/L	<									
	PCB-1221	µg/L	<									
	PCB-1232	µg/L	<			Т						Ē
	PCB-1242	µg/L	<	-		T					_	F
	PCB-1248	µg/L	<			-					_	F
	PCB-1254	µg/L	<									
	PCB-1260	µg/L	<									
	PCBs, Total	µg/L	<									
	Toxaphene	µg/L	<			T						Г
	2,3,7,8-TCDD	ng/L	<									Γ
	Gross Alpha	pCi/L			Ħ	T					=	F
~	Total Beta	pCi/L	<	-							_	F
₽	Radium 226/228	pCi/L	<	_		T						F
ē	Total Strontium	µg/L	<									Ē
G	Total Uranium	µg/L	<									Γ
	Osmotic Pressure	mOs/kg				T						Г
						t					_	
				-	Ħ	t						-
				-	Ħ	t					_	-
						t						-
												-
						1						-
						1						
						+						
						+						-
				=		+						
						+						-
						- 1						

Discharge Information

Stream / Surface Water Information

Kendall Crosslands STP, NPDES Permit No. PA0057657, Outfall 001

Toxics Management Spreadsheet Version 1.2, February 2021

	Instructions	Discharge	Stream	
--	--------------	-----------	--------	--

Receiving Surface Water Name:

No. Read

No. Reaches to Model: 1

Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
000050	0.83	401.15	0.0422			Yes
000050	0	245.12	0.51			Yes
	Stream Code* 000050 000050	Stream Code* RMI* 000050 0.83 000050 0	Stream Code* RMI* Elevation (ft)* 000050 0.83 401.15 000050 0 245.12	Stream Code* RMI* Elevation (ft)* DA (mi ²)* 000050 0.83 401.15 0.0422 000050 0 245.12 0.51	Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) 000050 0.83 401.15 0.0422 000050 0 245.12 0.51	Stream Code* RMI* Elevation (ft)* DA (mi ²)* Slope (ft/ft) PWS Withdrawal (MGD) 000050 0.83 401.15 0.0422 000050 0 245.12 0.51

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	n	Analys	sis
Location	T SIVIL	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	0.83	0.22										108	7.4		
End of Reach 1	0	0.22													

Qh

Location	PMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	T NIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	0.83														
End of Reach 1	0														

Stream / Surface Water Information

2/23/2021

DEPARTMENT OF ENVIRONMENTA PROTECTION	L								т	oxics Management Spreadsheet Version 1.2, February 2021
Model Results						к	Cendall Cross	lands STP, NPDE	5 Permit No. P	9A0057657, Outfall 001
Instructions Results	RETURN	TO INPU	тз	SAVE AS	PDF	PRINT	r) 🖲 A	All 🔿 Inputs	⊖ Results) Limits
Hydrodynamics										
✓ Wasteload Allocations										
AFC cc	T (min): 0.0	000	PMF:	1	Ana	lysis Hardne	ss (mg/l):	100.37	Analysis pH:	7.01
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Total Copper	0	0		0	13.486	14.0	14.7		Chem Transla	ator of 0.96 applied
Total Zinc	0	0		0	117.544	120	126		Chem Transla	ator of 0.978 applied
CFC CC	T (min): 0.0	000	PMF:	1	Ana	alysis Hardne	ess (mg/l):	100.37	Analysis pH:	7.01
Pollutants	Conc (uo/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Total Copper	0	0		0	8.984	9.36	9.81		Chem Transla	ator of 0.96 applied
Total Zinc	0	0		0	118.506	120	126		Chem Transla	ator of 0.986 applied
THH CC	T (min): 0.0	000	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc (uo/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A			
Total Copper	0	0		0	N/A	N/A	N/A			
Total Zinc	0	0		0	N/A	N/A	N/A			
CRL CC	T (min): 0.0	011	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			

Model Results

2/23/2021

Total Copper	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML	MDL			IMAY	Unite	Governing	WQBEL	Commonte
Poliutants	(lbs/day)	(lbs/day)	AME	MILL	IMAX	Units	WQBEL	Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	9.81	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	120	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable

2/23/2021