

Northeast Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0063100

 APS ID
 477152

 Authorization ID
 1247978

		Applicant and	Facility Information	
Applicant Name	Harfor Count	rd Township Susquehanna y	Facility Name	Harford Township WWTP
Applicant Address	РО Во	x 1 (4514 State Route 547)	Facility Address	288 Burns Road (T-567)
	Harfor	d, PA 18823-9701	_	Harford, PA 18823
Applicant Contact	Caroly	n Jennings	Facility Contact	Travis Long
Applicant Phone	(570) 4	134-2401	Facility Phone	570-278-3100 Ext. 3692
Client ID	66806		Site ID	454367
Ch 94 Load Status	Not Ov	verloaded	Municipality	Harford Township
Connection Status	No Lin	nitations	County	Susquehanna
Date Application Rece	ived	October 9, 2018	EPA Waived?	Yes
Date Application Acce	pted	October 10, 2018	If No, Reason	
Purpose of Application	1	RENEWAL OF EXISTING NPDE	S PERMIT.	

Summary of Review

This is a 0.050 MGD POTW discharging to Nine Partners Creek (CWF, MF; Stream Code No. 29105). The ADF was 0.025 MGD (2017), 0.021 MGD (2016) and 0.23 (2015). Highest monthly flow in 2017 was 0.031 MGD.

Sludge use and disposal description and location(s): 99,000 gallons were hauled offsite to WVSA.

Part C Special Condition: Changes bolded.

<u>Part C.I.A, B, and C:</u> Existing Stormwater prohibition; Necessary property rights; Residuals management conditions <u>Part C.I.D</u>: New chlorine minimization condition due to conversion to UV disinfection and chlorine toxicity. <u>Part C.II</u>: Existing Solids Management

<u>Part C.III</u>: New WQBELs for Toxic Pollutants (copper) due to Reasonable Potential Analysis. The facility will have option to address lead and zinc monitoring requirements via this condition also. Ten monthly sample results (meeting DEP TQLs) will allow calculation of LTAMEC to update the Reasonable Potential Analysis.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		James D. Berger (signed) James D. Berger, P.E. / Environmental Engineer	July 24, 2023
Х		Amy M. Bellanca (signed) Amy M. Bellanca, P.E. / Program Manager	8-2-23

ischarge, Receiving	Water	s and Water Supply Inforn	nation				
Outfall No. 001			Design Flow (MGD)	.050			
	6' 54.51	"	Longitude	-75° 41' 4.99"			
Quad Name Harf			Quad Code	0440 (1.21.3)			
Wastewater Descrip		Sewage Effluent	adda Codo	0110 (112110)			
		oonago ziiiaoiii					
Receiving Waters	Nine F	Partners Creek (CWF, MF)	Stream Code	29105			
NHD Com ID	66394	847	RMI	-			
Drainage Area	7.91 s	quare miles	Yield (cfs/mi²)	0.0207			
Q ₇₋₁₀ Flow (cfs)	0.164		Q ₇₋₁₀ Basis	USGS PA Streamstats			
Elevation (ft)		Feet (at sampling point per ation), but 1110.27 by USG		-			
Watershed No.	4-F		Chapter 93 Class.	CWF, MF			
Existing Use	-		Existing Use Qualifier	-			
Exceptions to Use	-		Exceptions to Criteria				
Assessment Status		Attaining Use(s)					
Cause(s) of Impairm	ent	-					
Source(s) of Impairm	nent	-					
TMDL Status		-	Name				
Background/Ambien pH (SU)	it Data:	_	Data Source: None available.				
Temperature (°F)		-	-				
Hardness (mg/L)		-					
Other:		-					
Nearest Downstrean	n Publi	c Water Supply Intake	PA American Water Nesbitt D	Division			
		nanna River	Flow at Intake (cfs)				
PWS RMI -		·	_ ` ′	>50 miles (last Fact Sheet)			

Changes Since Last Permit Issuance: Outfall No. 001 coordinates updated per application.

Other Comments:

- No available upstream sampling data for Nine Partners Creek (other than fecal coliforms).
- Nine Partners Creek flows into Tunkhannock Creek and then eventually to the Susquehanna River.
- Phase 5 Nonsignificant Chesapeake Bay facility

	7	Freatment Facility Summar	у	
Treatment Facility Na	ı me: Harford Township W	WTP		
WQM Permit No.	Issuance Date		Scope	
5820401	8/12/2020	The major elements of the following: a new headwork screening, construction of a new wet was refurbishment of existing a systems, conversion from a bubble diffusers in the aera fourth blower, minor modification of a new standby generate and the installation of a 10 prefabricated building.	s to incorporate mechanical anew 12' diameter clarifier well for sludge conveyance ir supply piping and header course bubble diffusers to fation process, the addition of cations of the existing influer plant instrumentation, in	al bar ; r iine of a new ent allation vitch,
5813401	7/30/2013	Upgrade to UV disinfection	(units in retrofitted chloring	e tank)
5893401	6/11/1993	POTW (STP and LPS Syst LPS: ~300 grinder units an STP: one (1) 21,000-gallor 10,000-gallon extended ae gallon settling tanks; two (2 tanks; hypochlorite chloring	d~25,000 LF piping n EQ basin; five (5) sequen ration reaction tanks; two (2) 22,170-gallon aerobic dig	2) 5,280-
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Extended Aeration	UV disinfection	0.050
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.050	83*	Not Overloaded	Aerobic digesters**	Offsite disposa

^{*83} lbs BOD5/day per WQM permitting.

<u>Changes Since Last Permit Issuance</u>: Facility previously upgraded to UV disinfection. 2020 WQM permitted upgrades (see above) anticipated to be completed in 2023 per 2022 Chapter 94 Report.

Other Comments:

- General Background site concern: Previous Site Design Engineer/Certified Operator was charged in Federal Court due to issues at another facility (see Greenfield Township Sewer Authority NPDES Permit No. PA0061671 files for details). The nature and magnitude of the issues (at other plants) raises the possibility of bad construction in (non-visible/non-accessible portions of) the STP and LPS System designed, construction-overseen and originally operated by the same Engineer/Operator. Inspectors noted most of this plant is not visible (covered or underground), i.e. visual inspections are <u>limited</u> value in determining condition of this STP. <u>NOTE</u>: The permittee subsequently hired a different technical consultant (JHA Companies) to operate and maintain the POTW (STP and collection system) circa mid-2016 and has proposed some WWTP upgrades (see 2020 WQM permit). The technical consultant might not be able to identify of any buried (non-visible) construction problem.
- 2022 Chapter 94 Report (On-Base No. 91578) & 2021 Chapter 94 Report (On-Base No. 50040):
 - Form Items 1. 2. 3. and 9: No existing or projected overloading per 2022 Chapter 94 Report.
 - Incorrect Organic Design Capacity Assumed:
 - The Chapter 94 Report assumed an incorrect value of 116 lb BOD5/day. The existing NPDES Permit Part A.I Additional Requirements states that 83 lb BOD5/day is to be used

^{**}May be operating as aerated sludge holding tanks.

- for the Chapter 94 Report. The WQM Permit No. 5820401 identified an 83 lbs BOD5/day organic design capacity.
- The November 2020 load of 115 lb BOD5/day was above the actual organic design capacity (83 lb BOD5/day) but might be a result of biasing (due to 8-hour composite sampling bias and lack of influent flow meter calibration documentation). There is a pattern of one month of (different months) spiking organic loading each year.

Design Capacities:

- 0.050 MGD Hydraulic Design Capacity Versus Loading: In 2022, they only had 0.0211 MGD ADF, and 0.024 MGD Max 3-Mo. Period. (flows in the 0.0151 0.024 MGD range during year, with 0.026 MGD in December).
- 83 lb BOD5/day Organic Design Capacity versus Loading. In 2022, they had an average 43 lb BOD5/day loading and 78 lb BOD5/day max monthly average loading in 2022. NOTE: Projected to be in the 72 78 lb BOD5/day range over the next five years.

• 2022 Chapter 94 Data:

- Persons/EDU: 2.4 (2022) with 2.45 indicated in 2021
- Existing EDUs: 280 (no change in last 5-years). NOTE: Original WQM permit approved ~300 grinder units, i.e. community is near or at build-out. They have been assuming 4 new unit/year in the Chapter 94 Report.
- Load/EDU: 0.154 lb BOD5/day
- Load/Capita: 0.064 lbs BOD5/day NOTE: The PA Domestic Wastewater
 Facilities Manual Section 43.51 default values for new systems: 0.17 lb/day/cap
 (0.22 lb/day/cap may be used when garbage grinders are prevalent).
- o New EDUs: 4/year for next 5 years. No projected overloading.
- <u>Precipitation Data Table</u>: Not completed, but limited I&I expected in any LPS sewer system.
- Flow/Capita: 31.4 GPD NOTE: The PA Domestic Wastewater Facilities Manual Section 43.51 estimated for new systems: 100 GPCD (including allowance for I&I). 80 GPCD can be used for new LPS Systems. At original WQM permit design assumption (70 GPCD for this Low Pressure Sewer System), they would generate ~49,000 GPD.
- Underloading at Near Build Out: As noted above, the flows/organic loadings are substantially below DWFM multipliers (for new LPS flows and loadings) with 280 EDUs for a development permitted for 300 units. The renewed permit will require 24-hour composite sampling to eliminate potential biasing. The permittee noted in the NPDES permit application that the it was possible that a decreasing population (estimated at 1% per year) might have effectively reduced the EDUs to 266 EDUs, but that was not addressed in the 2022 Chapter 94 Report. The NPDES Permit application also noted that significant portions of the collection system services lake front homes (Tyler Lake and Tingley Lake) as well as campgrounds and fairgrounds that experience seasonal occupation rates.
- Form Item 4 (Sewer Extensions; Attachment G): "Any extensions proposed for 2022 have been tabled and not deemed feasible. No sewer extensions were constructed in 2022". NOTE: The 2021 Chapter 94 Report had indicated the following: "No sewer extensions were constructed in the 2021 reporting year. However, an approximate 3.0 miles low pressure sewer force main extension is currently proposed for design and permitting to begin in 2022 with construction to commence in 2023".
- Form Item 5 (Sewer System monitoring, maintenance, repair and rehabilitation): JHA provides all
 collection system and treatment plant operations, monitoring and repair. Other information provided
 elsewhere in Report.
- Form Item 6 (Sewer System condition): WWTP upgrades (WQM No. 5820401) expected to be constructed in 2023 (previously expected to be started in 2022). See above description.
- Item 10 (Sewage Sludge Management Inventory); Attachment D): They used the DEP Operators "Solids Management (Sludge) Calculator" spreadsheet. They assumed a base population of 686. The outputs were <u>outside</u> of the generally acceptable range (identified on the Spreadsheet). Partially, this might be due to sampling biasing due to 8-hour composite sampling (without influent flow meter calibration documentation) and lower than DWFM per capita loadings due to residential usage patterns (apparent underloading). The future WWTP Upgrades (see above) might have some impact on future wasting rates. Historical data included below to allow for comparison

2022 Results:

- <u>% of Expected Volume Wasted (Based on Chapter 94 Report)</u>: 163% (outside the 85 115% generally acceptable range).
- <u>% of Expected Volume Wasted (Based on Population)</u>: 60% (outside the 85 115% generally acceptable range)

2021 Results:

- <u>% of Expected Volume Wasted (Based on Chapter 94 Report)</u>: 191% (outside the 85 115% generally acceptable range).
- <u>% of Expected Volume Wasted (Based on Population)</u>: 54% (outside the 85 115% generally acceptable range).

2020 Results:

- <u>% of Expected Volume Wasted (Based on Chapter 94 Report)</u>: 153% (outside the 85 115% generally acceptable range).
- <u>% of Expected Volume Wasted (Based on Population)</u>: 45% (outside the 85 115% generally acceptable range).

2019 Results:

- <u>% of Expected Volume Wasted (Based on Chapter 94 Report)</u>: 106% (outside the 85 115% generally acceptable range).
- <u>% of Expected Volume Wasted (Based on Population)</u>: 45% (outside the 85 115% generally acceptable range).
- <u>Item 12 (Calibration)</u>: They calibrated the effluent flow meter only. They should also be calibrating the influent flow meter(s) to ensure <u>flow-proportional</u> influent sampling as required by existing NPDES Permit, given organic load spiking noted above.

NPDES Permit Application/STP description:

- Flow equalization tank then extended aeration package plant (five aeration basins in common concrete structure), then two (2) settling tanks, UV disinfection and flow meter chamber prior to discharge to stream. Sludge holding tank. Polymer used in sludge coagulation/settling. Caustic is used for pH adjustment. <u>NOTE</u>: They may be operating the aerobic digesters as aerated sludge holding tanks.
- New headworks and clarifiers were permitted in 2020.
- <u>Collection System</u>: Low Pressure Sewer System was constructed circa 1995 per Chapter 94 Reports. No industrial sources per application and Chapter 94 Reports.
- <u>85% Minimum Monthly Average Reduction</u>: Based on annual averages, they generally met the POTW requirement during the year. Monitoring & Reporting will be required in this permit term (with 24-hour composite sampling to eliminate potential historic biasing).

Constituent	Influent Application Data	Effluent Application Data	Reduction
BOD5	223 mg/l average (19 samples)	14 mg/l CBOD5 (20 samples) which equates to 16.8 mg/l CBOD5 at 1.2 BOD5/1 CBOD5 effluent ratio.	~92% reduction
TSS	101 mg/l average (19 samples)	14 mg/l	~86% reduction average,

Compliance History

DMR Data for Outfall 001 (from June 1, 2022 to May 31, 2023)

Parameter	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22
Flow (MGD)	0.02028	0.01905	0.02485	0.01652	0.01919	0.02562	0.02298	0.02330	0.02422	0.01936	0.01948
Average Monthly	9	1	2	5	6	9	4	9	3	3	772
Flow (MGD)	0.09837	0.05917	0.03279		0.05533	0.05255	0.03954	0.04484	0.08392	0.02594	0.02662
Daily Maximum	0	1	2	0.02481	4	5	1	2	1	7	55
pH (S.U.)											
Minimum	6.64	6.41	6.59	7.04	6.87	6.14	6.83	6.49	7.09	7.16	7.2
pH (S.U.)											
Maximum	7.38	7.57	7.49	7.59	7.54	7.70	7.47	7.44	7.67	7.60	7.58
TRC (mg/L)											
Average Monthly	GG										
TRC (mg/L)											
Instantaneous											
Maximum	GG										
CBOD5 (lbs/day)											
Average Monthly	1.60	1.5	1.4	2.8	0.7	1.1	1.7	5.5	1.0	< 0.4	8.0
CBOD5 (mg/L)											
Average Monthly	7.61	10.46	9.14	19.7	3.49	5.36	14.5	14.8	5.84	< 3.0	4.52
BOD5 (mg/L)											
Raw Sewage Influent											
 Average	000.0	400.0	202.0	070.0	55.0	400.0	200.0	000.0	070.0	400.0	007.0
Monthly	230.0	190.0	302.0	270.0	55.9	163.0	328.0	208.0	270.0	408.0	267.0
TSS (lbs/day)	3.20	3.7	4.4	5.2	4.1	1.8	0.5	5.2	3.7	0.40	3.9
Average Monthly	3.20	3.7	4.4	5.2	4.1	1.0	0.5	5.2	3.1	0.40	3.9
TSS (mg/L) Average Monthly	14.8	23.2	30.0	36.8	20.8	9.2	4.0	14.0	22.4	2.80	22.8
TSS (mg/L)	14.0	23.2	30.0	30.0	20.6	9.2	4.0	14.0	22.4	2.00	22.0
Raw Sewage Influent											
 Average											
Monthly	46.0	49.0	76.0	178.0	20.8	55.0	94.0	74.0	154.0	248.0	112.0
Fecal Coliform	10.0	10.0	7 0.0	170.0	20.0	00.0	0 1.0	7 1.0	101.0	2 10.0	112.0
(CFU/100 ml)											
Geometric Mean	138.0	2433.0	80.0	16.0	25.0	992.4	806.0	122.0	489.20	14.8	3972.6
Fecal Coliform							00000				301210
(CFU/100 ml)											
Instantaneous											
Maximum	137.6	9678.4	79.6	16.4	25.0	992.4	806.0	122.0	489.20	14.8	3972.6
Nitrate-Nitrite (mg/L)											
Annual Average						< 15.30					

NPDES Permit No. PA0063100

Total Nitrogen (mg/L) Annual Average						< 15.80					
Ammonia (lbs/day) Average Monthly	0.10	< 0.1	0.05	0.07	0.07	0.2	0.2	0.20	0.05	< 0.01	0.5
Ammonia (mg/L) Average Monthly	0.536	< 1.083	0.36	0.488	0.358	1246	1.328	0.518	0.3020	< 0.10	2.906
TKN (mg/L) Annual Average						< 0.50					
Total Phosphorus (mg/L) Annual Average						5.17					

DMR Data for Outfall 001 (from August 1, 2021 to July 31, 2022)

Parameter	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21
Flow (MGD)	0.01948	0.01889	0.01904	0.02318	0.01992	0.01846						
Average Monthly	772	01	4	3	4	7	0.01685	0.0178	0.01879	0.0216	0.0193	0.0196
Flow (MGD)	0.02662		0.02595	0.04795	0.02731	0.02782	0.02326					
Daily Maximum	55	0.02946	9	6	3	4	4	0.0247	0.03887	0.0580	0.0387	0.0270
pH (S.U.)												
Minimum	7.2	7.01	6.82	6.70	6.41	6.75	6.64	6.36	6.57	6.72	6.42	6.92
pH (S.U.)												
Maximum	7.58	7.49	7.33	7.43	7.24	7.20	7.47	7.49	7.47	7.51	7.14	7.16
TRC (mg/L)												
Average Monthly	GG	GG	GG	GG	GG	GG						
TRC (mg/L)												
Instantaneous												
Maximum	GG	GG	GG	GG	GG	GG						
CBOD5 (lbs/day)												
Average Monthly	0.8	< 0.5	< 0.40	1.0	2.50	1.10	0.7	0.5	< 0.4	0.45	< 0.48	< 0.49
CBOD5 (mg/L)												
Average Monthly	4.52	< 3.0	< 3.0	6.12	13.9	10.30	4.92	4.19	< 3.0	3.36	< 3.00	< 3.00
BOD5 (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	267.0	165.0	240.0	290	249.0	339.0	189.0	368.0	153.0	229	223	262
TSS (lbs/day)												
Average Monthly	3.9	< 0.5	0.70	1.6	4.0	2.30	2.1	2.6	2.5	1.99	0.45	1.37
TSS (mg/L)												
Average Monthly	22.8	< 2.8	4.80	9.6	22.8	21.60	14.8	21.6	16.80	14.8	2.80	8.40

NPDES Permit Fact Sheet Harford Township WWTP

TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	112.0	294.0	168.0	90	186.0	140.0	130.0	258.0	148.0	120	120	264
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	3972.6	< 2.0	34.2	332.8	496.0	912	49.8	2.0	< 2.0	25.2	168	22.0
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	3972.6	< 2.0	34.2	332.8	496.0	2092.4	49.8	2.0	< 2.0	25.2	168	22.0
Nitrate-Nitrite (mg/L)												
Annual Average								< 15.3				
Total Nitrogen (mg/L)												
Annual Average								< 15.8				
Ammonia (lbs/day)												
Average Monthly	0.5	< 0.020	< 0.01	< 0.08	< 4	< 0.02	< 0.01	< 0.01	< 0.01	< 0.013	< 0.02	< 0.02
Ammonia (mg/L)												
Average Monthly	2.906	< 0.10	< 0.10	< 0.50	< 0.2	< 0.20	< 0.1	< 0.1	< 0.10	< 0.1000	< 0.1000	< 0.1000
TKN (mg/L)												
Annual Average								< 0.5				
Total Phosphorus												
(mg/L)												
Annual Average								5.17				

Compliance History

Effluent Violations for Outfall 001, from: March 1, 2019 To: May 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
pH ¹	04/30/21	Min	5.6	S.U.	6.0	S.U.
CBOD5 ³	09/30/20	Avg Mo	32.0	mg/L	25.0	mg/L
TSS ⁶	02/28/23	Avg Mo	36.8	mg/L	30.0	mg/L
TSS ²	01/31/21	Avg Mo	58.5	lbs/day	12.5	lbs/day
TSS ³	09/30/20	Avg Mo	15.1	lbs/day	12.5	lbs/day
TSS ²	01/31/21	Avg Mo	360.0	mg/L	30.0	mg/L

TSS ³	09/30/20	Avg Mo	102.5	mg/L	30.0	mg/L
Fecal Coliform ⁴	08/31/19	Geo Mean	3683.2	CFU/100 ml	200	CFU/100 ml
Fecal Coliform ⁴	08/31/19	IMAX	3683.2	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform ⁵	07/31/21	Geo Mean	382	CFU/100 ml	200	CFU/100 ml
Fecal Coliform ⁵	07/31/21	IMAX	2419.6	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform ⁶	07/31/22	Geo Mean	3972.6	CFU/100 ml	200	CFU/100 ml
Fecal Coliform ⁶	07/31/22	IMAX	3972.6	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform ¹	09/30/22	Geo Mean	489.20	CFU/100 ml	200	CFU/100 ml
Fecal Coliform ¹	04/30/23	Geo Mean	2433.0	CFU/100 ml	2000	CFU/100 ml
Ammonia ⁵	07/31/21	Avg Mo	7.75	lbs/day	4.2	lbs/day
Ammonia ⁵	07/31/21	Avg Mo	38.79	mg/L	10.0	mg/L

¹blamed on high rainfall event, despite LPS system.

Summary of Inspections:

SITE NAME	INSP PROGRAM	INSP ID	INSPECTED DATE	INSP TYPE	INSPECTION RESULT DESC	# OF VIOLATIONS
HARFORD TWP WWTP	WPCNP	2467369	10/21/2020	Routine/Partial Inspection	Violation(s) Noted	<u>1</u>
HARFORD TWP WWTP	WPCNP	3095592	11/26/2018	Compliance Evaluation	No Violations Noted	<u>0</u>
HARFORD TWP WWTP	WPCNP	2618177	08/31/2016	Routine/Partial Inspection	Violation(s) Noted	<u>2</u>
HARFORD TWP WWTP	WPCNP	2482997	05/12/2016	Compliance Evaluation	Violation(s) Noted	1

²blamed on aeration system problem that turned on aeration tank into a settling tank, with consequent loadings on other aeration tanks.

³blamed on sampling error by new staff.

⁴They think these were outliers and say that they did not learn of results in time to conduct additional sampling for that reporting period.

⁵blamed on equipment malfunction (power outage and no standby power). Standby power is part of WQM permit upgrade.

⁶Operator was performing plant maintenance and cleaning.

NPDES Permit Fact Sheet Harford Township WWTP

NPDES Permit No. PA0063100

HARFORD TWP WWTP	WPCNP	2850625	03/23/2016	Administrative/File Review	Violation(s) Noted	<u>3</u>

Other Comments:

• NOVs:

o 11/26/2018 NOV (late renewal application; late or missing DMRs; exceedances of Ammonia, Fecal Coliforms, TSS, pH)

o 8/31/2016 NOV (exceedances of Ammonia, Fecal Coliforms, TSS, and pH, missing DMR plus not all monitoring parameters reports)

• Open Violation by Client Number: No open violations per 7/21/2023 WMS Query (Open Violations by Client Number):

Permit: PA0063100 Client ID: 66806 Client: All

Open Violations: 0

No data was found using the criteria entered. Please revise your choices and try again.

Outfall No. 001 Design Flow (MGD) .05 Latitude 41° 46′ 53.79" Longitude 52.75° 41′ 5.83" Wastewater Description: Sewage Effluent

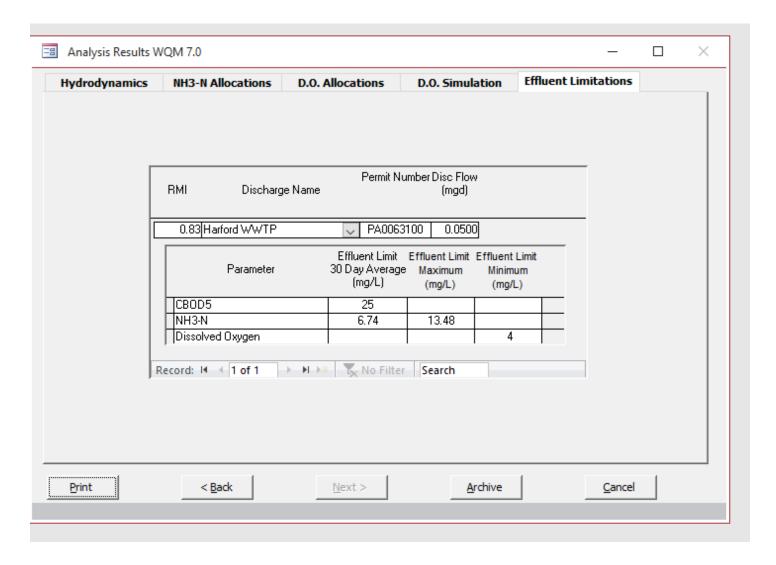
Permit limits and/or monitoring: Changes bolded

Parameter	Limit (mg/l unless otherwise specified)	SBC	Model/Basis
CBOD5	Report lb/d Report lb/d 25.0 50.0 50.0	Monthly Average Daily Max Monthly Average Daily Max IMAX	Existing WQBEL supported by water quality modeling. Additional reporting added. Daily max limit set to IMAX limit to ensure reporting of exceedances. Application data: 27 mg/l max and 14 mg/l average (20 samples).
TSS	Report lb/d Report lb/d 30.0 60.0 60.0	Monthly Average Daily Max Monthly Average Daily Max IMAX	Existing Technology limit (Chapter 92a.47). Additional reporting added. Daily max limit set to IMAX limit to ensure reporting of exceedances. Application data: 24 mg/l max and 14 mg/l average (20 samples).
рН	6.0 – 9.0 SU	Inst. Min - IMAX	Existing Technology limit (Chapter 92a.47). <u>Application data</u> : 6.4 – 8.16 SU (190 samples).
Fecal Coliform	200/100 ml 1,000/100 ml	Geo Mean IMAX	Existing TBEL (Chapter 92a.47) <u>Application data</u> : >2420/100 mil and 337/100 ml average (22 samples)
Fecal Coliform	2000/100 ml 10,000/100 ml	Geo Mean IMAX	See above.
Total Residual Chlorine	0.44 1.04	Average Monthly IMAX	Old DEP Facility-specific Tech Limit (old limits superseded by TRC Spreadsheet and conversion to UV disinfection). Due to conversion to UV, new limits effective immediately (but only monitored when chlorine is used in a manner that it would end up in the effluent). See Part C.I.D. Chlorine Minimization condition. Application data: None. (EDMR GG)
Ammonia-Nitrogen May 1 – Oct 31	2.7 lb/d Report lb/d 6.74 13.48 13.48	Monthly Average Daily Max Monthly Average Daily Max IMAX	Revised more stringent WQBELs required by updated water quality modeling and revised Chapter 93 Water Quality Standards. January 4, 2023 Harford Letter indicated the facility can comply with the new limits. Previous limits were 10.0 mg/l monthly/20.0 mg/l IMAX Summer, and no Winter monitoring requirement. Application data: 1.7 mg/l max and 8 mg/l average (21 samples). See Compliance Section for EDMR data (one month was 9.4 mg/l).
Ammonia-Nitrogen Nov 1 – April 30	8.1 lb/d Report lb/d 20.22	Monthly Average Daily Max Monthly Average	See above. Standard winter multiplier used.

	Report	Daily Max	
	Report lb/d	Annual Average	Existing annual monitoring requirement per
Total Phosphorus	Report lb/d	Daily Max	Chapter 92a.61.
	Report	Annual Average	Application data: 2.85 mg/l max and 2.76
	Report	Daily Max	mg/l average (3 samples)
			Existing annual monitoring requirement per
			Chapter 92a.61.
Total Nitrogen	Report lb/d	Annual Average	Application data:
(Nitrate-Nitrite-N + TKN	Report Ib/d	Daily Max	TN: 37.04 mg/l max and 17.6 mg/l average (3
measured in same	Report	Annual Average	samples)
sample)	Report	Daily Max	TKN: 32 mg/l max and 17.3 mg/l average (3
		,	samples).
			New WQBEL/TBEL per water quality
			modeling. Permit limit effective on PED
Dissolved Oxygen (DO)			because an Extended Aeration Treatment
, ,			System normally meets this limit.
	4.0	Inst. Min	Application data: None
LIV Interests			New requirement due to UV disinfection.
UV Intensity	Report µw/cm²	Inst. Min	Application data: None
Minimum BOD5 %		Minimum Monthly	Existing Part A requirement with reporting
Reduction	85%	Average	now required.
Minimum TSS %		Minimum Monthly	
Reduction	85%	Average	See above
E Coli	Report No./100		New quarterly reporting requirement due
	ml	IMAX	to new Chapter 93 Water Quality Standard.
			New WQBEL required per Reasonable
	0.040 !! / !	B4 (1. 1 A	Potential Analysis.
Common	0.012 lb/d	Monthly Average	Application data:
Copper	0.018 lb/d	Daily Max	Application data:
	28.0 ug/l	Monthly Average	0.0113 mg/l (1 sample)
	43.6 ug/l	Daily Max	4 samples: 19.3 ug/l max (1 sample) and
	69.9 ug/l	IMAX	<12.5 ug/l (3 samples)
			Monitoring required per Reasonable Potential Analysis.
			i Otentiai Analysis.
			Application data:
Lead	Report lb/d	Monthly Average	<0.008 mg/l (1 sample). Insensitive ND
	Report Ib/d	Daily Max	concentration. DEP Target QL is 1 ug/l.
	Report ug/l	Monthly Average	4 samples: 1.02 ug/l max (1 sample) and
	Report ug/l	Daily Max	<0.5 ug/l (3 samples)
		Zuny mux	Monitoring required per Reasonable
			Potential Analysis.
			-
Zinc			Application data:
	Report lb/d	Monthly Average	0.0415 mg/l (1 sample)
	Report lb/d	Daily Max	4 samples: 0.0699 mg/l (69.9 ug/l) max (1
	Report ug/I	Monthly Average	sample) and 0.0605 mg/l (60.5 ug/l) average
	Report ug/l	Daily Max	(3 samples)

Comments:

- <u>General Updating</u>: Updated sampling for new units, standard frequencies, and additional reporting (mass and daily max values). Added daily max limits set at IMAX limits to ensure reporting of exceedances. (any exceedance of IMAX for any duration is a violation.)
- Composite Sampling Change: 24-hour composite sampling (from 8-hour sampling to eliminate biasing that
 might lead to incorrect reporting of violations such as for the 85% minimum monthly average requirements for
 BOD5 and TSS) and inaccurate Chapter 94 Reporting (evidence of organic load spiking). The composite samples
 must be flow-proportioned per existing NPDES Permit language.


- New IMP No. 101: Raw Sewage influent monitoring and reporting has been relocated to administratively-created Internal Monitoring Point/Outfall No. 101 (raw sewage influent sampling). The facility has been permitted to install a new headworks.
- Reasonable Potential Analysis & Water Quality Modeling: See TMS printout and analysis below. The Part C WQBELs for Toxic Pollutants (Copper) can also be used to determine if relief is possible for lead and zinc monitoring requirements. The interim monthly monitoring will also gather information for determination of a Long Term Average Monthly Effluent Concentration (LTAMEC) and daily Coefficient of Variability (COV) in event they allow for early relief from the future permit limit and ongoing monitoring requirements.

∇ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.012	0.018	28.0	43.6	69.9	μg/L	28.0	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	Report	Report	Report	Report	Report	μg/L	9.92	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	239	AFC	Discharge Conc > 10% WQBEL (no RP)

0.164 = Q stream (cfs) 0.05 = Q discharge (MGD) 4 = no. samples 0.3 = Chlorine Demand of Stream 0 = Chlorine Demand of Discharge 0.5 = BAT/BPJ Value 0 = % Factor of Safety (FOS)			0.5 1 1	= CV Daily = CV Hourly = AFC_Partial Mix Factor = CFC_Partial Mix Factor = AFC_Criteria Compliance Time (min) = CFC_Criteria Compliance Time (min) = Decay Coefficient (K)		
Source	Reference	AFC Calculations	0.005	Reference	CFC Calculations	
TRC PENTOXSD TRO PENTOXSD TRO		WLA afc = LTAMULT afc = LTA_afc=	0.373	1.3.2.iii 5.1c 5.1d	WLA cfc = 0.670 LTAMULT cfc = 0.581 LTA_cfc = 0.390	
Source		Effluer	nt Limit Calcu	lations		
PENTOXSD TRO		AVG MON L	AML MULT = .IMIT (mg/l) = .IMIT (mg/l) =	0.446	AFC	
NLA afc	+ Xd + (/	*AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1-l l(cvh^2+1))-2.326*LN(cvh^2	FOS/100)	e(-k*AFC_tc))		
LTA_afc	wla_afc*LTA		,,			
		*CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-		(-k*CFC_tc))		
WLA_cfc	+ Xa + (I					
VLA_cfc .TAMULT_cfc .TA_cfc		(cvd^2/no_samples+1))-2.3		2/no_samples+')^0.5)	