

Northeast Regional Office CLEAN WATER PROGRAM

Application Type Renewal Facility Type Municipal Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0061361
APS ID	563600
Authorization ID	1348206

Applicant and Facility Information

Applicant Name	Smithfield Sewer Authority	Facility Name	Smithfield Wastewater Treatment Plant
Applicant Address	1155 Red Fox Road	Facility Address	Ivy Lane
	East Stroudsburg, PA 18301-9106		East Stroudsburg, PA 18301-9106
Applicant Contact	Russel Albert, Chairman	Facility Contact	Terri Timko, Assistant Secretary
Applicant Phone	(570) 223-5082	Facility Phone	(570) 223-5082
Client ID	74938	Site ID	243472
Ch 94 Load Status	Not Overloaded	Municipality	Smithfield Township
Connection Status	No Limitations	County	Monroe
Date Application Receiv	vedApril 1, 2021	EPA Waived?	Yes
Date Application Accep	tedApril 8, 2021	If No, Reason	
Purpose of Application	Renewal of NPDES permit for disch	narge of treated sewage	

Summary of Review

The applicant is requesting the renewal of an NPDES permit to discharge up to 0.40 MGD of treated sewage into an Unnamed Tributary to Sambo Creek, a Cold-Water Fishery, Migratory Fish (CWF, MF) receiving stream in State Water Plan Basin 1-E (Brodhead Creek). As per the Department's current existing use list, the receiving stream does not have an existing use classification that is more protective than its designated use. This stream segment is designated as a naturally reproducing trout stream as per PA Fish & Boat Commission. This discharge is not expected to affect public water supplies.

Limitations for pH, Dissolved Oxygen (DO), Total Suspended Solids (TSS), and Fecal Coliform are technology-based and carried over from the previous permit.

Limitations for Ammonia-Nitrogen are water quality-based and carried over from the previous permit. WQM 7.0 did not recommend stricter limitation for Ammonia-Nitrogen.

WQM modeling did recommend stricter limitations for CBOD₅ (23.0 mg/L monthly average). A multiplier of 1.5 was used to calculate the average weekly limitation (34.5 mg/L) and a multiplier of 2.0 was used to calculate the IMAX limitation (46.0 mg/L). These limitations will come into effect four (4) years after the permit effective date. eDMR data from the previous year (November 1, 2022 to October 31, 2023) indicates the facility should be able to meet the proposed limits (eDMR data can be seen on pages 5-6 of this act sheet).

The Total Residual Chlorine (TRC) average monthly effluent limitation has been removed because UV Disinfection is used as the primary disinfection method. In the event the facility uses chlorine for cleaning purposes or as a back-up disinfection option, Total Residual Chlorine (TRC) should be sampled "daily when discharging" (see requirements under Part C.I.C). The TRC Calculation Spreadsheet recommends a stricter IMAX limitation than the previous permit. The permittee will be required to meet the new water quality-based limit for TRC starting four (4) years after the effective date of the permit. The TRC IMAX limitation from the previously issued permit will is in effect for the first four years after the permit effective date.

Approve	Deny	Signatures	Date
х		/s/ Allison Seyfried / Project Manager	December 6, 2023
Х		/s/ Amy M. Bellanca, P.E. / Program Manager	12-21-23

Summary of Review

The quarterly monitoring and reporting for Total Nitrogen, Total Phosphorous, Total Kjeldahl Nitrogen, and Nitrate-Nitrite as N has been maintained in this permit.

Sewage discharges now require monitoring and reporting for E. Coli. A monitoring frequency of 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD, 1/year for design flows of 0.002 – 0.05 MGD will be utilized.

Per current Standard Operating Procedures for Publicly Owned Treatment Plants, the raw sewage influent monitoring/reporting for TSS and CBOD₅ has been maintained in the permit.

Pollutant sampling results submitted with the permit application were entered into the Toxic Management Spreadsheet (TMS). The highest reported Total Copper concentration was 0.017 mg/L, the highest Total Zinc concentration was 0.088 mg/L, and the highest Total Lead concentration was <0.010 mg/L. The TMS recommended limits for all three pollutants listed above. The permittee was given the opportunity to conduct a minimum of 10 additional effluent samples for these parameters, using a quantitation limit (QL) that is no greater than the Target QLs identified in the permit application

The permittee collected 10 additional samples during January 2, 2022 through March 10, 2022 and provided the results to the Department via email on October 25, 2022. These updated results were used to re-run the modeling. A summary of the additional sample results provided by the permittee can be seen in the table on page 11 of this fact sheet. The modeling indicated that Copper limits and Total Zinc monitoring/reporting shall be established. Limits were no longer recommended for Total Lead. Results/inputs can be seen on page 12 and 13 of this fact sheet.

Therefore, Total Copper limitations were added to the permit and will come into effect four years after the permit effective date. Monitoring/reporting requirements are included in the permit until the limitations come into effect. Monthly monitoring/reporting for Total Zinc has also been included. The Part C. III. condition regarding Toxics Reduction Evaluations (TREs) is added to the permit and applies to the Total Copper limitations. The permittee will have the option to accept the implementation of the limitations or to perform site-specific studies to verify or refine the WQBELs.

DRBC Docket No. D-92-17 CP does not contain more stringent or additional requirements beyond the NPDES permit.

24-hour composite sampling is now required for every pollutant except pH, DO and Fecal Coliform.

For this permit renewal, all monitoring frequencies for parameters with limitations are consistent with the Department's *Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits* (document no. 362-0400-001).

The previous permit utilized stream gage 01442500 (Brodhead Creek near Minisink, PA) as a reference gage to develop the Low Flow Yield (LFY) of 0.20 cfs/mi², which was used to model the discharge. The previous permit calculated a Q₇₋₁₀ Flow of 0.842 cfs/mi². Updated stream data from this same gage was used to calculate a LFY of 0.19 cfs/mi² and Q₇₋₁₀ Flow of 0.8113 cfs (calculations can be seen on page 8 of this fact sheet). The drainage area at Outfall 001 is too small for USGS StreamStats to estimate accurate low flow values and the state-wide default LFY of 0.1 cfs/mi² was significantly smaller than the previous permit. For modeling inputs, RMI values were obtained using the "PA Historic Streams" feature of eMapPA, drainage areas were delineated using USGS's StreamStats Interactive Map, and elevations were obtained using the elevation profile feature of StreamStats.

The existing permit expired on September 30, 2021 and the application for renewal was received on time.

A Water Management System Inspection query indicated that on October 31, 2023 a Compliance Evaluation was performed.

There is currently one open violation for this client that may need to be resolved before issuance of the final permit:

1. 03/29/2023 - Violation ID 989752 – Violation Code ACT167(11)B – Failure of municipality to adopt or amend and implement stormwater management ordinances or regulations (Program Specific ID: PAI132266).

Sludge use and disposal description and location(s): As per the permittee's NPDES permit renewal application, sludge is hauled to Lehigh County's Pretreatment Facility in Allentown, PA by All State Septic.

Summary of Review

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving	g Waters and Water Supply Inform	nation	
Outfall No. 001		Design Flow (MGD)	0.40
Latitude 41° 1	57.00"	Longitude	-75º 10' 31.00"
Quad Name Eas	st Stroudsburg	Quad Code	1044
Wastewater Descrip	otion: Sewage Effluent		
	Linnamed Tributary to Sambo		
Receiving Waters	Creek (CWF, MF)	Stream Code	4926
NHD Com ID	26141228	RMI	0.84
Drainage Area	4.27 mi ²	Yield (cfs/mi ²)	0.19
Q ₇₋₁₀ Flow (cfs)	0.8113	Q ₇₋₁₀ Basis	USGS Stream Gage
Elevation (ft)	465.75	Slope (ft/ft)	
Watershed No.	_01E	Chapter 93 Class.	CWF, MF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	-
Assessment Status	Attaining Use(s)		
Cause(s) of Impairm	nent		
Source(s) of Impairr	ment -		
TMDL Status	-	Name	
Nearest Downstream	m Public Water Supply Intake	Easton Area Water System	
PWS Waters	Delaware River	_ Flow at Intake (cfs)	-
PWS RMI 1	10.4	Distance from Outfall (mi)	~ 37.5

	Treatment Facility Summary								
Treatment Facility Nar	ne: Smithfield Wastewater	Treatment Plant							
	Degree of			Avg Annual					
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
		Extended Aeration/		0.404					
Sewage	Secondary	Sequencing Batch	Ultraviolet	0.104					
c .	-	Reactor		(2018-2020)					
	· · · ·		· · ·						
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
0.40	801	Not Overloaded	Holding Tank	Hauled					

Compliance History

DMR Data for Outfall 001 (from November 1, 2022 to October 31, 2023)

Parameter	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22
Flow (MGD)												
Average Monthly	0.229	0.262	0.281	0.296	0.231	0.268	0.228	0.219	0.215	0.208	0.165	0.147
Flow (MGD)												
Daily Maximum	0.265	0.37	0.333	0.374	0.289	0.731	0.299	0.308	0.267	0.346	0.259	0.20
pH (S.U.)												
Minimum	6.8	7.2	7.0	7.0	7.0	7.1	7.0	7.07	7.0	7.0	7.2	7.1
pH (S.U.)												
Maximum	7.5	7.6	7.7	7.7	7.7	7.6	7.8	7.55	7.6	7.6	7.6	7.6
DO (mg/L)												
Minimum	7.3	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.1	7.0
TRC (mg/L)												
Daily Maximum	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG
CBOD5 (lbs/day)												
Average Monthly	4	< 4.0	< 6	< 4	4.0	< 7.0	< 5	< 4	< 12	< 22	< 8.0	< 7.0
CBOD5 (lbs/day)												
Weekly Average	4	5.0	< 14	< 5	4.0	23.0	< 8	6	15	< 57	< 10.0	< 9.0
CBOD5 (mg/L)												
Average Monthly	2.1	< 1.80	< 2.6	< 1.6	2.0	< 3.5	< 2.6	< 1.9	< 6.6	< 12.9	< 5.7	< 5.7
CBOD5 (mg/L)												
Intake Average												
Monthly	< 124.4	431	< 205	104.1	180	177	177.1	130	164	87.2	165	174
CBOD5 (mg/L)												
Weekly Average	2.5	2.0	< 5.9	< 2.1	2.2	< 6.5	< 4.4	3.2	9.2	< 33.6	< 7.2	< 6.8
TSS (lbs/day)			-				_	_				
Average Monthly	< 9	< 9.0	< 9	< 10	< 8.0	< 10.0	< 8	< 7	< 7.0	< 16	< 5.0	< 6.0
TSS (lbs/day)							_					
Weekly Average	13	< 9.0	< 10	< 11	11.0	11	< 8	< 8	< 8.0	44	< 6.0	9.0
ISS (mg/L)				4.0			4.0	1.0	1.0	10.0		
Average Monthly	< 5.0	< 4.0	< 4.0	< 4.0	< 5.0	< 5.0	< 4.0	< 4.0	< 4.0	< 10.0	< 4.0	< 5.0
TSS (mg/L)												
Intake Average	474	400	100	405	5.0	400	400	00	45	70.0	05.0	50
	1/4	420	166	165	< 5.0	166	168	89	45	72.0	95.0	56
155 (mg/L)	7.0	1.0	. 1.0	. 1.0	7.0	<u> </u>	4.0	4.0	. 1.0	20.0	. 1.0	10.0
vveekly Average	7.0	4.0	< 4.0	< 4.0	7.0	6.0	4.0	4.0	< 4.0	26.0	< 4.0	10.0
Fecal Coliform												
(CFU/100 ml)					4.0	4.0			4.0	4.0	4.0	
Geometric Mean	<2	2.0	<2	< 1	< 1.0	< 1.0	< 1	< 1	< 1.0	< 1.0	< 1.0	< 1

NPDES Permit Fact Sheet Smithfield Wastewater Treatment Plant

NPDES Permit No. PA0061361

Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	23.3	3.0	17.3	1	< 1.0	< 1.0	< 1	< 1	< 1.0	< 1.0	< 1.0	4.1
Total Nitrogen (mg/L)												
Average Quarterly		26.4			47.2			20.1			17.5	
Ammonia (lbs/day)												
Average Monthly	< 0.2	< 0.20	< 0.4	< 0.4	0.3	0.6	0.4	< 0.2	< 0.4	< 0.2	< 0.2	< 0.4
Ammonia (mg/L)												
Average Monthly	0.12	< 0.11	< 0.19	< 0.17	0.19	0.27	0.22	< 0.12	< 0.22	< 0.16	< 0.12	< 0.34
Nitrate (mg/L)												
Average Quarterly		25.3			45.5			19.1			16.3	
TKN (mg/L)												
Average Quarterly		1.1			1.7			< 1			< 1.2	
Total Phosphorus												
(mg/L)												
Average Quarterly		3.4			7.8			2.4			2.0	

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.4
Latitude	41º 2' 0.00"		Longitude	-75º 10' 25.00"
Wastewater I	Description:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
Total Suggested	30.0	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solido	45.0	Average Weekly	122 102(b)(2)	020.47(0)(2)
30105	60.0	IMAX	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Dissolved Oxygen	5.0	Minimum	-	BPJ
E. Coli	Report	IMAX	-	92a.61

Water Quality-Based Limitations

The following limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model		
	23.0	Average Monthly			
CBOD ₅	34.5	Average Weekly	WQM 7.0		
	46.0	IMAX			
Ammonia-Nitrogen	7.5	Average Monthly			
Nov 1 - Apr 30	15.0	IMAX	Brovious Modeling		
Ammonia-Nitrogen	2.5	Average Monthly			
May 1 - Oct 31	5.0	IMAX			
Total Residual Chlorine	0.66	IMAX	TRC Calculation Spreadsheet		
Total Zinc	Poport	Average Monthly			
	Кероп	Daily Max			
	0.021	Average Monthly	Toxic Modeling Spreadsheet (TMS)		
Total Copper	0.032	Daily Max			
	0.052	IMAX			
Carbonaceous Biochemical Oxygen Demand (CBOD5) Raw Sewage Influent	Report	Average Monthly	POTW Requirement		
Total Suspended Solids Raw Sewage Influent	Report	Average Monthly			
Nitrate as N					
Total Kjeldahl Nitrogen	Depart	Average Overtarly	Drovious Dormit		
Total Phosphorus	кероп	Average Quarterly			
Total Nitrogen					

Anti-Backsliding

No limitations were made less stringent.

Modeling with USGS Stream Gage 01442500 – Broadhead Creek at Minisink Hills, PA:

Period of Record: 9/30/1950 – 2/07/2023 **Drainage Area:** 259 mi²

ow-Flow Statistics							
Statistic Name	Value	Units	Preferred?	Years of Record	Standard Error, percent	Citation	Comments
1 Day 10 Year Low Flow	44.7	cubic feet per second	\checkmark	57		49	Statistic Date Range 4/1/1951 - 3/31/2008
7 Day 2 Year Low Flow	80.6	cubic feet per second	√	57		49	Statistic Date Range 4/1/1951 - 3/31/2008
7 Day 10 Year Low Flow	48.4	cubic feet per second	√	57		49	Statistic Date Range 4/1/1951 - 3/31/2008

$$LFY = \frac{Q_{7-10}}{Stream \,Gage \,Drainage \,Area} \times \frac{48.4 \,cfs}{259 \,mi^2} = 0.19$$

Stream Flow = Outfall 001 Drainage Area \times LFY = 4.27 mi² \times 0.19 = 0.8113 cfs

Modeling with State-Wide default LFY of 0.1 cfs/mi²:

$$\frac{0.1\,ft^3/sec}{mi^2} \times 4.27\,mi^2 = \frac{0.427\,ft^3}{sec}$$

Modeling Using StreamStats:

RMI	Elevation (ft)	Drainage Area (mi ²)	Q ₇₋₁₀ Flow (cfs)
0.84	465.75	4.27	0.182

Low Flow Yield using StreamStats =
$$\frac{0.182 \ ft^3/sec}{4.27 \ mi^2} = 0.0426 \ \frac{ft^3/sec}{mi^2}$$

StreamStats Report

Low-Flow Statistics Parameters	[Low Flow Region 5]
--------------------------------	---------------------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4.27	square miles	4.84	982
PRECIP	Mean Annual Precipitation	47	inches	33.1	47.1
GLACIATED	Percent of Glaciation	100	percent	0	100
FOREST	Percent Forest	78.0203	percent	41	100

Low-Flow Statistics Disclaimers [Low Flow Region 5]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.509	ft^3/s
30 Day 2 Year Low Flow	0.735	ft^3/s
7 Day 10 Year Low Flow	0.182	ft^3/s

At confluence with Sambo Creek:

RMI	Elevation (ft)	Drainage Area (mi ²)
0.00 1.96 (on Sambo Creek)	449.70	8.91

StreamStats Report

Region ID:		PA		
Workspace ID:		PA202112021651169230	000	
Clicked Point (Lat	itude, Longitude):	41.02624, -75.18352		
Time:		2021-12-02 11:51:37 -05	00	
ersville	Analomink Analomink Begin the person Begin the person Beg	Creek Shawnee on Delaware N	EWJER	SET flet Esri
Parameter Code	Parameter Description	V	/alue	Unit
DRNAREA	Area that drains to a point on a stream	8	8.91	square

RNAREA	Area that drains to a point on a stream	8.91	square
			miles

Modeling with State-Wide default LFY of 0.1 cfs/mi²:

$$\frac{0.1\,ft^3/sec}{mi^2} \times 4.27\,mi^2 = \frac{0.427\,ft^3}{sec}$$

					<u>,</u>			
	SWP Basin	Stream Code		Stream Name	e			
	01E	4926		Trib 04926 to Samb	o Creek			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
0.840	Smithfield	PA0061361	0.400	CBOD5	23.04	0.00		
				NH3-N Dissolved Oxvaen	4.69	9.38	3	
				,,,				

WQM 7.0 Effluent Limits

TRC EVALUA	TION									
Input appropriate values in A3:A9 and D3:D9										
0.8113	= Q stream (cfs)	0.5	= CV Daily						
0.4	= Q discharg	je (MGD)	0.5	= CV Hourly						
30	= no. sample	s	1	= AFC_Partial N	lix Factor					
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor					
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)					
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)						
0	= % Factor o	of Safety (FOS)		=Decay Coeffici	ient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	0.437	1.3.2.iii	WLA cfc = 0.419					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.163	5.1d	LTA_cfc = 0.243					
Source		Effluer	nt Limit Calcul	ations						
PENTOXSD TRG	5.1f		AML MULT =	1.231						
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.201	AFC					
		INST MAX	LIMIT (mg/l) =	0.656						
WIA afo	(019/o/_k*A			tc))						
WEA alc	+ Xd + (AF(C Yc*Os*Xs/Od)]*(1-EOS/10)	0000(-KATO_))							
I TAMULT afe	EXP((0.5*LN)	(cvb^2+1))-2 326*1 N(cvb^2+	1)^0 5)							
ITA afc	wla afc*l TA	MULT afc	() 0.0)							
2										
WLA_cfc	(.011/e(-k*Cf	FC_tc) + [(CFC_Yc*Qs*.011/0	d*e(-k*CFC_	tc))						
-	+ Xd + (CF(C_Yc*Qs*Xs/Qd)]*(1-FOS/10	D)							
TAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)										
LTA_cfc	.TA_cfc wla_cfc*LTAMULT_cfc									
AMLMULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.5	5)-0.5*LN(cvd	^2/no_samples+	1))					
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AM	IL_MULT)							
INST MAX LIMIT	1.5*((av_mor	n_limit/AML_MULT)/LTAMUL	T_afc)							

Additional Sample Results for Copper, Lead, and Zinc:

Date	Copper (mg/L)	Lead (mg/L)	Zinc (mg/L)
1/6/2022	0.005	<0.001	0.056
1/13/2022	0.017	<0.001	0.065
1/20/2022	0.007	<0.001	0.06
1/27/2022	0.021	<0.001	0.087
2/3/2022	0.005	<0.001	0.06
2/10/2022	0.018	<0.001	0.06
2/17/2022	0.03	<0.001	0.103
2/24/2022	0.02	0.001	0.092
3/3/2022	0.026	<0.001	0.085
3/10/2022	0.031	<0.001	0.09
Total (mg/L):	0.018	0.001	0.0758
ug/L	18	1	75.8

DRBC Docket 1992-017 CP Smithfi

Smithfield WWTP-Effluent-WQ

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Ins	Instructions Discharge Stream														
Facility: Smithfield Sewer Authority NPD								DES Per	mit No.:	PA0061	361		Outfall	No.: 001	
Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Treated Sewage															
<u> </u>					Dicoba	rae Ch		ractoric	lion						
-					Discha	nge or	121	ACCENTS	ucs			C	alata Mi	T:	(min)
	(MCD)*	Hardness (mg/l)*	pH (SU)*	450	r ai	ua			mrsj	CDI	Com	piete mit	x mes	(11111)
	(1100)	100		7	AFC			LFL	Inc	•	CRL	S.	7-10		4
	0.4	100		(
								bland.							
						0.81	en	Diank	0.5 // 16	it diank	6	n lett blan	ĸ	7 17 101	Diank
	Disch	arge Pollutant	Units	Max I	Discharge Conc	Trib Cond	;	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolve	ed Solids (PWS)	mg/L		848										
5	Chloride (PW	S)	mg/L		137										
8	Bromide		mg/L	<	2.5										
ō	Sulfate (PWS)	mg/L		40.4										
	Fluoride (PW	S)	mg/L				_								
	Total Aluminu	m	µg/L												
	Total Antimon	iy	µg/L												
	Total Arsenic		µg/L												
	Total Banum	-	µg/L												
	Total Boron		µg/L µg/L	\vdash			-								
	Total Cadmiu	m	ug/L												
	Total Chromiu	um (III)	µa/L												
	Hexavalent Cl	hromium	µg/L												
	Total Cobalt		µg/L												
	Total Copper		µg/L		18										
03	Free Cyanide		µg/L												
l la	Total Cyanide	•	µg/L												
ō	Dissolved Iron	n	µg/L				-								
	Total Iron		µg/L												
	Total Lead		µg/L	<	1		_								
	Total Mangan	ese	µg/L												
	Total Mercury		µg/L	\vdash											
	Total Nickel	(Phenolics) (PWS)	µg/L µg/L				-								
	Total Seleniur	m	µg/L µg/L												
	Total Silver		ug/L												
	Total Thallium	1	uo/L												
	Total Zinc	-	µg/L		75.8										
	Total Molybde	enum	µg/L				-								
	Acrolein		µg/L	<											
	Acrylamide		µg/L	<											
	Acrylonitrile		µg/L	<											
	Benzene		µg/L	<											
	Bromoform		µg/L	<			_								

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.069	0.11	20.7	32.4	51.8	µg/L	20.7	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	177	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Lead	N/A	N/A	Discharge Conc < TQL