

Northeast Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0062910

APS ID 754660

Authorization ID 1399428

	Applicant and	I Facility Information	
Applicant Name	Borough of Bowmanstown	Facility Name	Bowmanstown Wastewater Treatment Plant
Applicant Address	490 Ore Street, PO Box 127	Facility Address	800 Lincoln Avenue
Applicant Contact	Bowmanstown, PA 18030 Tracy L. Burbage, Secretary/ Assistant Treasurer	Facility Contact	Bowmanstown, PA 18071 Chris Bixler, Operator
Applicant Phone	(610) 852-2455	Facility Phone	(610) 852-2455
Client ID	116556	Site ID	445346
Ch 94 Load Status	Not Overloaded	Municipality	Bowmanstown Borough
Connection Status	No Limitations	County	Carbon
Date Application Rece	ived June 3, 2022	EPA Waived?	Yes
Date Application Acce	pted June 27, 2022	If No, Reason	
Purpose of Application	Renewal of NPDES permit for d	ischarge of treated sewage	

Summary of Review

The applicant is requesting the renewal of an NPDES permit to discharge up to 0.14 MGD of treated sewage into the Lehigh River, a Trout Stocking, Migratory Fish (TSF, MF) receiving stream in State Water Plan Basin 2-B (Middle Lehigh River). As per the Department's current existing use list, the receiving stream does not have an existing use classification that is more protective than its designated use. This stream segment is not designated as a naturally reproducing trout stream as per PA Fish & Boat Commission. This discharge is not expected to affect public water supplies.

Limitations for pH, CBOD₅, Total Suspended Solids (TSS), and Fecal Coliform are technology-based and carried over from the previous permit.

A BPJ-based limitation of 5.0 mg/L for Dissolved Oxygen (DO) has been added to the permit. The previous permit included a monitoring/reporting requirement for DO. eDMR data from August 2022 to July 2023 indicate the facility typically meets the 5.0 mg/L limitation; however, the DO did drop to 4.75 mg/L in May 2023. Therefore, the updated DO limitation will come into effect one year after the permit effective date to allow the facility time to make any necessary adjustments.

The 1.0 mg/L monthly average and 2.0 mg/L IMAX limitations for Total Residual Chlorine (TRC) in the previously issued permit were water quality-based limitations. As per PA Code 92a.47(a)(8) (which refers to PA Code 92a.48(b)(2)), a monthly average TRC facility-specific BAT effluent limit of 0.5 mg/L and an IMAX limit of 1.6 mg/L has been applied to this permit renewal. The TRC Calculation Spreadsheet did not recommend more stringent water quality-based limitations. eDMR data from August 2022 to July 2023 (seen on pages 5-8 of this Fact Sheet) indicates that the facility is consistently and significantly under 0.5 mg/L monthly average and 1.6 mg/L IMAX for TRC. In November 2022 the facility did exceed the existing permit limitation of 2.0 mg/L IMAX, but this appears to be an isolated occurrence. Therefore, the new TRC technology-based limit will be applied at the permit effective date.

Approve	Deny	Signatures	Date
Х		/s/ Allison Seyfried / Project Manager	October 3, 2023
Х		/s/ Amy M. Bellanca, P.E. / Program Manager	10-12-23

Summary of Review

The 1/week monitoring and reporting for Ammonia-Nitrogen has been carried over from the previous permit. WQM 7.0 modeling did not recommend stricter limits.

The DRBC requested quarterly monitoring/reporting for Total Dissolved Solids (TDS) and the 85% minimum BOD₅ Removal was carried over from the previous permit.

Per current Standard Operating Procedures for Publicly Owned Treatment Plants, the raw sewage influent monitoring/reporting for TSS and BOD₅ has been maintained in the permit.

24-hour composite sampling is now required in place of 8-hour composite sampling.

Sewage discharges now require monitoring and reporting for E. Coli. A monitoring frequency of 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD, 1/year for design flows of 0.002 – 0.05 MGD will be utilized.

Pollutant sampling results submitted with the permit application were entered into the Toxic Management Spreadsheet (TMS). The TMS did not recommend any additional limitations or reporting/monitoring.

A final Total Maximum Daily Load (TMDL) exists for the Lehigh River Watershed. The TMDL addresses metals (iron, manganese, and aluminum) and pH associated with acid mine drainage (AMD). There are no approved Waste Load Allocations (WLA) for this facility. Since this is a sewage discharge with no industrial contributors, no appreciable quantities of these metals are expected to be present in the effluent.

The semi-annual monitoring and reporting for Total Iron, Total Manganese, and Total Aluminum due to the Acid Mine Drainage TMDL has been carried over from the previous permit.

The facility discharges between two USGS Stream Gages (01449000 – Lehigh River at Lehighton, PA and 1451000 – Lehigh River at Walnutport, PA). The Walnutport gage appears to be closer. Data from this gage and associated Low Flow Yield (LFY) and Q_{7-10} Flow calculations can be seen on page 11 of this Fact Sheet. USGS StreamStats was also used to generate a LFY and Q_{7-10} Flow. Finally, the state-wide default Low Flow Yield (LFY) of 0.1 cfs/mi² was used to model the discharge. The USGS StreamStats and state-wide default flow calculations can be observed on pages 10-11 of this Fact Sheet. The previous permit utilized a LFY of 0.179 cfs/mi² based on the 1992 WPC Report. The table below shows a summary of all Q_{7-10} and LFYs that were reviewed as part of this renewal.

Q ₇₋₁₀ Basis	Q ₇₋₁₀ Flow (cfs)	LFY (cfs/mi ²)
USGS Stream Gage 1451000	177.1	0.239
Previous Permit	132.7	0.179
USGS StreamStats	156	0.21
State-wide Default	74.1	0.1

The USGS StreamStats data was used as the main modeling parameter for this permit. The most conservative state-wide default was also entered into WQM 7.0 and the TRC Spreadsheet. Neither method recommended any limitations.

For the remaining modeling inputs, RMI values were obtained using the "PA Historic Streams" feature of eMapPA, drainage areas were delineated using USGS's StreamStats Interactive Map, and elevations were obtained using the elevation profile feature of StreamStats.

Pollutant sampling results submitted with the permit application were entered into the Toxic Management Spreadsheet (TMS). The TMS did not recommend any additional limitations or reporting/monitoring.

For this permit renewal, all monitoring frequencies for parameters with limitations are consistent with the Department's *Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits* (document no. 362-0400-001).

The existing permit expired on September 30, 2022 and the application for renewal was not received until June 3, 2022.

A Water Management System Inspection query indicated multiple inspections have recently occurred. A routine/partial inspection was performed on April 19, 2023.

Summary of Review

There are currently six open violations for this client that may need to be resolved before issuance of the final permit:

- 1. 07/11/2019 Violation ID 857914 Violation Code 92A.44 NPDES Violation of effluent limits in Part A of permit (WPC NPDES Program Specific ID: PA0062910).
- 2. 10/19/2021 Violation ID 933544 Violation Code 92A.44 NPDES Violation of effluent limits in Part A of permit (WPC NPDES Program Specific ID: PA0062910).
- 3. 10/19/2021 Violation ID 933545 Violation Code 92A.47(C) NPDES Illegal discharge to waters of the Commonwealth from a sanitary sewer overflow (WPC NPDES Program Specific ID: PA0062910).
- 4. 10/19/2021 Violation ID 933546 Violation Code 92A.41(A)10C NPDES Failure to collect representative samples (WPC NPDES Program Specific ID: PA0062910).
- 5. 05/03/2023 Violation ID 999484 Violation Code 92A.44 NPDES Violation of effluent limits in Part A of permit (WPC NPDES Program Specific ID: PA0062910).
- 6. 05/03/2023 Violation ID 99486 Violation Code 92A.41(A)12B NPDES Failure to submit monitoring report(s) or properly complete monitoring reports (WPC NPDES Program Specific ID: PA0062910).

Sludge use and disposal description and location(s): Sewage sludge is disposed at on-site reed beds.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Outfall No. 001		Design Flow (MGD)	0.14
atitude 40°	48' 15.39"	Longitude	-75° 40' 16.76"
Quad Name Lehighton		Quad Code	1240
Vastewater Desc	ription: Sewage Effluent		
Receiving Waters	Lehigh River (TSF, MF)	Stream Code	3335
IHD Com ID	26289027	RMI	39.9
rainage Area	741 mi ²	Yield (cfs/mi²)	0.21
2 ₇₋₁₀ Flow (cfs)	156	Q ₇₋₁₀ Basis	USGS StreamStats
levation (ft)	415.77	Slope (ft/ft)	
Vatershed No.	2-B	Chapter 93 Class.	TSF, MF
xisting Use	-	Existing Use Qualifier	
xceptions to Use		Exceptions to Criteria	
ssessment Statu	ıs <u>Impaired</u>		
ause(s) of Impai	rment METALS		
Source(s) of Impa	irment ACID MINE DRAINAGE		
MDL Status	Final	Name Lehigh Rive	r TMDL
learest Downstre	eam Public Water Supply Intake	Northampton Borough Munici	oal Authority
WS Waters	Lehigh River	Flow at Intake (cfs)	-
	24.8	Distance from Outfall (mi)	~ 15.1

	Tr	eatment Facility Summa	ry				
Treatment Facility Na	ame: Bowmanstown Borou	gh STP					
WQM Permit No.	Issuance Date	Sco	pe				
1314403	5/1/2015	New grinder and s	spiral fine screen				
1395401	Construction/operation of treatment plant and						
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)			
Sewage	Secondary	Sequencing Batch Reactor	Chlorination	0.054 (2019-2021)			
Hydraulic Capacity	Organic Capacity			Biosolids			
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal			
0.14	238*	Not Overloaded	Reed Beds	-			

^{*}Per 1996 WQM Permit Application Design Engineer Report. Application had 250 lbs/day. The 5/1/2015 WQM had 250 lbs/day, but that might be based on inaccurate information. The 3/20/2014 WQM had indicated 238 lb/day.

Compliance History

DMR Data for Outfall 001 (from August 1, 2022 to July 31, 2023)

Parameter	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22
Flow (MGD)												
Average Monthly	0.075	0.058	0.06	0.059	0.058	0.052	0.056	0.06	0.053	0.049	0.05	0.051
Flow (MGD)												
Daily Maximum	0.279	0.082	0.17	0.13	0.088	0.062	0.072	0.134	0.081	0.07	0.074	0.07
pH (S.U.)												
Minimum	7.09	7.04	7.23	7.07	6.95	7.06	7.13	7.08	7.16	7.00	6.89	7.14
pH (S.U.)												
Maximum	7.76	7.64	8.0	7.63	7.78	7.58	7.52	7.56	8.05	7.68	7.30	7.56
DO (mg/L)												
Minimum	5.6	6.19	4.75	7.03	8.1	8.15	7.67	6.26	6.65	5.88	5.58	6.01
TRC (mg/L)												
Average Monthly	< 0.05	0.04	< 0.03	0.03	0.03	0.04	< 0.2	< 0.1	0.1	< 0.1	0.04	0.1
TRC (mg/L)												
Instantaneous												
Maximum	0.11	0.07	0.07	0.06	0.09	0.10	1.11	0.34	2.13	0.79	0.08	0.11
CBOD5 (lbs/day)												
Average Monthly	< 7.8	< 1.2	< 9.3	< 0.9	< 1.7	1.2	1.2	< 5.3	< 0.9	< 0.9	< 1.0	< 1.0
CBOD5 (lbs/day)												
Weekly Average	< 13.2	1.6	15.9	1.0	2.6	1.8	1.6	21.7	< 1.0	1.0	1.4	1.1
CBOD5 (mg/L)												
Average Monthly	< 7.3	< 2.7	< 10.7	< 2.0	< 3.8	3.0	2.5	< 6.3	< 2.0	< 2.3	< 2.6	< 2.4
CBOD5 (mg/L)												
Weekly Average	< 11.5	3.9	17.0	2.1	5.9	4.6	2.9	19.9	< 2.0	2.5	3.3	2.8
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average	400	400	450	400	455	470	404	450	440	440	00	70
Monthly	129	138	152	109	155	179	121	159	118	119	93	70
BOD5 (lbs/day)												
Raw Sewage Influent	400	400	450	400	455	470	404	450	440	440	00	70
 Apple (ma/l)	129	138	152	109	155	179	121	159	118	119	93	70
BOD5 (mg/L) Raw Sewage Influent												
<pre> Average</pre>												
Monthly	253	291	290	277	357	371	295	313	248	265	259	172
BOD5 (mg/L)	200	231	290	211	331	3/ 1	293	313	240	200	239	112
Raw Sewage Influent												
<pre> </pre>	253	291	290	277	357	371	295	313	248	265	259	172
CDIT Daily WaxiiIIUIII	200	231	290	211	331	311	290	313	240	200	209	112

NPDES Permit Fact Sheet Bowmanstown Borough

BOD5 % Removal (%) Minimum Monthly Average 99<
Average 99 98 TSS (lbs/day) Raw Sewage Influent edbr/>ebr/> Daily Maximum 95 101 95 69 110 121 84 108 78 84 63 21 TSS (lbs/day) Weekly Average < 9.5
Average Monthly < 6.4 < 2.2 < 8.0 < 1.8 < 2.1 < 1.7 < 1.9 < 4.3 < 1.7 < 1.5 < 1.6 < 1.6 TSS (lbs/day) Raw Sewage Influent
TSS (lbs/day) Raw Sewage Influent
Raw Sewage Influent Sewage Influent
cbr/> Average Monthly 95 101 95 69 110 121 84 108 78 84 63 21 TSS (lbs/day) Raw Sewage Influent
Monthly 95 101 95 69 110 121 84 108 78 84 63 21 TSS (lbs/day) Raw Sewage Influent Sewage Influent </td
TSS (lbs/day) Raw Sewage Influent 4 br/s Daily Maximum 95 101 95 69 110 121 84 108 78 84 63 21 TSS (lbs/day) Weekly Average < 9.5
Raw Sewage Influent Sewage Influent
 For baily Maximum 95 101 95 69 110 121 84 108 78 84 63 21 TSS (lbs/day) Weekly Average < 9.5
TSS (lbs/day) Weekly Average < 9.5 3.2 < 13.0 < 2.0 3.3 < 1.9 < 2.2 < 15.2 < 1.8 < 2.4 < 2.0 TSS (mg/L) Average Monthly < 6.9
Weekly Average < 9.5 3.2 < 13.0 < 2.0 3.3 < 1.9 < 2.2 < 15.2 < 1.8 < 2.4 < 2.0 TSS (mg/L) Average Monthly < 6.9
TSS (mg/L) Average Monthly < 6.9 < 5.2 < 8.8 < 4.1 < 4.5 < 4.3 < 4.0 < 5.9 < 4.0 < 4.0 < 4.0 < 4.0
Average Monthly < 6.9 < 5.2 < 8.8 < 4.1 < 4.5 < 4.3 < 4.0 < 5.9 < 4.0 < 4.0 < 4.0 < 4.0
TSS (mg/L)
Raw Sewage Influent
 Average
Monthly 187 212 180 177 254 250 205 212 164 187 177 52
TSS (mg/L)
Raw Sewage Influent
 Daily Maximum 187 212 180 177 254 250 205 212 164 187 177 52
TSS (mg/L)
Weekly Average < 9.2 7.0 < 12.6 4.4 6.5 5.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0
Total Dissolved Solids
(lbs/day)
Average Quarterly 203 156 147 159 Total Dissolved Solids
(mg/L)
(riig/L) Average Quarterly 426 382 419 390.0
Fecal Coliform
(No./100 ml)
(No./100 hii)
Fecal Coliform
(No./100 ml)
Instantaneous
Maximum > 20000 5.0 20000.0 205 4.0 3 1 > 20000 < 1.0 2.0 1.0 2
Nitrate-Nitrite (lbs/day)
Annual Average 0.35
Nitrate-Nitrite (mg/L)
Annual Average 7.44
Nitrate-Nitrite (mg/L)
Daily Maximum 7.44

NPDES Permit No. PA0062910

Total Nitrogon		1			1	I	1			1		
Total Nitrogen (lbs/day)												
Annual Average								2.92				
Total Nitrogen (mg/l)								2.92				
Total Nitrogen (mg/L)								0.05				
Annual Average								8.35				
Ammonia (lbs/day)	. 0. 0	.004	. 0. 0	. 0.04	.0.4	. 0. 00	. 0. 00		0.04	.0.04	. 0. 05	. 0. 0.4
Average Monthly	< 2.0	< 0.04	< 2.0	< 0.04	< 0.1	< 0.06	< 0.06	< 1	< 0.04	< 0.04	< 0.05	< 0.04
Ammonia (mg/L)	4.00	0.4	4 =	0.4	0.05	0.45	0.40	4.50	0.4	0.4	0.40	0.44
Average Monthly	< 1.98	< 0.1	< 1.7	< 0.1	< 0.25	< 0.15	< 0.12	< 1.52	< 0.1	< 0.1	< 0.13	< 0.11
Ammonia (mg/L)	40 =						0.40		o		0.04	0.1.1
Daily Maximum	10.7	< 0.1	9.55	< 0.1	0.45	0.28	0.16	7.2	0.17	< 0.1	0.24	0.14
TKN (lbs/day)												
Annual Average								0.31				
TKN (mg/L)												
Annual Average								0.91				
TKN (mg/L)												
Daily Maximum								0.91				
Total Phosphorus												
(lbs/day)												
Annual Average								2.57				
Total Phosphorus												
(mg/L)												
Annual Average								7.36				
Total Phosphorus												
(mg/L)												
Daily Maximum								7.36				
Total Aluminum												
(lbs/day)												
Semi-Annual Average		< 0.04						< 0.03				
Total Aluminum												
(mg/L)												
Semi-Annual Average		< 0.100						< 0.100				
Total Aluminum												
(mg/L)												
Daily Maximum		< 0.100						< 0.100				
Total Iron (lbs/day)												
Semi-Annual Average		< 0.04						< 0.03				
Total Iron (mg/L)												
Semi-Annual Average		< 0.100						< 0.100				
Total Iron (mg/L)												
Daily Maximum		< 0.100						< 0.100				
Total Manganese												
(lbs/day)												
Semi-Annual Average		0.01						0.01				
- com / milaa / trolago	1	0.01		I	1	l	l	0.01		l	I .	1

NPDES Permit Fact Sheet Bowmanstown Borough

NPDES Permit No. PA0062910

Total Manganese						
(mg/L)						
Semi-Annual Average	0.042			0.015		
Total Manganese						
(mg/L)						
Daily Maximum	0.042			0.015		

Compliance History

Effluent Violations for Outfall 001, from: September 1, 2022 To: July 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TRC	11/30/22	IMAX	2.13	mg/L	2.0	mg/L
Fecal Coliform	05/31/23	IMAX	20000.0	No./100 ml	1000	No./100 ml
Fecal Coliform	07/31/23	IMAX	> 20000	No./100 ml	1000	No./100 ml
Fecal Coliform	05/31/23	IMAX	20000.0	No./100 ml	1000	No./100 ml
Fecal Coliform	12/31/22	IMAX	> 20000	No./100 ml	10000	No./100 ml
Fecal Coliform	12/31/22	IMAX	> 20000	No./100 ml	10000	No./100 ml
Fecal Coliform	07/31/23	IMAX	> 20000	No./100 ml	1000	No./100 ml

Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	0.14				
Latitude	40° 48' 15.00"	Longitude	-75° 40' 15.00"				
Wastewater D	Description: Sewage Effluent						

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

The following technology-b				
Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25.0	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40.0	Average Weekly	122 102(0)(4)(ii)	020 47(0)(2)
	50.0	IMAX	133.102(a)(4)(ii)	92a.47(a)(2)
	30.0	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended	45.0	Average Weekly	122 102(b)(2)	020 47(0)(2)
Solids	60.0	IMAX	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				92a.47(a)(4)
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47 (a)(4)
Fecal Coliform			_	92a.47(a)(4)
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47 (a)(4)
Fecal Coliform			_	92a.47(a)(5)
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47 (a)(3)
Fecal Coliform				92a.47(a)(5)
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47 (a)(5)
	0.5	Average Monthly		02a 49/b)/2)
Total Residual Chlorine	1.6	IMAX	-	92a.48(b)(2)
E. Coli	Report	IMAX	-	92a.61
Dissolved Oxygen	5.0	Minimum	-	BPJ

Water Quality-Based Limitations

The following limitations were determined through water quality modeling:

arameter	Limit (mg/l)	SBC	Model
Ammonia-Nitrogen	Report	Average Monthly	BPJ
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Average Monthly	POTW Requirement
BOD5 Minimum % Removal (%)	85%	Minimum Monthly Average	DRBC
Total Suspended Solids Raw Sewage Influent	Report	Average Monthly	POTW Requirement
Total Dissolved Solids	Report	Average Quarterly	DRBC
Nitrate-Nitrite as N Total Nitrogen Total Kjeldahl Nitrogen Total Phosphorus	Report	Average Annually	Previous Permit
Aluminum, Total Iron, Total Manganese, Total	Report	1/6 Months	TMDL - AMD

Anti-Backsliding

No limitations were made less stringent.

Modeling with State-Wide default LFY of 0.1 cfs/mi²:

$$\frac{0.1 \, ft^3/sec}{mi^2} \times 741 \, mi^2 = \frac{74.1 \, ft^3}{sec}$$

Modeling Using StreamStats:

At Outfall 001 on Lehigh River:

RMI	Elevation (ft)	Drainage Area (mi ²)	Q ₇₋₁₀ Flow (cfs)
39.9	415.77	741	156

Low Flow Yield using StreamStats =
$$\frac{156 \ ft^3/sec}{741 \ mi^2}$$
 = $\mathbf{0.21} \ \frac{\mathbf{ft^3/sec}}{\mathbf{mi^2}}$

StreamStats Report

Parameter Code	Parameter Name	Value	Units
DRNAREA	Drainage Area	741	square miles
Statistic		Value	Unit
7 Day 2 Year Low Flow		242	ft^3/s
30 Day 2 Year Low Flow		291	ft^3/s
7 Day 10 Year Low Flow		156	ft^3/s

At confluence with "Nis Hollow" (3913):

RMI	Elevation (ft)	Drainage Area (mi ²)
39.80	411.61	743

StreamStats Report

DRNAREA

Modeling Using USGS Stream Gage

743

square miles

Stream Gage: 1451000 Leigh River at Walnutport, PA Period of Record: 9/30/1946 – 11/19/2022

Drainage Area

	Basin Dimer	Basin Dimensional Characteristics						
	Characteris	tic Nar	ne			Value	Uni	its
	Drainage Ar	ea				889	squ	ıare miles
ow-Flow S	atistics							
Statistic	Name	Value	Units	Preferred?	Years of Record	Standard Error, percent	Citation	Comments
1 Day 10	Year Low Flow	203	cubic feet per second	~	13		49	Statistic D 4/1/1947
7 Day 2 Y	ear Low Flow	311	cubic feet per second	•	13		49	Statistic D

Low Flow Yield using StreamStats Gage Data =
$$\frac{213 \ ft^3/sec}{889 \ mi^2}$$
 = $\mathbf{0.239} \ \frac{\mathbf{ft^3/sec}}{\mathbf{mi^2}}$

$$Q_{7-10}$$
 at Outfall 001 using StreamStats Gage Data = 0.239 $ft^3/sec \times 741 mi^2 = 177.1 \frac{ft^3/sec}{mi^2}$

WQM 7.0 Effluent Limits

	SWP Basin Stream	m Code		Stream Name	<u>e</u>		
	02C 3	335		LEHIGH RIVE	R		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
39.900	Bowmanstown	PA0062910	0.140	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3

TRC Calculation Using USGS StreamStats

Iculation Using USGS StreamStats								
TRC EVALUA	ATION							
Input appropriate values in A3:A9 and D3:D9								
156	156 = Q stream (cfs) 0.5 = CV Daily							
0.14	= Q discharg	e (MGD)	0.5	= CV Hourly				
30	= no. sample	s	1	= AFC_Partial N	lix Factor			
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor			
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)			
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)			
0	= % Factor o	of Safety (FOS)		=Decay Coeffici	ent (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	229.791	1.3.2.iii	WLA cfc = 224.021			
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	85.626	5.1d	LTA_cfc = 130.235			
Source	Source Effluent Limit Calculations							
PENTOXSD TRG	5.1f AML MULT = 1.231							
PENTOXSD TRG	5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ							
INST MAX LIMIT (mg/l) = 1.635								
WLA afc		FC_tc)) + [(AFC_Yc*Qs*.019/	-	_te))				
LTAMULT afc	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)							
LTA_afc	wla afc*LTAMULT afc							
LIA_BIC WIB_BIC*LIAMULI_BIC								
WLA_cfc	(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)							
LTA_cfc	wla_cfc*LTAMULT_cfc							
AML MULT	(
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)*AM						
INST MAX LIMIT	1.5"((av_mor	_limit/AML_MULT)/LTAMUL	i_afc)					

TRC Calculation Using State-wide Default

Input appropriate values in A3:A9 and D3:D9	TRC EVALUATION							
0.14	Input appropria	te values in /	A3:A9 and D3:D9					
Source	74.1	= Q stream (cfs)	0.5	= CV Daily			
Chlorine Demand of Stream	0.14	= Q discharg	e (MGD)	0.5	= CV Hourly			
Chlorine Demand of Discharge	30	= no. sample	s	1	= AFC_Partial N	lix Factor		
Source Reference AFC Calculations Reference CFC Calculations	0.3	lix Factor						
Source Reference AFC Calculations Reference CFC Calculations	0					Compliance Time (min)		
Source Reference AFC Calculations Reference CFC Calculations	0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)		
TRC 1.3.2.iii WLA afc = 109.161 1.3.2.iii WLA cfc = 106.416 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 40.676 5.1d LTA_cfc = 61.865 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)) EXP(2.326*LN((cvd^2/no_samples+1)))	0	= % Factor o	f Safety (FOS)		=Decay Coeffici	ient (K)		
PENTOXSD TRG 5.1a	Source	Reference	AFC Calculations		Reference	CFC Calculations		
Dentoxed Figure S.1b LTA_afc= 40.676 S.1d LTA_cfc = 61.865	TRC	1.3.2.iii	WLA afc =	109.161	1.3.2.iii	WLA cfc = 106.416		
Source Effluent Limit Calculations	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))	PENTOXSD TRG	5.1b	LTA_afc=	40.676	5.1d	LTA_cfc = 61.865		
PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))								
PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_efc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Ye*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_efc wla_efc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))								
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))								
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))	PENTOXSD TRG	, , ,						
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc	INST MAX LIMIT (mg/l) = 1.635							
LTA_afc	WLA afc				tc))			
WLA_cfc	LTAMULT afc	fc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)						
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))	LTA_afc wla_afc*LTAMULT_afc							
LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))								
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))	LTAMULT_cfc							
	LTA_cfc	wla_cfc*LTA	MULT_cfc					
	AML MULT	•			^2/no_samples+	1))		
,	AVG MON LIMIT			_				
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)	INST MAX LIMIT	1.5*((av_mor	_limit/AML_MULT)/LTAMUL	T_afc)				

PDF

TMS PA0062910.pdf

WQM 7.0 Results.pdf

Approve	Deny	Signatures	Date
Х		/s/ Allison Seyfried / Project Manager	October 3, 2023
Х		/s/ Amy M. Bellanca, P.E. / Program Manager	10-12-23