

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0070351
APS ID	272
Authorization ID	1404686

Applicant Name	Amity Township Berks County	Facility Name	Amity Township STP		
Applicant Address	2004 Weavertown Road	Facility Address	120 Old Philadelphia Pike		
	Douglassville, PA 19518-8971		Douglassville, PA 19518-1815		
Applicant Contact	Troy Bingaman	Facility Contact	Randolph Maguire, Superintendent (maguire@amitytownshippa.com)		
Applicant Phone	(610) 689-6000/ tbingaman@amitytownshippa.com	Facility Phone	(610) 385-3400		
Client ID	92377	Site ID	451640		
Ch 94 Load Status	Projected Hydraulic & Organic Overload	Municipality	Amity Township		
Connection Status		County	Berks		
Date Application Recei	ved _ July 28, 2022	EPA Waived?	No		
Date Application Accep	oted August 11, 2022	If No, Reason	Major Facility		

Summary of Review

The previous NPDES permit was issued January 23, 2020 with an expiration date of January 31, 2025. The permittee intends to increase the flow at this treatment plant within the next five years. Their Act 537 Plan Update providing for an upgrade and expansion to the Amity Township Wastewater Treatment Plant for a design flow of 2.9 MGD was reviewed and approved by DEP Sewage Planning: B2-06917-ACT, dated December 7, 2010. According to their 2021 Chapter 94 Municipal Load Management Report, received March 29, 2022, a hydraulic overload is projected starting in 2025 and the facility is under a CAP [Corrective Action Plan].

In order to allow time for obtaining a WQM permit application and constructing the expanded facility, the NPDES permit will be revoked and reissued rather than amended thereby allowing for a full 5-year term. (A permit amendment would not have changed the existing permit's expiration date.) Part C of the draft permit includes a requirement to submit to DEP a WQM permit application before the treatment plant can be expanded. When it is known when the expanded treatment plant will be placed into operation and the increased flow will commence, the DEP will add an effective date for the "final limits" in the DEP WMS database and alert the eDMR coders. Until that time, there will be "interim limits" that apply to the current design flow of 2.2 MGD.

A permit amendment application was submitted July 21, 2022 using DEP's OnBase upload system (Reference #63613) with an amendment fee. A permit reissue/renew application was submitted July 28, 2022, using DEP's OnBase upload system (Reference #64582).

The Amity Township Sewage Treatment Plant (STP) serves Amity Township (81% of flow), Douglass Township (10% of flow), Union Township (7% of flow), and Earl Township (2%).

According to their permit application, there are no Combined Sewer Overflows, no hauled-in wastes and no hauled-in wastes anticipated to be accepted for the next 5 years (the permit term), and no Indirect Users (non-domestic wastewater from

Approve	Deny	Signatures	Date
х		Bonnie Boylan Bonnie Boylan / Permit Writer	February 6, 2023
х		Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	February 23, 2023

Summary of Review

industrial or commercial sources). There are two stormwater catchment basins which both discharge untreated stormwater to the Schuylkill River via outfall 001. The stormwater merges with the treatment plant effluent.

Design Flow:

The permittee's DMR data from January 1, 2020 through December 31, 2022 indicates a Maximum Monthly Average flow of 2.03 MGD. The facility reported a Daily Maximum flow larger than 2.2 MGD for 23 out of the past 36 months (3 years).

For calculation of effluent limits, their existing design flow of 2.2 MGD will be used for interim limits. The design Average Annual Flow (AAF) of 2.9 MGD, as discussed in conference calls and shown in their permit application, will be used for the permit limits effective post-expansion.

It will be necessary for the permittee to submit a WQM permit application before the expansion: the WQM permit 0605411 for the treatment plant currently indicates an AAF and a Hydraulic Capacity of 2.2 MGD. The projected AAF and Hydraulic Capacity and Organic design capacity supplied in the NPDES permit application has been included in the draft reissued NPDES permit for post-expansion with the expectation that the WQM permit application will match: an Annual Average design flow of 2.9 MGD, a Hydraulic Design Capacity of 4.35 MGD and an organic design capacity of 6940 lbs/day.

Delaware River Basin Commission (DRBC):

The discharge is within the Delaware River watershed and is thus subject to the Delaware River Basin Commission's (DRBC) requirements. A copy of the draft permit and Fact Sheet will therefore be sent to the DRBC for their review, in accordance with State regulations and an interagency agreement. Any comments from DRBC will be considered.

The most recent DRBC docket D-1990-078 CP-5 was approved for this facility on June 10, 2020 and expires on January 31, 2025.

Outstanding Violations:

There are no outstanding violations against the facility according to DEP's eFacts database or DEP's WMS database's "Violations by client".

Sludge use and disposal description and location(s):

off-site disposal to a landfill after dewatering

Public Participation:

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Re	eiving Waters and Water Supply Information
Outfall No. 001	Design Flow (MGD) 2.2 / 2.9
Latitude 40° 15' 5" Quad Name Wastewater Description: Sewage Efflu	Longitude -75° 43' 37" Quad Code ent
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Schuylkill River (WV 25965616 1040 sq. mi. 292 145 est'd 3-D	F, MF) Stream Code 833 RMI 58.8 Yield (cfs/mi²) 0.28 Q ₇₋₁₀ Basis PA Stream Stats Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier -
Exceptions to Use -	Exceptions to Criteria -
Assessment Status Impaired	
Cause(s) of Impairment Polychlorina	ed Biphenyls (PCBs)
Source(s) of Impairment Source Unkr	
TMDL Status Final	Name Schuylkill River PCB TMDL
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:	Data Source
Nearest Downstream Public Water Suppl PWS Waters Schuylkill River PWS RMI Approx. 57	Intake Pottstown Water Authority Flow at Intake (cfs) Approx. 294 Distance from Outfall (mi) Approx. 1.8 miles

The receiving water is NOT classified as a Class A Trout Water or as Trout Natural Reproduction.

Before the expansion:

	Tre	eatment Facility Summar	у	
Treatment Facility Na	me: Amity Township STP			
WQM Permit No.	Issuance Date			
0605411	8/31/2005			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Design Flow (MGD)
Sewage	Secondary	Oxidation Ditch	Gas Chlorine	2.2
Hydraulic Design	Organic Design			Biosolids
Capacity (MGD)	Capacity (lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
2.2	4202	Projected Hydraulic Overload	Aerobic Digestion	Landfill

Screen and grit removal

Influent pump station, 3 pumps

3 primary clarifiers, with high flow channel diverting surges to 1.5 Million gallon lagoon as needed

Oxidation ditch with 3 channels, RAS returned to outer ring

Splitter box

3 final clarifiers

2 Chlorine Contact Tanks (CCTs)

Dechlorination unit (per WQM permit and DRBC docket)

- 2 ultrasonic flow meters and composite sampler
- 1 post-aeration tank, where stormwater merges

Flood pump chamber with 4 pumps activated by high-level floats; stormwater channel passes through chamber An earthen berm, 4.5 feet above the 100-year flood elevation, surrounds the WWTP. Flood pumps and backwater preventer flap valves are in place to pump treated effluent out of the WWTP during high river stages.

- 2 aerobic digesters
- 2 anaerobic digesters
- 1 sludge thickening tank and one blend tank
- 1 Belt Filter Press
- 4 Reed filter beds

Liquid sludge hauled to a POTW or

dewatered sludge disposed off-site, at landfill

8 Pump Stations in Amity Twp collection system, 1 PS in Union Twp, and 1 PS in Douglass Twp with backup auxiliary power, metered flow, alarms

(PS #6 - Cider Mill is no longer in service according to DEP's 2021 Chapter 94 Report Review Checklist)

Projected for post-expansion):

	Tre	atment Facility Summa	ry	
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Design Flow (MGD)
Sewage	Secondary	Oxidation Ditches	Ultraviolet	2.9
Hydraulic Design Capacity (MGD)	Organic Design Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
4.35	6940	Not overloaded	Aerobic Digestion	Landfill

Install larger mechanical fine screen and new grit removal equipment Install new larger influent submersible pumps
Install new flow splitter box to two oxidation ditches
Add new oxidation ditch, 3 rings
Upsize aeration rotors in existing oxidation ditch
New final clarifier flow division box
New weirs, baffles, and launder covers for existing clarifiers
New UV disinfection system
New effluent pumps
Conversion of anaerobic digester to aerobic digesters
Conversion of existing primary clarifiers to covered aerobic digesters
New RAS/WAS pumps
Add air release valves to lagoon liner system
SCADA system

NPDES Permit Fact Sheet Amity Township STP

PREVIOUS PERMIT LIMITS, OUTFALL 001:

			Effluent	t Limitations			Monitoring R	Monitoring Requirements		
Parameter	Mass Unit	s (lbs/day)		Concentra	ations (mg/L)		Minimum			
Parameter	Average	Weekly	Instant.	Average	Weekly	Instant.	Measurement	Required		
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Sample Type		
		Report								
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured		
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab		
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab		
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab		
Carbonaceous Biochemical								24-Hr		
Oxygen Demand (CBOD5)	458	734	XXX	25	40	50	2/week	Composite		
Biochemical Oxygen Demand										
(BOD5)		Report						24-Hr		
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/week	Composite		
Total Suspended Solids	550	825	XXX	30	45	60	2/week	24-Hr Composite		
Total Suspended Solids	330	Report		30	45	00	Z/WEEK	24-Hr		
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/week	Composite		
								24-Hr		
Total Dissolved Solids	18348	XXX	XXX	1000	XXX	2000	2/week	Composite		
Fecal Coliform (No./100 ml)										
Oct 1 - Apr 30	XXX	XXX	XXX	2000	XXX	10000	2/week	Grab		
Fecal Coliform (No./100 ml)	2007		2004		1004	4000				
May 1 - Sep 30	XXX	XXX	XXX	200	XXX	1000	2/week	Grab 24-Hr		
Ammonia-Nitrogen Nov 1 - Apr 30	220	XXX	XXX	12	XXX	24	2/week	24-Hr Composite		
Ammonia-Nitrogen	220		^^^	12		24	Z/Week	24-Hr		
May 1 - Oct 31	73	XXX	XXX	4	XXX	8	2/week	Composite		
Way 1 Cot C1		7000	7000	•	Report	3	Z/WOOK	24-Hr		
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite		
					Report			24-Hr		
Total Kjeldahl Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite		
					Report					
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Calculation		
Total Dhaonharus	VVV	VVV	VVV	VVV	Report	VVV	4 /00 = = 41=	24-Hr		
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite		

NPDES Permit No. PA0070351

			Monitoring Requirements					
Parameter	Mass Unit	s (lbs/day)		Concentra	Minimum			
r al allietei	Average	Weekly	Instant.	Average	Weekly	Instant.	Measurement	Required
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Sample Type
					Report			24-Hr
Copper, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite
PCBs Dry Weather Analysis					Report			24-Hr
(pg/L)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite
PCBs Wet Weather Analysis					Report			24-Hr
(pg/L)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite

Compliance History

DMR Data for Outfall 001 (from December 1, 2021 to November 30, 2022)

Flow (MGD)	Parameter	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21
Flow (MGD)	Flow (MGD)												
Daily Maximum 2.05	Average Monthly	0.758	1.069	0.707	0.607	0.646	0.785	1.81	2.029	1.085	1.575	1.082	0.567
PH (S.U.) Instantaneous Minimum 7.1 7.1 7.2 7.3 7.4 7.2 6.8 6.9 7.2 7.2 7.1 7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.3 7.4 7.2 6.8 6.9 7.2 7.2 7.1 7.0 7.	Flow (MGD)												
Instantaneous Ninimum Ninimum		2.05	4.197	2.854	1.237	1.419	2.622	5.69	5.725	1.804	4.988	3.168	0.675
Minimum	pH (S.U.)												
PH (S.U.) Instantaneous Maximum 7.5 7.5 7.8 7.7 7.7 7.7 7.5 7.4 7.8 7.7 7.7 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.7 7.7 7.8 7.													
Instantaneous Maximum 7.5 7.5 7.8 7.7 7.7 7.7 7.5 7.4 7.8 7.7 7.7 7.8 7.7 7.7 7.8 7.7 7.7 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.7 7.7 7.8 7.		7.1	7.1	7.2	7.3	7.4	7.2	6.8	6.9	7.2	7.2	7.1	7.0
Maximum	,												
DO (mg/L) Instantaneous Minimum 8.1 7.2 5.8 7.4 7.7 7.1 6.8 7.2 7.5 5.7 5.4 5.0 TRC (mg/L) Average Monthly 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.5 0.5 0.4 0.3 TRC (mg/L) Instantaneous Maximum 0.6 0.5 0.6 0.5 0.7 0.4 0.7 0.6 0.6 0.7 0.9 0.6 CBOD5 (lbs/day) Average Monthly <17 <27 <19 <16 <14 <18 <20 <60 <29 <40 34 <13 <13 CBOD5 (lbs/day) Average Monthly <3 <3 <3 <3 <3 <3 <3 <													
Instantaneous Minimum		7.5	7.5	7.8	7.7	7.7	7.7	7.5	7.4	7.8	7.7	7.7	7.8
Minimum	` • ,												
TRC (mg/L) Average Monthly													
Average Monthly		8.1	7.2	5.8	7.4	7.7	7.1	6.8	7.2	7.5	5.7	5.4	5.0
TRC (mg/L) Instantaneous Maximum 0.6 0.5 0.6 0.5 0.7 0.4 0.7 0.6 0.6 0.7 0.9 0.6 CBOD5 (lbs/day) Average Monthly < 17													
Instantaneous Maximum 0.6 0.5 0.6 0.5 0.7 0.4 0.7 0.6 0.6 0.7 0.9 0.6		0.4	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.5	0.5	0.4	0.3
Maximum 0.6 0.5 0.6 0.5 0.7 0.4 0.7 0.6 0.6 0.7 0.9 0.6 CBOD5 (lbs/day) Average Monthly <17	` • ,												
CBOD5 (lbs/day)		0.0	0.5	0.0	0.5	0.7	0.4	0.7			0.7		0.0
Average Monthly < 17 < 27 < 19 < 16 < 14 < 18 < 20 < 60 < 29 40 34 < 13 CBOD5 (lbs/day) Weekly Average 31 < 53		0.6	0.5	0.6	0.5	0.7	0.4	0.7	0.6	0.6	0.7	0.9	0.6
CBOD5 (lbs/day) Weekly Average 31 < 53 < 30 26 19 30 < 22 < 110 46 69 75 19 CBOD5 (mg/L) Average Monthly < 3		. 47	. 07	. 10	. 40	. 4 4	. 40	. 00	.00	. 00	40	24	.40
Weekly Average 31 < 53 < 30 26 19 30 < 22 < 110 46 69 75 19 CBOD5 (mg/L) Average Monthly < 3		< 17	< 21	< 19	< 16	< 14	< 18	< 20	< 60	< 29	40	34	< 13
CBOD5 (mg/L) Average Monthly <3 <3 <3 <3 <2 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <4 <3 <4 <3 <4 <4 <3 <4 <4 <3 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <		24	. 50	. 20	00	40	20	. 00	.440	40	60	7.5	40
Average Monthly < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 5 5 5 5 4 4 4 BOD5 (lbs/day) Raw Sewage Influent	CRODE (mg/L)	31	< 53	< 30	20	19	30	< 22	< 110	46	69	75	19
CBOD5 (mg/L)		. 2		. 2	. 2	. 2	. 2	. 0			4		. 2
CBOD5 (mg/L) Weekly Average < 3 < 4 3 6 4 DMR) < 3 < 5 5 5 4 4 BOD5 (lbs/day) Raw Sewage Influent Average Monthly 1712 2395 1668 1872 1355 2022 2540 2781 1776 1923 2766 1624 BOD5 (lbs/day) Raw Sewage Influent Raw Sewage Influent	Average Monthly	< 3	< 3	< 3	< 3	< 3		< 2	< 3	< 3	4	< 3	< 3
CBOD5 (mg/L) Weekly Average < 3 < 4 3 6 4 DMR) < 3 < 5 5 4 4 BOD5 (lbs/day) Raw Sewage Influent Average Monthly 1712 2395 1668 1872 1355 2022 2540 2781 1776 1923 2766 1624 BOD5 (lbs/day) Raw Sewage Influent Raw Sewage Influent Influent<													
Weekly Average < 3 < 4 3 6 4 DMR) < 3 < 5 5 5 4 4 BOD5 (lbs/day) Raw Sewage Influent 1712 2395 1668 1872 1355 2022 2540 2781 1776 1923 2766 1624 BOD5 (lbs/day) Raw Sewage Influent Raw Sewage Influe	CBOD5 (mg/L)												
BOD5 (lbs/day) Raw Sewage Influent Average Monthly 1712 2395 1668 1872 1355 2022 2540 2781 1776 1923 2766 1624 BOD5 (lbs/day) Raw Sewage Influent		- 3	- 4	3	6	4		- 3	-5	5	5	4	4
Raw Sewage Influent Average Monthly 1712 2395 1668 1872 1355 2022 2540 2781 1776 1923 2766 1624 BOD5 (lbs/day) Raw Sewage Influent Raw Sewage Influent Influent <td></td> <td>_ ` `</td> <td>\ 1</td> <td>0</td> <td></td> <td>т -</td> <td>Divire)</td> <td>\ 0</td> <td>_ ` ` `</td> <td></td> <td></td> <td>-</td> <td>-</td>		_ ` `	\ 1	0		т -	Divire)	\ 0	_ ` ` `			-	-
Average Monthly 1712 2395 1668 1872 1355 2022 2540 2781 1776 1923 2766 1624 BOD5 (lbs/day) Raw Sewage Influent Raw Sewage Influent													
BOD5 (lbs/day) Raw Sewage Influent		1712	2395	1668	1872	1355	2022	2540	2781	1776	1923	2766	1624
Raw Sewage Influent		17.12	2000	1000	1072	1000	2022	2010	2701	1770	1020	2700	1021
Daily Maximum 2274 7116 7212 3486 2297 4164 4305 6451 2982 3404 8191 2692	Daily Maximum	2274	7116	7212	3486	2297	4164	4305	6451	2982	3404	8191	2692
	= 500 1000000000000000000000000000000000								1 0.01		1 0.01	0.01	
BOD5 (mg/L)	BOD5 (mg/L)												
Raw Sewage Influent													
Average Monthly 316 253 223 375 292 328 256 183.7 223 236 269 373		316	253	223	375	292	328	256	183.7	223	236	269	373

NPDES Permit Fact Sheet Amity Township STP

TSS (lbs/day)												
Average Monthly	< 24	20	< 34	28	19	< 24	40	< 79	< 26	< 51	< 43	21
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	901	1275	1300	1071	1016	1026	1446	1802	1184	921	1279	836
TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	1344	3314	6569	2197	1561	2284	2112	4344	1962	1672	3065	1940
TSS (lbs/day)												
Weekly Average	< 50	33	69	42	30	54	61	257	51	< 148	< 67	25
TSS (mg/L)												
Average Monthly	< 4	3	< 5	6	4	< 4	4	< 4	< 3	< 4	< 5	5
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	162	137	155	216	215	165	146	124	151	114	125	194
TSS (mg/L)												
Weekly Average	< 5	6	8	8	7	8	6	12	5	< 10	7	6
Total Dissolved Solids												
(lbs/day)												
Average Monthly	4281	5982	5701	4369	3845	4567	5439	14159	5619	5701	5976	3465
Total Dissolved Solids	_											
(mg/L)												
Average Monthly	707	693	849	852	827	745	555	558	672	694	610	786
Fecal Coliform												
(No./100 ml)												
Average Monthly	< 22	< 17	< 29	< 186	< 5	< 16	< 99	< 473	< 5	< 8	< 7	< 12
Fecal Coliform												
(No./100 ml)												
Înstantaneous												
Maximum	54	70	104	1330	15	104	745	3000	13	41	764	74
Nitrate-Nitrite (mg/L)												
Daily Maximum /	32	21.7	9.71	12.1	10.1	0.18	2.9	6.41	0.23	0.32	6.38	13.1
Total Nitrogen (mg/L)												
Daily Maximum /	33.28	22.61	12.06	13.48	11.67	18.64	3.79	9.24	18.43	8.24	7.59	14.29
Ammonia (lbs/day)												
Average Monthly	< 3	< 0.4	2	0.7	0.4	< 0.4	< 5	< 54	112	82	< 22	7
Ammonia (mg/L)												
Average Monthly	< 0.38	< 0.05	0.3	0.13	0.081	< 0.05	< 0.54	< 2.53	12.84	10.75	< 3	2
TKN (mg/L)	1.28	0.91	2.35	1.38	1.57	1.74	0.89	2.83	18.2	7.92	1.21	1.19
Daily Maximum												
Total Phosphorus	4.28	4.22	1.53	3.26	2.52	3.16	0.12	1.5	0.58	0.32	1.32	0.13
(mg/L)												
Daily Maximum												

NPDES Permit Fact Sheet Amity Township STP

NPDES Permit No. PA0070351

Total Copper (mg/L) Daily Maximum	0.021	0.017	0.019	0.029	0.030	0.032	0.014	0.013	0.032	0.015	0.015	0.030
PCBs (Dry Weather)												4.37
(pg/L)												
Daily Maximum												
PCBs (Wet Weather)												16.3
(pg/L)												
Daily Maximum												

Compliance History

Effluent Violations for Outfall 001, from January 1, 2022 To December 31, 2022:

(including pH).

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	08/31/22	IMAX	1330	No./100 ml	1000	No./100 ml
Ammonia	03/31/22	Avg Mo	12.84	mg/L	12	mg/L

DEP INSPECTIONS:

April 8, 2022	Inspection due to incident: discharge of partially treated sewage to ground and to outfall 001 are violations of permit and Clean Streams Law. DEP was notified by permittee on April 8, 2022 of Sanitary Sewer Overflows at MH 49 and primary clarifiers overflowing due to excessive rain event. Lagoon had filled up and backed up into primary clarifiers.
April 4, 2022	Inspection conducted ("routine", CEI). Not staffed 24/7. Reed beds not in use.
November 4, 2021	DEP administrative review showed some discrepancies between the September DMR and the September Supplemental DMR
September 23, 2021	Notice of Violation (NOV) sent for permit limit exceedances of Ammonia reported in DMRs of June, July, and August 2021.
July 21, 2021	Inspection conducted ("routine", CEI). High settleability noted. Improved conditions since June 29 upset. 2 RAS returns are directed to outer ditch. Two ultrasonic meters, sum of both CCTs. New generator has been installed capable of running entire plant; new covers on aerobic digesters; new blowers; new belt filter press. Inspector collected effluent samples post-CCT. As with June 29, 2021 samples, only permit limit exceeded was Ammonia.
July 9, 2021	Follow up inspection from June 29, 2021. Bulking sludge visible in clarifier. CCT tank appeared cloudy. Brown suspended solids visible in effluent. Receiving water downstream of outfall, from River Bridge Road, appeared turbid/brown.
June 30, 2021	NOV sent, result of June 29, 2021 inspection.
June 29, 2021	Violation noted. Inadequate or partially treated sewage from the STP to Schuylkill River and failure to immediately report to DEP a pollution incident. They reported that there were no noticeable changes to influent BOD and TSS prior to upset. Possible that lagoon wastewater which was being mixed with influent and fed to oxidation ditch from June 14 th to June 17 th caused the problem. Lagoon feed has been

suspended. Reseeding oxidation ditch. DEP inspector noted a chemical/cleaning odor at the oxidation ditch during her inspection. DEP inspector collected effluent samples (from CCT tank): Ammonia permit limit was exceeded but the other parameters in permit were not

Development of Effluent Limitations					
Outfall No.	001		Design Flow (MGD)	2.2 / 2.9	
Latitude	40° 15' 5"		Longitude	-75° 43' 37"	
Wastewater D	escription:	Sewage Effluent			

The permit limits imposed are the more stringent of applicable TBELs, limits developed using BPJ, developed WQBELs, and previous permit limits that the facility has been able to achieve. (TBELs, BPJ, WQBELs are explained below.)

Technology-Based Effluent Limitations (TBELs)

Pollutant	Limit (mg/l)	SBC	Federal	State	DRBC
	, ,		Regulation	Regulation	Regulation
CBOD ₅	25 a	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)	18 CFR Part 410 a
CBOD5	40 a	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)	
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)	18 CFR Part 410
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)	
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)	18 CFR Part 410
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)	18 CFR Part 410
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)	
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)	
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)	
Total Residual Chlorine (TRC)	0.5	Average Monthly	-	92a.48(b)(2)	
Ammonia	20	Average Monthly	-	-	18 CFR Part 410
Total Dissolved Solids	1000 b	Average Monthly	-		18 CFR Part 410
Total Dissolved Solids	2000 if applicable ^c	Average Monthly	-	95.10	

^a DRBC regulations and the facility's DRBC docket also includes a requirement for 85% minimum removal of CBOD5. Narrative limits are imposed in NPDES sewage permits in Part A following the limits tables: "The monthly average percent removal of BOD5 or CBOD5 and TSS must be at least 85% for POTW facilities on a concentration basis...." Because all Chapter 94 reporting is in terms of BOD5, the influent monitoring has continued to be required as BOD5, as requested by DEP SCRO Sewage Planning. Because DEP's WQM 7.0 model uses CBOD5, most NPDES permits for Sewage Treatment Plants include effluent limits in terms of CBOD5 rather than as BOD5. Sewage treatment plants designed to achieve "secondary treatment" usually have no difficulty achieving the 85% removal requirement for organic matter.

Best Professional Judgment (BPJ) Limitations

None

^b Or as otherwise approved by DRBC upon their determination that the discharge will not cause the in-stream Total Dissolved Solids (TDS) concentration to exceed the lesser of 500 mg/l or 133% over background.

^c Only applies to new dischargers and to existing dischargers with an increase in TDS mass loadings of more than 5,000 lbs/day since August 21, 2010 when TDS regulations were promulgated, measured as an average daily discharge over the course of a calendar year i.e. an annual avg daily load. The 2019 Fact Sheet included a TDS "baseline" (the estimated TDS mass loading as of August 2010) of 13,779 lbs/day. DMRs from January 1, 2020 through December 31, 2022 indicate an average TDS concentration in the discharge of 668 mg/l. 668 mg/l x 2.9 MGD x 8.34 conversion factor = 16,156 lbs/day anticipated post-expansion. Because the increased loading is less than 5000 lbs/day, the 2000 mg/l TDS concentration limit is **not applicable** in this case (16,156 lbs/day – 13,779 lbs/day = 2377 lbs/day).

Water Quality-Based Effluent Limitations (WQBELs)

TRC:

DEP's TRC Excel spreadsheet/model was used and the results are attached. Whether the design discharge flow is 2.2 MGD or 2.9 MGD, WQBELs were not deemed needed and the model defaulted to the TBELs. The previous permit limits were the same: 0.50 mg/l as a Monthly Average and 1.6 mg/l as a Daily Maximum. (The acute and chronic Partial Mix Factors used in the TRC spreadsheet were taken from the TMS model simulations: 0.2 for PMFa and 1 for PMFc.)

The proposed expanded treatment plant will include UV disinfection according to the application. Because there may be a transition time or if chlorine will be kept as back-up, the TRC limits have been continued in the post-expansion permit limits; UV daily monitoring has been added in addition. If no disinfection with chlorine occurs during a reporting period and no other use of chlorine occurs during a reporting period, the permittee is allowed to code their DMRs as NODI - condition not met. If chlorine is used during a reporting period, monitoring would be required and the TRC limits achieved.

CBOD5, Ammonia, and Dissolved Oxygen:

DEP's WQM 7.0 model is used to calculate CBOD5 and Ammonia (NH3-N) effluent limits, while maintaining Dissolved Oxygen (DO) levels. DEP's Technical Guidance document 391-2000-007 describes the calculations used in this model. It is a steady-state model that can evaluate several dischargers to a stream segment and apportion Waste Load allocations (WLAs) to each. Because the Schuylkill River is wide and the WQM 7.0 model does not account for incomplete mixing, a manual adjustment was made to account for the initial mixing not extending across the full width of the River: Drainage Area divided by 3 (1040 miles² / 3 = 347 miles²). The same approach has been used by DEP for other dischargers to the Schuylkill River in recognition that the discharge is more likely to mix with the river water on the same side as the discharge during the first fifteen minutes, when the acute criteria is applied, and only gradually mix with the rest of the river downstream.

Site-specific data are used as input values when available, but when not available, defaults or reasonable assumptions are made.

Input values used include:

The river appears to be approximately 205 feet wide at this location using an aerial mapping tool. An estimated width:depth (w:d) ratio of 100 was used as an input value (which was also the width:depth ratio generated by the TMS model as an estimate).

The model input and output pages are included at the end of the Fact Sheet. The upstream discharger Birdsboro STP (located very near the confluence with Hay Creek and Schuylkill River) and the downstream Public Water Supply intake were included in the model simulation in order to determine protective limits.

For a design discharge flow of **2.9 MGD**, the following limits were indicated:

Parameter	Limit (mg/l)	SBC	Model
Ammonia	4.0	Monthly Average	WQM 7.0
Ammonia	8.0	Daily Maximum	WQM 7.0
CBOD5	19 *	Monthly Average	WQM 7.0
Dissolved Oxygen	5.0	Minimum	WQM 7.0

Because the model indicated that DO was still declining at the end of the reach when Amity STP's existing permit limits were input as allowable discharge concentrations but the design flow was increased to 2.9 MGD, model iterations were

NPDES Permit Fact Sheet Amity Township STP

run: a) holding the CBOD5 discharge concentration steady while allowing the model to calculate the necessary NH3 permit limits to achieve DO recovery and b) holding the NH3 discharge concentration steady while allowing the model to calculate the necessary CBOD5 permit limits to achieve DO recovery. The WQM 7.0 model indicated that a CBOD5 limit of 19 mg/l (or less) and a continued NH3 limit of 4 mg/l would allow DO recovery while not causing an in-stream exceedance of water quality criteria or standards.

The new monthly average CBOD5 limit of 19 mg/l is more stringent than the existing NPDES permit limit of 25 mg/l. However, the DMRs between December 1, 2021 and December 31, 2022 reported a maximum monthly average CBOD5 concentration in the discharge of 4 mg/l, well below 19 mg/l, indicating that the discharge will easily be able to meet the new CBOD5 permit limit of 19 mg/l. The DMRs and Supplemental DMRs between December 1, 2021, and December 31, 2022 indicate a maximum weekly average of 6 mg/l, well below 29 mg/l, the new CBOD5 permit limit as a weekly average.

The WQM 7.0 model was also run with a design flow of 2.2 MGD since there were regulatory changes to water quality criteria since the last permit's development of limits. The resulting limits were consistent with the existing permit limits for Ammonia, CBOD5, and DO and will be carried forward as the interim limits, before the expansion of the treatment plant occurs.

As was done in the existing permit, the Ammonia limits during the colder months do not need to be as stringent given that Ammonia is less toxic at lower temperatures [Technical Guidance document 391-2000-013]. The Ammonia limits between November 1st and April 30th will continue to be 12.0 mg/l as a monthly average and 24.0 as a maximum.

TOXICS:

DEP's Toxics Management Spreadsheet (TMS) is a steady-state model that evaluates a single discharger to a stream segment and can account for partial mixing in the receiving waterway (therefore the Drainage Area was not reduced contrary to the WQM model). The TMS is used to calculate effluent limits for toxic parameters and to evaluate Reasonable Potential of a parameter in the discharge to cause an exceedance in the stream of a water quality criteria or standard such that a limit would be necessary. DEP's Technical Guidance document 391-2000-011 describes the methods used in this model (which was previously known as PENTOX).

Site-specific data are used as input values when available, but when not available, defaults or reasonable assumptions are made. Input values used include:

pH for stream during design low-flow period of July-Sept7 s.u. (default)	
pH for discharge during design low-flow period of July-Sept7 s.u. (default)	
Hardness for stream during design low-flow flow period of July-Sept143 mg/l (per permit application)	
Hardness for discharge during design low-flow flow period of July-Sept245 mg/l (avg. per permit application)
Background concentration for toxic parameters, any low-flow flow period0 ug/l (default)	
Width: depth ratio, estimated100	

Note-

When there are few samples, the maximum concentrations are used as model inputs for discharge concentrations. When there are 10 or more samples, average concentrations can be used instead as model inputs for discharge concentrations. There were more than 10 sample results for TDS and for Total Copper.

The model input and output pages are included at the end of this Fact Sheet. The TMS was run with a design flow of 2.2 MGD and again with a design flow of 2.9 MGD. For both a design flow of 2.2 MGD and a design flow of 2.9 MGD, the following limitations and monitoring requirements were determined through water quality modeling:

Parameter	Limit (mg/l)	Monitoring	Model
	None –		
Total Copper	Reasonable Potential not demonstrated	Monitoring required	Toxics Management Spreadsheet
	None –		
Total Thallium	Reasonable Potential not demonstrated	Monitoring required	Toxics Management Spreadsheet

NPDES Permit Fact Sheet Amity Township STP

The TMS recommended a monitoring requirement for Total Copper because the average discharge concentration of 0.035 mg/l, determined by DEP's TOXCONC statistical spreadsheet based on 35 recent discrete sample results (attached), was more than 10% of the calculated WQBELs for Total Copper: 0.19 mg/l for a discharge flow of 2.2 MGD and 0.15 mg/l for a discharge flow of 2.9 MGD. The TMS did not recommend limits for Total Copper because the average discharge concentration was less than 50% of the calculated WQBELs.

The TMS recommended a monitoring requirement for Total Thallium because the discharge concentration of <0.003 mg/l, the lab Quantitation Level (QL) used, was more than 10% of the calculated WQBELs for Total Thallium: 0.013 mg/l for a discharge flow of 2.9 MGD. The TMS did not recommend limits for Total Thallium because the discharge concentration was less than 50% of the calculated WQBELs.

Total Maximum Daily Load (TMDL):

A TMDL for Polychlorinated Biphenyls (PCBs) in the Schuylkill River was finalized in April 2007. Statewide, dischargers to the Schuylkill River who demonstrate high concentrations of PCBs in their discharge are being required to prepare and implement Pollutant Minimization Plans (PMPs). The goal is to reduce total PCB loading to the Schuylkill River.

The facility submitted a PCB Pollutant Minimization Plan on February 9, 2021. DEP accepted the plan on March 23, 2021. Implementation of the PMP Plan was required to begin by May 23, 2021.

PCB monitoring from January 1, 2018 through December 31, 2022 (not adjusted for field blank concentrations):

Year	Wet Weather (pg/l)	Dry Weather (pg/l)	Average of Wet	Comment
			and Dry	
			(pg/l)	
2018	935	454	695	Reported incorrectly on DMRs (units error)
2019	591	281	436	Reported incorrectly on DMRs (units error)
2020	556	431	494	
2021	791	491	641	Reported incorrectly on DMRs – equipment blank concentration
				reported instead of effluent concentration
2022	954	787	871	
Average	765.4	488.8	627	

The monitoring data has not shown a decrease in PCB concentrations in the discharge. The concentrations are consistently greater than the TMDL's target concentration of 44 pg/l (0.044 ng/l).

The PCB baseline from the Pollutant Minimization Plan was 0.97 grams/year.

For mass loading since 2020:

Year	Wet	Associated	Net	Dry	Associated	Net	Average	Average	Estimated
	Weather	Field	Concen-	Weather	Field	Concen-	Concentration	Annual	Annual
	(pg/l)	Blank	tration	(pg/l)	Blank	tration	(pg/l)	Flow	Mass Load
		(pg/l)	(pg/l)		(pg/l)	(pg/l)		(MGD)	(gram/year)
2021	791	16.3	774.7	491	4.37	486.6	631	1.034	0.90 *
		Not			Not				
2022	954	reported	•	787	reported	-	<871	1.163	<1.40 *

^{*}calculated as:

631 pg/l avg. concentration x 10^{-9} mg/pg x 1.034 MGD x 8.34 lbs/day x 453.6 grams/lb x 365 days/yr = 0.90 grams/year. <871 pg/l avg. concentration x 10^{-9} mg/pg x 1.163 MGD x 8.34 lbs/day x 453.6 grams/lb x 365 days/yr = <1.40 grams/yr.

The monitoring data has not shown a consistent decrease in PCB mass loading. (Even if the 2022 effluent concentrations were reduced by 20% as an estimate for as-yet-unreported field blank concentrations, the resulting mass loading for 2022 would be 1.12 grams/year, still higher than the baseline of 0.97 grams/year.)

According to the permittee's December 14, 2022 PMP Annual Report: "Amity Township is in the process of developing PCB questionnaires to send to commercial/industrial sites in and around the service area to identify any sources of PCBs."

For the renewal permit, the requirement for PCB monitoring using the sensitive analytical method 1668A, continued implementation of to the PCB PMP Plan, and the continued submittal of PCB Annual Reports will be required.

Besides measuring reductions in PCB loading specifically from this facility, all PCB data gathered can be used to track the progress of all dischargers collectively, and to possibly revise the TMDL in the future.

Anti-backsliding

No concentration limits in the permit are less stringent than in the previous permit.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(D) Listed Streams/ Impaired Waters

The discharge is located on a waterway that was included on the 303(d) list of impaired waterways submitted to EPA pursuant to the Clean Water Act. A Pollutant Minimization Plan has been required for the identified pollutant causing the impairment, PCBs. The TMDL for this impaired waterway recognized this approach.

Nutrient Monitoring

Nutrient levels in rivers and streams are a concern. In order to gather information to assess the situation and to adequately protect the waterways, most NPDES permits are now including a monitoring requirement, at the least, for **Total Nitrogen** (TKN + NO2-NO3) **and Total Phosphorus**. The statutory basis for this requirement is found at PA Code Chapter 92a.61. Monitoring for Total Nitrogen and Total Phosphorus has been added to the renewal permit. Because this requirement is to gather data and not to demonstrate compliance with a limit, a frequency of once per month has been included.

E. Coli Monitoring

Consistent with the Standard Operating Procedure (SOP) Establishing Effluent Limitations for Individual Sewage Permits and due to the regulatory change in the State Water Quality Standards, E. Coli monitoring has been included. The statutory basis for this requirement is found at PA Code Chapter 92a.61

Sample Type

Consistent with the Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, the sample type of '24-hour composite' has been continued from the existing permit for the majority of parameters and the sample type of 'Grab' will be continued for those parameters requiring grab samples: pH, DO, TRC, and Fecal Coliform.

Decimal Places

DEP's software requires decimal places for some concentration limits. As needed, the concentration limits will comply with the software validation requirements.

Mass Loading Limitations

Consistent with the Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, and the SOP for Establishing Effluent Limitations for Individual Sewage Permits, mass loading limits have been established for CBOD5, TSS, NH3-N. In addition, mass loading limits have been included for TDS, as was also done in the previous permit. Mass loads for TDS will be reviewed in the event of future expansions, to satisfy §95.10 of the PA Code as discussed below, and/or in the event of TDS TMDLs or DRBC TDS determinations on segments of the Schuylkill River.

TDS Baseline

In order to implement the regulations at Chapter 95.10 relevant to imposing TDS limits if increased loads trigger this requirement in the future, a TDS Baseline needs to be documented. The increase of TDS loads is measured against "maximum daily discharge loads of TDS...that were authorized by the Department prior to August 21, 2010" [Chapter 95.10(a)(1)]. The 2010 Fact Sheet summarized TDS concentrations reported in the effluent between 2007 and 2009. The maximum concentration was 751 mg/l. The design flow in 2010 was 2.2 MGD. Therefore the baseline TDS as of August 2010 was thus estimated as:

751 mg/l x 2.2 MGD x 8.34 conversion factor = 13,779 lbs/day

Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

Stormwater

Stormwater at sewage treatment plants are within the federal definition of "industrial stormwater associated with industrial activity". As such, DEP requires that any stormwater discharges meeting the federal definition must be authorized to discharge by a NPDES permit. The previous NPDES permit already recognized the stormwater discharges and required that Best Management Practices (BMPs) be followed. The renewal permit requires the same, consistent with the treatment of stormwater discharges at other STPs.

To avoid confusion that these stormwater discharges are not actually separate discharge pipes, language has been included in Part c of the permit to document that they merge with the treated effluent and discharge to outfall 001.

NPDES Permit No. PA0070351

	Whole Effluent Toxicity (WET)	ļ
For Ou	utfall 001, Acute Chronic WET Testing was completed:	
	For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other: 3 tests since the last renewal permit was issued in January of 2020 (which commenced the annual testing frequency) and the most recent test that was included in the previous permit application. The previous permit application was dated December 2014. No WET tests were conducted or required between the March 2014 test and the December 15, 2020.)	

Summary of One Older Test Result

The dilution series used (at DEP's instruction using previous procedures, older LFY, and older D.A.): 100%, 58%, 15%, 8%, and 4%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results: 15%.

NOEC/LC50 Data Analysis:

Test Termination Date	Ceriodaphnia Results (% Effluent)			Pimephal			
	NOEC	NOEC		NOEC	NOEC		
	Survival	Reproduction	LC50	Survival	Growth	LC50	Pass?
March 4, 2014	100%	58%	100%	100%	100%	100%	Pass

Is there reasonable potential for an excursion above water	quality standards based on the results of these tests?
--	--

☐ YES ⊠ NO

Summary of Three Most Recent Test Results

The dilution series used for the tests: 100%, 60%, 30%, 2%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results: 2%.

TST Data Analysis

	Ceriodaphnia Results (Pass/Fail)		Pimephales Results (Pass/Fail)		
Test Termination Date	Survival	Reproduction	Survival	Growth	
November 15, 2022	Pass	Pass	Pass	Pass	
November 23, 2021	Pass	Pass	Pass	Pass	
December 15, 2020	Pass	Pass	Pass	Pass	

^{*} A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

NPDES Permit No. PA0070351

	here reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE – In general, reasonable potential is ermined anytime there is at least one test failure in the previous four tests).
	YES 🖂 NO
<u>Eva</u>	aluation of Test Type, IWC and Dilution Series for Reissued Permit
Αcι	ute Partial Mix Factor (PMFa): 0.2 Chronic Partial Mix Factor (PMFc): 1
1.	Determine IWC – Acute (IWCa):
	$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$
	$[(2.9 \text{ MGD} \times 1.547) / ((292 \text{ cfs} \times 0.2) + (2.9 \text{ MGD} \times 1.547))] \times 100 = 7.1\%$
	Is IWCa < 1%? ☐ YES ☑ NO (YES - Acute Tests Required OR NO - Chronic Tests Required)
	Type of Test for Permit Renewal: Chronic Tests
2b.	Determine Target IWCc
	$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$
	$[(2.9 \text{ MGD} \times 1.547) / ((292 \text{ cfs} \times 1) + (2.9 \text{ MGD} \times 1.547))] \times 100 = = \text{TIWCc\%} = 1.5\% \text{ (round to 2\%)}$
3.	Determine Dilution Series
	(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).
	Dilution Series = 100%, 60%, 30%, 2%, and 1%.
The	e current Standard Operating Procedure (SOP) for WET testing, dated May 13, 2014, was used for the above calculations and dilution series.
WE	<u>T Limits</u>
Has	s reasonable potential been determined? YES NO
Wil	I WET limits be established in the permit? ☐ YES ☒ NO

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality as needed and BPJ. Instantaneous Maximum (IMAX) limits are generally determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: from Permit Effective Date through Start-up Date of Expanded Treatment Plant.

	Effluent Limitations					Monitoring Re	quirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	xxx	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	458	734	XXX	25.0	40.0	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	550	825	XXX	30.0	45.0	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Dissolved Solids	18,348	XXX	XXX	1000.0	XXX	2000	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Nitrate-Nitrite as Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/month	24-Hr Composite

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
r ai ainetei	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
					Report			
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Calculation
Ammonia								24-Hr
Nov 1 - Apr 30	220	XXX	XXX	12.0	XXX	24	2/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	73	XXX	XXX	4.0	XXX	8	2/week	Composite
					Report			24-Hr
Total Kjehldahl Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite
					Report			24-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite
					Report			24-Hr
Total Copper	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite
					Report			24-Hr
Total Thallium	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite
					Report			24-Hr
PCBs (Dry Weather) (pg/L)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite
					Report			24-Hr
PCBs (Wet Weather) (pg/L)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite

Compliance Sampling Location: at 001

Other Comments:

See PART C Conditions for PCB monitoring

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality as needed and BPJ. Instantaneous Maximum (IMAX) limits are generally determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: from Start-up Date of Expanded Treatment Plant through Permit Expiration Date.

	Effluent Limitations						Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Ultraviolet Light Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
CBOD5	460	701	XXX	19.0	29.0	38	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	726	1088	XXX	30.0	45.0	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Dissolved Solids	24,186	XXX	XXX	1000.0	XXX	2000	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Nitrate-Nitrite as Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/month	24-Hr Composite

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
raiailletei	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
	Wildling	Average	William	Wieniny	Report	Maximum	rrequeries	Турс
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Calculation
Ammonia					j			24-Hr
Nov 1 - Apr 30	290	XXX	XXX	12.0	XXX	24	2/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	97	XXX	XXX	4.0	XXX	8	2/week	Composite
					Report			24-Hr
Total Kjehldahl Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite
					Report			24-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite
					Report			24-Hr
Total Copper	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite
					Report			24-Hr
Total Thallium	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite
					Report			24-Hr
PCBs (Dry Weather) (pg/L)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite
					Report			24-Hr
PCBs (Wet Weather) (pg/L)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite

Compliance Sampling Location: at 001

Other Comments:

See PART C Conditions for PCB monitoring

	Tools and References Used to Develop Permit
	10013 dild References 036d to Develop 1 crime
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
\boxtimes	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
\boxtimes	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\boxtimes	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	Standard Operating Procedure (SOP) for Clean Water Program Whole Effluent Toxicity (WET), SOP No. BPNPSM-PMT-03, Revised, May 13, 2014, Version 1.4.
	SOP: Establishing Effluent Limitations for Individual Sewage Permits, March 24. 2021, Vsn 1.9.
	SOP: Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers, SOP No. BCW-PMT-037, Revised May 20, 2021, Version 1.5.

December 7, 2010

Amity Township c/o Township Secretary 2004 Weavertown Road Douglassville, PA 19518

River

Act 537 Plan Update APS ID No. 541430 DEP Code No. B2-06917-ACT

Amity Township, Berks County

Ladies and Gentlemen:

We have reviewed your August 2010 Act 537 Plan, submitted on November 24, 2010, prepared by ARRO Engineering and Environmental Consultants, and entitled Amity Township Act 537 Plan Update. The submission is consistent with the planning requirements given in Chapter 71 of the rules and regulations of the Department. The plan provides for an upgrade and expansion of the Amity Township Wastewater Treatment Plant to an average annual flow of 2.90 MGD.

The plan is approved with the following conditions:

- The approved project will require an NPDES Permit for the proposed effluent discharge.
 The permit application must be submitted in the name of the municipality or authority, as appropriate.
- 2. The approved project will require a Water Management Part II Permit for the construction and operation of the proposed sewage facilities. The permit application must be submitted in the name of the municipality or authority, as appropriate. Issuance of a Part II Permit will be based upon a technical evaluation of the permit application and supporting documentation. Starting construction prior to obtaining a Part II Permit is a violation of The Clean Streams Law.
- Other Departmental permits may be required for construction if encroachment to streams
 or wetlands will result. Information regarding the requirements for such permits or
 approvals can be obtained from the Department's Permitting and Technical Services
 Section, Watershed Management Program at the letterhead address or telephone
 717.705.4802.

It is now Amity Township's responsibility to implement the 537 Plan in accordance with the schedules contained within the Plan.

Southcentral Regional Office | 909 Eleverton Avenue | Harrisburg, PA 17110-8200

717-705-4707 | Fax 717-705-4760

Printed on Recycled Paper (55)

www.depweb.state.pa.us

Amity Township

- 2 -

December 7, 2010

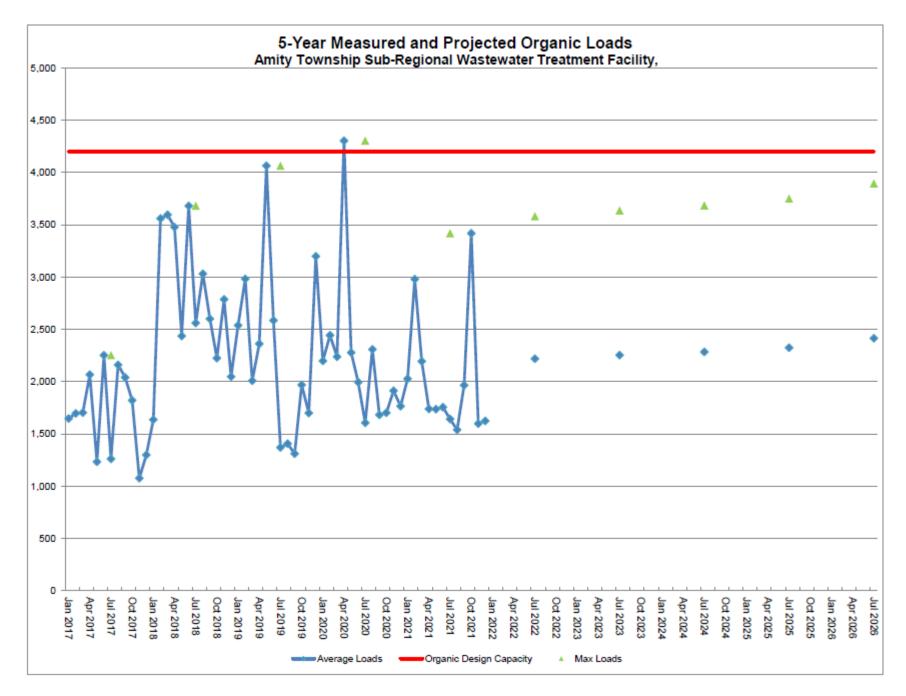
Since the Department has approved your Plan, you are now eligible to receive a 50 percent planning cost reimbursement as provided under Section 6 of the Sewage Facilities Act (Act 537). A copy of the reimbursement application is enclosed. You are reminded that reimbursement applications must show detailed cost breakdowns of tasks completed or you will place your reimbursement in jeopardy.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa. C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, PO Box 8457, Harrisburg, PA 17105-8457, 717.787.3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION.

If you have any questions, please call Mr. David Gates at 717.705.4766.


Sincerely.

Lee A. McDonnell, P.E.

Program Manager

Water Management Program

ce: ARRO Engineering & Environmental Consultants

NPDES Permit Fact Sheet Amity Township STP

PADEP Chapter 94 Spreadsh Sewage Treatment Plants

r: 2021

Facility Name

Amity Township Sub-Regional Wastewater Treatment Facility

Permit No.: PA0070351

Persons/EDU: 2.73

Existing Hydraulic Design Capacity: Upgrade Planned in Next 5 Years? Future Hydraulic Design Capacity:

2.2	MGD		
NO		Year:	
	MGD		

Existing Organic Design Capacity: Upgrade Planned in Next 5 Years? Future Organic Design Capacity:

4,202	lbs BOD5/day	
NO	Year:	
	lbs BOD5/day	

	Monthly Average Flows for Past Five Years (MGD)						
Month	2017	2018	2019	2020	2021		
January	1.345	1.278	2.116	1.591	1.057		
February	0.962	3.172	1.427	1.35	1.638		
March	2.577	2.465	1.72	1.42	1.937		
April	2.258	1.526	1.358	1.651	0.889		
May	1.142	1.84	2.126	1.188	0.8038		
June	1.219	1.513	1.35	0.83	0.898		
July	1.231	2.096	1.437	0.751	0.763		
August	1.077	2.7	0.645	0.996	0.752		
September	0.97	2.831	0.52	0.787	1.559		
October	0.746	1.161	0.946	0.83	1.387		
November	0.819	3.665	1.168	1.042	0.725		
December	0.678	2.186	1.547	1.985	0.567		
Annual Avg	1.252	2.203	1.363	1.202	1.0813		
Max 3-Mo Avg	1.992	2.552	2.656	1.496	1.56		
Max : Avg Ratio	1.59	1.16	1.95	1.24	1.44		
Existing EDUs	5,327.0	5,409.0	5,451.0	5,452.0	5,463.0		
Flow/EDU (GPD)	235.0	407.3	250.0	220.5	197.9		
Flow/Capita (GPD)	86.1	149.2	91.6	80.8	72.5		
Exist. Overload?	NO	NO	NO	NO	NO		

	Monthly Average BOD5 Loads for Past Five Years (lbs/day)						
Month	2017	2018	2019	2020	2021		
January	1,647	1,637	2,539	2,199	2,027		
February	1,697	3,560	2,983	2,443	2,980		
March	1,704	3,596	2,009	2,238	2,195		
April	2,067	3,478	2,362	4,304	1,739		
May	1,234	2,437	4,064	2,278	1,737		
June	2,252	3,682	2,585	1,995	1,755		
July	1,262	2,560	1,371	1,606	1,642		
August	2,160	3,032	1,406	2,309	1,539		
September	2,041	2,601	1,310	1,682	1,965		
October	1,821	2,225	1,970	1,702	3,419		
November	1,076	2,787	1,700	1,913	1,598		
December	1,299	2,048	3,198	1,766	1,624		
,							
Annual Avg	1,688	2,804	2,291	2,203	2,018		
Max Mo Avg	2,252	3,682	4,064	4,304	3,419		
Max : Avg Ratio	1.33	1.31	1.77	1.95	1.69		
Existing EDUs	5,327	5,409	5,451	5,452	5,463		
Load/EDU	0.317	0.518	0.420	0.404	0.369		
Load/Capita	0.116	0.190	0.154	0.148	0.135		
Exist. Overload?	NO	NO	NO	YES	NO		

	Projected Flows for Next Five Years (MGD)							
_	2022	2023	2024	2025	2026			
New EDUs	45.0	85.0	75.0	100.0	222.0			
New EDU Flow	0.0118	0.0223	0.0197	0.0262	0.0582			
Proj. Annual Avg	1.4321	1.4544	1.4741	1.5003	1.5585			
Proj. Max 3-Mo Avg	2.1153	2.1483	2.1774	2.2161	2.302			
Proj. Overload?	NO	NO	NO	YES	YES			

	Projected BOD5 Loads for Next Five Years (lbs/day)				
	2022	2023	2024	2025	2026
New EDUs	45	85	75	100	222
New EDU Load	18.262	34.495	30.437	40.583	90.094
Proj. Annual Avg	2,219	2,254	2,284	2,325	2,415
Proj. Max Avg	3,581	3,637	3,686	3,751	3,897
Proj. Overload?	NO	NO	NO	NO	NO

	ort -Amity STP 001				
State/Region ID	PA				
Workspace ID	PA20230130210526726000				
Latitude	40.25118				
Longitude	-75.72706				
Time	1/30/2023	4:05:52 F	PM		
Low-Flow Statistics Parar	12.8 Percent Low Flow Region 1				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1040	square mi	4.78	1150
BSLOPD	Mean Basin Slope degrees	6.5526	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.4	feet	4.13	5.21
URBAN	Percent Urban	6.5898	percent	0	89
Low-Flow Statistics Parar	87.2 Percent Low Flow Region 2				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1040	square mi	4.93	1280
PRECIP	Mean Annual Precipitation		inches	35	50.4
STRDEN	Stream Density	1.35	miles per	0.51	3.1
ROCKDEP	Depth to Rock		feet	3.32	5.65
CARBON	Percent Carbonate	18.61	percent	0	99
Low-Flow Statistics Flow	12.8 Percent Low Flow Region 1				
Statistic	Value	Unit			
7 Day 2 Year Low Flow	269	ft^3/s			
30 Day 2 Year Low Flow		ft^3/s			
7 Day 10 Year Low Flow		ft^3/s			
30 Day 10 Year Low Flow		ft^3/s			
90 Day 10 Year Low Flow		ft^3/s			
·	87.2 Percent Low Flow Region 2				
Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow		ft^3/s	38	_	
30 Day 2 Year Low Flow		ft^3/s	33		
7 Day 10 Year Low Flow		ft^3/s	51		
30 Day 10 Year Low Flow		ft^3/s	46		
90 Day 10 Year Low Flow		ft^3/s	36		
Low-Flow Statistics Flow		, -		30	
Statistic	Value	Unit			
7 Day 2 Year Low Flow		ft^3/s			
30 Day 2 Year Low Flow		ft^3/s			
7 Day 10 Year Low Flow		ft^3/s			
30 Day 10 Year Low Flow		ft^3/s			
90 Day 10 Year Low Flow		ft^3/s			

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are consid USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Surv USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purpose.

Application Version: 4.12.0			
StreamStats Services Version: 1.2.22			
NCC Complete Marriage 2 2 4			

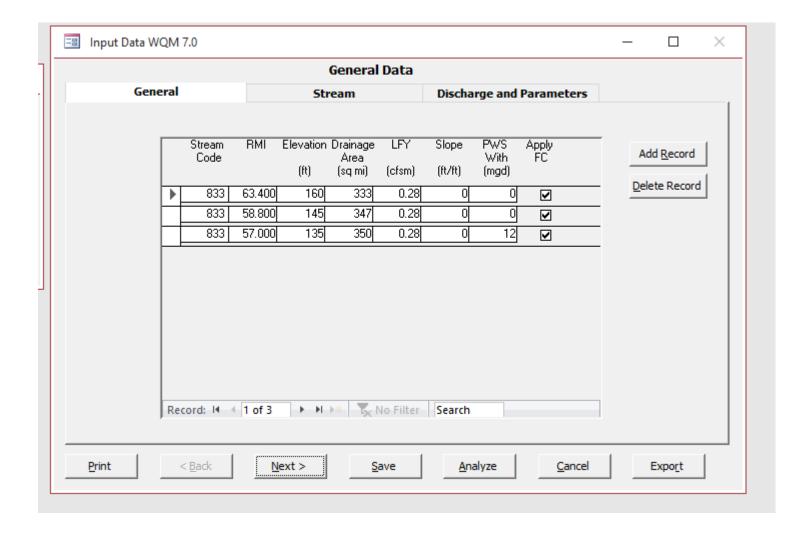
Suedinsta	ts Output Report-@ downstr	111 7 7 7 3			
State/Reg	PA				
	PA20230201203405543000				
Latitude	7,720230201233 1333 13000				
Longitude					
Time		3:34:29 PI			
Titile	2, 1, 2023	3.3 1.23 1 1	<u>.</u>		
Low-Flow	13.8 Percent Low Flow Regio	n 1			
	Parameter Name	Value	Units	Min Limit	Max Limi
DRNAREA	Drainage Area	1050	square mi	4.78	1150
BSLOPD	Mean Basin Slope degrees		degrees	1.7	6.4
ROCKDEP	Depth to Rock		feet	4.13	5.21
URBAN	Percent Urban	6.5759	percent	0	89
Low-Flow	86.2 Percent Low Flow Regio				
	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area		square mi	4.93	1280
PRECIP	Mean Annual Precipitation		inches	35	50.4
STRDEN	Stream Density		miles per	0.51	
	Depth to Rock		feet	3.32	5.65
CARBON	Percent Carbonate		percent	0	99
Low-Flow	13.8 Percent Low Flow Regio	n 1			
Statistic	Value				
7 Day 2 Ye	271	ft^3/s			
30 Day 2 Y		ft^3/s			
7 Day 10 Y		ft^3/s			
30 Day 10		ft^3/s			
90 Day 10	254				
•	86.2 Percent Low Flow Regio	-			
Statistic	Value	Unit	SE	ASEp	
7 Day 2 Ye		ft^3/s	38		
30 Day 2 Y		ft^3/s	33	33	
7 Day 10 Y		ft^3/s	51	51	
30 Day 10		ft^3/s	46		
90 Day 10		ft^3/s	36		
•	Area-Averaged	,.			
Statistic	Value	Unit			
7 Day 2 Ye		ft^3/s			
30 Day 2 Y		ft^3/s			
7 Day 10 Y		ft^3/s			
30 Day 10		ft^3/s			
90 Day 10		ft^3/s			
20 24 Y 10	330				

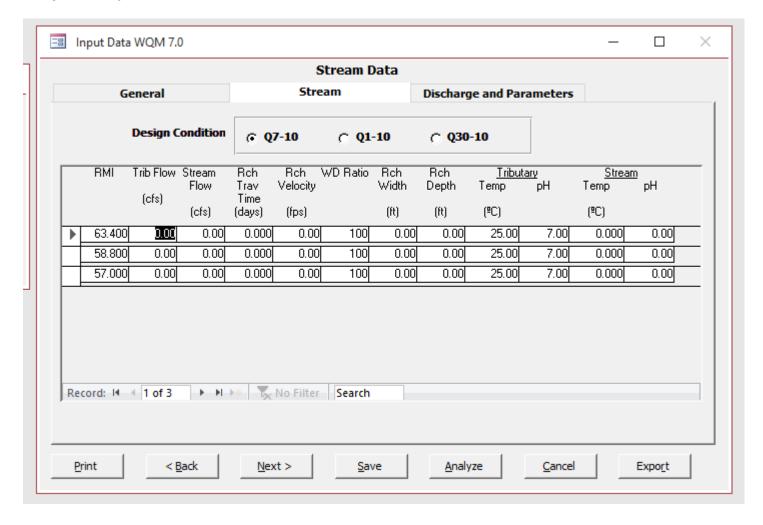
USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related material USGS Software Disclaimer: This software has been approved for release by the U.

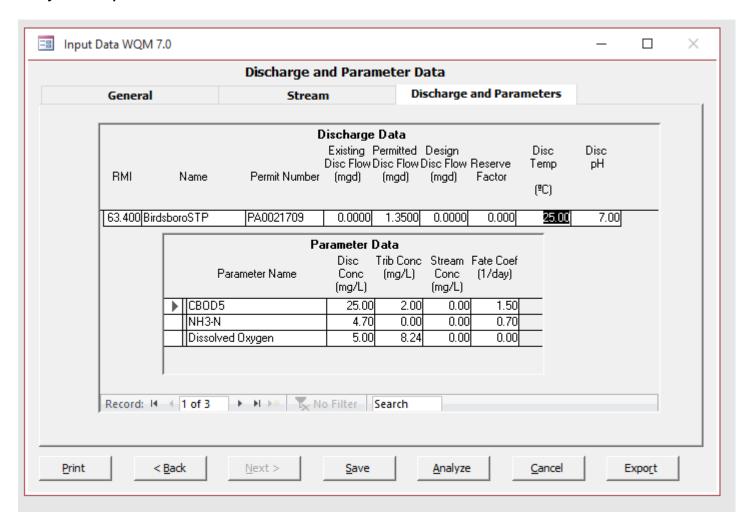
USGS Product Names Disclaimer: Any use of trade, firm, or product names is for d

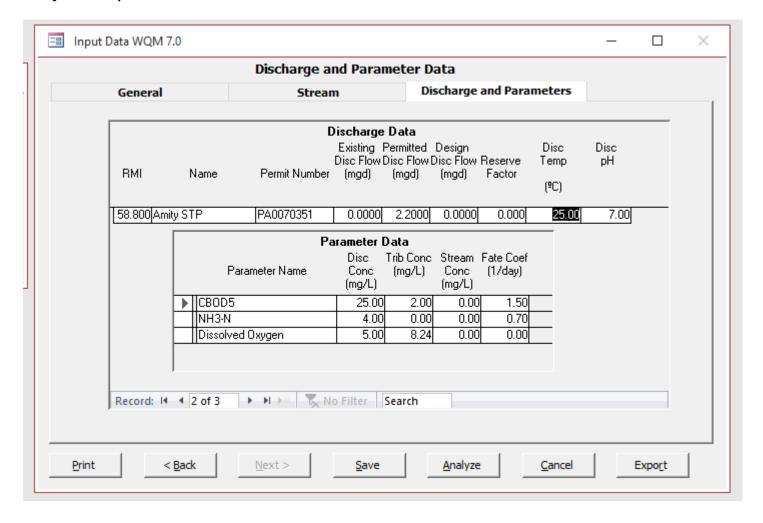
Application Version: 4.12.0			
StreamStats Services Version: 1.2.22			
NCC Com	i		

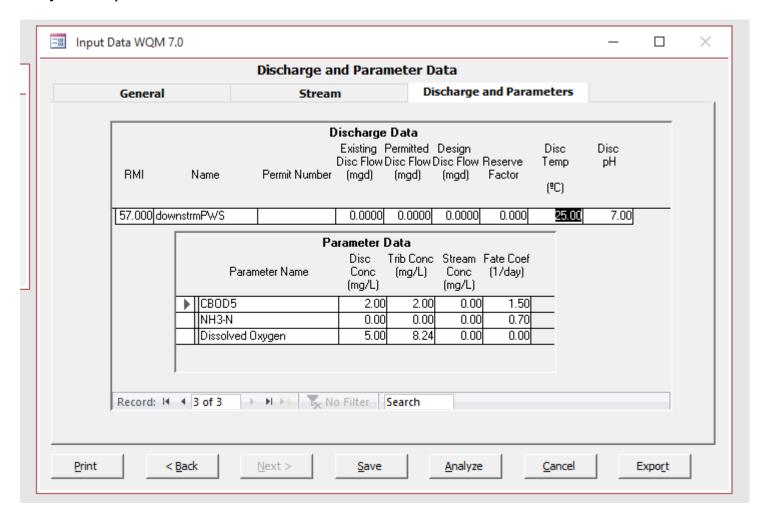
StreamStats Output Rep	ort-confl Hay Crk & Schuyl R				
State/Region ID	PA				
Workspace ID	PA20230201210743871000				
Latitude	40.27091				
Longitude	-75.8003				
Time		2/1/2023 4:08:08 PM			
Low-Flow Statistics Para	9.4 Percent Low Flow Region	1			
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	999	square mi	4.78	1150
BSLOPD	Mean Basin Slope degrees	6.585	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.4	feet	4.13	5.21
URBAN	Percent Urban	6.6524	percent	0	89
Low-Flow Statistics Para	90.6 Percent Low Flow Region	n 2			
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area			4.93	1280
PRECIP	Mean Annual Precipitation		inches	35	50.4
STRDEN	Stream Density	· · · · · · · · · · · · · · · · · · ·		0.51	3.1
ROCKDEP	Depth to Rock		feet	3.32	5.65
CARBON	Percent Carbonate		percent	0	
			P		
Low-Flow Statistics Flow	9.4 Percent Low Flow Region	1			
Statistic	Value Unit				
7 Day 2 Year Low Flow	260				
30 Day 2 Year Low Flow	315	ft^3/s			
7 Day 10 Year Low Flow	162	ft^3/s			
30 Day 10 Year Low Flow	193	ft^3/s			
90 Day 10 Year Low Flow	244 ft^3/s				
•	90.6 Percent Low Flow Region	n 2			
Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow	439	ft^3/s	38		
30 Day 2 Year Low Flow		ft^3/s	33	33	
7 Day 10 Year Low Flow		ft^3/s	51	51	
30 Day 10 Year Low Flow		ft^3/s	46		
90 Day 10 Year Low Flow		ft^3/s	36		
Low-Flow Statistics Flow		,			
Statistic	Value	Unit			
7 Day 2 Year Low Flow		ft^3/s			
30 Day 2 Year Low Flow		ft^3/s			
7 Day 10 Year Low Flow		ft^3/s			
30 Day 10 Year Low Flow		ft^3/s			
90 Day 10 Year Low Flow		ft^3/s			
JO Day 10 ICai LOW I IOW	393				

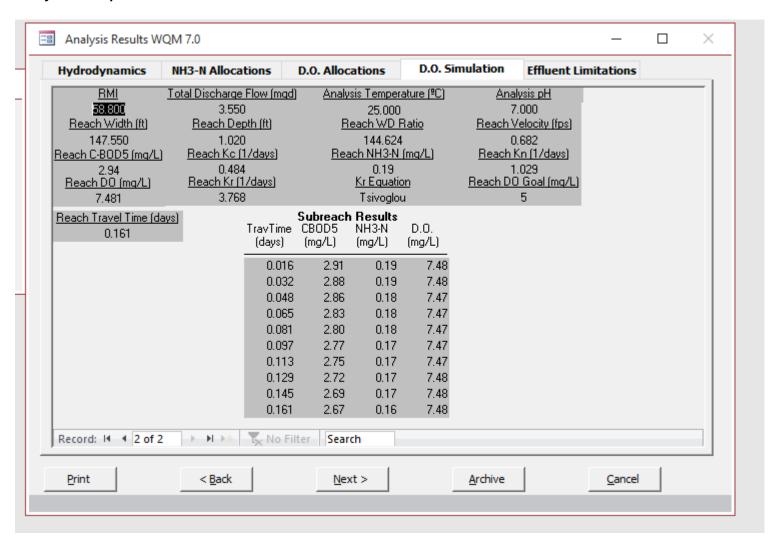

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are con USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Subset USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive pur

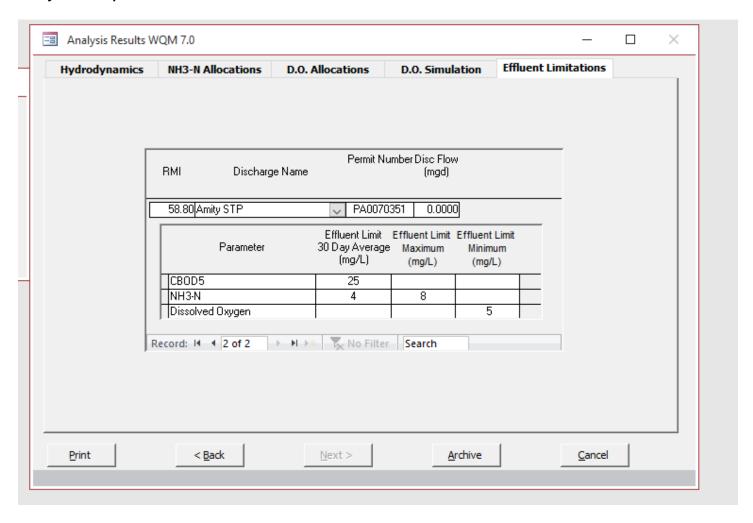

Application Version: 4.12.0				
	StreamStats Services Version: 1.2.22			
NCC Compiess Vensions 2.2.1				

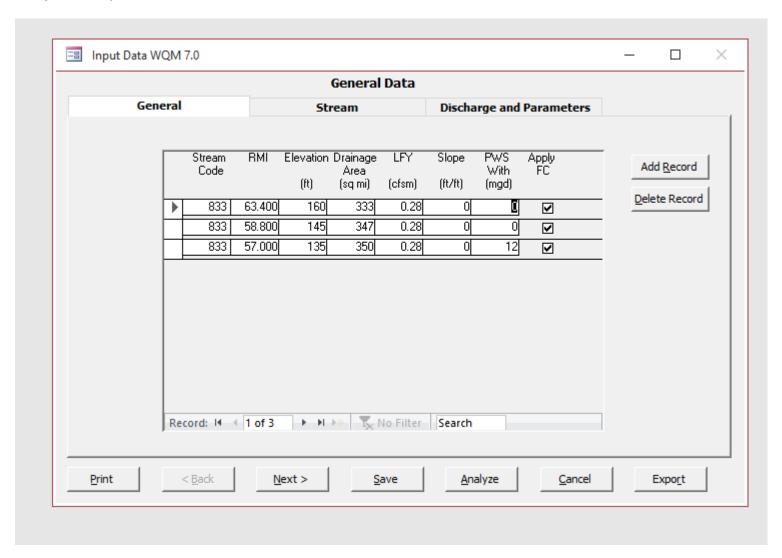

NPDES Permit Fact Sheet Amity Township STP

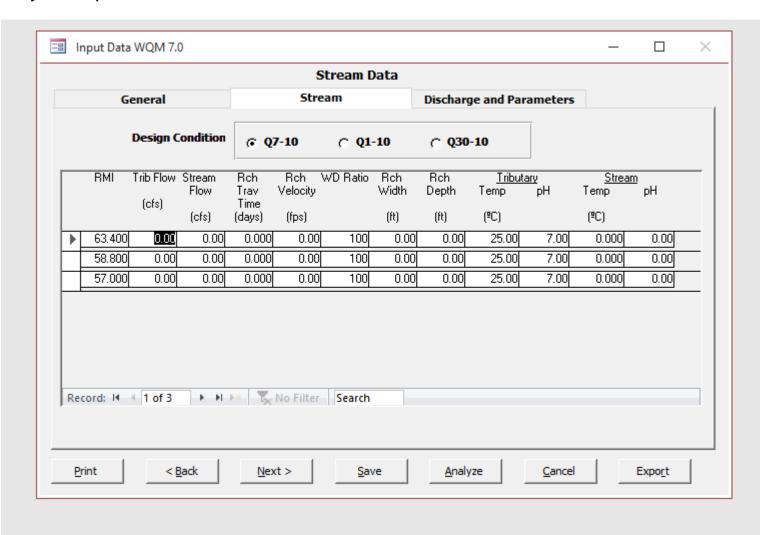

WQM Model with Amity design flow of 2.2 MGD

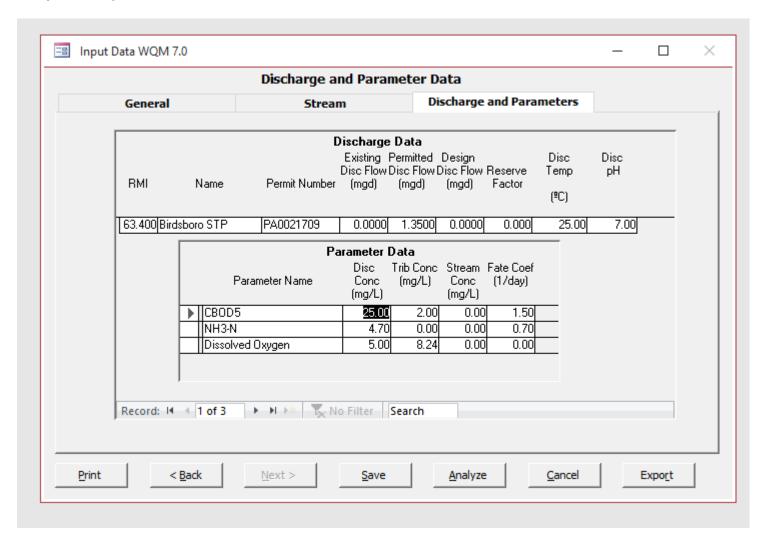

(and Drainage Area/3 to account for wide river and including upstream discharger Birdsboro STP and downstream public water supply intake).....

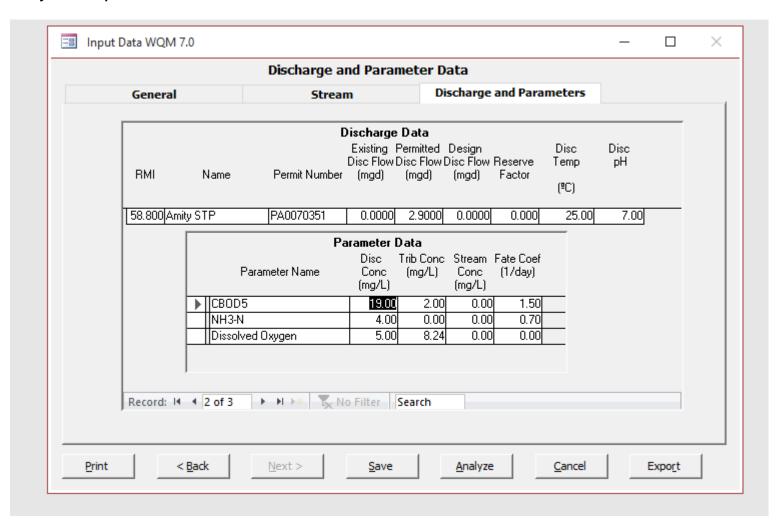


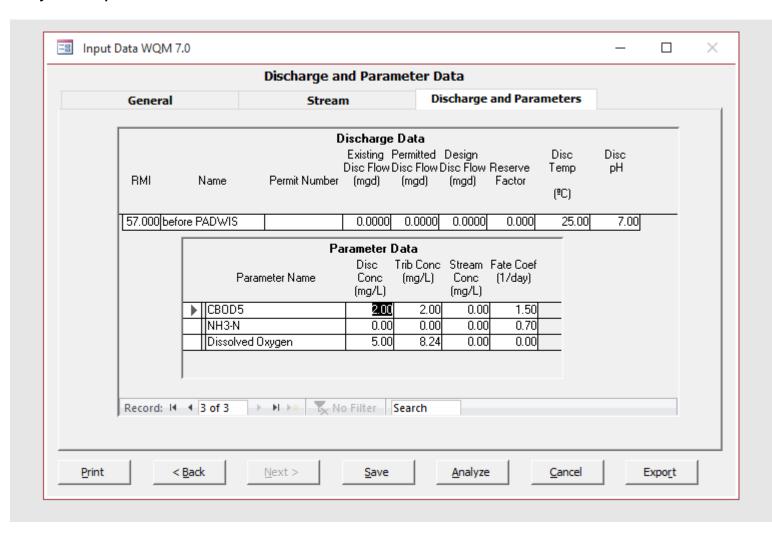


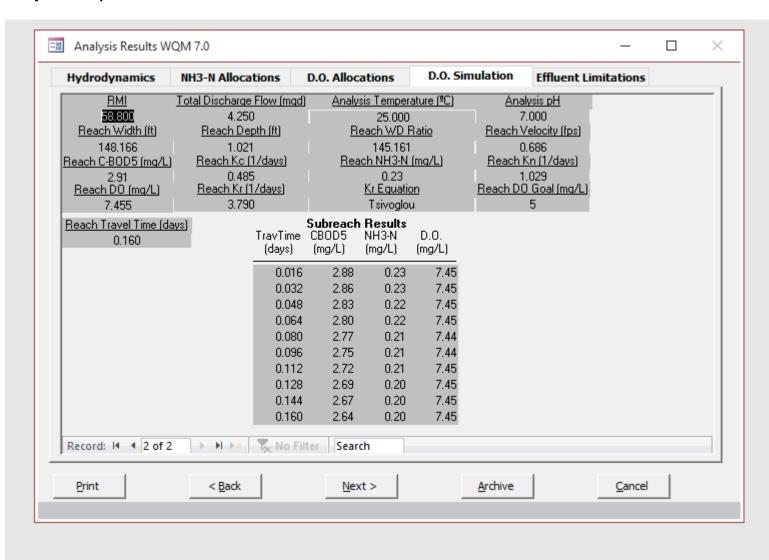


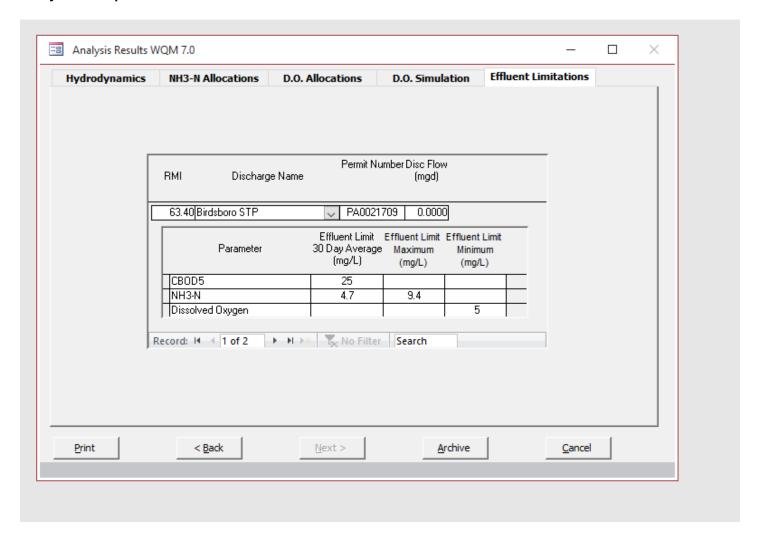


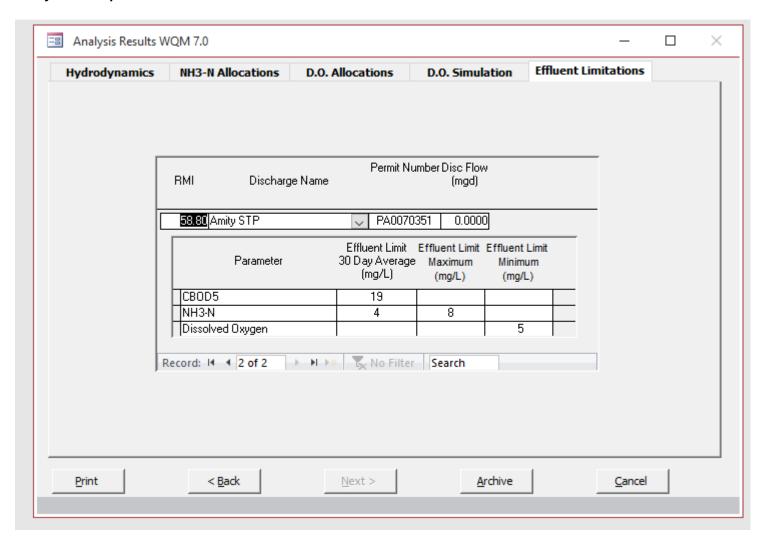

DO recovered




Re-Run WQM 7.0 Model with Amity design flow of 2.9 MGD.....next pages







NPDES Permit Fact Sheet Amity Township STP

Parameter Name Para					1	1		1	1		I	
NPCB st		F::::		Ait T OTD								
Outsile No. of Stample Months Months		Pacility:		Amity 1Wp 51P								
Sample Horolty A		Outfall No:		001								
Parameter Name 1 1		n (Samples/Mor	nth):	4								
Parameter Name 1 1		Reviewer/Perm	it Engineer:	B.Boylan								
Duties Policy			_									
Name Part West West Section West West	Parameter Name	T.Copper										
Sample Cable When emering values below the descript limit, enter "NO" or use the < notation (e. d.02)	Units											
21/2020 48	Detection Limit	1										
21/2020 48	Comple Data	M/han antarina	ralisas halassi tha	detection limit o	mtor "ND" or use	the a metation (a	er +0.021					
17	Sample Date	wnen entering \	alues below the	detection limit, e	nter "ND" or use	tne < notation (e	g. <0.02)	ı	ı		ı	
20	2/1/2020			+								
19		17										
35												
16												
19												
25												
25												
16		25								 _		_
30												
19												
19												
13												
17												
17				1								
23 20 20 35 28 30 47 30 15 32 13 32 330 32 13 32 30 32 13 32 30 32 31 32 32 32 33 30 30 30 30 30 29 30 17 31 21 31		21										
20												
35				1								
28												
17				ļ								
26		28										
47												
30 15 15 15 32 13 14 14 32 14 32 15 31 14 32 14 32 15 30 16 30 17 17 17 21 17												
15 15 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>												
15 15 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th> </th><th></th><th>_</th></td<>										 		_
15		15										
32												
13 </th <th></th> <th></th> <th></th> <th>İ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				İ								
14 </th <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				1								
32 </th <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				1								
30		32		+								
29 </th <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				1								
19 </th <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				-								
17				1								
21				 								
				1								
Dec-22 22		21		ļ								
	Dec-22	22										
				1								

		Reviewer/Permit Engineer:	B.Boylan
Facility:	Amity Twp STP		
NPDES #:	PA0070351		

Outfall No: 001 n (Samples/Month): 4

0.3540830	34.6295293

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Disch	arge Stream		
Facility:	Amity 1	·wp	NPDES Permit No.: PA0070351	Outfall No.: 001
Evaluation T	ype:	Major Sewage / Industrial Waste	Wastewater Description: domestic ww	

			Discharge	Characterist	tics								
Design Flow	Hardness (mg/l)* pH (SU)*												
(MGD)*	naturiess (ingri)	pn (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q,					
2.2	245	7											

					0 If lef	t blank	0.5 M le	it blank	0	If left blan	k	1 If left	blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
г	Total Dissolved Solids (PWS)	mg/L		668									
7	Chloride (PWS)	mg/L		280									
Group	Bromide	mg/L	٧	1									
ច	Sulfate (PWS)	mg/L		79.3									
L	Fluoride (PWS)	mg/L											
Г	Total Aluminum	µg/L		20									
ı	Total Antimony	µg/L		0.7									
ı	Total Arsenic	µg/L	*	1									
ı	Total Barlum	µg/L		161									
ı	Total Beryllium	µg/L	٧	1									
ı	Total Boron	µg/L		200									
ı	Total Cadmium	µg/L	٧	0.1									
ı	Total Chromium (III)	µg/L	*	1									
ı	Hexavalent Chromlum	µg/L	٧	0.25									
ı	Total Cobalt	µg/L		0.2									
ı	Total Copper	μg/L		34.63			0.3541						
~	Free Cyanide	µg/L		6									
group	Total Cyanide	μg/L		22									
18	Dissolved Iron	µg/L		20									
ľ	Total Iron	µg/L		40									
ı	Total Lead	µg/L	٧	1									
ı	Total Manganese	µg/L		5									
ı	Total Mercury	µg/L	*	0.2									
ı	Total Nickel	µg/L		3									
ı	Total Phenois (Phenolics) (PWS)	µg/L		7									
ı	Total Selenium	µg/L	٧	1									
ı	Total Sliver	µg/L	٧	1									
ı	Total Thaillum	µg/L	*	3									
ı	Total Zinc	µg/L		42									
ı	Total Molybdenum	µg/L											
	Acrolein	µg/L	*	2									
ı	Acrylamide	µg/L	٧										
ı	Acrylonitrile	µg/L	٧	2									
ı	Benzene	µg/L	*	0.5									
ı	Bromoform	µg/L	٧	0.5									

1		-				ı	ı	ı	ı	
	Carbon Tetrachloride	μg/L	•	0.5						
	Chlorobenzene	μg/L	<	0.5						
	Chlorodibromomethane	μg/L	40	0.5						
	Chloroethane	μg/L.	40	0.5						
	2-Chloroethyl Vinyl Ether	μg/L	•	5						
	Chloroform	μg/L		5.6						
	Dichlorobromomethane	μg/L		2.6						
	1,1-Dichloroethane	μg/L	<	0.5						
69	1,2-Dichloroethane	μg/L	•	0.5						
Group	1,1-Dichloroethylene	μg/L	•	0.5						
2	1,2-Dichloropropane	μg/L	<	0.5						
9	1,3-Dichloropropylene	μg/L	<	0.5						
	1,4-Dioxane	μg/L	٧	5						
	Ethylbenzene	μg/L	•	0.5						
1	Methyl Bromide	μg/L	•	0.5						
1	Methyl Chloride	μg/L	¥	0.5						
	Methylene Chloride	μg/L	4	0.5						
1	1,1,2,2-Tetrachloroethane	μg/L	•	0.5						
	Tetrachioroethylene	μg/L	40	0.5						
	Toluene	μg/L	<	0.5						
	1,2-trans-Dichloroethylene	μg/L	<	0.5						
	1,1,1-Trichloroethane	μg/L	45	0.5						
	1,1,2-Trichloroethane	μg/L	<	0.5						
	Trichloroethylene	μg/L	<	0.5						
	Vinyl Chloride	μg/L	<	0.5						
	2-Chlorophenol	μg/L	<	10						
	2,4-Dichlorophenol	μg/L	<	10						
	2,4-Dimethylphenol	μg/L	<	10						
١.	4,6-Dinitro-o-Cresol	μg/L	•	10						
4	2,4-Dinitrophenol	μg/L	<	10						
3	2,4-Unitrophenol 2-Nitrophenol 4-Nitrophenol	μg/L	<	10						
ð		μg/L	•	10						
1	p-Chloro-m-Cresol	μg/L	40	10						
1	Pentachlorophenol	μg/L.	•	10						
1	Phenol	μg/L		66.5						
	2,4,6-Trichlorophenol	μg/L	<	10						
	Acenaphthene	μg/L	<	2.5						
1	Acenaphthylene	μg/L	€.	2.5						
1	Anthracene	μg/L	•	2.5						
	Benzidine	μg/L.	<	50						
	Benzo(a)Anthracene	μg/L	45	2.5						
	Benzo(a)Pyrene	μg/L	¥	2.5						
1	3,4-Benzofluoranthene	μg/L	•	2.5						
1	Benzo(ghi)Perylene	μg/L	•	2.5						
	Benzo(k)Fluoranthene	μg/L	4	2.5						
	Bis(2-Chloroethoxy)Methane	μg/L	•	5						
	Bis(2-Chloroethyl)Ether	μg/L	4	5						

NPDES Permit Fact Sheet Amity Township STP

					,			
Bis(2-Chloroethyl)Ether	μg/L	40	5					
Bis(2-Chloroisopropyl)Ether	μg/L	•	5					
Bis(2-Ethylhexyl)Phthalate	μg/L	45	5					
4-Bromophenyl Phenyl Ether	µg/L	à	5					
Butyl Benzyl Phthalate	μg/L	À	5					
2-Chloronaphthalene	μg/L	40	5					
4-Chlorophenyl Phenyl Ether	μg/L	À	5					
Chrysene	μg/L	À	2.5					
Dibenzo(a,h)Anthrancene	μg/L	À	2.5					
1,2-Dichlorobenzene	μg/L		0.5					
1,3-Dichlorobenzene	μg/L	45	0.5					
1,4-Dichlorobenzene	µg/L	4	0.5					
3,3-Dichlorobenzidine	μg/L	è	5					
3,3-Dichlorobenzidine Diethyl Phthalate	μg/L	÷	5					
Dimethyl Phthalate	μg/L	· C	5					
Di-n-Butyl Phthalate	μg/L	À	5					
2,4-Dinitrotoluene	μg/L	4	5					

scharge Information 2/1/2023 Page 2

2,6-Dinitrotoluene	μg/L	<	5					
Di-n-Octyl Phthalate	μg/L	<	5					
1,2-Diphenylhydrazine	μg/L	٧	10					
Fluoranthene	μg/L	٧	2.5					
Fluorene	μg/L	٨	2.5					
Hexachlorobenzene	μg/L	4	5					
Hexachlorobutadiene	μg/L	<	0.5					
Hexachlorocyclopentadiene	μg/L	<	5					
Hexachloroethane	μg/L	*	5					
Indeno(1,2,3-cd)Pyrene	μg/L	*	2.5					
Isophorone	μg/L	<	5					
Naphthalene	μg/L	<	0.5					
Ntrobenzene	μg/L	<	5					
n-Nitrosodimethylamine	μg/L	4	5					
n-Nitrosodi-n-Propylamine	μg/L	<	5					
n-Nitrosodiphenylamine	μg/L	*	5					
Phenanthrene	μg/L	<	2.5					
Pyrene	μg/L	<	2.5					
1,2,4-Trichlorobenzene	μg/L	*	0.5					
Aldrin	μg/L	<						
alpha-BHC	μg/L	<						
beta-BHC	µg/L	<						
gamma-BHC	µg/L	<						
delta BHC	μg/L	40						
Chlordane	μg/L	<						
4,4-DDT	μg/L	<						
4,4-DDE	μg/L	*						
4.4-DDD	μg/L	<						

Permit No. PA0070351

I	alpha-BHC	μg/L	<						
	beta-BHC								
	-	µg/L	<						
	gamma-BHC delta BHC	µg/L	<						
		µg/L	<						
	Chlordane	μg/L	¢						
	4,4-DDT	μg/L	¢						
	4,4-DDE	μg/L	¢						
	4,4-DDD	µg/L	¢						
	Dieldrin	µg/L	¢						
	alpha-Endosulfan	µg/L	<						
l	beta-Endosulfan	μg/L	¢						
0	Endosulfan Sulfate	µg/L	<						
	Endrin	µg/L	¢						
ð	Endrin Aldehyde	µg/L	¢						
	Heptachlor	μg/L	¢						
	Heptachlor Epoxide	μg/L	<						
	PCB-1016	µg/L	¢						
	PC8-1221	µg/L	¢						
	PC8-1232	μg/L	A						
	PCB-1242	µg/L	¢						
	PCB-1248	μg/L	¢						
	PCB-1254	µg/L	¢						
	PCB-1260	µg/L	<						
	PCBs, Total	µg/L		0.00125					
	Toxaphene	µg/L	¢						
	2,3,7,8-TCDD	ng/L	¢						
	Gross Alpha	pC//L							
p.	Total Beta	pCVL	¢						
9	Radium 226/228	pCVL	¢						
-	Total Strontium	μg/L	¢						
Ō	Total Uranium	µg/L	¢						
	Osmotic Pressure	mOs/kg							
_									
								-	

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Amity Twp, NPDES Permit No. PA0070351, Outfall 001

lr	nstructions Disch	arge Str	ream													
R	eceiving Surface W	/ater Name:	Schuylkill	River				No. Rea	aches to I	Model:	1	_	tewide Criteri at Lakes Crit			
	Location	Stream Co	de* RM	Elevar (ft)	DA (m	i²)* Slo	ope (ft/ft)		Withdraw MGD)	al Apply F		OR	SANCO Crite	eria		
F	Point of Discharge	000833	58.	8 14	5 104	0				Yes	;					
Г	End of Reach 1	000833	57	138	5 105	0			12	Yes	3					
Q	7-10		LFY	Flov	v (cfs)	W/D	Width	Depth	Velocit	Havei	Tributa	arv	Strea	m	Analy	sis
П	Location	RMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time	Hardness	pH	Hardness*	pH*	Hardness	pН
F	Point of Discharge	58.8	0.28	ou ou iii	modaly	100	17	(/	7 (/	(dave)	110101000	P**	143	7		
۲	End of Reach 1	57	0.28	 		100										
Q) _h															
Г	Location	RMI	LFY	Flov	v (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analy	sis
	Location	PAIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness	pН	Hardness	pН
F	Point of Discharge	58.8														
Г	End of Reach 1	57														

Q 7-10

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
58.8	291.20		291.20	3.403	0.001	1.135	113.543	100.	0.938	0.117	439.915
57	294.00	18.564	275.436					100.000			

 Q_h

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
58.8	1058.50		1058.50	3.403	0.001	1.996	113.543	56.884	1.923	0.057	191.934
57	1067.393	18.564	1048.83								

√ Wasteload Allocations

✓ AFC CCT (min): 15 PMF: 0.185 Analysis Hardness (mg/l): 149.07 Analysis pH: 7.00

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	12,600	
Total Antimony	0	0		0	1,100	1,100	18,479	
Total Arsenic	0	0		0	340	340	5,712	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	352,787	
Total Boron	0	0		0	8,100	8,100	136,075	
Total Cadmium	0	0		0	2.968	3.2	53.8	Chem Translator of 0.927 applied
Total Chromium (III)	0	0		0	790.142	2,500	42,006	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	274	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	1,596	
Total Copper	0	0		0	19.577	20.4	343	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	370	

Model Results 2/1/2023 Page 5

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	99.463	136	2,280	Chem Translator of 0.733 applied
Total Manganese	0	0	0	N/A	N/A	N/A	·
Total Mercury	0	0	0	1.400	1.65	27.7	Chem Translator of 0.85 applied
Total Nickel	0	0	0	656.382	658	11,049	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0	0	6.392	7.52	126	Chem Translator of 0.85 applied
Total Thallium	0	0	0	65	65.0	1,092	
Total Zinc	0	0	0	164.351	168	2,823	Chem Translator of 0.978 applied
Acrolein	0	0	0	3	3.0	50.4	
Acrylonitrile	0	0	0	650	650	10,920	
Benzene	0	0	0	640	640	10,752	
Bromoform	0	0	0	1,800	1,800	30,239	
Carbon Tetrachloride	0	0	0	2,800	2,800	47,038	
Chlorobenzene	0	0	0	1,200	1,200	20,159	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	302,389	
Chloroform	0	0	0	1,900	1,900	31,919	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	251,991	
1,1-Dichloroethylene	0	0	0	7,500	7,500	125,995	
1,2-Dichloropropane	0	0	0	11,000	11,000	184,793	
1,3-Dichloropropylene	0	0	0	310	310	5,208	
Ethylbenzene	0	0	0	2,900	2,900	48,718	
Methyl Bromide	0	0	0	550	550	9,240	
Methyl Chloride	0	0	0	28,000	28,000	470,382	
Methylene Chloride	0	0	0	12,000	12,000	201,592	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	16,799	
Tetrachloroethylene	0	0	0	700	700	11,760	
Toluene	0	0	0	1,700	1,700	28,559	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	114,236	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	50,398	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	57,118	
Trichloroethylene	0	0	0	2,300	2,300	38,639	

✓ CFC CCT (min): ##### PMF: 1 Analysis Hardness (mg/l): 144.18 Analysis pH: 7.00

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	

del Results 2/1/2023 Page 7

Chloride (PWS)	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	N/A	N/A	N/A	
Total Aluminum	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	220	220	19,044	
Total Arsenic	0	0	0	150	150	12,984	Chem Translator of 1 applied
Total Barium	0	0	0	4,100	4,100	354,902	
Total Boron	0	0	0	1,600	1,600	138,498	
Total Cadmium	0	0	0	0.317	0.35	30.7	Chem Translator of 0.894 applied
Total Chromium (III)	0	0	0	100.010	116	10,066	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0	0	10	10.4	900	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	1,645	
Total Copper	0	0	0	12.243	12.8	1,104	Chem Translator of 0.96 applied
Free Cyanide	0	0	0	5.2	5.2	450	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	129,842	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	3.739	5.07	439	Chem Translator of 0.738 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	78.4	Chem Translator of 0.85 applied
Total Nickel	0	0	0	70.874	71.1	6,153	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	432	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	1,125	
Total Zinc	0	0	0	161.075	163	14,141	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	260	
Acrylonitrile	0	0	0	130	130	11,253	

✓ THH CCT (min): ###### THH PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A PWS PMF: 0.6196

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	27,262,465	WQC applied at RMI 57 with a design stream flow of 294 cfs
Chloride (PWS)	0	0		0	250,000	250,000	13,631,232	WQC applied at RMI 57 with a design stream flow of 294 cfs
Sulfate (PWS)	0	0		0	250,000	250,000	13,631,232	WQC applied at RMI 57 with a design stream flow of 294 cfs
Total Aluminum	0	0		0	N/A	N/A	N/A	•
Total Antimony	0	0		0	5.6	5.6	302	THH WQC applied at PWS at RMI 57
Total Arsenic	0	0		0	10	10.0	540	THH WQC applied at PWS at RMI 57
Total Barium	0	0		0	2,400	2,400	129,636	THH WQC applied at PWS at RMI 57
Total Boron	0	0		0	3,100	3,100	167,447	THH WQC applied at PWS at RMI 57
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	216	THH WQC applied at PWS at RMI 57
Dissolved Iron	0	0		0	300	300	16,205	THH WQC applied at PWS at RMI 57
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	54,015	THH WQC applied at PWS at RMI 57
Total Mercury	0	0		0	0.050	0.05	2.7	THH WQC applied at PWS at RMI 57
Total Nickel	0	0		0	610	610	32,949	THH WQC applied at PWS at RMI 57
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	273	WQC applied at RMI 57 with a design stream flow of 294 cfs
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	13.0	THH WQC applied at PWS at RMI 57
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	162	THH WQC applied at PWS at RMI 57
Acrylonitrile	0	0		0	N/A	N/A	N/A	

Permit No. PA0070351

Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	 0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	
PCBs, Total	0	0	0	0.000064	0.00006	0.02	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

	Mass Limits		Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	μg/L	189	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Thallium	Report	Report	Report	Report	Report	μg/L	13.0	THH	Discharge Conc > 10% WQBEL (no RP)

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	27,262	mg/L	Discharge Conc ≤ 10% WQBEL
Chloride (PWS)	13,631	mg/L	Discharge Conc ≤ 10% WQBEL
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	13,631	mg/L	Discharge Conc ≤ 10% WQBEL
Total Aluminum	8,076	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	302	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	129,636	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	87,219	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	30.7	μg/L	Discharge Conc < TQL
Total Chromium (III)	10,066	μg/L	Discharge Conc < TQL
Hexavalent Chromium	175	μg/L	Discharge Conc < TQL
Total Cobalt	1,023	μg/L	Discharge Conc ≤ 10% WQBEL
- 0 :	0.40		DI I O LOSSI MODEL

Total Cobalt	1,023	μg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	216	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	16,205	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	129,842	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	439	μg/L	Discharge Conc < TQL
Total Manganese	54,015	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	2.7	μg/L	Discharge Conc < TQL

Model Results 2/1/2023

Total Nickel	6,153	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)	273	μg/L	Discharge Conc ≤ 10% WQBEL
Total Selenium	432	μg/L	Discharge Conc < TQL
Total Silver	81.0	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	1,809	μg/L	Discharge Conc ≤ 10% WQBEL
Acrolein	32.3	μg/L	Discharge Conc < TQL
Acrylonitrile	18.7	μg/L	Discharge Conc < TQL
Benzene	181	μg/L	Discharge Conc < TQL
Bromoform	2,184	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	125	μg/L	Discharge Conc < TQL
Chlorobenzene	5,402	μg/L	Discharge Conc < TQL
Chlorodibromomethane	250	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	193,819	μg/L	Discharge Conc < TQL
Chloroform	308	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	296	μg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	3,089	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	1,783	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	281	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	84.2	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	3,673	μg/L	Discharge Conc < TQL

Euryidenzene	3,073	µg/L	Discharge Conc < TQL
Methyl Bromide	5,402	μg/L	Discharge Conc < TQL
Methyl Chloride	301,496	μg/L	Discharge Conc < TQL
Methylene Chloride	6,240	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	62.4	μg/L	Discharge Conc < TQL
Tetrachloroethylene	3,120	μg/L	Discharge Conc < TQL
Toluene	3,079	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	5,402	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	32,303	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	172	μg/L	Discharge Conc < TQL
Trichloroethylene	187	μg/L	Discharge Conc < TQL
Vinyl Chloride	6.24	μg/L	Discharge Conc < TQL
2-Chlorophenol	1,620	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	540	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	5,402	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	108	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	540	μg/L	Discharge Conc < TQL
2-Nitrophenol	86,142	μg/L	Discharge Conc < TQL
4-Nitrophenol	24,766	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	1,723	μg/L	Discharge Conc < TQL
Pentachlorophenol	9.36	μg/L	Discharge Conc < TQL
Phenol	216,061	μg/L	Discharge Conc ≤ 25% WQBEL
2,4,6-Trichlorophenol	468	μg/L	Discharge Conc < TQL

1odel Results 2/1/2023

Acenaphthene	894	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	16,205	μg/L	Discharge Conc < TQL
Benzidine	0.031	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.31	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.031	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.31	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Danner (IA) Florence there a	0.40		Discharge Cons. 4 TOI

Benzo(k)Fluoranthene	3.12	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	9.36	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	10,803	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	99.8	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	2,907	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	5.4	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	43,212	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	37.4	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.031	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	8,830	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	378	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	7,860	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	15.6	μg/L	Discharge Conc < TQL
Diethyl Phthalate	32,409	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	26,919	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	1,080	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	15.6	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	15.6	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	9.36	μg/L	Discharge Conc < TQL
Fluoranthene	1,080	μg/L	Discharge Conc < TQL
Fluorene	2,701	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.025	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	3.12	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	53.8	μg/L	Discharge Conc < TQL
Hexachloroethane	31.2	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.31	µg/L	Discharge Conc < TQL
Isophorone	1,837	μg/L	Discharge Conc < TQL
Naphthalene	1,507	μg/L	Discharge Conc < TQL
Nitrobenzene	540	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.22	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	1.56	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	1,030	μg/L	Discharge Conc < TQL
ES-1			D. 1 0 TO1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0070351

n massesi na repjianine	1.00	19/1	Distriction of the Control of the Co
n-Nitrosodiphenylamine	1,030	μg/L	Discharge Conc < TQL
Phenanthrene	53.8	μg/L	Discharge Conc < TQL
Pyrene	1,080	μg/L	Discharge Conc < TQL

Model Results 2/1/2023 Page 17

1,2,4-Trichlorobenzene	3.78	μg/L	Discharge Conc < TQL
PCBs, Total	0.02	μg/L	Discharge Conc ≤ 25% WQBEL

Re-run of TMS model with Qd of 2.9 MGD.....starts next page.....

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discharge	Stream				
Facility:	Amity Twp S	TP		NPDES Permit No.:	PA0070351	Outfall No.: 001
Evaluation T	ype: Majo	r Sewage / Ind	lustrial Waste	Wastewater Descrip	tion: domestic ww	

	Discharge Characteristics														
Design Flow	Hardness (mo/l)*	pH (SU)*	P	Partial Mix Factors (PMFs) Complete Mix Times (r											
(MGD)*	Hardness (mg/l)*	pn (su)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q,							
2.9	245	7													

		0 If left blank		0.5 If left blank		0 if left blank			1 If left blank				
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
г	Total Dissolved Solids (PWS)	mg/L		668									
7	Chloride (PWS)	mg/L		280									
group	Bromide	mg/L	٧	1									
ច	Sulfate (PWS)	mg/L		79.3									
	Fluoride (PWS)	mg/L											
Г	Total Aluminum	µg/L		20									
ı	Total Antimony	µg/L		0.7									
ı	Total Arsenic	µg/L	٧	1									
ı	Total Barlum	µg/L		161									
ı	Total Beryllium	µg/L	٧	1									
ı	Total Boron	µg/L		200									
ı	Total Cadmium	µg/L	٧	0.1									
ı	Total Chromium (III)	µg/L	٧	1									
ı	Hexavalent Chromlum	µg/L	٧	0.25									
ı	Total Cobalt	µg/L		0.2									
ı	Total Copper	µg/L		34.63			0.3541						
2	Free Cyanide	µg/L		6									
Group	Total Cyanide	µg/L		22									
5	Dissolved Iron	µg/L		20									
	Total Iron	µg/L		40									
ı	Total Lead	µg/L	٧	1									
ı	Total Manganese	µg/L		5									
ı	Total Mercury	µg/L	٧	0.2									
ı	Total Nickel	µg/L		3									
ı	Total Phenois (Phenolics) (PWS)	µg/L		7									
ı	Total Selenium	µg/L	٧	1									
ı	Total Silver	µg/L	٧	1									
ı	Total Thaillum	µg/L	٧	3									
ı	Total Zinc	µg/L		5									
	Total Molybdenum	µg/L	٧	3									
	Acrolein	µg/L	٧	2									
I	Acrylamide	µg/L	٧										
I	Acrylonitrile	µg/L	٧	5									
I	Benzene	µg/L	٧	0.5									
I	Bromoform	µg/L	٧	0.5									

	Carbon Tetrachloride	μg/L	<	0.5					
	Chlorobenzene	μg/L		0.5					
	Chlorodibromomethane	μg/L	<	0.5					
	Chloroethane	μg/L	<	0.5					
	2-Chloroethyl Vinyl Ether	μg/L	<	5					
	Chloroform	μg/L		5.6					
	Dichlorobromomethane	μg/L		2.6					
	1,1-Dichloroethane	μg/L	<	0.5					
6	1,2-Dichloroethane	μg/L	<	0.5					
	1,1-Dichloroethylene	μg/L	<	0.5					
Group	1,2-Dichloropropane	μg/L	<	0.5					
Q	1,3-Dichloropropylene	μg/L	<	0.5					
	1,4-Dioxane	μg/L	<	10					
	Ethylbenzene	μg/L	<	0.5					
	Methyl Bromide	μg/L	<	0.5					
	Methyl Chloride	μg/L	<	0.5					
	Methylene Chloride	μg/L	<	0.5					
	1,1,2,2-Tetrachloroethane	μg/L	<	0.5					
	Tetrachloroethylene	μg/L	<	0.5					
	Toluene	μg/L	<	0.5					
	1,2-trans-Dichloroethylene	μg/L	<	0.5					
	1,1,1-Trichloroethane	μg/L	*	0.5					
	1,1,2-Trichloroethane	μg/L	<	0.5					
	Trichloroethylene	μg/L	<	0.5					
L	Vinyl Chloride	μg/L	<	0.5					
	2-Chlorophenol	μg/L	<	10					
	2,4-Dichlorophenol	μg/L	<	10					
	2,4-Dimethylphenol	μg/L	<	10					
_	4,6-Dinitro-o-Cresol	μg/L	<	10					
p 4	2,4-Dinitrophenol	μg/L	<	10					
Group	2-Nitrophenol	μg/L	<	10					
ō	4-Nitrophenol	μg/L	<	10					
	p-Chloro-m-Cresol	μg/L	<	10					
	Pentachlorophenol	μg/L	<	10					
	Phenol	μg/L		66.5					
L	2,4,6-Trichlorophenol	μg/L	<	10					
	Acenaphthene	μg/L	<	2.5					
	Acenaphthylene	μg/L	<	2.5					
	Anthracene	μg/L	<	2.5					
	Benzidine	μg/L	<	50					
	Benzo(a)Anthracene	μg/L	<	2.5					
L	Benzo(a)Pyrene	μg/L	<	2.5					

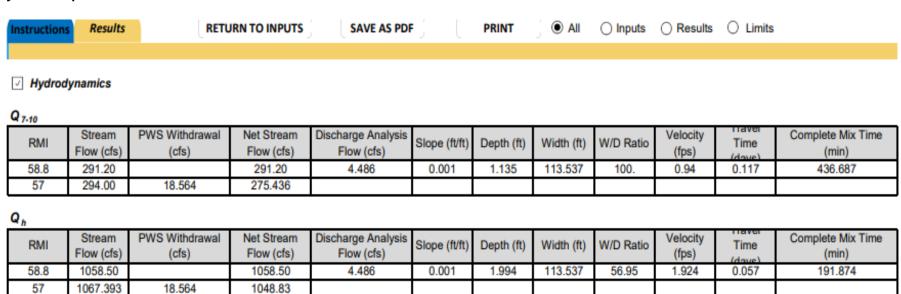
NPDES Permit Fact Sheet Amity Township STP

Benzo(a)Pyrene	μg/L	<	2.5				
3,4-Benzofluoranthene	μg/L	<	2.5				
Benzo(ghi)Perylene	μg/L	<	2.5				
Benzo(k)Fluoranthene	μg/L	<	2.5				
Bis(2-Chloroethoxy)Methane	μg/L	٧.	5				
Bis(2-Chloroethyl)Ether	μg/L	<	5				
Bis(2-Chloroisopropyl)Ether	μg/L	٧.	5				
Bis(2-Ethylhexyl)Phthalate	μg/L	*	5				
4-Bromophenyl Phenyl Ether	μg/L	٧.	5				
Butyl Benzyl Phthalate	μg/L	*	5				
2-Chloronaphthalene	μg/L	*	5				
4-Chlorophenyl Phenyl Ether	μg/L	*	5				
Chrysene	μg/L	<	2.5				
Dibenzo(a,h)Anthrancene	μg/L	٧.	2.5				
1,2-Dichlorobenzene	μg/L	<	0.5				
1,3-Dichlorobenzene	μg/L	<	0.5				
1,4-Dichlorobenzene	μg/L	<	0.5				
3,3-Dichlorobenzidine	μg/L	<	5				
Diethyl Phthalate	μg/L	<	5				
Dimethyl Phthalate	μg/L	<	5				
Di-n-Butyl Phthalate	μg/L	<	5				
2,4-Dinitrotoluene	μg/L	<	5				

charge Information 2/2/2023 Page 2

2,6-Dinitrotoluene	μg/L	<	5				
Di-n-Octyl Phthalate	μg/L	<	5				
1,2-Diphenylhydrazine	μg/L	٧	10				
Fluoranthene	μg/L	٧.	2.5				
Fluorene	μg/L	٧	2.5				
Hexachlorobenzene	μg/L	٧	5				
Hexachlorobutadiene	μg/L	٧	0.5				
Hexachlorocyclopentadiene	μg/L	٧	5				
Hexachloroethane	μg/L	<	5				
Indeno(1,2,3-cd)Pyrene	μg/L	٧	2.5				
Isophorone	μg/L	<	5				
Naphthalene	μg/L	٧	0.5				
Nitrobenzene	μg/L	٧	5				
n-Nitrosodimethylamine	μg/L	<	5				

	n-Nitrosodiphenylamine	μg/L	<	5					
	Phenanthrene	μg/L	٧	2.5					
	Pyrene	μg/L	٧	2.5					
	1,2,4-Trichlorobenzene	μg/L	٧	0.5					
	Aldrin	μg/L	٧						
	alpha-BHC	μg/L	٧						
	beta-BHC	μg/L	٧						
	gamma-BHC	μg/L	٧						
	delta BHC	μg/L	٧						
	Chlordane	μg/L	٧						
	4,4-DDT	μg/L	٧						
	4,4-DDE	μg/L	٧						
	4,4-DDD	μg/L	٧						
	Dieldrin	μg/L	٧						
	alpha-Endosulfan	μg/L	٧						
	beta-Endosulfan	μg/L	٧						
90	Endosulfan Sulfate	μg/L	٧						
Group	Endrin	μg/L	٧						
ö	Endrin Aldehyde	μg/L	٧						
	Heptachlor	μg/L	٧						
	Heptachlor Epoxide	μg/L	٧						
	PCB-1016	μg/L	٧						
	PCB-1221	μg/L	٧						
	PCB-1232	μg/L	٧						
	PCB-1242	μg/L	٧						
	PCB-1248	μg/L	٧						
	PCB-1254	μg/L	٧						
	PCB-1260	μg/L	٧						
	PCBs, Total	μg/L		0.001254					
	Toxaphene	μg/L	٧						
	2,3,7,8-TCDD	ng/L	٧						
	Gross Alpha	pCi/L							
7	Total Beta	pCi/L	٧						
g	Radium 226/228	pCi/L	٧						



Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Amity Twp STP, NPDES Permit No. PA0070351, Outfall 001

Instructions Disch	arge Str	ream														
Receiving Surface W	/ater Name:	Schuylk	ill Rive	er				No. Rea	aches to l	Model:	1	_	tewide Criteri at Lakes Crit			
Location	Stream Co	de* F	RMI*	Elevation (ft)*	DA (mi	²)* S	lope (ft/ft)		Withdraw MGD)	/al Apply f		OR	SANCO Crite	eria		
Point of Discharge	000833		8.8	145						Yes	•					
End of Reach 1	000833		57	135	1050				12	Yes	;					
Q ₇₋₁₀		LFY	_	Flow	(ofo)	W/D	Width	Depth	Velocit	Havei	Tributa	201	Strea	m	Analys	eie
Location	RMI	(cfs/mi ²)* 5	Stream	Tributary	Ratio		(ft)	y (fps)	Time (days)	Hardness	pH	Hardness*	pH*	Hardness	pН
Point of Discharge	58.8	0.28	_		,	100		1 /	, , ,	(dave)			143	7		
End of Reach 1	57	0.28	十													
Q _h																
Location	RMI	LFY		Flow	ow (cfs) W/I			Depth	Velocit	Time	Tributa	ary	Strea		Analys	
		(cfs/mi	2) 8	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness	рН	Hardness	pН
Point of Discharge	58.8															
End of Reach 1	57															

Ý	W	aste	load	All	ocat	ions	
---	---	------	------	-----	------	------	--

☑ AFC	CCT (min): 15	PMF:	0.185	Analysis Hardness (mg/l):	150.83	Analysis pH:	7.00	
-------	---------------	------	-------	---------------------------	--------	--------------	------	--

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	9,772	
Total Antimony	0	0		0	1,100	1,100	14,333	
Total Arsenic	0	0		0	340	340	4,430	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	273,629	
Total Boron	0	0		0	8,100	8,100	105,543	
Total Cadmium	0	0		0	3.002	3.24	42.2	Chem Translator of 0.927 applied
Total Chromium (III)	0	0		0	797.759	2,525	32,895	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	212	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	1,238	
Total Copper	0	0		0	19.794	20.6	269	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	287	

✓ CFC CCT (min): ###### PMF: 1 Analysis Hardness (mg/l): 144.55 Analysis pH: 7.00

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	

Model Results 2/2/2023 Page 7

Objection (DMO)	^		^	AU/A	AL/A	ALI/A	
Chloride (PWS)	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	N/A	N/A	N/A	
Total Aluminum	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	220	220	14,500	
Total Arsenic	0	0	0	150	150	9,886	Chem Translator of 1 applied
Total Barium	0	0	0	4,100	4,100	270,226	
Total Boron	0	0	0	1,600	1,600	105,454	
Total Cadmium	0	0	0	0.318	0.36	23.4	Chem Translator of 0.894 applied
Total Chromium (III)	0	0	0	100.219	117	7,681	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0	0	10	10.4	685	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	1,252	
Total Copper	0	0	0	12.270	12.8	842	Chem Translator of 0.96 applied
Free Cyanide	0	0	0	5.2	5.2	343	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	98,863	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	3.750	5.09	335	Chem Translator of 0.737 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	59.7	Chem Translator of 0.85 applied
Total Nickel	0	0	0	71.028	71.2	4,695	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	329	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied

NPDES Permit No. PA0070351

i otal Lead	U	U	U	3./50	5.09	333	Unem Translator of 0.737 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	59.7	Chem Translator of 0.85 applied
Total Nickel	0	0	0	71.028	71.2	4,695	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	329	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	857	
Total Zinc	0	0	0	161.425	164	10,790	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	198	
Acrylonitrile	0	0	0	130	130	8,568	
Benzene	0	0	0	130	130	8,568	
Bromoform	0	0	0	370	370	24,386	
Carbon Tetrachloride	0	0	0	560	560	36,909	
Chlorobenzene	0	0	0	240	240	15,818	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	230,681	
Chloroform	0	0	0	390	390	25,704	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	204,317	
1,1-Dichloroethylene	0	0	0	1,500	1,500	98,863	
1,2-Dichloropropane	0	0	0	2,200	2,200	144,999	
1,3-Dichloropropylene	0	0	0	61	61.0	4,020	
Ethylbenzene	0	0	0	580	580	38,227	
Methyl Bromide	0	0	0	110	110	7,250	
Methyl Chloride	0	0	0	5,500	5,500	362,498	
Methylene Chloride	0	0	0	2,400	2,400	158,181	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	13,841	
Tetrachloroethylene	0	0	0	140	140	9,227	
Toluene	0	0	0	330	330	21,750	

Model Results 2/2/2023 Page 8

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ua/L)	0	(Pg/L)	0	500,000	500,000	20,856,533	WQC applied at RMI 57 with a design stream flow of 294 cfs
Chloride (PWS)	0	0		0	250,000	250,000	10,428,267	WQC applied at RMI 57 with a design stream flow of 294 cfs
Sulfate (PWS)	0	0		0	250,000	250,000	10,428,267	WQC applied at RMI 57 with a design stream flow of 294 cfs
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	231	THH WQC applied at PWS at RMI 57
Total Arsenic	0	0		0	10	10.0	413	THH WQC applied at PWS at RMI 57
Total Barium	0	0		0	2,400	2,400	99,181	THH WQC applied at PWS at RMI 57
Total Boron	0	0		0	3,100	3,100	128,109	THH WQC applied at PWS at RMI 57
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	165	THH WQC applied at PWS at RMI 57
Dissolved Iron	0	0		0	300	300	12,398	THH WQC applied at PWS at RMI 57
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	41,325	THH WQC applied at PWS at RMI 57
Total Mercury	0	0		0	0.050	0.05	2.07	THH WQC applied at PWS at RMI 57
Total Nickel	0	0		0	610	610	25,208	THH WQC applied at PWS at RMI 57
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	209	WQC applied at RMI 57 with a design stream flow of 294 cfs
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	9.92	THH WQC applied at PWS at RMI 57
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	124	THH WQC applied at PWS at RMI 57
Acrylonitrile	0	0		0	N/A	N/A	N/A	

✓ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

_		Mass	Limits	Concentration Limits						
	Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
	Total Copper	Report	Report	Report	Report	Report	μg/L	148	AFC	Discharge Conc > 10% WQBEL (no RP)
	Total Thallium	Report	Report	Report	Report	Report	μg/L	9.92	THH	Discharge Conc > 10% WQBEL (no RP)

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	20,857	mg/L	Discharge Conc ≤ 10% WQBEL
Chloride (PWS)	10,428	mg/L	Discharge Conc ≤ 10% WQBEL
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	10,428	mg/L	Discharge Conc ≤ 10% WQBEL
Total Aluminum	6,264	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	231	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	99,181	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	67,649	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	23.4	μg/L	Discharge Conc < TQL
Total Chromium (III)	7,681	μg/L	Discharge Conc < TQL
Hexavalent Chromium	136	μg/L	Discharge Conc < TQL
Total Cobalt	793	μg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	165	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	12,398	μg/L	Discharge Conc ≤ 10% WQBEL

NPDES Permit Fact Sheet Amity Township STP

Dissolved Iron	12,398	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	98,863	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	335	μg/L	Discharge Conc < TQL
Total Manganese	41,325	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	2.07	μg/L	Discharge Conc < TQL
Total Nickel	4,695	μg/L	Discharge Conc ≤ 10% WQBEL

Model Results 2/2/2023 Page 15

Total Phenols (Phenolics) (PWS)	209	μg/L	Discharge Conc ≤ 10% WQBEL
Total Selenium	329	μg/L	Discharge Conc < TQL
Total Silver	64.1	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	1,417	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	25.1	μg/L	Discharge Conc < TQL
Acrylonitrile	14.2	μg/L	Discharge Conc < TQL
Benzene	137	μg/L	Discharge Conc < TQL
Bromoform	1,659	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	94.8	μg/L	Discharge Conc < TQL
Chlorobenzene	4,133	μg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	190	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	150,330	μg/L	Discharge Conc < TQL
Chloroform	236	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	225	μg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	2,346	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	1,364	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	213	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	64.0	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	2,810	μg/L	Discharge Conc < TQL
Methyl Bromide	4,133	μg/L	Discharge Conc < TQL
Methyl Chloride	233 847	ua/l	Discharge Conc < TOI

Methylene Chloride	4,739	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	47.4	μg/L	Discharge Conc < TQL
Tetrachloroethylene	2,369	μg/L	Discharge Conc < TQL
Toluene	2,356	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	4,133	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	25,055	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	130	μg/L	Discharge Conc < TQL
Trichloroethylene	142	μg/L	Discharge Conc < TQL
Vinyl Chloride	4.74	μg/L	Discharge Conc < TQL
2-Chlorophenol	1,240	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	413	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	4,133	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	82.7	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	413	μg/L	Discharge Conc < TQL
2-Nitrophenol	66,813	μg/L	Discharge Conc < TQL
4-Nitrophenol	19,209	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	1,336	μg/L	Discharge Conc < TQL
Pentachlorophenol	7.11	μg/L	Discharge Conc < TQL
Phenol	165,301	μg/L	Discharge Conc ≤ 25% WQBE
2,4,6-Trichlorophenol	355	μg/L	Discharge Conc < TQL

Model Results 2/2/2023 Page 16

Acenaphthene	693	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	12,398	μg/L	Discharge Conc < TQL
Benzidine	0.024	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.24	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.024	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.24	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	2.37	μg/L	Discharge Conc < TQL

Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	2.37	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	7.11	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	8,265	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	75.8	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	2,255	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	4.13	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	33,060	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	28.4	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.024	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	6,848	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	289	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	6,097	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	11.8	μg/L	Discharge Conc < TQL
Diethyl Phthalate	24,795	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	20,879	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	827	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	11.8	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	11.8	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	7.11	μg/L	Discharge Conc < TQL
Fluoranthene	827	μg/L	Discharge Conc < TQL
Fluorene	2,066	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.019	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	2.37	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	41.8	μg/L	Discharge Conc < TQL
Hexachloroethane	23.7	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.24	μg/L	Discharge Conc < TQL
Isophorone	1,405	μg/L	Discharge Conc < TQL
Naphthalene	1,169	μg/L	Discharge Conc < TQL
Nitrobenzene	413	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.17	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	1.18	μg/L	Discharge Conc < TQL
A 114 11 1 1 1 1	700		DI 1 0 TO1

n-Nitrosodiphenylamine	782	μg/L	Discharge Conc < TQL
Phenanthrene	41.8	μg/L	Discharge Conc < TQL
Pyrene	827	μg/L	Discharge Conc < TQL

Model Results 2/2/2023 Page 17

1,2,4-Trichlorobenzene	2.89	μg/L	Discharge Conc < TQL
PCBs, Total	0.015	μg/L	Discharge Conc ≤ 25% WQBEL

TRC EVAL	UATION						
Input appropri	ate values ir	n A3:A9 and D3:D9					
292	= Q strean	n (cfs)	0.5	= CV Daily			
2.9	= Q discha	arge (MGD)	0.5	= CV Hourly			
	= no. samp		0.2	= AFC_Partial Mix Factor			
	· ·	Demand of Stream		= CFC_Partia			
0	= Chlorine	Demand of Discharge	15	= AFC_Crite	ria Compliance Time (min)		
					ria Compliance Time (min)		
0	= % Facto	r of Safety (FOS)		=Decay Coef			
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	4.172	1.3.2.iii	WLA cfc = 20.253		
PENTOXSD TRO	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRO	5.1b	LTA_afc=	1.554	5.1d	LTA_cfc = 11.774		
Source		Effluer	nt Limit Calcu	lations			
PENTOXSD TRO	5.1f		AML MULT =	1.231			
PENTOXSD TRO	5.1g	AVG MON L	.IMIT (mg/l) =	0.500	BAT/BPJ		
		INST MAX L	IMIT (mg/l) =	1.635			
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT INST MAX LIMIT	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LT/ EXP(2.326*L MIN(BAT_B	CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-l l(cvd^2/no_samples+1))-2.3	FOS/100) 2+1)^0.5) 4*.011/Qd*e FOS/100) 326*LN(cvd^2 0.5)-0.5*LN(c	(- k*CFC_tc)) 2/no_samples+1 vd^2/no_sampl	 I)^0.5)		
(0.011/EXP(-K	*CFC tc/144	□ 40))+(((CFC_Yc*Qs*0.01	□ 1)/(1.547*©	ld)			
))+Xd+(CFC_Yc*Qs*Xs/1					
(0.		,, (c. cc ac Nor)	,,		-		

NPDES Permit Number: PA0070351 Facility Name: Amity Township							
Species Tested: Ceriodapi	Species Tested: ☐ Ceriodaphnia dubia ☐ Plmephales promelas Test Type: ☐ Chronic ☐ Acute						
Re-Test? Yes No (If)	es, indicate the da	te of original test of	completion:	_)			
		SAMPLE INFO	RMATION				
Date/Time §	Sample Source	Temperature	Holding Time	<u>Chlorine</u>	Dechlorinated?		
1- 11/7/22, 0800	Outfall 001	1.1°C	<36 hrs	<0.01 ma	/L Yes ⊠ No		
2 11/9/22, 0800	Outfall 001	1.0°C	<36 hrs	<0.01 mg	Yes ⊠ No		
3. 11/11/22, 0800	Outfall 001	1.1°C	<36 hrs	<0.01 mg			
TEST CONDITIONS							
Date/Time of Test Initiation: 1	1/8/22, 1340	Date/Tim	e of Test Termi	nation: 11/15/22,	1300		
☑ Renewal Test ☐ Non-	Renewal Test	Frequenc	y of Renewals:	Daily			
Dilution Series: 1%, 2%, 30%	60%, 100%	Target In	stream Waste 0	Concentration (TIW	C): 2%		
Age of Organisms at Start of T	ests: <24 hrs						
Number of Replicates: 4		Number	of Organisms pe	ar Replicate: 10			
Source of Organisms: Aquati	c BioSystems	Feeding	Regimen: Thric	ce/day Artemia si	pp. nauplii		
Light Intensity: 50-100 foot of	andles	-	lod: 16L: 8D		r r		
Temperature measurements m	ade at least once p	er 24-hour period	7 ⊠ Yes	☐ No (attach log	sheet)		
DO measured daily in at least of	one replicate of eac	h concentration?	⊠ Yes	☐ No (attach log	*		
Were the test chambers agrate	d? ☐ Yes ⊠ r	No Rate:		_ , , , , , , , , , , , , , , , , , , ,			
pH measured daily in at least of	ne replicate of each	concentration?	⊠ Yes	☐ No (attach log	sheef)		
Were test acceptability criteria	in the EPA method	met? X Yes	□No		and any		
Were there any modifications to	o or deviations from	EPA methods (if	Yes, explain on	separate sheet)?	☐ Yes ⊠ No		
		ILUTION / REAG	ENT WATER				
Date of Last Test for Chemistry	: 11/14/22	Conducti	vity: 309 µmho	s/cm			
pH: 8.3		TRC: <0	.01 mg/L				
		CONTROL RE	SULTS				
Ceriodephnia dubla			les promelas				
Survival:		Survival:					
Percent that produced 3 broods	(if applicable):			rivors (if applicable)	- n 279		
Young per Surviving Female (if		r mount on	Trangin or our	пиото (п аррпсавто)	. 0.073		
		EFERENCE TOXI					
Date of most recent test: 11/8			nditions as test?	'⊠Yes □ No			
Were test acceptability criteria	n the EPA method	met? X Yes	□ No				
		TEST RESI	JLTS				
Control compared to: X T/WC	Dilution Othe	MC.					
Survival: ⊠ Pass ☐ Fa	. 9	h: 🖾 Pass	□ Fail	Reproduction:	☐ Pass ☐ Fall		
I contributed penalty of law that I the individuals personally responsitive are significant penalties for su	have personally exar de for obtaining the in	nined and am famili	ar with the inform	ation submitted herei	ate and complete. I am aware		
I cortify under penalty of law that I the individuals personally responsit	have personally exar de for obtaining the in	nined and am famili	ar with the inform	ation submitted herei	ate and complete. I am aware vided by 18 Pa. C.S. §4904.		
I cortify under penalty of law that I the individuals personally responsi there are significant penalties for so	have personally exar de for obtaining the in	nined and am famili formation, I believe tion, including the p	ar with the inform the attached infor possibility of fine or	ation submitted herei	ate and complete. I am aware		

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet					
Type of Test		onic		Facility Na	me
Species Tes		ephales			
Endpoint	Sun	Twee		Amity Towns	hip
TiWC (decim No. Per Repi				Permit No	
TST b value				PA007035	
TST alpha va				17001000	
		letion Date		Test Comp	letion Date
Replicate		/2021	Replicate	11/15	/2022
No.	Control	TIWC	No.	Control	TIWC
1	9	8	1	10	10
2	10	10	2	10	10
3	9	10	3	10	10
4	10	10	4	10	10
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15	L		15		
Mean	9.500	9.500	Mean	10.000	10.000
Std Dev.	0.577	1.000	Std Dev.	0.000	0.000
# Replicates	4	4	# Replicates	4	4
T-Test Result	4.02	232	T-Test Result		
Deg. of Freed	om 4		Deg. of Freedo	m	
Critical T Valu	e 0.74	107	Critical T Value		
Pass or Fall	PA	SS	Pass or Fail	PAS	SS
				300-1400-9028 (S.S.)	4) ((E))

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet					
Type of Test	Chr	onic	_	Facility Nar	me
Species Tes		ephales			
Endpoint	Gro			Amity Towns	hip
TIWC (decim					
No. Per Repl				Permit No	
TST b value TST alpha va	0.75			PA007035	1
151 alpha va	alue 0.25	,			
		letion Date		Test Comp	letion Date
Replicate		/2021	Replicate	With the second	/2022
No.	Control	TIWC	No.	Control	TIWC
1	0.717	0.599	1	0.819	0.986
2	0.783	0.628	2	0.921	0.865
3	0.602	0.754	3	0.849	0.841
4	0.655	0.706	4	0.925	0.916
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	0.689	0.672	Mean	0.879	0.902
Std Dev.	0.078	0.071	Std Dev.	0.053	0.064
# Replicates	4	4	# Replicates	4	4
T-Test Result	3.3	307	T-Test Result	6.44	490
Deg. of Freed	lom é	5	Deg. of Freed		
Critical T Valu		267	Critical T Valu		
Pass or Fail	PA	SS	Pass or Fail	PA	
	4.0000000000000000000000000000000000000	mer medide grafit		>>>C0000000000000000000000000000000000	MINE TO SERVICE

	COVERS	HEET	mmesis i i	CI OIL		
NPDES Permit Number: PA0070351	Feellie, N	ame: Amity Towns	Januar			
Species Tested: Cerlodaphnia dubia	-			-		
	☐ Plmephales promek		⊠ Chronic [Acute		
Re-Test? Yes No (If Yes, indicated)						
B.1. =	SAMPLE INFOR					
Date/Time Sample So 1. 11/7/22 0800 Outfall 0		Holding Time	Chlorine	Dechloringted?		
		<36 Hours	<0.01 mg/L	☐ Yes ☑ No		
2. 11/9/22, 0800 Outfall 0 3. 11/11/22, 0800 Outfall 0		<36 Hours	<0.01 mg/L	☐ Yes ⊠ No		
11/11/22, 0800 Odtiail 0		<36 Hours	<0.01 mg/L	☐ Yes ⊠ No		
	TEST CONDI					
Date/Time of Test Initiation: 11/8/22, 1		e of Test Termination		000		
⊠ Renewal Test □ Non-Renewal 1		y of Renewals: Daily				
Dilution Series: 1%, 2%, 30%, 60%, 10		rtream Waste Conce	ntration (TIWC):	2%		
Age of Organisms at Start of Tests: <24						
Number of Replicates: 10		f Organisms per Rep				
Source of Organisms: In-house Cultures Feeding Regimen: Once/day Raphidocelis subcapitata and YCT						
Light Intensity: 50-100 foot candles Photoperiod: 16L-8D						
Temperature measurements made at least once per 24-hour period? ☐ Yes ☐ No (attach log sheet) DO measured daily in at least one replicate of each concentration? ☐ Yes ☐ No (attach log sheet)						
Were the test chambers aerated? Ye		⊠ Yes □ N	lo (attach log sh	reet)		
pH measured daily in at least one replicar		_	o (attach log sh	eet)		
Were test acceptability criteria in the EPA		No		_		
Were there any modifications to or deviat	ons from EPA methods (if)	es, explain on separ	ate sheet)?	Yes 🛛 No		
	DILUTION / REAGE	NT WATER				
Date of Last Test for Chemistry: 11/13/	22 Conductiv	ity: 321 µmhos/cm				
pH: 7.8	TRC: <0.	01 mg/L				
	CONTROL RE	SULTS				
Ceriodaphnia dubia	Pimephal	es promeles				
Survival: 100%	Survival:					
Percent that produced 3 broods (if applica	,	Weight of Survivors	(if applicable):			
Young per Surviving Female (if applicable): 27.6					
	REFERENCE TOXIC	CITY TESTS				
Date of most recent test: 11/1/22	Same con	ditions as test? 🗵 Y	es □ No			
Were test acceptability criteria in the EPA	method met? X Yes] No				
	TEST RESU	LTS				
Control compared to: X TIWC Dilution	☐ Other:					
Survival: ☑ Pass ☐ Fail	Growth: Pass	∏Fail R	eproduction: 🗵	Pass Fail		
I certify under penalty of law that I have perso the individuals personally responsible for obtain	nally examined and am familia	r with the information s	ubmitted berein:	and based on my inquiry of		
there are significant penalties for submitting fall	se information, including the po	ssibility of fine or imprise	onment as provide	and complete. I am aware and by 18 Pa. C.S. §4904.		
Mishael V. Characa	11111		1. 1.	**		
Michael K. Chanov II Name of Laboratory Manager	Signature of Laboratory Ma	unanar	11/25/20	68-01459 DEP Lab ID No.		
	y ne control carry y ma	er redigions	• E-VELLED	DEF Lab ID NO.		

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet							
Type of Test	Chr	onic		Facility Name			
Species Test	ted Ceri	iodaphnia		Tuesday Trains			
Endpoint		vival		Amity Towns	ship		
TIWC (decim		?					
No. Per Repi				Permit N			
TST b value	0.75	5		PA007035	51		
TST alpha value 0.2							
Test Completion Date Test Completion Date							
Replicate		/2021	Replicate		1/2022		
No.	Control	TIWC	No.	Control	TIWC		
1	1	1	1 1	1	1		
2	1	1	2	1	1		
3	1	1	3	1	1		
4	1	1	4	1	1		
5	1	1	5	1	1		
6	1	1	6	1	1		
7	1	1	7	1	1		
8	1	1	8	1	1		
9	1	1	9	1	1		
10	1	1	10	1	1		
11			11				
12			12				
13			13				
14			14				
15			15				
Mean	1.000	1.000	Mean	1.000	1.000		
Std Dev.	0.000	0.000	Std Dev.	0.000	0.000		
# Replicates	10	10	# Replicates	10	10		
T-Test Result			T-Test Result				
Deg. of Freed	om		Deg. of Freedo	om			
Critical T Valu				Critical T Value			
Pass or Fall PASS		Pass or Fail	57 - 276-1 - 26115-10-10-00-00-00-00-00-00-00-00-00-00-00-				

Critical T Value

Pass or Fall

0.8647

PASS

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet Chronic Facility Name Type of Test Species Tested Ceriodaphnia Endpoint Reproduction Amity Township 0.02 TIWC (decimal) No. Per Replicate Permit No. PA0070351 TST b value 0.750.2 TST alpha value **Test Completion Date** Test Completion Date 11/14/2022 11/22/2021 Replicate Replicate TIWC Control TIWC No. Control No. 36 1 28 1 34 27 2 2 33 33 27 31 3 29 3 31 26 34 34 4 24 23 4 33 5 21 5 35 28 23 6 38 31 6 32 27 7 7 32 33 30 20 30 30 8 32 8 28 33 31 9 32 29 9 10 31 29 10 25 29 11 11 12 12 13 13 14 14 15 15 27.600 33.200 31.100 Mean 27.300 Mean Std Dev. 2.300 2.514 Std Dev. 4.452 3.498 # Replicates 10 10 # Replicates 10 10 T-Test Result 4.3161 T-Test Result 6.4301 Deg. of Freedom 17 Deg. of Freedom 16

Critical T Value

Pass or Fail

0.8833

PASS

3800-FM-BPNPSM6485 Rev. 10/2013
Cover Sheet
pennsylvamia
tonument or transcoreans.

13 COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

WHOLE EFFLUENT TOXICITY (WET) TEST SUMMARY REPORT COVER SHEET

Species Tested: Ceriodaphola duble							
SAMPLE INFORMATION Date/Time Sample Source Temperature Holding Time Chlorine Dechlorinated? 1. 11/15/21, 0850 Qutfall 001 1.4°C ≤38hrs ≤0.01 mg/l. Yes № No 2. 11/17/21, 0850 Qutfall 001 2.4°C ≤38hrs ≤0.01 mg/l. Yes № No 3. 11/19/21, 0850 Qutfall 001 2.2°C ≤38hrs ≤0.01 mg/l. Yes № No TEST CONDITIONS Date/Time of Test Initiation: 11/16/21, 1157 Date/Time of Test Termination: 11/23/21, 1119 Renewal Test Non-Panewal Test Prequency of Renewals: Daily Dilution Series: 1, 2, 36, 66, 160% Target Instrum Waste Concentration (TIWC): 2 Age of Organisms at Start of Tests: <24 hours Number of Organisms per Replicate: 16							
SAMPLE INFORMATION Date/Time Sample Source Temperature Holding Time Chlorine Dechlorinated? 1. 11/15/21, 0850 Qutfall 001 1.4°C ≤28hrs ≤0.01 mg/L Yes No 2. 11/17/21, 0850 Qutfall 001 2.4°C ≤36hrs ≤0.01 mg/L Yes No 3. 11/19/21, 0850 Qutfall 001 2.2°C ≤38hrs ≤0.01 mg/L Yes No TEST CONDITIONS Date/Time of Test Initiation: 11/16/21, 1157 Date/Time of Test Termination: 11/23/21, 1119 Renewal Test Non-Panewal Test Property of Renewals: Daily Dilution Series: 1, 2, 36, 66, 160% Target Instrum Waste Concentration (TIWC): 2 Age of Organisms at Start of Tests: <24 hours Number of Organisms per Replicate: 16							
1. 11/15/21, 0800 Outfall 001 1.4°C ≤38hrs ≤0.01 mg/L ☐ Yes ☒ No 2. 11/17/21, 0800 Outfall 001 2.4°C ≤36hrs ≤0.01 mg/L ☐ Yes ☒ No 3. 11/19/21, 0800 Outfall 001 2.2°C ≤28hrs ≤0.01 mg/L ☐ Yes ☒ No TEST CONDITIONS Date/Time of Test Initiation: 11/16/21, 1157 ☐ Date/Time of Test Termination: 11/23/21, 1119 ☐ Renewal Test ☐ Non-Renewal Test ☐ Frequency of Renewals: Daily Dilution Series: 1, 2, 36, 66, 190% ☐ Tests: <24 hours Number of Replicates: 4 ☐ Number of Organisms per Replicate: 10							
2. 11/17/21, 0800 Qutfail 001 2.4°C ≤36hrs ≤0.01 mg/L Yes ⊠ No 3. 11/19/21, 0800 Qutfail 001 2.2°C ≤26hrs ≤0.01 mg/L Yes ⊠ No TEST CONDITIONS Date/Time of Test Initiation: 11/16/21, 1157 Date/Time of Test Initiation: 11/16/21, 1157 Date/Time of Test Termination: 11/23/21, 1119 ⊠ Ranswall Test □ Non-Renewal Test Frequency of Ronewals: Daily Dilution Series: 1, 2, 36, 66, 190% Target Instrum Waste Concentration (TIWC): 2 Age of Organisms at Start of Tests: <24 hours Number of Organisms per Replicate: 19							
3. 11/19/21, 0800 Outfall 001 2.2°C ≤38hrs ≤0.01 mg/L ☐ Yes ☒ No TEST CONDITIONS Date/Time of Test Initiation: 11/16/21, 1157 Date/Time of Test Termination: 11/23/21, 1119 ☐ Ranswall Test ☐ Non-Renewal Test Frequency of Renewals: Daily Dilution Series: 1, 2, 36, 66, 100% Target Instream Waste Concentration (TIWC): 2 Age of Organisms at Start of Tests: <24 hours Number of Organisms per Replicate: 16							
TEST CONDITIONS Date/Time of Test Initiation: 11/16/21, 1157 □ Randwal Test □ Non-Renewal Test Dilution Series: 1, 2, 36, 66, 190% Age of Organisms at Start of Tests: <24 hours Number of Replicates: 4 TEST CONDITIONS Date/Time of Test Termination: 11/23/21, 1119 Frequency of Renewals: Daily Target Instream Waste Concentration (TRWC): 2 Number of Organisms per Replicate: 19							
Date/Time of Test Initiation: 11/16/21, 1157 ☐ Ranewal Test ☐ Non-Renewal Test ☐ Prequency of Renewals: Daily Dilution Series: 1, 2, 36, 66, 100% Target Instream Waste Concentration (TRVC): 2 Age of Organisms at Start of Tests: <24 hours Number of Replicates: 4 Number of Organisms per Replicate: 10							
⊠ Renewal Test							
Dilution Series: 1, 2, 36, 66, 160% Target Instrum Waste Concentration (TRVC): 2 Age of Organisms at Start of Tests: <24 hours Number of Replicates: 4 Number of Organisms per Replicate: 16							
Age of Organisms at Start of Tests: <24 hours Number of Organisms per Replicate: 10							
Number of Replicates: 4 Number of Organisms per Replicate: 18							
Light intensity: 60-100 foot candles Photoperiod: 16L-8D							
Temperature measurements made at least once per 24-hour period? Yes No (attach log sheet)							
DO measured daily in at least one replicate of each concentration? Yes No (attach log sheet)							
Wore the test chambers sensted? ☐ Yes ☑ No Rate:							
pH measured daily in at least one replicate of each concentration?							
Were test acceptability criteria in the EPA method met? ☑ Yes ☐ No							
Were there any modifications to or deviations from EPA mathods (if Yes, explain on separate sheet)? Yes No							
DILUTION / REAGENT WATER							
Date of Last Test for Chemistry: 11/22/21 Conductivity: 315 µmhos/cm							
pH; 8.1 TRC: <0.01 mg/L							
CONTROL RESULTS							
Cerlodaphnia dubia Pimaphalea prometas							
Survival: Survival: 96							
Percent that produced 3 broods (if applicable): % Mean Dry Weight of Survivors (if applicable): 0.689							
Young per Surviving Female (Fapplicable):							
REPERENCE TOXICITY TESTS							
Date of most recent test: 11/2/21 Same conditions as tast? 🖾 Yes 🔲 No							
Were test acceptability oritoria in the EPA method met? ☑ Yes							
TEST RESULTS							
Control compared to: TIWC Ditution Other:							
Survival: ☑ Pass ☐ Fail Growth: ☑ Pass ☐ Fail Reproduction: ☐ Pass ☐ Fail							
I certify under penalty of law that I have personally examined and am furnitiar with the information submitted herein; and based on my inquiry of the individuals personally responsible for distaining the information. I believe the attached information is true, accurate and complete. I am aware there are significant penalties for submitting false information, including the possibility of time or imprisonment as provided by 19 Pa. C.S. §4964.							
Michael K. Chanov II helps: 12 17 21 60-01450							
Name of Laboratory Manager Signature of Laboratory Manager Date DEP Lab ID No.							

Page 18 of 102

3800-FM-SPNPSMO485 Rev. 16/2013
Cover Sheet
pennsylvania
special of throspecies.

3 COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

WHOLE EFFLUENT TOXICITY (WET) TEST SUMMARY REPORT COVER SHEET

NPDES Permit Num	ber: PA6070351	Facility N	lame: Amity Town	ship				
Species Testad: ☑ Cariodisphnia dubia ☐ Plosephalas promalas Test Type: ☑ Chronic ☐ Acute								
Re-Test? Yes	☑ No (if Yes, indicate th	e date of original test of	ompletion:)					
SAMPLE INFORMATION								
Doto/Time	Sample Source	Temperature	Holding Time	Chloring	Dechlorinated?			
1. 11/15/21, 0800		1.4°C	<36hra	<u><0.01</u> mg/L	☐ Yes ☑ No			
2. <u>11/17/21, 0804</u> 3. <u>11/19/21, 0804</u>		2.4°C	<36hrs	<u><0.01</u> mg/L	Yes 🖸 No			
2. 11/19021, 1800	0 Outfail 001	2,2°C	<38hrs	1gm <u>18.60</u>	☐ Yes ☑ No			
		TEST COND						
	Mation: 11/16/21, 0815	Date/Tim	e of Test Terminatio	rc 11/22/21, 0937				
Renewel Test	□ Non-Renewal Test		y of Renewals: Dai					
Dilution Series: 1, 2,		Target in	stream Waste Cono	entration (TIMC): 2				
	Start of Teets: <24 hou	rs						
Number of Replicate		Number	of Organisms per Re	plicato: 1				
	: In-house Cultures	Feeding 6	Regimen: Onceiday	Raphidocelis sub	ocapitate and YCT			
Light Intensity: 50-1			iod: 16L-8D					
	rements made at least or		∑ Yes □	No (attach log shee	4)			
_	n at least one replicate of	each concentration?	⊠ Yes □	No (attach log shee	6			
	ers aeratod? 🔲 Yes	☑ No Parte:						
	at least one replicate of		⊠ Yes □ !	Vo (attach log sheet	6			
	ly critoria in the EPA mot		No	-				
Were there any mod	fications to or deviations	from EPA methods (if Y	res, explain on sepa	rate shoot)? 🗆 Ye	n 🖾 No			
		DILUTION / REAGE	NT WATER					
Date of Last Test for	Chemistry: 11/21/21	Conductiv	ity: 325 µmhos/cm					
pH: 8.2		TRC: <0/	91 mg/L					
		CONTROL RE	SIII TE					
Carlodephnia dubia	I		les prometes					
Survival: 100		Survival:	and per-certains					
Percent that produce	d 3 broads (if applicable):		Weight of Survivors	Af montionable/s				
	Fernale (Fapplicable): 3:		anager or our strong	(л оруживия):				
Date of most recent to	out. Attenda	REFERENCE TOXIC						
	ty criteria in the EPA met		ditions as test? 🔄	Yes No				
There is so any operation	A cumma in the CLA tues	on metr Yes	No					
		TEST RESU	LTS					
Control compared to:		Other:						
Survivat Pass			□ Fail I	expreduction: 🛛 P	oss [] Fail			
I certify under possitive first I have personally examined and are familiar with the information submitted herein; and based on my inquiry of the individuals personally responsible for obtaining the information. I believe the attached information is true, accurate and complete. If are aware								
there are significant per-	alties for submitting false int	antation, including the po-	solbility of time or impel	sonment as provided i	ty 18 Ps. C.S. §4904.			
Michael K. Char	nov II	Men		n Inl.	68-01459			

Page 22 of 102

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet						
Type of Test Chronic			Facility Name			
Species Tes		mephales				
Endpoint		rvival		Amity Towns	ship	
TIWC (decim				_		
No. Per Repl TST b value	icate 10 0.7			Permit No		
TST alpha va		_	L	PA007035	1	
101 dipita ve	0.2					
	Test Com	pletion Date		Test Comp	letion Date	
Replicate	11/2	3/2021	Replicate			
No.	Control	TIWC	No.	Control	TIWC	
1	9	8	1			
2	10	10	2			
3	9	10	3			
4	10	10	4			
5			5			
6			6			
7			7			
8			8			
9			9			
10			10			
11			11			
12			12			
13			13			
14			14			
15			15			
	0.500					
Mean Std Dev.	9.500	9.500	Mean	0.000	0.000	
	0.577	1.000	Std Dev.			
# Replicates	4	4	# Replicates			
T-Test Result	4.0	0232	T-Test Result			
Deg. of Freed	om	4	Deg. of Freedo	om		
Critical T Valu	e 0.7	407	Critical T Value	9		
Pass or Fail PASS Pass or Fail						
Test Completion Date Test Completion Date						

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet						
Type of Test	Chro	nio	\neg			
Species Tes		ephales		Facility Name		
Endpoint	Grov		\dashv	Amity Towns	hin	
TIWC (decim				Annly Towns	inb	
No. Per Repl				Permit No	o.	
TST b value				PA007035	1	
TST alpha va	alue 0.25					
	Toet Comp	letion Date		Took Comm	leties Dete	
Replicate	11/23		B	rest Comp	letion Date	
No.	Control	TIWC	Replicate No.	Control	TIWC	
1	0.717	0.599	1 1	CONTROL	1144.0	
2	0.783	0.628	2			
3	0.602	0.754	3			
4	0.655	0.706	4			
5	0.000		5			
6			6			
7			7			
8			8			
9			9			
10			10			
11			11			
12			12	-		
13			13			
14			14			
15			15			
Mean	0.689	0.672	Mean	0.000	0.000	
Std Dev.	0.078	0.071	Std Dev.			
# Replicates	4	4	# Replicates			
T-Test Result	3.36	307	T-Test Result			
Deg. of Freed	lom 5	i	Deg. of Freedo	om		
Critical T Valu	ie 0.72	267	Critical T Valu	e		
Pass or Fail	PA	SS	Pass or Fail			

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet						
Type of Test		onic				
Species Tes		iodaphnia		Facility Na	me	
Endpoint		vival		Amity Towns	chin	
TIWC (decin				Aimty Towns	SIIIP	
No. Per Rep				Permit No	D.	
TST b value	W1111	-		PA007035		
TST alpha va	alue 0.2					
		oletion Date	,	Test Comp	etion Date	
Replicate		2/2021	Replicate			
No.	Control	TIWC	No.	Control	TIWC	
1	1	1	1 1			
2	1	1	2			
3	1	1	3			
4	11	1	4			
5	1	1	5			
6	1	1	6			
7	1	1	7			
8	1	1	8			
9	1	1	9 [
10	1	1	10			
11			11 [
12			12			
13			13			
14			14			
15			15			
Mean	1.000	1.000	Mean	0.000	0.000	
Std Dev.	0.000	0.000	Std Dev.	0.000	0.000	
# Replicates	10	10	# Replicates			
			ir i sepriodicus			
T-Test Result			T-Test Result			
Deg. of Freed	Deg. of Freedom			m		
Critical T Valu	e		Critical T Value			
Pass or Fail	PA	SS	Pass or Fail			
000000000000000000000000000000000000000						

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet							
Type of Test Chronic		\neg	Facility Name				
Species Test	ted Ceri	odaphnia		-			
Endpoint		roduction		Amity Towns	hip		
TIWC (decim		2					
No. Per Repl				Permit No			
TST b value	0.75	•		PA007035	1		
TST alpha value 0.2							
	Test Comp	letion Date		Test Comp	letion Date		
Replicate	11/22	/2021	Replicate				
No.	Control	TIWC	No.	Control	TIWC		
1	34	36	1				
2	31	33	2				
3	34	29	3				
4	33	34	4				
5	35	28	5				
6	38	31	6				
7	33	30	7				
8	30	30	8				
9	33	31	9				
10	31	29	10				
11			11				
12			12				
13			13				
14			14				
15			15				
Mean	33.200	31.100	Mean	0.000	0.000		
Std Dev.	2.300	2.514	Std Dev.				
# Replicates	10	10	# Replicates				
T-Test Result	6.4	301	T-Test Result				
Deg. of Freed		6	Deg. of Freed				
Critical T Valu		_	Critical T Valu				
Pass or Fail	PA		Pass or Fail	-			
	Pass or Fall Pass or Fall						

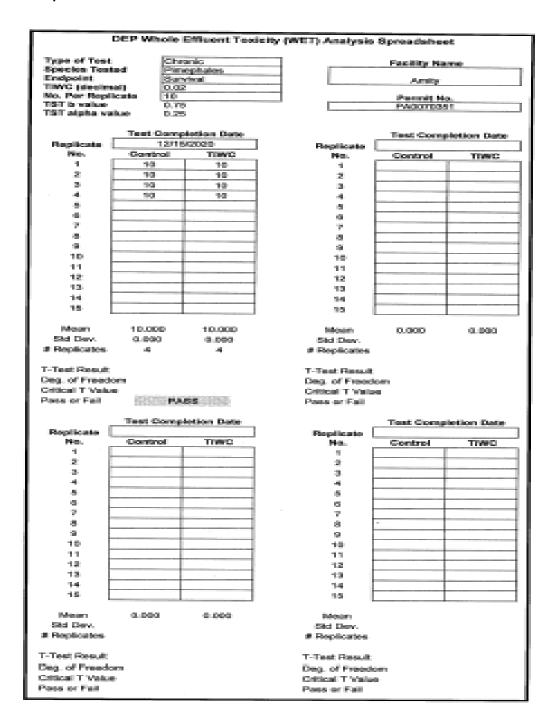
NPDES Permit Fact Sheet 3800-FM-8PNP SM0405 Rev. 10/2013 Institute Course PA39-00724 WHOLE EFFLUENT TOXICITY (WET) TEST SUMMARY REPORT - COVER SHEET NPDES Permit Number: Facility Name: Amity Township Species Testad: Cerriodophnia abdita Pimephales prometas Test Type: X Chronic Re-Test? Yes X No (If Yes, indicate the date of original test completion:) SAMPLE INFORMATION Date/Time Sample Source Temperature Holding Time Chlorine. Dechloringged? 12/07/20, 0800 **Einst officent** 1.5 °C 24 hours 0.02 mg/L Yes _x_No-12/09/20, 0600 Pical offluent 1.5 % 24 hours 9.07 mg/L Yes _x_No 12/11/20, 0915 **Einal offluent** 2.5 % 24 hours 0.01 mg/L Yes x No TEST CONDITIONS Data/Time of Test Initiation 12/05/20, 1540 Date/Time of Test Termination 12/15/20, 1740 X Renewal Test Non-Renewal Test Frequency of Renewals: Daily Dilution Series: 0, 1, 2, 30, 60, 100% Target Instream Waste Concentration (TIWC): Age of Organisms at Start of Test: ⊀30 hours Number of Replicates: Number of Organisms per Replicate: 10 Source of Organisms: ABS, Inc. Feeding Regimen: Twice/day Arramia app: numpit/ Light Intensity: 50-100 foot-candles Photoperiod: Tomporeture measurements made at least once per 24-hour period? X Yes Temperature Range: 24.3-26.3° C DO measured daily in at least one replicate of each concentration? M. West (attach log sheet) Were the chambers acrused? Yes X No. Batter. pH measured daily in at least one replicate of each concentration? X Yes (attach loss sheer) Were test acceptability criteria in the EPA method mer? X Yes No. Were there any modifications to or deviations from EPA methods (If Yes, explain on separate sheet)? Yes X No. DILUTION / REAGENT WATER USEPA moderately hard reconstituted water as per EPA-821-R-02-013 2002 Date of Last Test for Chemistry: 12/12/20 Conductivity: 278 µmhos/cm oHt. 8.0 Total Res. Cl: 0 ma/L CONTROL RESULTS Pimephales promotas Survivation 100% Mean Dry Weight of Survivors (if applicable): $0.3395 \, mg$ REFERENCE TOXICITY TEST Date of most second text-12/08/20 Same conditions as test: X Yes No. Were test acceptability criteria in the EPA method met? X Yes No. The perwittes must report the results of each test endpoint that has a WET limit in Part A of this permit on the Dischage Monitoring Report (DBR), Yest nearly shall be reported on the IDMR in terms of sealer or chronic Toxicity Units (Title or Title), whose Title is used for each tends and Title is used for chronic tests. If REP's WET Analysis Spreadshoot indicates a passing result for an endpotes, report the value obtained from the opposition "L/THIC", which is equivalent to the person limit. If the Spread-heet indicates a failure, report the value obtained from the expression "> 1/TIMC". If a discoon higher then the TIMC dilution is used for the comparison with the control, most the value ablamed from the e "Lyddwdon". For exemple, an exote test embpoint failure at a TIWC dilation of 50% would be reported as "> 3.0 Tue" (1/0.5). Taken from FADET 50P No. SPRESM-PMT-601, page 11. Formit language varies, questions should be directed to the DEF's Bureau of Point and New-Point Source Management at 771-787-2117 or your re-

Control compared to:	TIWO	Other:	Toxic Unit chronic (TUc):	50.00 Survival
Survivat	X PASS	Growth: X PASS	100% / 2%	50.00 Growth

I certify under pensity of law that I have personally examined and am familiar with the information submitted herein; and based on my inquiry of the individuals personally responsible for obtaining the information, I believe the attached information is true, accurate and complete. I am aware there are significant penalties for submitting faige information, including the possibility of fine or imprisonment as provided by 18 Pa. C.S. 54904.

Christopher J. Naily Name of Laboratory Manager

dea Signature of katomits


39-03724 DEP Lab ID No.

American Aquatic Testing, Incorporated - 890 North Graham Street - Allentown, PA 18109

www.AmericanAquatic.net

Page 8 of 33

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet						
Type of Test				Facility Name		
Species Test		ephales				
Endpoint	Gro			Amity		
TIWC (decim No. Per Repli	al) 0.02 icate 10					
TST b value	0.75			PA007035		
TST alpha va				PA007035	1	
101 dipila va	0.20					
	Test Comp	letion Date		Test Comp	letion Date	
Replicate	12/15	/2020	Replicate			
No.	Control	TIWC	No.	Control	TIWC	
1	0.341	0.333	1 [
2	0.326	0.363	2			
3	0.353	0.4	3			
4	0.338	0.371	4			
5			5			
6			6			
7	, , , , , , , , , , , , , , , , , , , ,		7			
8			8			
9			9			
10			10			
11			11			
12			12			
13			13			
14			14			
15			15			
[10 [
Mean	0.340	0.367	Mean	0.000	0.000	
Std Dev.	0.011	0.028	Std Dev.			
# Replicates	4	4	# Replicates			
	•	-	a replicated			
T-Test Result	7.7	927	T-Test Result			
Deg. of Freed	om 4	1	Deg. of Freed	om		
Critical T Valu	e 0.7	407	Critical T Valu			
Pass or Fail	PA	SS	Pass or Fail			

NPDES Permit Fact Sheet Amity Township STP

THE APPLICATE OFFICE PROPERTY. a major nuale a PREMILY PRIMITE: Aminy Lownship Species Tested: X Ceriodophnia dubia Pimephales prometas Test Type: X Chronic Acute Re-Test? Yes X No (If Yes, indicate the date of original test completion:) SAMPLE INFORMATION Date/Time Sample Source Temperature Holding Time Chlorine Dechlorinated? 12/07/20, 0800 Final effluent 1.5 °C 24 hours 0.02 mg/LYes _x_No 12/09/20, 0800 Final effluent 1.5 °C 24 hours 0.07 mg/LYes x No 12/11/20, 0915 Final effluent 2.5 °C 24 hours 0.01 mg/LYes x No TEST CONDITIONS Date/Time of Test Initiation 12/08/20, 1840 Date/Time of Test Termination 12/15/20, 1740 Renewal Test Non-Renewal Test Prequency of Renewals: Daily Dilution Series: Target Instream Waste Concentration (TIWC): 0, 1, 2, 30, 60, 100% Age of Organisms at Start of Test: <24 hours Number of Replicates: Number of Organisms. per 1 Replicate: Source of Organisms: In-house cultures Feeding Regimen: Ouce/day Selenastrum capricormutum & YWT, at test exchange Light Intensity: 50-100 foot-candles Photoperiod: 16L-8D Temperature measurements made at least once per 24-hour period? X Yes Temperature Range: 24.3-26.3°C DO measured daily in at least one replicate of each concentration? X Yes (attach log sheet) Were the chambers aemted? Rate: pH measured daily in at least one replicate of each concentration? X Yes (attach log sheet) Were test acceptability criteria in the EPA method met? X Yes No. Were there any modifications to or deviations from EPA methods (if Yes, explain on separate sheet)? Yes X No DILUTION / REAGENT WATER USEPA moderately hard reconstituted water as per EPA-821-R-02-013 2002 Date of Last Test for Chemistry: 12/12/20 Conductivity: 278 µmhos/cm pH: 8.0 Total Res. Cl:: .0 ma/L CONTROL RESULTS Ceriodaphnia dubia Survival: 100% Percent that produced 3 broads (if applicable): 100% Young per Surviving Female (if applicable): 37.5 REFERENCE TOXICITY TEST Date of most recent test: 12/08/20 Same conditions as test: X Yes No. Were test acceptability criteria in the EPA method met? X Yes No TEST RESULTS 6. The permittee must report the results of each test endpoint that has a WIT limit in Part A of this permit on the Discharge Monitoring Report (DWR). Test results shall be reported on the DMR in terms of acute or chronic Toxicity Units (TUa or TUc), where TUa is used for acute tests and TUc is used for chronic tests. If DEP's WET Analysis Spreadsheet indicates a passing result for an endpoint, report the value obtained from the expression "1/TIWC", which is equivalent to the permit limit. If the Spreadsheet indicates a failure, report the value obtained from the expression > 1/TIWC". If a dilution higher than the TIWC dilution is used for the comparison with the control, report the value obtained from the expression "1/dilution". For example, an acute test endpoint failure at a TWC dilution of 50% would be reported as "> 2.0 TUs" (1/0.5). Takes from PADEP SOP No. BPNPSM-PMT-031, page 11 Permit language varies, questions should be directed to the DEP's Bureau of Point and Non-Point Source Management at 717-787-2137 or your regional office. Control Other: 50.00 Survival Taxic Unit chronic (TUc): compared to: TIWC 100% / 2% X Pass Survival: Reproduction: X Pass 50.00 Reproduction I certify under penalty of law that I have personally examined and am familiar with the information submitted herein; and based on my inquiry of the individuals personally responsible for obtaining the information, I believe the attached information is true, accurate and complete. I am aware there are significant penalties for submitting ulse information. including the possibility of fine or imprisonment as provided by 18 Pa. C.S. §4904. Christopher J. Nally 39-03724 Signature of Laboratory Manage Name of Laboratory Manager DEP Lab ID No. American Aquatic Testing, Incorpdrated ′− \$90 North Graham Street − Allentown, PA 18109 www.AmericanAquatic.net

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet							
Those Emach Toxicity (WE1) Analysis Spreadsheet							
Type of Test	st Chronic			Facility Name			
Species Test		odaphnia					
Endpoint		vival		Amity			
TIWC (decim		!					
No. Per Repl TST b value	icate 1 0.75			Permit No			
TST alpha va		•		PA007035	1		
101 aiplia va	0.2						
	Test Comp	eletion Date		Test Comp	letion Date		
Replicate	12/14	/2020	Replicate				
No.	Control	TIWC	No.	Control	TIWC		
1	1	1	1				
2	1	1	2				
3	1	. 1	3				
4	1	1	4				
5	1	1	5				
. 6	1	1	6				
7	1	1	7				
8	1	1	8				
9	1	1	9				
10	1	1	10				
11			11				
12			12				
13			13	-			
14			14				
15			15				
l '							
Mean	1.000	1.000	Mean	0.000	0.000		
Std Dev.	0.000	0.000	Std Dev.				
# Replicates	10	10	# Replicates				
T-Test Result			T-Test Result				
Deg. of Freedom		Deg. of Freed	Deg. of Freedom				
Critical T Valu	Critical T Value		Critical T Valu	e			
Pass or Fail	PA	ss	Pass or Fail				
	Test Comp	letion Date		Test Comp	letion Date		
Replicate			Replicate				
No.	Control	TIWC	No.	Control	TIWC		
. 1			1				
2			2				

	DEP Whole I	Effluent Toxic	ity (WET) Analysis	Spreadshee	t	
Type of Test	t Chronic			Facility Name		
Species Test	ted Ceri	odaphnia		r donney real		
Endpoint		roduction		Amity		
TIWC (decim						
No. Per Repl TST b value	icate [1 0.75			Permit No		
TST alpha va		,		PA007035	1	
101 aipiia va	0.2					
		letion Date	_	Test Comp	letion Date	
Replicate	12/14	/2020	Replicate			
No.	Control	TIWC	No.	Control	TIWC	
1	39	. 33	1 [
2	38	37	2			
3	42	38	3			
4	44	28	4			
5	29	38	5			
6	40	30	6			
7	34	32	7			
8	35	31	8			
9	40	36	9			
10	34	38	10			
11			11			
12			12			
13			13			
14			14			
15			15			
Mean Std Davi	37.500	34.100	Mean	0.000	0.000	
Std Dev.	4.478	3.755	Std Dev.			
# Replicates	10	10	# Replicates			
T-Test Result	3.75	504	T-Test Result			
Deg. of Freed		7	Deg. of Freedo	xm		
Critical T Valu	e 0.86	333	Critical T Value	,		
Pass or Fail	PA	SS	Pass or Fail			
	Tost Como	lotion Data		T		

Serial Number: 3392488

3620-FM-WQ0146 Rev. 3/99

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER QUALITY PROTECTION

DATA SUMMARY FOR CERIODAPHNIA DUBIA WETT REPORT

NPDES#: PA0070351

Facility Contact: Dave Wheeler, 610.385.3400x1

Sample source: Final effluent, chlorinated

POTW Name: Amity Twp STP

Address: 120 Old Philadelphia Pike, Douglasssville, PA 19518

Lab Performing Test: QC Laboratories 09-00131

SAMPLE

Sample	Sample	Test	Test	. Temperature	Chlorine
Date	Time	Date	Time	of (°C)	(mg/L)
1 24-Feb-14	11:30	25-Feb-14	9:10	5.0	< 0.1
, =	,	26-Feb-14	9:00		
2 26-Feb-14	10:00	27-Feb-14	9:05	5.0	< 0.1
•		28-Feb-14	9:10		
3 28-Feb-14	11:30	01-Mar-14	8:50	5.0	< 0.1
		02-Mar-14	9:20		

Concentrations Tested: 4, 8, 15, 58, 100.

Age of organisms at start of test: < 24 hours

Number of Reps: 10

Number of C. dubia/Rep: 1

Source of Organisms: In-house, EPA origin.

Feeding: Fed after adult is placed into new solution daily a solution of 0.1 ml Selanastrum capricornutum and 0.1 ml

solution Y-C-T.

Dilution Water Composition: Moderately hard synthetic freshwater (EPA formulation).

Water hardness and how calculated: 92,92 mg/L as CaCO4. Analyzed and calculated by EPA Method 200.7 (ICP)

Vessel/solution volume: 30 / 15 mL

Renewal: 24 hours

Photo period: (Day / Night): 16 / 8

Light Intensity Range: Approximately 75 ft-ca

Test Temperature: 25.0°C

Max: 26.0

Min: 24.7

Mean: 25.6

Number of times temperature recorded/day: Continuously, and once per day electronically. See attached.

Calibration date of test thermometers: Monthly. Date & time of test termination: 03/03/14\9:05

CONTROL:

Survival: 90%

Avg. Young: 20.7

60% or more produced 3 broods: Yes

TEST RESULTS: EPA Method 1002.0 Ceriodaphnia dubia, Survival and Reproduction Test

Survival	NOEC:	100.0	Fisher's
	LOEC:	>100.0	
	NOEC in TUC:	1.0	
	IC25	99.1	Linear Interpolation
Reproduction	NOEC:	58.0	Dunnett's
	LOEC:	100.0	`,
· ·	NOEC in TUc:	1.7	
	IC25		Linear Interpolation
48-Hour LC50	Value:		No measurable acute toxicity at 48 hours
,	LC50 In TUa:	< 1.0	100/EC50 or if EC50 > 100, then % mortality in 100% dose / 50
96-Hour LC50	Value:		No measurable acute toxicity at 96 hours
	LC50 in TUa:	< 1.0	100/EC50 or if EC50 > 100, then % mortality in 100% dose / 50
PMSD-Reproduction		34.0%	MSDu x 100 / mean reproduction

Chronic NOEC Value	58.0%
NOEC in Chronic TU's	1.7

Acute LC50 Value	>100%
LC50 in Acute TU's	< 1.0

000019

Serial Number: 3392488

3620-FM-WQ0146 Rev. 3/99

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION 3620-FM-WQ0146 Rev. 3/99

CONTROL BETTERMANIANTHAN DE LA BETTANDE DE LA CONTROL DE L

DATA SUMMARY FOR PIMEPHALES PROMELAS WETT REPORT

NPDES #: PA0070351

Facility Contact: Dave Wheeler, 610.385.3400x1

Sample source: Final effluent, chlorinated

POTW Name: Amity Twp STP

Address: 120 Old Philadelphia Pike, Douglasssville, PA 19518

Lab Performing Test: QC Laboratories 09-00131

SAMPLE

Sample	Sample	Test	Test	Temperature	Chlorine
Date	Tlme	Date	Time	of (°C)	(mg/L)
1 24-Feb-14	11:30	25-Feb-14	11:30	5.0	< 0.1
		26-Feb-14	11:25		
2 26-Feb-14	10:00	27-Feb-14	11:12	5.0	< 0.1
		28-Feb-14	11:08		
3 28-Feb-14	11:30	01-Mar-14	11:00	5,0	< 0.1
•		02-Mar-14	10:18		
		03-Mar-14	10:55		

Concentrations Tested: 4, 8, 15, 58, 100.

Age of fishes at start of test: < 48 hours Source of Fishes: Marinco

Number of Reps: 4

Number of Fishes/Rep: 10

Feeding: Twice per day in AM and PM at a rate of 0.15 mL concentrated new born arternia (Argent, Platinum).

Dilution Water Composition: Moderately hard synthetic freshwater (EPA formulation).

Water hardness and how calculated: 92.92 mg/L as CaCO4. Analyzed and calculated by EPA Method 200.7 (ICP)

Vessel/solution volume: 500/ 250 mL

Renewal: 24 hours

Photo-period: (Day / Night): 16 / 8

Light Intensity Range: 50-75 ft-ca

Test Temperature: 25.0°C

Max: 25,7

Min: 24.0

Number of times temperature recorded/day: Continuously, and once per day electronically. See attachment. Date & time of test termination: 03/04/14 11:00

Date & time larvae and pans in oven: 03/04/14 11:20

Date & time larvae and pans out of oven: 03/05/14 7:20

When were fish weighed: 03/05/14 7:50

Below 40% and super saturated: No

Test Aeration Range: NA

Max: NA Min: NA

CONTROL;

Survival: 100.0%

Percent CV survival: 0.0%

Percent CV weight: 5.1%

TEST RESULTS: EPA Method 1000.0 Fathead Minnow, Pimephales promelas , Larval Sun

Survival	NOEC:		Steel's
	LOEC:	>100.0	
: 	NOEC in TUc:	1.0	
	IC25	>100.0	Linear Interpolation
Growth	NOEC:	100.0	Dunneft's
	LOEC:	>100.0	
	NOEC in TUc:	1.0	·
	IC25	>100.0	Linear Interpolation
48-Hour LC50	Value:		No measurable acute toxicity at 48 hours
	LC50 in TUa:		100/EC50 or if EC50 > 100, then % mortality in 100% dose / 50
96-Hour LC50	Value:	>100.0	No measurable acute toxicity at 96 hours
	LC50 in TUa:		100/EC50 or if EC50 > 100, then % mortality in 100% dose / 50
PMSD/Growth	ş	11.3%	MSDu x 100 / mean control weight

Chroπic NOEC Value	100.0%
NOEC in Chronic TU's	1.0

Acute LC50 Value	>100%
LC50 in Acute TU's	< 1.0

Aquatic Toxicology Division: 1205 Industrial Blvd, Southampton, PA 18966: Phone 267.699.0100: www.qclaboratories.com