

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0080039				
APS ID	15345				
Authorization ID	1254625				

pplicant Name	Carro	II Valley Sewer & Water Authority	Facility Name	Carroll Valley STP	
pplicant Address	5685	Fairfield Road	Facility Address	5685 Fairfield Road	
	Fairfie	eld, PA 17320-9611		Fairfield, PA 17320-9611	
pplicant Contact	David	Hazlett	Facility Contact	Jed Fetter	
pplicant Phone	(717)	642-8269	Facility Phone	(717) 642-5571	
Client ID	73610)	Site ID	252221	
h 94 Load Status	Not O	verloaded	Municipality	Carroll Valley Borough	
Connection Status	No Li	mitations	County	Adams	
ate Application Rece	eived	November 19, 2018	EPA Waived?	Yes	
ate Application Acce	pted	December 13, 2018	If No, Reason		

Summary of Review

Carroll Valley Sewer & Water Authority has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on April 18, 2014 and became effective on May 1, 2014. The permit expired on April 30, 2019 but the terms and conditions of the permit have been extended since that time.

Carroll Valley Sewer & Water Authority owns, operates, and maintains the wastewater treatment plant located in Carroll Valley Borough, Adams County. The aeration secondary treatment plant discharges treated municipal wastewater to Toms Creek, which is classified for Cold Water Fishes (CWF). The collection system has 100% sewers from Carroll Valley Borough. The facility has a design average annual flow of 0.14 MGD.

WQM Part II No. 0102402 original was issued 1986, and 012402 A-1 amendment was issued 4/19/2002 to extensions of pumping stations.

Changes from the previous permit: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml. The Ammonia-Nitrogen (November 1 – April 30) limits requirements changed from "Report" to 29.7 lbs/day of monthly average, 25.5 mg/L of monthly average, and 51 mg/L of IMAX.

Based on the review outlined in this fact sheet, it is recommended that the permit be drafted. A public notice of the draft permit will be published in the *Pennsylvania Bulletin* for public comments for 30 days. Any additional information or public review of documents associated with the discharge or the applicant may be available at the PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file reviews, contact the SCRO File Review Coordinator at 717,705,4700.

Approve	Deny	Signatures	Date
X			
		Hilary H. Le / Environmental Engineering Specialist	November 27, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Clean Water Program Manager	

ischarge, Receiving V	Vaters and Water Supply Infor	mation			
Outfall No. 001 Latitude 39° 45' Quad Name Iron S Wastewater Description	Springs	Design Flow (MGD) Longitude Quad Code	.14 -77° 22' 57.15"		
Receiving Waters	Toms Creek (CWF)	Stream Code	58685		
	53321454	RMI	3.11 miles (PA border)		
_	12.4 mi. ² 1.07	Yield (cfs/mi²) Q ₇₋₁₀ Basis	0.086 cfs/mi. ²		
	544				
` ′	13-D	Slope (ft/ft) Chapter 93 Class.	CWF		
Existing Use	13-D	Existing Use Qualifier	CVVF		
Exceptions to Use		Exceptions to Criteria			
Assessment Status	Impaired				
Cause(s) of Impairme					
Source(s) of Impairme					
TMDL Status	Pending	Name			
Nearest Downstream	Public Water Supply Intake	City of Frederick, MD			
PWS Waters Mo	nocacy River	Flow at Intake (cfs)			
PWS RMI		Distance from Outfall (mi) Approximate 35 miles			

Changes Since Last Permit Issuance: none

Drainage Area

The discharge is to Toms Creek at RMI 3.11 miles. A drainage area upstream of the discharge is estimated to be 12.4 mi.², according to USGS PA StreamStats available at https://streamstats.usgs.gov/ss/.

Stream Flow:

According to USGS StreamStats available at https://streamstats.usgs.gov/ss/, the discharge point has a Q_{7-10} of 1.07 cfs and a drainage area of 12.4 mi.², which results in a Q_{7-10} low flow yield of 0.086 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

```
Q_{7\text{-}10} = 1.07 \text{ cfs}

Low Flow Yield = 1.07 cfs / 12.4 mi.<sup>2</sup> \approx 0.086 \text{ cfs/mi.}^2

Q_{30\text{-}10} = 1.36 * 1.07 \text{ cfs} \approx 1.46 \text{ cfs}

Q_{1\text{-}10} = 0.64 * 1.07 \text{ cfs} \approx 0.68 \text{ cfs}
```

The resulting dilution ratio (under Q₇₋₁₀ conditions) is: Q_{stream} / Q_{discharge} = 1.07 cfs / [0.140 MGD * (1.55 cfs/MGD)] = 4.9:1

Public Water Supply:

There are no downstream public water supply intakes in Pennsylvania. According to the previous protection report, the nearest downstream public water supply intake is for the City of Frederick, Maryland on the Monocacy River, approximately 35 miles downstream of this discharge. Considering distance and dilution, the discharge is not expected to impact the water supply.

Treatment Facility Summary							
Treatment Facility Na	me: Carroll Valley - Main S	TP					
WQM Permit No.	Issuance Date						
0102402	1986						
0102402 A-1	4/19/2002						
<u>'</u>							
	Degree of			Avg Annual			
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)			
Sewage	Secondary	Extended Aeration	Hypochlorite	0.14			
Hydraulic Capacity	Organic Capacity			Biosolids			
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa			
0.14	337	Not Overloaded	Aerobic Digestion	Other WWTP			

Changes Since Last Permit Issuance:

The WWTP train is as follows:

Bar Screen (1) \Rightarrow EQ Tanks (6) \Rightarrow Aeration Tanks (14) \Rightarrow Clarifiers (2) \Rightarrow Chlorine Contact Tanks (2) \Rightarrow Post Aeration Lagoon (1) \Rightarrow Discharge

The facility incorporates the chemical addition of liquid sodium hypochlorite (for disinfection). Sludge holding tanks are on-site.

Compliance History						
Summary of DMRs:	DMRs reported last 12 months from October 1, 2018 to September 30, 2019 are summarized in the Table below (Pages # 5 & 6).					
Summary of Inspections:	10/17/2017: Mr. Bowen, DEP WQS, conducted compliance evaluation inspection. Effluent was clear. The field test results were within permitted limits. There were no violations noted during inspection.					
Other Comments:	There are no open violations associated with this facility or permittee.					

Other Comments: DMRs for the past 12 months indicated one instance of non-compliance (one exceedance of monthly average flow). The facility appears to be operating satisfactorily.

Other comments cont.

The table below summarizes the influent/effluent testing results submitted along with the application.

In	fluent Testing Resul	ts	Effluent Testing Results			
Parameter	Min/Max Value	Average Value	Parameter	Min/Max Value	Average Value	
BOD ₅ (mg/L)	400 mg/L	221.5 mg/L	pH (minimum)	6.6 S.U.		
BOD₅ (lbs/day)	472.4 lbs/day	219.3 lbs/day	pH (maximum)	8.3 S.U.		
TSS (mg/L)	450 mg/L	181.2 mg/L	D.O (minimum)	5.0 mg/L	7.9 mg/L	
TSS (lbs/day)	457.9 lbs/day	185.4 lbs/day	TRC	0.0 mg/L	0.17 mg/L	
TN (mg/L)	< 65.8 mg/L	< 65.8 mg/L	Fecal Coliform	462 No./100 mL	29.2 No./100 mL	
TN (lbs/day)	< 50.5 lbs/day	< 50.5 lbs/day	CBOD₅	10 mg/L	3.2 mg/L	
TP (mg/L)	6.4 mg/L	6.4 mg/L	TSS	14 mg/L	3.8 mg/L	
TP (lbs/day)	4.9 lbs/day	4.9 lbs/day	NH ₃ -N	2.2 mg/L	1.7 mg/L	
NH ₃ -N (mg/L)	32 mg/L	32 mg/L	TN	< 22.9 mg/L	< 22.9 mg/L	
NH ₃ -N (lbs/day)	24.6 lbs/day	24.6 lbs/day	TP	3.9 mg/L	3.9 mg/L	
TDS (mg/L)	1302 mg/L	1302 mg/L	Temp	No Data	No Data	
TDS (lbs/day)	999.0 lbs/day	999.0 lbs/day	TKN	< 0.5 mg/L	< 0.5 mg/L	
TKN	65 mg/L	65 mg/L	NO ₂ -N + NO ₃ -N	< 22.4 mg/L	< 22.4 mg/L	
$NO_2-N + NO_3-N$	< 0.8 mg/L	< 0.8 mg/L	TDS	992 mg/L	992 mg/L	
			Chloride	260 mg/L	260 mg/L	
			Bromide	< 0.5 mg/L	< 0.5 mg/L	
			Sulfate	49 mg/L	49 mg/L	
			Oil and Grease	< 5.0 mg/L	< 5.0 mg/L	
			Total Copper	0.032 mg/L	0.032 mg/L	
			Total Lead	< 0.005 mg/L	< 0.005 mg/L	
			Total Zinc	0.08 mg/L	0.08 mg/L	

Compliance History

DMR Data for Outfall 001 (from October 1, 2018 to September 30, 2019)

Parameter	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18
Flow (MGD)												
Average Monthly	0.073	0.072	0.091	0.088	0.125	0.109	0.124	0.137	0.141	0.143	0.152	0.105
Flow (MGD)												
Daily Maximum	0.097	0.095	0.200	0.128	0.285	0.199	0.231	0.187	0.268	0.283	0.253	0.167
pH (S.U.)												
Minimum	7.2	7.2	7.0	7.3	7.1	7.1	7.3	7.1	7.0	7.0	7.1	7.4
pH (S.U.)												
Maximum	7.8	8.2	7.9	7.8	7.8	7.9	7.8	7.9	7.8	7.7	7.8	7.9
DO (mg/L)												
Minimum	6.6	6.2	5.2	6.0	5.8	6.1	7.0	6.2	7.4	6.1	6.2	5.7
TRC (mg/L)												
Average Monthly	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
TRC (mg/L)												
Instantaneous Maximum	0.17	0.32	0.31	0.16	0.21	0.32	0.42	0.37	0.24	0.37	0.4	0.21
CBOD5 (lbs/day)												
Average Monthly	< 2	< 2	< 2	< 2	< 3	< 3	< 2	< 3	< 4	< 3	< 5	< 3
CBOD5 (lbs/day)	10		. 0	.0				4	_		10	
Weekly Average	< 2	2	< 2	< 2	< 4	3	3	4	5	< 3	< 6	< 3
CBOD5 (mg/L)	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 4	< 3	< 3	< 3	< 3
Average Monthly CBOD5 (mg/L)	- 3	\ \ \	<u> </u>	<u> </u>	- 3	- 3	<u> </u>	<u> </u>	< 3	<u> </u>	<u> </u>	- 3
Weekly Average	3	3	3	< 3	3	3	3	4	3	3	< 3	< 3
BOD5 (lbs/day)	J	J	3	\ \ \	J	3	J	4	J	3	\ \ \	
Raw Sewage Influent												
Average Monthly	147	125	151	259	183	137	149	193	398	121	158	182
BOD5 (lbs/day)	177	120	101	200	100	107	140	150	030	121	100	102
Raw Sewage Influent												
Daily Maximum	174	152	174	338	190	147	182	243	581	140	180	203
BOD5 (mg/L)							.,,=					
Raw Sewage Influent												
Average Monthly	257	223	230	390	185	158	202	214	411	130	102	211
TSS (lbs/day)												
Average Monthly	5	3	1	3	8	6	3	9	4	6	3	2
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	110	107	121	154	139	139	91	112	221	82	175	169
TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	161	171	184	225	195	172	95	158	224	94	193	176
TSS (lbs/day)	_			_		_	_	4.5	_	4.5		
Weekly Average	7	4	1	6	11	7	5	10	5	10	4	3
TSS (mg/L)	_			_		_		4-		_		
Average Monthly	9	6	2	5	8	8	4	10	3	6	2	2

NPDES Permit No. PA0080039

Carroll valley STP												
TSS (mg/L) Raw Sewage Influent												
Average Monthly	192	195	187	233	123	157	131	121	200	88	108	194
TSS (mg/L)												
Weekly Average	12	7	2	8	8	9	5	10	3	10	2	3
Fecal Coliform (CFU/100 ml)												
Geometric Mean	179	17	86	23	109	3	34	< 3	< 32	5	190	< 3
Fecal Coliform (CFU/100 ml) Instantaneous Maximum	350	56	155	92	118	6	76	5	520	7	620	12
Nitrate-Nitrite (mg/L) Annual Average										< 15.4		
Nitrate-Nitrite (lbs) Total Annual										3515.94		
Total Nitrogen (mg/L) Annual Average										< 19.5		
Total Nitrogen (lbs) Total Annual										4452.0		
Ammonia (lbs/day) Average Monthly	< 3.6	< 0.2	< 0.07	< 3.1	0.1	2.1	2.8	21.0	< 0.2	< 0.09	< 0.2	< 2.1
Ammonia (mg/L) Average Monthly	< 0.21	< 0.33	< 0.11	< 4.5	< 0.11	2.5	3.32	23	< 0.12	< 0.1	< 0.1	< 2.4
TKN (mg/L) Annual Average										< 0.50		
TKN (lbs) Total Annual										114.15		
Total Phosphorus (mg/L) Annual Average										4.1		
Total Phosphorus (lbs) Total Annual										936.06		

Development of Effluent Limitations						
Outfall No.	001		Design Flow (MGD)	0.14		
Latitude	39° 45′ 35.98	3"	Longitude	-77º 22' 57.32"		
Wastewater Description: Sewage Effluent		_				

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	=	92a.48(b)(2)

Water Quality-Based Limitations

Carbonaceous Biochemical Oxygen Demand (CBOD5):

The attached computer printout of the WQM 7.0 stream model indicates that a monthly average limit of 25 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. However, the existing limits of 25 mg/L monthly average (AML), 40mg/l average weekly limit (AWL), and 50 mg/L instantaneous maximum will remain in the proposed permit as per guidance document 391-2000-014. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: 25 mg/L x 0.140 MGD x 8.34 = 29 lbs/dayAverage weekly mass limit: 40 mg/L x 0.140 MGD x 8.34 = 46 lbs/day

Total Suspended Solids (TSS):

The existing technology-based limits of 30 mg/L average monthly, 45 mg/L average weekly, and 60 mg/L instantaneous maximum will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: $30 \text{ mg/L } \times 0.140 \text{ MGD } \times 8.34 = 35 \text{ lbs/day}$ Average weekly mass limit: $45 \text{ mg/L } \times 0.140 \text{ MGD } \times 8.34 = 52 \text{ lbs/day}$

Dissolved Oxvaen (DO):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. This is consistent with the previous permit and current Department criteria.

:Ha

The effluent discharge pH should remain above 6 and below 9 standard units according to 25 Pa Code § 95.2(1).

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100 ml and 25 Pa Code § 92a.47.(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean and an instantaneous maximum not greater than 10,000/100 ml.

Ammonia (NH3-N):

 NH_3N calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH_3-N criteria used in the attached WQM 7.0 computer model of the stream:

•	Discharge pH	=	7.0	(Default)
•	Discharge Temperature	=	20°C	(Default)
•	Stream pH	=	7.0	(Default)
•	Stream Temperature	=	25°C	(Default for CWF)
•	Background NH ₃ -N	=	0 mg/L	(Default)

The model input data and results are attached. The printout of the WQM 7.0 output indicates that at a discharge of 0.140 MGD, limits (rounded according to the NPDES Technical Guidance 362-0400-001) of 14 mg/L NH₃-N as a monthly average and 28 mg/L NH₃-N instantaneous maximum are necessary to protect the aquatic life from toxicity effects. These limits are less stringent than the previous permit's due to the usage of a higher streamflow calculation. However, the existing summer limits of 8.5 mg/L and 17 mg/L will remain in the proposed permit due to anti-backsliding requirements. Mass limits are calculated as follows:

Summer average monthly mass limit: 8.5 mg/L x 0.140 MGD x 8.34 = 9.9 lbs/day

The winter effluent limit will be set at three-times the summer limits; therefore, the average monthly winter limit for NH₃-N will be 25.5 mg/L (8.5 mg/L x 3). For the same reason, the instantaneous maximum limit for the winter season will be 51 mg/L (17 mg/L x 3). Recent DMRs and inspection reports indicate that these limits are being attained easily.

Winter average monthly mass limit: 9.9 lbs/day x 3 = 29.7 lbs/day

Total Residual Chlorine (TRC):

Based on the attached TRC Excel Spreadsheet calculator, which uses the equations and calculations from the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (ID No. 391-2000-015), the facility's discharge must meet a monthly average limit of 0.5 mg/L and an instantaneous maximum limit of 1.6 mg/L. These limits are the same as those in the existing permit. The facility has been meeting the limits consistently.

Chesapeake Bay Strategy:

The Department formulated a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). Sewage discharges have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases I, II, and III) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/L TN and 0.8 mg/L TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. Phase IV (0.2 -0.4 MGD) will be required to monitor and report TN and TP during permit renewal monthly and Phase V (below 0.2 MGD) will monitor during current permit renewal once a year. However, any facility in Phases IV and V that undergoes expansion is subjected to cap load right away. This plant is classified as a phase V, and will be required to monitor and report TP and TN once a year.

Influent BOD5 and TSS Monitoring:

The permit will include influent BOD₅ and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements, per DEP policy.

Biosolids Management:

Digested sludge is periodically removed and dewatered by a contractor with a mobile belt filter press prior to final disposal in a landfill.

Antidegradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303d Listed Streams

The receiving stream has a tentative impairment for pathogens from an unknown source. The tentative impairment was created on November 20, 2012.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the proposed permit per 40 CFR § 122.44(i)(1)(ii).

Monitoring Frequency and Sample Type

The facility currently is required to collect daily effluent grab samples for D.O., TRC, and pH; two per month effluent 8-hr composite samples of CBOD₅, TSS, and Ammonia-Nitrogen; two per month effluent grab samples of Fecal Coliform; annually effluent 8-hr composite samples of Nitrate-Nitrite as N, Total Kjeldahl Nitrogen, and TP; and annually effluent calculation samples of TN. Based on the best professional judgement of the author, the existing monitoring frequencies are sufficient and necessary. Therefore, the existing monitoring frequencies will remain the same as those specified in the proposed permit.

WQM 7.0

Two nodes were incorporated in the modeling effort.

Node 1: Outfall 001 on Tom's Creek (58685)

Elevation: 544 ft (USGS National Map Viewer)
Drainage Area: 12.4 mi.² (USGS PA StreamStats)

River Mile Index: 3.11 (PA DEP eMapPA)

Low Flow Yield: 0.086 cfs/mi.²

Discharge Flow: 0.140 MGD (NPDES Application)

Node 2: Just before confluence with UNT 58767

Elevation: 498 ft (USGS National Map Viewer)
Drainage Area: 13.0 mi.² (USGS PA StreamStats)

River Mile Index: 2.29 (PA DEP eMapPA)

Low Flow Yield: 0.086 cfs/mi.² Discharge Flow: 0.000 MGD

Attachment is WQM 7.0 data.

carroll valley WQM 7.0 data.pdf

TRC Results

TRC EVAL	JATION							
		A3:A9 and D3:D9						
	1.07 = Q stream (cfs) 0.5 = CV Daily							
	= Q discha			= CV Hourly				
	= no. samp			= AFC Partial Mix Factor				
		Demand of Stream	1	= CFC Partial Mix Factor				
0	= Chlorine	Demand of Discharge	15	= AFC_Criteria Compliance Time (min)				
	= BAT/BPJ			= CFC_Criteria Compliance Time (min)				
0	= % Factor	r of Safety (FOS)		=Decay Coefficient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	1.595	1.3.2.iii	WLA cfc = 1.547			
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	0.594	5.1d	LTA_cfc = 0.900			
Source		Effluer	nt Limit Calcu	lations				
PENTOXSD TRG			AML MULT =		_			
PENTOXSD TRG	5.1g		.IMIT (mg/l) =		BAT/BPJ			
		INST MAX L	.IMIT (mg/l) =	1.635				
NAII A -5-	/ 0401-/ Lt	AEO 1-W - MAEO V-+O	_* 040/O-I*	-	-			
WLA afc		AFC_tc)) + [(AFC_Yc*Q \FC_Yc*Qs*Xs/Qd)]*(1-		e(-K-AFC_tc))	·			
LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2						
LTA_afc	wla_afc*LTA		2.1, 0.0,					
ETA_dio	wa_alo ETF	imoz i _uio						
WLA_cfc	(.011/e(-k*	CFC_tc) + [(CFC_Yc*Qs	*.011/Qd*e	(-k*CFC tc))				
_		CFC_Yc*Qs*Xs/Qd)]*(1-						
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)							
LTA_cfc wla_cfc*LTAMULT_cfc								
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))								
AVG MON LIMIT	MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)							
INST MAX LIMIT	1.5*((av_m	ion_limit/AML_MULT)/L1	FAMULT_af	c)				

Existing Effluent Limitations and Monitoring Requirements

			Effluent Limitations				Monitoring Requirements	
Parameter	Mass Units (lbs/day)		Concentrations (mg/L)				Minimum	Required
rai ametei	Average Monthly	Total Annual	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD₅	29	46 Wkly Avg	XXX	25	40	50	2/month	8-Hr Composite
BOD ₅	20	Report	ХХХ	20	40	30	2/111011111	8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
raw cowago mindoni	ποροπ	52	7001	rtoport	7000	7000	2/11101101	8-Hr
Total Suspended Solids	35	Wkly Avg	XXX	30	45	60	2/month	Composite
Fecal Coliform (CFU/100 ml)				200				•
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Ammonia-Nitrogen						,		8-Hr
May 1 - Oct 31	9.9	XXX	XXX	8.5	XXX	17	2/month	Composite
Ammonia-Nitrogen Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	Report	2/month	8-Hr Composite
Nitrate-Nitrite as N (lbs/year)	XXX	Report	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Total Kjeldahl Nitrogen				Report				8-Hr
(lbs/year)	XXX	Report	XXX	Annl Avg	XXX	XXX	1/year	Composite
Total Phosphorus (lbs/year)	XXX	Report	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Total Nitrogen (lbs/year)	XXX	Report	XXX	Report Annl Avg	XXX	XXX	1/year	Calculation

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
D.O.	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD₅	29.0	46.0 Wkly Avg	XXX	25.0	40.0	50	2/month	8-Hr Composite
BOD₅ Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	8-Hr Composite
TSS	35.0	52.0 Wkly avg	XXX	30.0	45.0	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Ammonia May 1 - Oct 31	9.9	XXX	XXX	8.5	XXX	17	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	29.7	XXX	XXX	25.5	XXX	51	2/month	8-Hr Composite
Nitrate-Nitrite as N (lbs/year)	XXX	Report Total Annual	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
TKN (lbs/year)	XXX	Report Total Annual	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Total Phosphorus (lbs/year)	XXX	Report Total Annual	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Total Nitrogen (lbs/year)	XXX	Report Total Annual	XXX	Report Annl Avg	XXX	XXX	1/year	Calculation

Compliance Sampling Location:

	Tools and References Used to Develop Permit
\square	WQM for Windows Model (see Attachment)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
H	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
H	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Ħ	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other: