

Application Type	Amendment, Major
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0080039 A-1
APS ID	15345
Authorization ID	1362935

Applicant and Facility Information

Applicant Name	Carroll Valley Sewer & Water Authority	Facility Name	Carroll Valley STP
Applicant Address	5685 Fairfield Road	Facility Address	Sanders Road
	Fairfield, PA 17320-9611		Carroll Valley, PA 17320-9611
Applicant Contact	David Hazlett	Facility Contact	Jed Fetter
Applicant Phone	(717) 642-8269	Facility Phone	(717) 642-5571
Client ID	73610	Site ID	252221
Ch 94 Load Status	Not Overloaded	Municipality	Carroll Valley Borough
Connection Status	No Limitations	County	Adams
Date Application Receiv	vedJuly 23, 2021	EPA Waived?	no
Date Application Accep	ted July 30, 2021	If No, Reason	Chesapeake Bay TMDL-existing discharge proposing to expand
Purpose of Application	Expand WWTF: increasing annual a replacing the chlorine disinfection to	verage flow and hydra UV system disinfectio	ulic design capacity to 0.25 MGD and n

Summary of Review

WM. F. Hill & Assoc., Inc., on behalf of Carroll Valley Sewer & Water Authority, has applied to the Pennsylvania Department of Environmental Protection (DEP) for NPDES PA0080039 (which last reissuance was on February 24, 2020, became effective on March 1, 2020, and will expire on February 28, 2025) major amendment requests to construct and expand WWTF, to increase annual average design flow and hydraulic design capacity from 0.14 MGD to 0.25 MGD, and to replace the chlorine monitor & report requirement with UV light intensity (mW/cm²) disinfection. The organic design capacity changed from 337 lbs BOD₅/day to 626 lbs BOD₅/day.

There are no open violations against the facility or permittee.

Planning for the proposed project was not required.

At the request of DEP, WQM No. 0121403 a permit amendment application also submitted by WM. F. Hill & Assoc., Inc. thru OnBase on July 23, 2021. Then, DEP has decided to review both NPDES & WQM amendment permits application simultaneously.

Expansion to existing facilities discharge to waters within the Chesapeake Bay watershed trigger nutrient cap loads in order to achieve the nutrient reduction required by the Chesapeake Bay Total Maximum Daily Load (TMDL).

Because construction cannot commence until a WQM permit is issued, this amended NPDES permit will carry forward the existing permit limits for an interim period, will include final permit limits based on the new design flow, and will include a compliance schedule in Part C. During the comment period, the permittee can request changes to the compliance schedule.

Based on the review, it is recommended that the NPDES permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days since this is a major amendment.

Approve	Deny	Signatures	Date
х		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	October 29, 2021
х		<i>Maria D. Bebenek for Daniel W. Martin</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	November 18, 2021

Discharge, Receiving Waters and Water Supply Information								
Outfall No.001Latitude39º 45' 35.79"Quad NameIron SpringsWastewater Description:Sewage Effluent	Design Flow (MGD) Longitude Quad Code	0.14 MGD inter 0.25 MGD Final -77º 22' 57.15"						
Receiving WatersToms Creek (CWF)NHD Com ID53321454Drainage Area12.4 mi.²Q7-10 Flow (cfs)1.07Elevation (ft)544Watershed No.13-DExisting Use	Stream Code RMI Yield (cfs/mi ²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	58685 3.11 miles (PA border) 0.086 CWF						
Assessment Status Impaired Cause(s) of Impairment PATHOGENS, Source(s) of Impairment SOURCE UNKNOWN TMDL Status	Name City of Frederick, MD Flow at Intake (cfs) Distance from Outfall (mi)	Approximate 35 miles						

Changes Since Last Permit Issuance:

Other Comments:

WQM Permit No. Issuance Date 0121403 Pending
WQM Permit No.Issuance Date0121403Pending
0121403 Pending
Degree of Avg Annual
Waste Type Treatment Process Type Disinfection Flow (MGD)
Sewage Secondary Extended Aeration Chlorination to Ultraviolet 0.14 to 0.25
Hydraulic Capacity Organic Capacity Biosolids
(MGD) (Ibs/day) Load Status Biosolids Treatment Use/Disposal
0.14 to 0.25 337 to 626 Not Overloaded Aerobic Digestion Other WWTP

The WWTP train before construction is as follows:

Bar Screen (1) \Rightarrow EQ Tanks (6) \Rightarrow Aeration Tanks (14) \Rightarrow Clarifiers (2) \Rightarrow Chlorine Contact Tanks (2) \Rightarrow Post Aeration Lagoon (1) \Rightarrow Discharge

The facility incorporates the chemical addition of liquid sodium hypochlorite (for disinfection). Sludge holding tanks are onsite.

The WWTP train after construction will be as follows:

Mechanical Screen (1) \Rightarrow SBRs (2) \Rightarrow Sludge Digestor/Holding (1) \Rightarrow Post Equalization Basin (1) \Rightarrow UV disinfection \Rightarrow Discharge

The facility incorporates the chemical addition of alum for precipitation of phosphorus.

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	0.25 final
Latitude	39º 45' 35.98"	Longitude	-77º 22' 57.32"
Wastewater De	escription: Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Ammonia (NH₃-N):

NH₃-N calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH₃-N criteria used in the attached WQM 7.0 computer model of the stream:

•	Discharge pH	=	7.0	(Default)
•	Discharge Temperature	=	25°C	(Default)
•	Stream pH	=	7.0	(Default)
•	Stream Temperature	=	20°C	(Default)
•	Background NH ₃ -N	=	0 mg/L	(Default)

The model input data and results are attached. The printout of the WQM 7.0 (ver. 1.1) output indicates that at a discharge of 0.25 MGD, limits (rounded according to the NPDES Technical Guidance 362-0400-001) of 8.4 mg/L NH₃-N as a monthly average and 16.8 mg/L NH₃-N instantaneous maximum are necessary to protect the aquatic life from toxicity effects. These limits are slightly more stringent than before complete of construction and will be in the amendment permit. Mass limits are calculated as follows:

Summer average monthly mass limit: 8.4 mg/L x 0.25 MGD x 8.34 = 17.5 lbs/day

The winter effluent limit will be set at three-times the summer limits; therefore, the average monthly winter limit for NH₃-N will be 25.0 mg/L. For the same reason, the instantaneous maximum limit for the winter season will be 50.0 mg/L. Recent DMRs and inspection reports indicate that these limits are being attained easily.

Winter average monthly mass limit: 17.5 lbs/day x 3 = 52.5 lbs/day

Carbonaceous Biochemical Oxygen Demand (CBOD5):

The attached computer printout of the WQM 7.0 stream model (ver. 1.1) indicates that a monthly average limit of 25.0 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. This limit is consistent with the before upgrade permit. Therefore, the limits of 25.0 mg/L monthly average (AML), 40.0 mg/l average weekly limit (AWL), and 50.0 mg/L instantaneous maximum will remain in the amendment permit. Mass limits are calculated as follows:

Average monthly mass limit: 25.0 mg/L x 0.25 MGD x 8.34 = 52.13 (52.0) lbs/day Average weekly mass limit: 40.0 mg/L x 0.25 MGD x 8.34 = 83.4 (83.0) lbs/day

NPDES Permit Fact Sheet Carroll Valley STP Total Suspended Solids (TSS):

The existing technology-based limits of 30.0 mg/L average monthly, 45.0 mg/L average weekly, and 60.0 mg/L instantaneous maximum will remain in the amendment permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Mass limits are calculated as follows:

Average monthly mass limit: $30.0 \text{ mg/L} \times 0.25 \text{ MGD} \times 8.34 = 62.55$ (63.0) lbs/day Average weekly mass limit: $45.0 \text{ mg/L} \times 0.25 \text{ MGD} \times 8.34 = 93.83$ (94.0) lbs/day

Dissolved Oxygen (D.O.):

The existing permit contains a limit of 5.0 mg/l for Dissolved Oxygen (D.O.). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the amendment permit with a daily monitoring requirement per DEP guidance.

pH:

The effluent discharge pH should remain above 6.0 and below 9.0 standard units according to 25 Pa Code § 95.2(1).

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100 ml and 25 Pa Code § 92a.47.(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean and an instantaneous maximum not greater than 10,000/100 ml.

UV:

The UV system daily monitor and report the UV intensity (mW/cm²) after update to replace chlorine disinfection to UV disinfection system will be in the amendment permit.

Chesapeake Bay Strategy:

The Department formulated a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). Sewage discharges have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases I, II, and III) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6.0 mg/L TN and 0.8 mg/L TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. Phase IV (0.2 - 0.4 MGD) will be required to monitor and report TN and TP during permit renewal monthly and Phase V (below 0.2 MGD) will monitor during current permit renewal once a year. However, any facility in Phases IV and V that undergoes expansion is subjected to cap load right away.

After finished construction, this plant is classified as a phase IV. For Phase IV sewage facilities (average annual design flow on August 29, $2005 \ge 0.2$ MGD and < 0.4 MGD), renewed or amended permits that include an increase in design flow will contain Cap Loads based on the lesser of a) existing TN and TP concentrations at current design average annual flow or b) 7,306 lbs./yr. TN and 974 lbs./yr. TP.

According to DMR reported as screen shot below which indicated the existing 2020's 19.91 mg/L TN & 3.8 mg/L TP concentrations at current design average annual flow 0.14 MGD; and calculated the mass limits as follows.

9/18/2018 Submitter No	1 Yes	Final Efflu	600	Total Nitrogen			mg/L	< 19.5	Monitor a	Annual Average	1/year	Calculatio	WRIGLESV	SCRO	Adams	Carroll Valley
10/7/2019 Submittee No	1 Yes	Final Efflu	600	Total Nitrogen			mg/L	< 29.9	Monitor a	Annual Average	1/year	Calculatio	WRIGLESV	SCRO	Adams	Carroll Valley
8/4/2020 Submittee No	1 Yes	Final Efflu	600	Total Nitrogen			mg/L	< 19.91	Monitor a	Annual Average	1/year	Calculatio	WRIGLESV	SCRO	Adams	Carroll Valley
9/18/2018 Submitter No	1 Yes	Final Efflu	51445	Total Nitrogen (T lbs	4452	2 Monitor a Total Ar	nnual				1/year	Calculatio	WRIGLESV	SCRO	Adams	Carroll Valley
10/7/2019 Submittee No	1 Yes	Final Efflu	51445	Total Nitrogen (T lbs	7646.75	5 Monitor a Total Ar	nnual				1/year	Calculatio	WRIGLESV	SCRO	Adams	Carroll Valley
8/4/2020 Submittee No	1 Yes	Final Efflu	51445	Total Nitrogen (T lbs	4922.7	7 Monitor a Total Ar	nnual				1/year	Calculatio	WRIGLESV	SCRO	Adams	Carroll Valley
9/18/2018 Submittee No	1 Yes	Final Efflu	665	Total Phosphorus			mg/L	4.	1 Monitor a	a Annual Average	1/year	8-Hr Com	WRIGLESV	SCRO	Adams	Carroll Valley
10/7/2019 Submittee No	1 Yes	Final Efflu	665	Total Phosphorus			mg/L	4.	3 Monitor a	a Annual Average	1/year	8-Hr Com	WRIGLESV	SCRO	Adams	Carroll Valley
8/4/2020 Submittee No	1 Yes	Final Efflu	665	Total Phosphorus			mg/L	3.	8 Monitor a	a Annual Average	1/year	8-Hr Com	WRIGLESV	SCRO	Adams	Carroll Valley
9/18/2018 Submitter No	1 Yes	Final Efflu	51451	Total Phosphorus lbs	936.06	5 Monitor a Total Ar	nnual				1/year	Calculatio	WRIGLESV	SCRO	Adams	Carroll Valley
10/7/2019 Submittee No	1 Yes	Final Efflu	51451	Total Phosphorus lbs	1098.65	5 Monitor a Total Ar	nnual				1/year	Calculatio	WRIGLESV	SCRO	Adams	Carroll Valley
8/4/2020 Submittee No	1 Yes	Final Efflu	51451	Total Phosphorus lbs	939.54	1 Monitor a Total Ar	nnual				1/year	Calculatio	WRIGLESV	SCRO	Adams	Carroll Valley

TN: 19.91 mg/L x 8.34 x 0.14 MGD x 365 days/year = 8,485.12 lbs/year

TP: 3.8 mg/L x 8.34 x 0.14 MGD x 365 days/year = 1,619.46 lbs/year

Since 7,306 lbs/yr TN and 974 lbs/yr TP are less than existing load, then these numbers will be placed in the amendment permit.

Influent BOD₅ and TSS Monitoring:

The amendment permit will continue influent BOD₅ and TSS weekly monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements, per DEP policy.

NPDES Permit Fact Sheet Carroll Valley STP

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the amendment permit per 40 CFR § 122.44(i)(1)(ii).

Monitoring Frequency and Sample Type

The after-upgrade facility will collect weekly 8-hr composite effluent samples for CBOD₅, TSS, Fecal Coliform, Ammonia, and influent of TSS & BOD₅.

WQM 7.0

Two nodes were incorporated in the modeling effort.

Node 1: Outfall 001 on Tom's 0	Creek (58685)
Elevation:	544 ft (USGS National Map Viewer)
Drainage Area:	12.4 mi. ² (USGS PA StreamStats)
River Mile Index:	3.11 (PA DEP eMapPA)
Low Flow Yield:	0.086 cfs/mi. ²
Discharge Flow:	0.250 MGD (NPDES Application)

Node 2: Just before confluence with UNT 58767Elevation:498 ft (USGS National Map Viewer)Drainage Area:13.0 mi.² (USGS PA StreamStats)River Mile Index:2.29 (PA DEP eMapPA)Low Flow Yield:0.086 cfs/mi.²Discharge Flow:0.000 MGD

StreamStats				1	.6/11/2 1/19	folark.Ifl		Learner Car		🖩 Report 🛛 🛛 About	? Help
SELECT A STATE / REGION Pennsylvania 🛈 👻	C Explor	Basin Characteristics Parameter Code	Parameter Description				Value Unit		X	Layers	,
	+	DRNAREA	Area that drains to a point on a strea	m			12.4 squar	re miles		Base Maps	~
IDENTIFY A STUDY AREA Basin Delineated V	Ebk	PRECIP	Mean Annual Precipitation				43 inche	es.		Application Law	
		STRDEN	Stream Density total length of strea	ams divided by c	frainage area		1.67 miles	per square mile			
SELECT SCENARIOS 🗸		ROCKDEP	Depth to rock				5 feet		N Miller SI	V National Lay	ers 🗸
BUILD & REPORT Report Built		CARBON	Percentage of area of carbonate rock	Ę.			0 perce	ent	Contraction St. Fa	irfiel 🗸 PA Map Lay	ers 🗸
Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the "Build Report" button		Low-Flow Statistics Para	meters [Low Flow Region 2] Parameter Name	Value	Units		Min Limit	t Max Limit			
	1	DRNAREA	Drainage Area	12.4	square miles		4.93	1280	The second		
✓ Show Basin Characteristics		PRECIP	Mean Annual Precipitation	43	inches		35	50.4	ana Basila		
		STRDEN	Stream Density	1.67	miles per squ	are mile	0.51	3.1	-/ 4ma 1 (~)		
Salast available separts to disalave		ROCKDEP	Depth to Rock	5	feet		3.32	5.65	Skiann Tri		
Select available reports to display.		CARBON	Percent Carbonate	0	percent		0	99			
✓ Basin Characteristics Report	in	Low-Flow Statistics Flow	Report [Low Flow Region 2]						and the second		
Scenario Flow Penorts	~	PII: Prediction Interva	al-Lower, Plu: Prediction Interval-Upper	ASED: Average	Standard Frror	of Prediction	SF: Standard Fri	ror (other see report)	Carroll		
		Statistic		· · v	alue	Unit	SE	ASEp	Velley		
Continue		7 Day 2 Year Low Flo	0W	2		ft^3/s	38	38	Carming Resort		
	1	30 Day 2 Year Low F	low	2	.57	ft^3/s	33	33	Golf Course		
	1 4	7 Day 10 Year Low F	low	1	.07	ft^3/s	51	51	DEL 1		lat Run
POWERED BY WIM	Zoom Level	30 Day 10 Year Low	Flow	1	.34	ft^3/s	46	46	116		
USGS Home Contact USGS Search USGS	Map Scale: Lat: 39.764	90 Day 10 Year Low	Flow	1	.94	ft^3/s	36	36	Fawn_Tri		
Accessibility FOIA Privacy Policy & Notices	V 500 m	Low-Flow Statistics Citat	ions						Deer A	Freepc	Leaflet

NPDES Permit Fact Sheet Carroll Valley STP

NPDES Permit No. PA0080039 A-1

	Parameter	escription					Valu	e Unit						Report 0	About	
	Area that dr	ains to a point on	a stream				13	square n	iles				and the second second			12
	Mean Annua	I Precipitation					43	inches						Layers		
	Stream Den	sity total length	of streams	divided by o	drainage area	I	1.7	miles pe	square mile		DE RA					ſ
	Depth to roo	k					5	feet				Highland	116	Bas	Maps	
	Percentage	of area of carbon	ate rock				0	percent			5	Twp		Applica	tion Layer	s
										_	3			V Natio	onal Layer	s
cs Pa	Parameters [Low Flo	w Region 2]									1	Muddy R				s
de	Paramet	er Name		Value	Units			Min Limit	Max Limit		X					
	Drainag	e Area		13	square mi	les		4.93	1280		24					
	Mean Ar	nual Precipitatio	n	43	inches			35	50.4		- ar					
	Stream	Density		1.7	miles per	square mile		0.51	3.1					-		
	Depth to	Rock		5	feet			3.32	5.65		Ru			Twp		
	Percent	Carbonate		0	percent			0	99		199					
											The					
.ow	Flow			2	.07	ft^3/s		38	38		-	Targue				
Low	w Flow			2	.66	ft^3/s		33	33		×10.					
Low	w Flow			1	.11	ft^3/s		51	51		00000					
r Lo	ow Flow			1	.39	ft^3/s		46	46		m					
r Lo	ow Flow			2	.01	ft^3/s		36	36		100					
												_]	×	
oc	ations	D.O. /	Allocat	ions	0).0. Simu	ılati	ion	Effluer	nt Lir	nita	tions				
oc	ations	D.O. /	Allocat	tions).O. Simu	ılati	ion	E	ffluer	ffluent Lir	Effluent Limita	ffluent Limitations	ffluent Limitations	ffluent Limitations	ffluent Limitations

[RMI Discharge Name	Permit Numb	er Disc Flow (mgd)	
	3.11 Carroll Valley	V PA0080039	0.2500	
	Parameter	Effluent Limit Eff 30 Day Average M (mg/L)	luent Limit Effluent Limit Maximum Minimum (mg/L) (mg/L)	
	CBOD5	25		
	NH3-N	8.38	16.76	
	Dissolved Oxygen		5	
	Record: I4 - ∢ 1 of 1 - ▶ ▶ ▶ ♦	K No Filter	Search	
Print	< <u>B</u> ack	Next >	Archive	Cancel

NPDES Permit No. PA0080039 A-1

	– 🗆 ×	🗐 rpt WLA — 🗆	×
			_
WQM 7.0 Effluent Limits <u>WPBasin Stream Roode</u> 110 6686 TONSOREK		WQM 7.0 Wasteload Allocations <u>swe basin</u> drem Code <u>Brean</u> Name 130 6885 TON SCREEK	
RMI Name Permit Number Disc Prov Number Permeter Efft. Limit (mat) 3.110 Carroll Valley PA0080039 0.250 25 MH3-N 8.38 Discrived Oxygen	21. Linst Efft Linst Rodmum Milmum (mg/L) (mg/L) 16.76 5	NH3-N Acute Allocations Baseline Baseline Multiple Multiple Otical Percent RM Discharge Name Criticon VKA Criticon VKA Reach Reah Reach Reach <td></td>	
		RMI Discharge Name Editorie Industrie Industrie Industrie Industrie Industrie Industrie (mpL) (mpL) (m	
		Dissolved Oxygen Allocations (2005 NHN) Dissolved Oxygen	
		RMI Discharge Name Exactive Multiple Exactive Multiple Exactive Multiple Exactive Multiple (mol.1) Readure Multiple (mol.1) Readure Multiple Exactive Multi	
Wednesday, Otdober 20, 2021 Version 1.1	Page 1 of 1	Wednesslay, Odober 30, 2021 Version 1.1 Page 1 of 1	
Page: 14 4 1 🕨 🕨 😽 🍢 No Filter		Page: H 4 1 + H + K K No Filter	

NPDES Permit No. PA0080039 A-1

FrptDOSim	-	I rptModelSpecs — — — >
<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	Acutes pH 7.00 Read: Vecoty fps) 0.68 <u>Reach Collage</u> 0.75 <u>Reach Collage</u> 6	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><form><form><form></form></form></form></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>

NPDES Permit No. PA0080039 A-1

📓 rptHydro — [X I rptGeneral -	×
WOM 7.0 Hydrodynamic Outputs WOM 7.0 Hydrodynamic Outputs Mam Dob Strem Name 10 See Strem Name 10 Strem Name Strem Name 110 Strem Name Strem Name 1	X Imput Data WQM 7.0 Imput Data WQM 7.0 Imput Data WQM 7.0 300 State 130 State 131 State 132 State 133 State 134 State 135 State 136 State 137 State 138 State 139 State 130 State 131 State 132 State 133 State 147 Table State 149 State 149 State 149 State 149 State 149 State 149 Stat	×
Vedresday, Odober 20, 2021 Vesion 1.1 Page 1 of 1	Bit of 1 Disc Tit Second Disc Disc <thdisc< th=""> <thdis< th=""> <thdis< th=""></thdis<></thdis<></thdisc<>	
Page: 📧 🔺 1 🔰 🕨 🕨 🦉 No Filter	Page: 14 🔹 1 🕨 🕨 🏹 No Filter	

🗐 rptGeneral —		_
Input Data W QM 7.0		
SWP Stream RMI Elevetion Drahage Slope PWS Appy Badin Code Stissm Name Assa Withdrawal FC	<u> </u>	
Stream Data	<u> </u>	
LFY Tab Stansam Roh Roh WD Roh Roh <u>Trbutary Stream</u> Deelgan Flow Flow Tasv Velcoty Rabo Widdh Depth Temp pH Temp pH Cond. (oftem) (ofte) (oft		
G7-10 0.088 0.00 0.000 0.000 0.00 0.00 20.00 7.00 0.00 0.00 Q1-10 0.000 <td>-</td> <td></td>	-	
Discharge Data		
Diso Diso Diso Diso Diso Diso Diso Reserve Temp pH Name Pentit Number Flow Flow Flow Flow Flow (mgd) (mgd) (*C)		
CampilValley PA0080039 0.0000 0.0000 0.0000 25.00 7.00 Paramater Data		
Dito Trib Stream Fate Cano Cano Cano Coef		
(mgL) (mgL) (1/deyc)		
CB0D5 25.00 2.00 0.00 1.60 Dissolved Oxygen 5.00 8.24 0.00 0.00		
NH3-N 25.00 0.00 0.70		
	_	
Wedine sday, Ooldber 20, 2021 Version 1.1 Page 2	d 2	
Page: I4 4 2		

Proposed Effluent Limitations and Monitoring Requirements

Flow design before completion of construction: 0.14 MGD

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: March 1, 2020 through Completion of Construction.

			Monitoring Re	quirements				
Peremeter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average	Daily		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Туре
Flow (MGD)	Report	Report	XXX	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	xxx	XXX	6.0	xxx	XXX	9.0	1/day	Grab
D.O.	xxx	XXX	5.0	xxx	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD₅	29.0	46.0 Wkly Avg	XXX	25.0	40.0	50.0	2/month	8-Hr Composite
TSS	35.0	52.0 Wkly Avg	XXX	30.0	45.0	60.0	2/month	8-Hr Composite
BOD ₅								8-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Composite
TSS						2004		8-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Composite
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200 Geo Mean	XXX	1 000	2/month	Grab
Fecal Coliform (No /100 ml)				2 000	7777	1,000	2/110/101	Glab
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10.000	2/month	Grab
Ammonia						,		8-Hr
May 1 - Oct 31	9.9	XXX	XXX	8.5	XXX	17.0	2/month	Composite
Ammonia								8-Hr
Nov 1 - Apr 30	29.7	XXX	XXX	25.5	XXX	51.0	2/month	Composite
		Report		Report				8-Hr
Nitrate-Nitrite as N (lbs/year)	XXX	Total Annual	XXX	Annl Avg	XXX	XXX	1/year	Composite
Total Kjeldahl Nitrogen		Report		Report				8-Hr
(lbs/year)	XXX	Total Annual	XXX	Annl Avg	XXX	XXX	1/year	Composite
		Report		Report				8-Hr
Total Phosphorus (lbs/year)	XXX	Total Annual	XXX	Annl Avg	XXX	XXX	1/year	Composite

Permit No. PA0080039 A-1

		Monitoring Requirements						
Baramatar	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average	Daily		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report		Report				
Total Nitrogen (lbs/year)	XXX	Total Annual	XXX	Annl Avg	XXX	XXX	1/year	Calculation

Proposed Effluent Limitations and Monitoring Requirements

After completion of construction Final flow design: 0.25 MGD

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Completion of Construction through February 28, 2025.

			Monitoring Requirement					
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ons (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	XXX	xxx	xxx	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0	XXX	xxx	9.0	1/day	Grab
D.O.	XXX	XXX	5.0	XXX	xxx	ххх	1/day	Grab
UV Intensity (mW/cm ²)	XXX	XXX	Report	XXX	xxx	XXX	1/day	Measured
CBOD₅	52.0	83.0 Wkly Avg	XXX	25.0	40.0	50.0	1/week	8-Hr Composite
TSS	63.0	94.0 Wkly Avg	XXX	30.0	45.0	60.0	1/week	8-Hr Composite
BOD₅ Raw Sewage Influent	Report	Report	xxx	Report	xxx	xxx	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	XXX	XXX	200 Geo Mean	xxx	1,000	1/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	ХХХ	2,000 Geo Mean	xxx	10,000	1/week	Grab
Ammonia May 1 - Oct 31	17.5	xxx	ХХХ	8.4	xxx	16.8	1/week	8-Hr Composite
Ammonia Nov 1 - Apr 30	52.5	XXX	ХХХ	25.0	XXX	50.0	1/week	8-Hr Composite

Compliance Sampling Location:

Other Comments:

Proposed Effluent Limitations and Monitoring Requirements

Chesapeake Bay After completion of construction final flow design: 0.25 MGD

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Completion of Construction through February 28, 2025.

		Monitoring Requirements						
Devementer	Mass Units	(lbs/day) ⁽¹⁾		Concentra		Minimum ⁽²⁾	Required	
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	xxx	Report	XXX	XXX	1/week	8-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Nitrate-Nitrite as N	Report	xxx	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	ХХХ	XXX	1/month	Calculation
Total Phosphorus	Report	Report	xxx	Report	XXX	xxx	1/week	8-Hr Composite
Net Total Nitrogen	Report	7,306	xxx	xxx	XXX	xxx	1/month	Calculation
Net Total Phosphorus	Report	974	xxx	ххх	ххх	xxx	1/month	Calculation

Compliance Sampling Location:

Other Comments: