

Application Type	Renewal		
	Non-		
Facility Type	Municipal		
Maior / Minor	Minor		

NPDES PERMIT 2nd FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0061662			
APS ID	633140			
Authorization ID	1062452			

Applicant and Facility Information

Applicant Name	Arrow	head Sewer Co. Inc.	Facility Name	Arrowhead Sewer		
Applicant Address	961 A	rrowhead Drive	Facility Address	2236 Lehigh Drive		
	Pocon	o Lake, PA 18347-7856		Pocono Lake, PA 18347		
Applicant Contact	Eric U	sbeck	Facility Contact	Joseph Rehm		
Applicant Phone	(570)	643-8126	Facility Phone	(570) 643-8126		
Client ID	14852	4	Site ID	544319		
Ch 94 Load Status			Municipality	Coolbaugh Township		
Connection Status			County	Monroe		
Date Application Rece	eived	March 3, 2020	EPA Waived?	Yes		
Date Application Accepted		March 10, 2020	If No, Reason			
Purpose of Application RENEV		RENEWAL OF EXISTING N	PDES PERMIT.			
		· · · · · · · · · · · · · · · · · · ·				

Summary of Review

This second fact sheet is prepared after comments were received from the applicant requesting additional toxic resampling for copper, lead and zinc. 10 samples were resubmitted with the average value of Copper (0.023 mg/l), Lead (0.0002 mg/l), and Zinc 0.051 mg/l). The modelling results indicate no limits. Monitoring for copper and zinc will continue. This modification will require a second draft and public notification.

The applicant is requesting the renewal of their NPDES permit to discharge up to 0.525 MGD of treated sewage into Lehigh River (HQ-CWF), located in State Water Plan watershed 2-A which is classified for High Quality Waters - Cold Water Fishes, aquatic life, water supply and recreation in the Upper Lehigh watershed. As per the Department's current existing use list, the receiving stream has an EV (Exceptional Value) existing use classification that is more protective than the designated use. The discharge is not expected to affect public water supplies.

The CBOD5 (11/1 to 4/30), TSS, TRC, and pH limits were technology based. The CBOD5 (5/1 to 10/31), NH3N, fecal coliform, Phosphorus, and dissolved oxygen (DO) limits were water quality based. Quarterly monitoring for TDS, Total Copper and Total Zinc will continue. The applicant uses UV with chlorine as a backup. The present TRC limits will be retained and reported daily only when utilized.

The WMS Report query "Water Management System Inspections" was run. On 08/04/2020 an Administrative/File Review was done with No Violations noted.

The WMS "Open Violations by Client Report" was run and there is one open violation on 06/11/2020 for 92A.47(C) NPDES - Illegal discharge to waters of the Commonwealth from a sanitary sewer overflow (SSO).

The Existing Permit expires on August 31, 2020 and the renewal was submitted March 3, 2020.

Approve	Deny	Signatures	Date
х		Bernard Feist, P.E. / Environmental Engineer	October 1, 2020
х		Amy M. Bellanca (signed) Amy M. Bellanca, P.E. / Environmental Engineer Manager	10-6-20

	Discharge, Receiving V	Vaters and Water Supply Informa	tion		
Outfall No. 001		Design Flow (MGD)	0.525		
Latitude 41° 1	0' 31"	Longitude	75° 35' 06"		
Quad Name Th	ornhurst	Quad Code	0941		
Wastewater Descri	ption: Sewage Effluent , no in	ndustrial influent			
		а			
Receiving Waters	Lehigh River	Stream Code	3335		
NHD Com ID	26278807	RMI	91.7		
Drainage Area	56.6	Yield (cfs/mi ²)	0.133		
Or to Flow (cfc)	7.5 (cfs)		DFlow USGS		
Elevation (ft)	1509	Slope (ft/ft)	0.002		
Watershed No	2-4	Chapter 93 Class	HO-CWE		
Existing Use	EV (Exceptional Value)	Existing Use Qualifier			
Exceptions to Use		Exceptions to Criteria			
Assessment Status	Attaining Use(s)				
Cause(s) of Impairr	nent				
TMDL Status	Final. 07/07/2009	Name Lehigh Rive	r TMDL*		
Nearest Downstrea	m Public Water Supply Intake	Hazelton City			
PWS Waters	100.00.00.7	Flow at Intake (cfs)	00 miles		
PWS RMI	183.66 - 62.7	Distance from Outrali (mi)	28 miles		
e Lehigh River TMDL sewage treatment fa	is AMD related. As per the TML cility receives no industrial influe	DL " All necessary reductions are as ent.	signed to non-point source		
	commercial wastewater s significant source of AME	sources, and a small POTW is not e D metals.	xpected to be a		
175246 -7 <u>5.584979;</u> H	lydrologic Unit 02040106				
DFLOW	Results	-			
<u>F</u> ile Edit	View Help				
All available	data from Apr 1, 1994 through Mar 31, 2	2019 are included in analysis.			
Climatic year	defined as Apr 1 - Mar 31.				
	Gage	Period Days in	+ 7Q10 F		

1	Gage	Period	Days in +	7Q10	P
01447500 - Lehig	gh River at Stoddartsville, PA	1993/04/01 - 2018/04/01	9,131	12.2	
<					>
Double-click or	n biological flow value for excursio	n analysis			

STATION.--01447500 LEHIGH RIVER AT STODDARTSVILLE, PA

LOCATION.--Lat 41`07'49", long 75`37'33", Monroe County, Hydrologic Unit 02040106, on left bank 75 ft upstream from bridge on State Highway 115, at Stoddartsville, 1.9 mi upstream from Tobyhanna Creek, and 4.0 mi southwest of Thornhurst. DRAINAGE AREA.--91.7 square miles.

 Q_{7-10} LowFlowYield (cfs/mi²)= LFY = 12.2/91.7 = 0.133 Dilution of Stream : Effluent = 4.85/ 0.525 = **9.2 : 1**

Time:	e, Longitude).		2020-03-12 12:46:5
+	And Spring Crark 2015	Contraction of the second seco	Coloreday Searco
Low-Flow Statistics Parar	meters(100 Percent (56.6 square miles) Low Flow Region 2		
Parameter Code	Parameter Name	Value	Units
DRNAREA	Drainage Area	56.6	square miles
Q	Outfall 001 @ RMI 9 17-10 Flow (cfs) = 56.6 mi ² *	91.7 and 1509 6 0.133 cfs/mi ²	ft = 7.5 cfs
Q cked Point (Latitude, 1e:	Outfall 001 @ RMI 9 7-10 Flow (cfs) = 56.6 mi ² * Longitude):	91.7 and 1509 7 0.133 cfs/mi ²	ft = 7.5 cfs 41.17247, -75.59 2020-03-12 12:5
Q eked Point (Latitude, ne:	Outfall 001 @ RMI 9 pr-10 Flow (cfs) = 56.6 mi ² *	91.7 and 1509 r 0.133 cfs/mi ²	ft = 7.5 cfs 41.17247, -75.59 2020-03-12 12:5
Q	Outfall 001 @ RMI 9 pr-10 Flow (cfs) = 56.6 mi ² *	91.7 and 1509 r 0.133 cfs/mi ²	ft = 7.5 cfs 41.17247, -75.59 2020-03-12 12:50 River Ct

Trib Sandy Springs @ RMI 90.8 and 1501 ft

Treatment Facility Summary Treatment Facility Name: Arrowhead Sewer Co. Inc. WQM Permit No. **Issuance Date** 4507402 05/07/2007 Degree of Avg Annual Waste Type Treatment **Process Type** Disinfection Flow (MGD) Secondary with (4) Biologically Ammonia and **Engineered Single UV-** Chlorination Phosphorous Sludge Treatment* Backup Sewage 0.525 **Hydraulic Capacity Organic Capacity** Biosolids (MGD) (lbs/day) Load Status **Biosolids Treatment Use/Disposal** 0.525 800 not overloaded Activated Sludge Hazelton WTP

* The site utilizes four (4) "Upflow Sludge Blanket Filtration" (USBF) Units

Other Comments: The TRC limits will continue daily when utilized. Operations requested the following verbiage be added to Part C of the Permit –

"As UV is the permittee source of disinfection, chlorine should be used for disinfection only when the UV unit is offline for maintenance or repair. Chlorine should NOT be used in addition to UV simply because flows increase and push solids from the treatment units, increasing turbidity and decreasing the effectiveness of the UV system."

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.525
Latitude	41° 10' 31.00"		Longitude	75° 35' 6.00"
Wastewater De	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments:

Water Quality-Based Limitations

A "Reasonable Potential Analysis" determined the following parameters were candidates for limitations:

FRC EVALL	JATION		Enter	Facility Nan	ne in E3
nput appropri	ate values i	in B4:B8 and E4:E7	Ar	rowhead	
7.5	= Q stream	i (cfs)	0.5	= CV Daily	
0.525	= Q discha	rge (MGD)	0.5	= CV Hourly	
4	= no. samp	les	1	= AFC_Partia	l Mix Factor
0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	I Mix Factor
0	= Chlorine	Demand of Discha	15	= AFC_Criter	ia Compliance Time (min)
0.5	= BAT/BPJ	Value	720	= CFC_Criter	ia Compliance Time (min)
0	= % Factor	r of Safety (FOS)		=Decay Coef	ficient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	2.965	1.3.2.iii	WLA cfc = 2.883
ENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
ENTOXSD TRG	5.1b	LTA_afc=	1.105	5.1d	LTA_cfc = 1.676
Source		Effluent l	imit Cal	culations	
ENTOXSD TRG	5.1f	AML	MULT =	1.720	
PENTOXSD TRG	5.1g	AVG MON LIMIT	(mg/l) =	0.500	BAT/BPJ
		INST MAX LIMIT	(mg/l) =	1.170	
	nput appropri 7.5 0.525 4 0.3 0 0 0.5 0 0 <u>Source</u> TRC ENTOXSD TRG ENTOXSD TRG Source ENTOXSD TRG	Popul appropriate values7.5= Q stream0.525= Q discha4= no. samp0.3= Chlorine0= Chlorine0= Chlorine0.5= BAT/BPJ0= % FactorSourceReferenceTRC1.3.2.iiiPENTOXSD TRG5.1aSource5.1bSource5.1fENTOXSD TRG5.1fPENTOXSD TRG5.1g	Propertiate values in B4:B8 and E4:E7 7.5 = Q stream (cfs) 0.525 = Q discharge (MGD) 4 = no. samples 0.3 = Chlorine Demand of Stream 0 = Chlorine Demand of Discha 0.5 = BAT/BPJ Value 0 = % Factor of Safety (FOS) Source Reference PENTOXSD TRG 5.1a PENTOXSD TRG 5.1b VENTOXSD TRG 5.1f VENTOXSD TRG 5.1f AML PENTOXSD TRG 5.1f AML PENTOXSD TRG 5.1f	nput appropriate values in B4:B8 and E4:E7Ar7.5= Q stream (cfs)0.50.525= Q discharge (MGD)0.54= no. samples10.3= Chlorine Demand of Stream10= Chlorine Demand of Discha150.5= BAT/BPJ Value7200= % Factor of Safety (FOS)SourceReferenceAFC CalculationsTRC1.3.2.iiiWLA afc = 2.965ENTOXSD TRG5.1aLTAMULT afc = 0.373ENTOXSD TRG5.1bLTA_afc= 1.105SourceEffluent Limit CalculationsFENTOXSD TRG5.1fAML MULT =PENTOXSD TRG5.1gAVG MON LIMIT (mg/l) =INST MAX LIMIT (mg/l) =INST MAX LIMIT (mg/l) =	ArrowheadArrowhead7.5= Q stream (cfs)0.5= CV Daily0.525= Q discharge (MGD)0.5= CV Hourly4= no. samples1= AFC_Partia0.3= Chlorine Demand of Stream1= CFC_Partia0= Chlorine Demand of Discha15= AFC_Criter0.5= BAT/BPJ Value720= CFC_Criter0= % Factor of Safety (FOS)= Decay CoefSourceReferenceAFC CalculationsReferenceTRC1.3.2.iiiWLA afc = 2.9651.3.2.iiiENTOXSD TRG5.1aLTAMULT afc = 0.3735.1cSource5.1bLTA_afc=1.1055.1dENTOXSD TRG 5.1fAML MULT = 1.720ENTOXSD TRG5.1fAML MULT = 1.720ENTOXSD TRG5.1gAVG MON LIMIT (mg/l) = 0.500INST MAX LIMIT (mg/l) = 1.1701.170

WQM 7.0 Effluent Limits

	Stream Name								
	02C :	3335		LEHIGI		2			
RMI	Name	Perm Numt	Disc it Flow er (mgd)	Parame	ter	Effl. Li 30-day / (mg/l	imit t Ave. N L)	Effl. Limit Aaximum (mg/L)	Eff. Limit Minimum (mg/L)
91.700	Arrowhead	PA0061	662 0.525	CBOD5		20			
				NH3-N		3		6	
				Dissolved Ox	ygen				5
	-								
		WATI	Toxics Scre Er Quality Po Ver	EENING ANALYS DLLUTANTS OF SION 2.7	SIS CONCEF	RN .			CLEAR FORM
Facility:	Arrowhead			NPDES Permit N	10.:	PA0021	1555		Outfall: 001
Analysis Har	dness (mg/L): 100			Discharge Flow	(MGD):	0.525	_	Analysi	s pH (SU): 7
Stream Flow,	Q ₇₋₁₀ (CIS). 7.3								
	Parameter	Maximum	Concentration in	Most Stringent	Cand PEN	date for	Most St	ringent	Screening
		Applicatio	n or DMRs (µg/L)	Criterion (µg/L)	Mod	lelina?	WQBEL	. (µg/L)	Recommendation
Total Dissolved	1 Solids		632000	500000	`	/es	n	а	#VALUE!
Chloride			106000	250000		No	n	а	#VALUE!
Bromide			100	N/A		No	n	a	#VALUE!
Sulfate			56900	250000		No	n	a	#VALUE!
Total Aluminum	1			750					
Total Antimony				5.6					
Total Arsenic				10					
Total Barium				2400					
Total Beryllium				N/A					
Total Boron				1600					
Total Cadmium				0.271					
Total Chromium	1			N/A					
Hexavalent Chi	romium			10.4					
Total Cobalt				19					
Total Copper	Overside		23	9.3		res	55.	216	Monitor
Total Cuanida	cyanide			5.2 N/A					
Dissolved last				1W/A					
Total Iron				1500					
Total Lead			0.1	3.2		No	30	5	
Total Mangane	se		0.1	1000			32		
Total Mercury	**			0.05					
Total Nickel				52.2					
Total Phenols (Phenolics)			5					
Total Selenium				5.0					
Total Silver				3.8					
Total Thallium				0.24					
Total Zinc			51	119.8		No	47	2.6	
Total Molybden	um			N/A					

DATE: APRIL 17,1987

		<u>SI</u>	JMMARY	OF DISCH	HARGER T	O FRANCIS	E. WALTER	RESO	VIOR
ND.	NAME OF <u>Discharger</u>	LOCATION	PERMITH	EXPIRATION Date	NPDES FLOW (HGD)	EXISTING FLOW (NGD)	STP CAPACITY (NGD)	STP "P" <u>(NG/L)</u>	PRESENT LINITS
6	Arrowhead Public	Coolbaugh Tup Honroe Co	0061662		0,525	0.060	0.050	5.0	CBOD5 = 20/40(S) TSS =30/60 CBOD5 = 25/50(N) P = 1/2 NH3-N = 3/6 (S) DD=5 NH3-N = 9/18(H) E CDL=200/
7	Prosnesl	Roar fr							2000
Attacl	hments								
	2 PDF	PDF		PDF	X			POF	
2003	-010-2.pdf W	alter Resov	ior.pdf	Arrowhead Pentox.pdf	Arrowhea 0Toxics%2	d%20b%2 PA006 0Screenin _! %20Fa	51662%20First ct%20Sheet.dSa	ASC - NI Impling D	PDES ata 9.30.

DMR Data for Outfall 001 (from February 1, 2019 to January 31, 2020)

Parameter	JAN-20	DEC- 19	NOV- 19	OCT- 19	SEP-19	AUG- 19	JUL-19	JUN-19	MAY- 19	APR- 19	MAR- 19	FEB-19
Flow (MGD)		10								10		
Average Monthly	0.104	0.102	0.091	0.074	0.058	0.094	0.116	0.100	0.142	0.164	0.131	0.102
Flow (MGD)	0.070	0.040	0.500		0.4.40	0.4.47			0.005		0.405	0.000
	0.270	0.248	0.526	0.203	0.146	0.147	0.211	0.226	0.365	0.611	0.405	0.232
Minimum	6.5	6.4	6.2	6.4	6.2	6.0	6.3	6.2	6.3	6.2	6.3	6.6
pH (S.U.)												
Maximum	7.5	7.0	7.6	7.4	7.5	7.3	7.4	7.3	7.7	7.0	7.2	7.3
Minimum	10.1	8.9	8.5	8.3	7.9	8.1	7.4	8.2	7.1	6.6	6.9	8.5
TRC (mg/L)												
Average Monthly	0.1	0.05	0.03	0.1	0.1	0.06	0.05	0.04	0.04	0.1	0.1	0.1
CBOD5 (Ibs/day)	2	2	2	1	1	2	2	3	3	8	6	з
CBOD5 (ma/L)	2	2	2	1	1	L	2	5	5	0	0	5
Average Monthly	2.9	2.3	2.4	2.3	2.4	2.3	2.0	3.3	2.0	4.0	4.0	3.1
BOD5 (lbs/day)												
Influent Average Monthly	25	10	15	65	150	120	100	96	12.0	124	71	50
BOD5 (mg/L)	20	40	40	00	130	130	120	00	42.0	134	/ 1	50
Influent 												
Average Monthly	77.0	111.0	100.0	120	271.0	167.0	124.0	96	42.0	76.0	76.0	70.0
TSS (lbs/day)	0	47	10	4		-	_	0	10		10	7
TSS (lbs/day)	8	17	19	4	4	0	5	6	10	14	10	/
Influent 												
Average Monthly	19	30	45	38	50	90	127	75	35	72	48.0	29
TSS (mg/L)												
Average Monthly	12.0	20.0	14.0	9.0	10.0	6.0	5.0	6.0	7.0	11.0	9.0	9.0
Influent 												
Average Monthly	54.0	66.0	61.0	72	104.0	114.0	119.0	86	31.0	78.0	49.0	40.0
Total Dissolved												
Solids (mg/L)		200			614			447.0			226	
Fecal Coliform		309			011			447.0			230	
(CFU/100 ml)												
Geometric Mean	2	1.0	1	1	3	1	2	1	3	4	2	2.0
Fecal Coliform												
(CFU/100 ml)												
Maximum	49	1.0	1	1	91	2	65	2	93	136	136	42
Nitrate-Nitrite												
(lbs/day)												
Average Monthly	18	12	5.0	26	14	28	29	0.1	9.0	11	12	14.5
(mg/L)												
Average Monthly	27.5	27.2	8.6	40.4	32.5	35.4	32.3	0.1	5.4	12.9	28.1	21.7
Total Nitrogen												
(lbs/day)	10	15	0.0	26	15	20	20	1	27.0	10	10	16.0
Total Nitrogen	19	15	9.0	20	15	20	30	I	27.0	12	12	10.9
(mg/L)												
Average Monthly	27.8	34.6	13.6	40.4	34.2	35.4	33.3	1.0	15.9	13.6	28.7	25.4
Ammonia (lbs/day)		_		0.0		0.0		0.0		-	_	~
Average Monthly	1	2	1	0.3	< 1	0.2	1	0.2	4	1	2	2
Average Monthly	1.3	2.1	1.6	0.5	0.1	0.4	0.7	0.2	3.3	2.7	1.3	2.6
TKN (lbs/day)	-		-									
Average Monthly	1	3	3	0.6	1	< 1.0	1	1	18.0	1	0.4	2.5
IKN (mg/L)	1.0	7 /	5.0	10	17	-10	1.0	1.0	10 F	1.0	1.0	27
Total Phosphorus	1.0	1.4	5.0	1.0	1.7	< 1.0	1.0	1.0	10.5	1.0	1.0	J.1
(lbs/day)												
Average Monthly	0.5	0.6	0.7	0.2	0.3	0.3	0.3	0.2	0.3	0.7	0.4	0.3

Total Phosphorus (mg/L)												
Average Monthly	0.6	0.7	0.6	0.4	0.6	0.4	0.3	0.3	0.2	0.4	0.4	0.4
Total Copper												
(mg/L)												
Average Quarterly		0.09			0.05			0.04			0.0122	
Total Zinc (mg/L)												
Average Quarterly		0.10			0.11			0.07			0.0153	

Average Copper = 0.0481 mg/l Average Zinc = 0.0738 mg/l

Compliance History

Effluent Violations for Outfall 001, from: February 1, 2019 To: January 31, 2020

Parameter	Date SBC		DMR Value	Units	Limit Value	Units	
Ammonia	05/31/19	Avg Mo	3.3	mg/L	3.0	mg/L	