

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0080055
APS ID	274913
Authorization ID	1208486

Applicant and Facility Information

Applicant Name	Conew Sewer	ago Industrial Park Water & Company.	Facility Name	Conewago Industrial Park
Applicant Address	PO Box 332		Facility Address	10 Creek Court
	Lemoy	ne, PA 17043-0332	_	Elizabethtown, PA 17022
Applicant Contact	Martin	Murray	Facility Contact	Roy Junk
Applicant Phone	(717) 7	66-3000	Facility Phone	(717) 201-3109
Client ID	32774		Site ID	451841
Ch 94 Load Status	Not Ov	erloaded	Municipality	West Donegal Township
Connection Status	No Lim	itations	County	Lancaster
Date Application Recei	ved	November 29, 2017	EPA Waived?	Yes
Date Application Accepted		January 9, 2018	If No, Reason	
Purpose of Application		NPDES Renewal.		

Summary of Review

Conewago Industrial Park Water & Sewer Company has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued on May 24, 2013, and became effective on June 1, 2013. The permit authorized discharge of treated sewage from the existing wastewater treatment plant (WWTP) located in West Donegal Township, Lancaster County into Conewago Creek. The existing permit expiration date was May 31, 2016, and the permit has been administratively extended since that time.

Per the previous fact sheet, Conewago Industrial Park operates a private STP. Customers change from year to year, resulting in changing influent characteristics and many operating problems, resulting in past enforcement action. 1999 violations resulted in a Consent Order and Agreement (COA), which included extensive repairs to the STP. It was noted that the stream was about 20' wide and at least 1' deep. The outfall discharges to the end of a long pool less than 100' to riffle areas which would allow for higher reaeration rates.

Changes to permit renewal: An Ammonia wintertime limit has been added. TN monitoring has been added.

Sludge use and disposal description and location(s): Offsite location

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*,

Approve	Deny	Signatures	Date
х		<i>Benjamin Lockwood</i> Benjamin R. Lockwood / Environmental Engineering Specialist	January 29, 2021
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Program Manager	

Summary of Review

DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Supplemental information is located at the end of this fact sheet.

Discharge, Receiving Waters and Water Supply Information						
Outfall No. 001		Design Flow (MGD)	0.15			
Latitude 40° s	9' 48.3"	Longitude	76º 39' 42.8"			
Quad Name Mi	iddletown	Quad Code	1732			
Wastewater Descr	iption: Sewage Effluent					
Receiving Waters	Conewago Creek (TSF, MF)	Stream Code	09217			
NHD Com ID	56405273	RMI	7.0			
Drainage Area	44.2 mi ²	Yield (cfs/mi ²)	0.0416			
Q ₇₋₁₀ Flow (cfs)	1.84	Q7-10 Basis	USGS PA StreamStats			
Elevation (ft)	364	Slope (ft/ft)				
Watershed No.	7-G	Chapter 93 Class.	_TSF, MF			
Existing Use	N/A	Existing Use Qualifier	N/A			
Exceptions to Use	N/A	Exceptions to Criteria	N/A			
Assessment Status	s Impaired					
Cause(s) of Impair	ment <u>Nutrients, Total Suspendec</u>	l Solids				
Source(s) of Impai	rment Agriculture, Agriculture					
TMDL Status	Final	Name Conewago C	Creek Watershed			
Nearest Downstrea	am Public Water Supply Intake	Columbia Borough				
PWS Waters	Susquehanna River	Flow at Intake (cfs)				
PWS RMI		Distance from Outfall (mi)	22			

Changes Since Last Permit Issuance: USGS PA StreamStats provided a drainage area of 44.2 mi² and a Q_{7-10} flow of 1.84 cfs at the point of discharge. A WQM Permit was issued on July 14, 2014 which approved the installation of a 48,000 gallon pre-equalization tank, 54,000 gallon post-equalization tank, 1 SBR Unit, 1 Sludge Digester.

Other Comments: None

Treatment Facility Summary							
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)			
Sewage	Secondary With Ammonia Reduction	SBR	Hypochlorite	0.15			
Hydraulic Capacity	Organic Capacity			Biosolids			
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal			
0.15	364	Not Overloaded	Sludge Holding	Other WWTP			

Changes Since Last Permit Issuance: None

Other Comments: The treatment process is as follows: Comminutor – Pre-Equalization Tank – 1 SBR Basin – Post-Equalization Tank – Microscreen Tank – Chlorine Contact Tank – Aerobic Digester – Outfall 001 to Conewago Creek.

	Compliance History
Summary of DMRs:	A summary of the past 12-month DMR effluent data is presented on the next page of this fact sheet
Summary of Inspections:	 11/4/2014: A routine inspection was conducted by Bob Haines, DEP Water Quality Specialist. The effluent was clear, and field readings were within the permitted range. There were activated sludge deposits present in the receiving stream at the outfall and 10-12' below the outfall. The operator was asked to have the sludge cleaned out from the stream. All treatment units were online, consisting of a comminutor, aeration tank, 2 clarifiers, 2 sludge holding tanks, chlorine addition, 2 chlorine contact tanks, and postaeration. The supernatant in the clarifiers had a lot of suspended floc that was not settling well. There was also some popping sludge clumps on the surface of both clarifiers. The RAS airlift pump was causing a lot of water movement, disturbing the settling sludge. Sludge carried over from the clarifiers and settled in a combined effluent box and in the metering pit. The operator reported that the chlorine contact tanks act as additional accumulated sludge pumped out, and reported that the contact tanks act as additional settling when the sludge carries over from the clarifiers. 11/6/2014: A follow up inspection was conducted by Bob Haines. The sludge had been cleaned from the stream. Very muddy water was observed discharging to Conewago Creek from a stormwater outfall which receives run-off from the WWTP. A construction worker was observed hosing down the mud covered asphalt driveway to a stormwater catch basin. The worker was asked to stop, and indicated that he would put a filter bag in the area he was hosing off, and would stop hosing altogether. 8/16/2016: A routine inspection was conducted by Sheena Ripple, DEP Water Quality Specialist. The SBR was not discharging during the inspection and was in react/fill mode. The outfall was free of debris and solids. No other issues were observed.

Other Comments: There are currently no open violations associated with the permittee or the facility.

Compliance History

DMR Data for Outfall 001 (from December 1, 2019 to November 30, 2020)

Parameter	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19
Flow (MGD)												
Average Monthly	0.043	0.041	0.035	0.044	0.050	0.049	0.039	0.048	0.049	0.049	0.057	0.042
Flow (MGD)												
Daily Maximum	0.068	0.079	0.067	0.081	0.051	0.107	0.107	0.081	0.079	0.089	0.087	0.075
pH (S.U.)												
Minimum	7.45	7.68	7.85	7.53	7.65	8.17	7.51	7.23	7.36	7.09	7.28	7.02
pH (S.U.)												
Maximum	8.12	8.22	8.54	8.49	8.35	8.87	8.87	8.14	8.14	8.12	7.91	8.14
DO (mg/L)												
Minimum	8.73	8.26	7.39	6.56	6.17	8.55	8.54	8.88	10.32	9.66	8.77	9.48
TRC (mg/L)												
Average Monthly	0.31	0.27	0.32	0.30	0.19	0.16	0.25	0.20	0.30	0.23	0.17	0.22
TRC (mg/L)												
Instantaneous												
Maximum	0.70	0.43	1.06	0.58	0.54	0.48	0.48	0.43	0.53	0.50	0.39	0.47
CBOD5 (mg/L)												
Average Monthly	2.18	2.22	3.05	3.46	2.52	2.76	3.3	3.1	3.28	2.75	3.35	6.16
TSS (mg/L)			_		_	_		_				
Average Monthly	3.4	5.75	5	6.4	5	5	5.25	5	4.4	6	6.75	4.2
Fecal Coliform												
(CFU/100 ml)	474 40	20.02	0.0	05.04	40.40	20.00	0.05	2.40	4.07	00.44	F 70	00.74
Geometric Mean	171.16	38.83	2.6	25.61	12.43	38.68	8.85	3.48	1.37	20.11	5.73	68.74
Maximum	6300	2200	22	10700	220	360	280	37	5	107	60	1060
	0300	2200	23	19700	230	300	200	57	5	107	00	1000
Average Monthly		0.230	0 100	0 168	0 552	0 105	0 1 1 1					
Total Phosphorus		0.200	0.100	0.100	0.002	0.100	0.111					
(lbs/day)												
Average Monthly	0 40	0.31	0.32	0.35	0.13	0.33	0 19	0.29	0 237	0.34	0.40	0 481
Total Phosphorus	0.10	0.01	0.02	0.00	0.10	0.00	0.10	0.20	0.201	0.01	0110	0.101
(mg/L)												
Average Monthly	0.89	0.86	0.93	0.88	0.38	0.91	0.52	0.68	0.55	0.59	0.71	1.134
Total Phosphorus (lbs)												
Total Monthly	12.12	9.84	9.6	10.97	4.26	9.9	5.96	8.85	7.35	10.07	12.4	14.911
Total Phosphorus (lbs)												
Total Annual			131									

Compliance History

Effluent Violations for Outfall 001, from: January 1, 2020 To: November 30, 2020

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	08/31/20	IMAX	19700	CFU/100 ml	1000	CFU/100 ml

Existing Effluent Limitations and Monitoring Requirements

The table below summarizes the effluent limits and monitoring requirements implemented in the existing NPDES permit.

Outfall 001

		Monitoring Requirements						
Paramatar	Mass Uni	ts (lbs/day)	Concentrations (mg/L)				Minimum	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	ХХХ	xxx	5.0	xxx	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	ххх	XXX	XXX	25	XXX	50	1/week	24-Hr Composite
TSS	ххх	XXX	XXX	30	XXX	60	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	XXX	200 Geo Mean	XXX	1.000	1/week	Grab
Ammonia May 1 - Oct 31	xxx	XXX	XXX	12	xxx	24	1/week	24-Hr Composite
Total Phosphorus	Report	XXX	XXX	2.0	XXX	4.0	1/week	24-Hr Composite
Total Phosphorus	Report Total Mo	xxx	XXX	XXX	XXX	XXX	1/month	Calculation
Total Phosphorus	xxx	913 Total Annual	XXX	xxx	xxx	XXX	1/year	Calculation

Compliance Sampling Location: Outfall 001

Other Comments: None

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.15
Latitude	40° 9' 48.30"		Longitude	76º 39' 42.80"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD₅, NH₃-N

Pursuant to 40 CFR § 122.44(d)(1)(i), more stringent requirements should be considered when pollutants are discharged at the levels which have the reasonable potential to cause or contribute to excursions above water quality standards.

WQM 7.0 ver. 1.0b is a water quality model designed to assist DEP in determining appropriate water quality based effluent limits (WQBELs) for carbonaceous biochemical oxygen demand (CBOD₅), NH₃-N and dissolved oxygen (D.O.). DEP's Technical Guidance No. 391-2000-007 provides the technical methods contained in WQM 7.0 for determining wasteload allocations and for determining recommended NPDES effluent limits for point source discharges. The model was utilized for this permit renewal, and the model output indicated a CBOD₅ average monthly limit of 25 mg/l, an NH₃-N average monthly limit of 21.91 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality.

The flow data used to run the model was acquired from USGS PA StreamStats, and is included at the end of this fact sheet. The existing $CBOD_5$ and NH_3 -N limits are more stringent than this more recent model output; therefore, the existing limits will remain in the permit. DEP's SOP No. BCW-PMT-033 recommends that for ammonia-nitrogen, "a seasonal multiplier of 3 times the summertime average monthly limit should be established for the winter period." As a result, a wintertime limit has been established for this permit.

Toxics

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Management Spreadsheet Ver. 1.1 to develop appropriate permit requirements for toxic pollutants of concern. Based on effluent sample results reported on the application, there are no necessary effluent limits or monitoring required for these parameters based on water quality. Reasonable potential to exceed water quality criteria was not determined, and the discharge concentrations were less than the thresholds for monitoring, or the pollutants were not detected and a sufficiently sensitive analytical method was used. Best Professional Judgement (BPJ) Limitations

Dissolved Oxygen

A minimum D.O. limit of 5.0 mg/L is a D.O. water quality criterion found in 25 Pa. Code § 93.7(a). This limit is included in the existing NPDES permit based BPJ. It is still recommended to include this limit in the draft permit to ensure that the facility continues to achieve compliance with DEP water quality standards.

Total Phosphorus

For Total Phosphorus (TP), the current NPDES permit requires the permittee to comply with average monthly and IMAX limits of 2.0 mg/L and 4.0 mg/L, respectively. DEP's Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams (Guidance No. 391-2000-018) was used during the past renewal to evaluate if phosphorus limitations were necessary. According to the guidance, phosphorus limits would be needed if the contributions from this facility exceeded 0.25% of the total phosphorus load of all discharges in the Lower Susquehanna River Basin. The calculated 7.7 lbs/day was 0.20% of the loading after delivery ratios to the lower Susquehanna River were applied; however, there is a Conewago Creek TMDL which establishes a TP permit limit of 2.0 mg/l, described below. The TP average monthly limit of 2.0 mg/l and instantaneous maximum of 4.0 mg/l will remain in the permit.

Additional Considerations

Chesapeake Bay Total Maximum Daily Load (TMDL)

DEP developed a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). This strategy can be located in the *Pennsylvania Chesapeake Watershed Implementation Plan* (WIP), dated January 11, 2011. Subsequently, an update to the WIP was published as the Phase 2 WIP. As part of the Phase 2 WIP, a *Phase 2 Watershed Implementation Plan Wastewater Supplement* (Phase 2 Supplement) was developed, providing an update on TMDL implementation for point sources and DEP's current implementation strategy for wastewater. A new update to the WIP was published as the Phase 3 WIP in August 2019. As part of the Phase 3 WIP, a *Phase 3 Watershed Implementation Plan Wastewater Supplement* (Phase 3 Supplement) was developed, and was most recently revised on December 17, 2019, and is the basis for the development of any Chesapeake Bay related permit parameters. Sewage discharges have been prioritized based on their design flow to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual Cap Loads based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. For Phase 4 and 5 facilities, Cap Loads are not currently being implemented for renewed or amended permits for facilities that do not increase design flow.

This facility is considered a Phase 5 non-significant discharger with a design flow less than 0.2 MGD but greater than 0.002 MGD. According to DEP's latest-revised Phase 3 Supplement, issuance of permits with monitoring and reporting for TN and TP is recommended for any Phase 5 non-significant sewage facilities. Furthermore, DEP's SOP No. BCW-PMT-033 states that in general, at a minimum, monitoring for TN and TP should be included in new and reissued permits for sewage discharges with design flows > 2,000 gpd. The existing permit already contains TP limits, so TN monitoring will be included in the renewed permit. Table 6-3 of DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001) recommends a measurement frequency of 1/week for NH₃-N and phosphorus, which will be used in the permit.

Conewago Creek TMDL

A TMDL exists for Conewago Creek for phosphorus and sediment. The TMDL was completed and approved on March 2, 2001 and was revised on June 27, 2006. The TMDL established TP permit limits for this facility of 913 lbs/year and 2.0 mg/l. These limits will remain in the permit.

Fecal Coliform

PA Code § 92a.47.(a)(4) requires a monthly average limit of 200/100 mL as a geometric mean and an instantaneous maximum limit not greater than 1,000/100 mL from May through September for fecal coliform. PA Code § 92a.47.(a)(5) requires a monthly average limit of 2,000/100 mL as a geometric mean and an instantaneous maximum limit not greater than 10,000/100 mL from October through April for fecal coliform. These limits will remain in the permit.

NPDES Permit Fact Sheet Conewago Ind Park

Total Residual Chlorine

The attached computer printout utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92, Section 92.2d (3) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns. This is consistent with the existing limits; therefore, a TRC limit of 0.5 mg/l monthly average and 1.5 mg/l instantaneous maximum will be included in the permit.

Sampling Frequency & Sample Type

The monitoring requirements were established based on BPJ and/or Table 6-3 of DEP's Technical Guidance No. 362-0400-001.

Flow Monitoring

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.61.

Mass Loading Limitation

All mass loading effluent limitations recommended in the draft permit are concentration-based, calculated using a formula: design flow (MGD) x concentration limit (mg/l) x conversion factor of 8.34.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is an aquatic life impairment due to nutrients and total suspended solids from agriculture. The proposed effluent limits include limits for TSS and TP, as well as monitoring for TN.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

Pursuant to 40 CFR § 122.44(I)(1), all proposed permit requirements addressed in this fact sheet are at least as stringent as the requirements implemented in the existing NPDES permit unless any exceptions addressed by DEP in this fact sheet.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	Mass Units (Ibs/day) ⁽¹⁾		Concentrat		Minimum ⁽²⁾	Required	
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
рН (S.U.)	XXX	XXX	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	ХХХ	xxx	ххх	1/day	Grab
TRC	XXX	XXX	XXX	0.5	xxx	1.6	1/day	Grab
CBOD5	ххх	XXX	XXX	25	xxx	50	1/week	24-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	1/week	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	12	XXX	24	1/week	24-Hr Composite
Ammonia-Nitrogen Nov 1 – Apr 30	ххх	XXX	XXX	36	XXX	72	1/week	24-Hr Composite
Total Phosphorus	Report Total Mo	XXX	XXX	2.0	XXX	4.0	1/week	24-Hr Composite
Total Phosphorus	XXX	913 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Kjeldahl Nitrogen	ххх	XXX	XXX	Report	XXX	ХХХ	1/week	24-Hr Composite
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation

Compliance Sampling Location: Outfall 001

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: No. BCW-PMT-002, No. BCW-PMT-033
	Other:

Copyright: @ 2013 National Geographic Society, I-cubed

NPDES Permit Fact Sheet Conewago Ind Park

×

Enter report title:

Conewago Industrial Park PA0080055 Outfall 001

Enter comments:

Some comments here

Conewago Industrial Park PA0080055 Outfall 001

NPDES Permit Fact Sheet Conewago Ind Park

NPDES Permit No. PA0080055

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	44.2	square miles
PRECIP	Mean Annual Precipitation	41	inches
STRDEN	Stream Density total length of streams divided by drainage area	2.19	miles per square mile
ROCKDEP	Depth to rock	4.3	feet
CARBON	Percentage of area of carbonate rock	0	percent

Low-Flow Statistics Parameters(100 Percent (44.1 aguara miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	44.2	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	41	inches	35	50.4
STRDEN	Stream Density	2.19	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65
CARBON	Percent Carbonate	0	percent	0	99

Low-Flow Statistics Flow Report (100 Percent (44.1 space miles) Low Prov Region 2]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	3.99	ft*3/s	38	38
30 Day 2 Year Low Flow	5.48	ft*3/s	33	33
7 Day 10 Year Low Flow	1.84	ft*3/s	51	51
30 Day 10 Year Low Flow	2.54	ft*3/s	46	46
90 Day 10 Year Low Flow	4.03	ft*3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

16

×

Enter report title:

Conewago Industrial Park PA0080055 Downstream Point

Enter comments:

Some comments here

Conewago Industrial Park PA0080055 Downstream Point

NPDES Permit Fact Sheet Conewago Ind Park

NPDES Permit No. PA0080055

Distantion i	Change at an	100 A. 10.
		REFER
	Carl Frank Carlor Street 1	

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	44.6	square miles
PRECIP	Mean Annual Precipitation	41	inches
STRDEN	Stream Density total length of streams divided by drainage area	2.19	miles per square mile
ROCKDEP	Depth to rock	4.3	feet
CARBON	Percentage of area of carbonate rock	0	percent

Low-Flow Statistics Parameters(100 Persent (44.6 aguare-miles) Low Pow Region 2

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	44.6	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	41	inches	35	50.4
STRDEN	Stream Density	2.19	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65
CARBON	Percent Carbonate	0	percent	0	99

Low-Flow Statistics Flow Report: 00 Percent (44.6 aguare miles) Lew Pow Region 2

PII: Prediction Interval-Lower. Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE	: Standard Error (other -	 see report)
---	---------------------------	---------------------------------

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	4.03	ft^3/s	38	38
30 Day 2 Year Low Flow	5.54	ft^3/s	33	33
7 Day 10 Year Low Flow	1.86	ft*3/s	51	51
30 Day 10 Year Low Flow	2.57	ft^3/s	46	46
90 Day 10 Year Low Flow	4.07	ft*3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

1	А	В	С	D	Е	F	G	Н	
1	1A	В	С	D	E	F	G		
2	2	TRC EVAL	UATION						
3	3	Input appropri	ate values i	n B4:B8 and E4:E7					
4	-4	1.84	= Q stream	n (cfs)	0.5	= CV Daily			
5	5	0.15	= Q discha	arge (MGD)	0.5	= CV Hourly			
6	6	30	= no. sam	oles	1	= AFC_Partia	Mix Factor		
7	-7	0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	Mix Factor		
8	8	0	= Chlorine	Demand of Disch	15	= AFC_Criteri	a Compliance T	ime (min)	
9	9	0.5	= BAT/BP.	J Value	720	= CFC_Criteri	a Compliance T	ime (min)	
10		0	= % Facto	r of Safety (FOS)		=Decay Coef	icient (K)		
11	10	Source	Reference	AFC Calculations		Reference	CFC Calculations		
12	11	TRC	1.3.2.iii	WLA afc =	2.548	1.3.2.iii	WLA cfc =	= 2.477	
13	12	PENTOXSD TRO	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc =	= 0.581	
14	13	PENTOXSD TRO	5.1b	LTA_afc=	0.950	5.1d	LTA_cfc =	= 1.440	
15	14								
16	15	Source		Effluent	Limit Cale	culations			
17	16	PENTOXSD TRO	5.1f	AML	_ MULT =	1.231			
18	17	PENTOXSD TRO	5.1g	AVG MON LIMI	[(mg/l) =	0.500	BAT/BPJ		
19	18			INST MAX LIMI	i (mg/i) =	1.635			
20									
22									
23		WIA afc	(_019/e(-k*	AFC to)) + ((AFC	Yc*Os*	019/Qd*e(-k*/	AFC tell		
24		in En alto	+ Xd + (/	AFC Yc*Qs*Xs/Qd)]*(1-FO	S/100)			
25		LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN	(cvh^2+1)^0.5)			
26		LTA_afc	wla_afc*LTA	AMULT_afc					
27									
28		WLA_cfc	(.011/e(-k*	CFC_tc) + [(CFC_)	Yc*Qs*.()11/Qd*e(-k*C	FC_tc))		
29			+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FO	S/100)			
30		LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+	1))-2.326	*LN(cvd^2/no_s	amples+1)^0.5)		
31		LTA_cfc	wla_cfc*LT4	MULT_cfc					
32									
33		AML MULT	EXP(2.326*L	N((cvd^2/no_sample	es+1)^0.5)-0.5*LN(cvd^2/	no_samples+1))		
34		AVG MON LIMIT	MIN(BAT_B	PJ,MIN(LTA_afc,LTA	_cfc)*AM				
35		INST MAX LIMIT	1.5*((av_n	ion_limit/AML_MU		MULI_atc)			
36			1						
37									

Input Data WQM 7.0

	SWF Basir	9 Strea n Coo	am le	Stre	am Name		RMI	Elevati (ft)	ion Drai Ar (sq	nage S rea mi)	Slope (ft/ft)	PWS /ithdrawal (mgd)	Apply FC
	07G	93	217 CONE	WAGO C	REEK		7.00	00 36	4.00	44.20 0	.00000	0.00	\checkmark
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	<u>itary</u> pH	<u>St</u> Temp	ream pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	1.84 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.00	7.00	0.0	0 0.00	
					Di	scharge l	Data						
	Existing Disc Name Permit Number Flow		Permitte Disc Flow (mod)	ed Design Disc Flow (mod)	Reserve Factor	Disc Temp (°C)	Disc pH						
		Cone	wago Ind	PAG	080055 P:	0.150	0 0.150 Data	0 0.1500	0.000	25.0	00 7.0	DO	
			I	Paramete	r Name	Di C (m	isc T onc C ig/L) (n	Trib Stre Conc Co ng/L) (m	eam Fa onc Co g/L) (1/d	ite bef avs)			
	-		CBOD5				25.00	2.00	0.00	1.50			

5.00

25.00

0.00

0.00

8.24

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

Version 1.0b

Page 1 of 2

Input Data WQM 7.0

	SWF Basi	o Strea n Cod	im le	Stre	am Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slop (ft/ft)	e PW Withd) (mg	/S irawal gd)	Apply FC
	07G	92	217 CONE	WAGO C	REEK		6.2	00	322.00	44.60	0.000	00	0.00	\checkmark
					St	ream Dat	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary p pH	1	<u>Strean</u> Temp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	1.86 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	0.00 7.	00	0.00	0.00	
					D	ischarge	Data						1	
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	ed Des Dis Flo) (mg	ign sc Res ow Fa gd)	Di: ierve Ter ictor (°(sc mp C)	Disc pH		
						0.000	0 0.00	00 0.0	0000	0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramoto	Namo	D	isc (Trib Conc	Stream Conc	Fate Coef				
				aramete	Marrie	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Version 1.0b

Page 2 of 2

			T QI	11.0	nyui	ouyn	anne	Out	Juis			
	<u>sw</u>	<u>P Basin</u> 07G	<u>Strea</u> 9	m Code 217			col	Stream NEWAG	<u>Name</u> O CREEK	t.		
RMI	Stream Flow	PWS With	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow	()	()	()	()	(-7	(-7		(1-)	(,-)	(-)	
7.000 Q1-1	1.84 0 Flow	0.00	1.84	.2321	0.00994	.613	23.26	37.96	0.15	0.336	20.56	7.00
7.000 Q30-	1.18 10 Flow	0.00	1.18	.2321	0.00994	NA	NA	NA	0.12	0.417	20.82	7.00
7.000	2.50	0.00	2.50	.2321	0.00994	NA	NA	NA	0.17	0.288	20.42	7.00

WQM 7.0 Hydrodynamic Outputs

Version 1.0b

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Friday, January 29, 2021

Version 1.0b

Page 1 of 1

	SWP Basin Stre 07G	eam Code 9217		St CONE	<u>ream Name</u> WAGO CREE	к	
NH3-N	Acute Allocatio	ns					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
7.00	0 Conewago Ind	9.11	50	9.11	50	0	0
NH3-N	Chronic Allocat	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
7.00	0 Conewago Ind	1.86	21.91	1.86	21.91	0	0

WQM 7.0 Wasteload Allocations

		CBC	DD5	NH	3-N	Dissolved	d Oxygen	Critical	Persont
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
7.00 C	onewago Ind	25	25	21.91	21.91	5	5	0	0

Version 1.0b

SWP Basin	Stream Code			Stream Name	
07G	9217		co	NEWAGO CREEK	
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperature (°C)	Analysis pH
7.000	0.15	0		20.560	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
23.263	0.61	3		37.959	0.145
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
4.58	0.82	3		2.45	0.731
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
7.880	13.91	15		Tsivoglou	5
Reach Travel Time (days	5)	Subreach	Reculte		
0.336	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.034	4.45	2.39	7.95	
	0.067	4.32	2.34	8.01	
	0.101	4.20	2.28	8.05	
	0.135	4.08	2.22	8.09	
	0.168	3.97	2.17	8.12	
	0.202	3.86	2.12	8.15	
	0.235	3.75	2.07	8.16	
	0.269	3.65	2.02	8.16	
	0.303	3.54	1.97	8.16	
	0.336	3.44	1.92	8.16	

WQM 7.0 D.O.Simulation

Friday, January 29, 2021

Version 1.0b

Page 1 of 1

	<u>SWP Basin</u> 07G	Stream Code 9217	le <u>Stream Name</u> CONEWAGO CREEK								
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)				
7.000	Conewago In	d PA0080055	0.150	CBOD5	25						
				NH3-N	21.91	43.82					
				Dissolved Oxygen			5				

WQM 7.0 Effluent Limits

Version 1.0b

Page 1 of 1

Discharge Information

Inst	ructions	ischarge Stream													
Fac	ility: Cor	ewago Industrial Pa	ark				NP	DES Per	mit No.:	PA0080	055		Outfall	No.: 001	
Eva	luation Type:	Major Sewage /	Industr	ial Wa	ste		Wa	stewater	Descrip	tion: Sev	vage Eff	luent			
					Discha	rge	Cha	racterist	tics						
De	sign Flow					P	arti	al Mix Fa	actors (F	PMFs)		Com	plete Mi:	x Times	(min)
-	(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC			CFC	THE	1	CRI	0		0	2
	0.15	100	8	00		-				-		_	-10		-
	0.15	100	0.	00											
								the set	0.5 10						a bila a la
						6) it lei	t biank	0.5 11 16	en blank	6	i it left blan	ĸ	1 in iei	t biank
	.			Max	Discharge	Т	rib	Stream	Daily	Hourly	Strea	Fate	500	Criteri	Chem
	Disch	arge Pollutant	Units		Conc	Co	onc	Conc	cv	cv	m CV	Coeff	FOS	a Mod	Transl
<u> </u>	Total Disculu														
-	Total Dissolve	ed Solids (PWS)	mg/L												
9	Chloride (PW)	5)	mg/L			\vdash	++								
ē	Bromide Cultate (DWC	\	mg/L			╞╞═	╞┼╴								
0	Surrate (PWS)	mg/L mg/l												
\vdash	Total Aluminu	5) m	Ing/L			╞┼═	╞┼╴			<u> </u>					
	Total Antimor	v	ug/l			┢┼╴	÷÷			<u> </u>					
	Total Arsenic	7	ug/l												
	Total Barium		uo/l			╞┼═	++								
	Total Berylliur	n	µa/L												
	Total Boron		µa/L												
	Total Cadmiu	m	µg/L			F-	H								
	Total Chromiu	um (III)	µg/L												
	Hexavalent C	hromium	µg/L												
	Total Cobalt		mg/L		0.015										
	Total Copper		µg/L												
b 2	Free Cyanide		µg/L												
10	Total Cyanide		µg/L												
ō	Dissolved Iror	1	µg/L					<u> </u>							
	Total Iron		mg/L	<	0.0022	╞╞═	╞╤╞								
	Total Lead		µg/L												
	Total Mangan	ese	µg/L												
	Total Mercury		µg/L			┢┼─	┢┼┼								
	Total Nickel	(Phanolics) (PWS)	µg/L							<u> </u>					
	Total Seleniu	(Friendlics) (FWS)	ug/L							<u> </u>					
	Total Silver		ug/l			\vdash	++								
	Total Thallium		ug/l							<u> </u>					
1	Total Zinc	-	mg/L		0.1										
1	Total Molybde	enum	µo/L												
	Acrolein		µg/L	<											
1	Acrylamide		µg/L	<											
1	Acrylonitrile		µg/L	<			H								
	Benzene		µg/L	<											
1	Bromoform		µg/L	<											

Discharge Information

1/29/2021

Page 1

Toxics Management Spreadsheet Version 1.1, October 2020

	Carbon Tetrachloride	µg/L	<								
	Chlorobenzene	µg/L									
	Chlorodibromomethane	µg/L	<	_			-				
	Chloroethane	µg/L	<		H						
	2-Chloroethyl Vinyl Ether	µg/L	<	F	Ħ						
	Chloroform	ug/L	<								
	Dichlorohromomethane	uo/	<								
	1 1-Dichlomethane	ug/l	2	H	=	+	-				
	1.0 Dicklessethers	PS/C		Н	Н	-					
3	1,2-Dichloroethane	µg/L	<	H	H						
1	1,1-Dichloroethylene	hð/r	<				1				
E.	1,2-Dichloropropane	µg/L	<				1				
0	1,3-Dichloropropylene	µg/L	<								
	1,4-Dioxane	µg/L	<	_			-				
	Ethylbenzene	µg/L	<	Η			-				
	Methyl Bromide	µg/L	<	F	Ħ						
	Methyl Chloride	uo/l	<	H							
	Methylene Chloride	uo/l	<								
	1.1.2.2 Tetrachlaraethana	Pare .					-				
	T, T, Z, Z-Tetrachioroethane	µg/L		⊢	۲	+					
	Tetrachioroethylene	µg/L	<			+					
	loluene	µg/L	<								
	1,2-trans-Dichloroethylene	µg/L	<								
	1,1,1-Trichloroethane	µg/L	<								
	1,1,2-Trichloroethane	µg/L	<				-				
	Trichloroethylene	µg/L	<								
	Vinyl Chloride	µg/L	<	Ħ	Η	-					
	2-Chlorophenol	uo/l	<	H	H						
	2 4-Dichlorophenol	ug/l	<		Ħ	Ħ					
	2.4 Dimethylohanal	- Part									
	2,4-Dimetryiphenol	µg/L	< <								
-	4,0-Dinitro-o-Cresol	µg/L	<	\vdash		_					
<u>a</u>	2,4-Dinitrophenol	µg/L	<		H		<u> </u>				
5	2-Nitrophenol	µg/L	<								
σ	4-Nitrophenol	µg/L	<				1				
	p-Chloro-m-Cresol	µg/L	<								
	Pentachlorophenol	µg/L	<				-				
	Phenol	µg/L	<	F			-				
	2,4,6-Trichlorophenol	µg/L	<	Г	Π						
	Acenaphthene	uo/l	<								
	Acenaphthylene	uo/l	<								
	Anthracene	uo/l	<	H	H	+					╞┼┼┼
	Pagaiding	- nell		\vdash	Η						
	Benze(a)Aethraceae	Pg/L		Ħ	Ħ						
	Benzo(a)Anthradene	µg/L					1				
	Benzo(a)Pyrene	µg/L	<								++++
	3,4-Benzofluoranthene	µg/L	<				L				+++
	Benzo(ghi)Perylene	µg/L	<				-				
	Benzo(k)Fluoranthene	µg/L	<								
	Bis(2-Chloroethoxy)Methane	µg/L	<								
	Bis(2-Chloroethyl)Ether	µg/L	<		Ц						
	Bis(2-Chloroisopropyl)Ether	µg/L	<	Н			-				
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	F	F						
	4-Bromophenyl Phenyl Ether	µa/L	<								
	Butyl Benzyl Phthalate	ua/L	<								
	2-Chloronaphthalene	uo/l	<	Ħ							
	4-Chlorophenyl Phenyl Ether	10/	<	H	Н	-					
	Charges	1975		H	H						
	Dihagaa (a. b.) Aatharanaa	µg/L	< .	F							
	Dibenzo(a,n)Anthrancene	hð/r	<								
	1,2-Dichlorobenzene	µg/L	<								
	1,3-Dichlorobenzene	µg/L	<				-				
5	1,4-Dichlorobenzene	µg/L	<				-				
đ	3,3-Dichlorobenzidine	µg/L	<	F			1				
2	Diethyl Phthalate	µg/L	<								
O	Dimethyl Phthalate	µg/L	<	Ē			-				
	Di-n-Butyl Phthalate	µg/L	<	F			-				
	2.4-Dinitrotoluene	µg/L	<	Ħ	H	-					
					ا						

Discharge Information

	2,6-Dinitrotoluene	µg/L	٨	Fř		-					
	Di-n-Octyl Phthalate	µg/L	<	H		Ť					
	1.2-Diphenylhydrazine	µa/L	<			T					
	Fluoranthene	uo/l	<	Ħ	+	t		 			
	Fluorene	uo/l	<	 H	+	┿					
	Havashlarahanzana	100/	-	H	÷	÷		 			
	Hexachiorobenzene	µg/L	-	 Ħ	÷	÷		 			
	Hexachiorobutadiene	µg/L	<			Ŧ	1				
	Hexachiorocyclopentadiene	µg/L	<	 \vdash	+	÷		 	 	 	
	Hexachloroethane	µg/L	<	⊨	+	╞					
	Indeno(1,2,3-cd)Pyrene	µg/L	<		+	+					
	Isophorone	µg/L	<			Ť					
	Naphthalene	µg/L	<			Т	1				
	Nitrobenzene	µg/L	<			Ţ					
	n-Nitrosodimethylamine	µg/L	<		-	+					
	n-Nitrosodi-n-Propylamine	ua/L	<	 Ħ	+	ŧ					
	n-Nitrosodinhenvlamine	uo/l	<	\vdash	+	+		 			
	Phenanthrone	ug/l	-	 Ħ	Ŧ	Ŧ		 		 	
	Dimension	Pg/L			-	+					
	Pyrene	µg/L	<	╞╡	+	┿					
	1,2,4-Trichlorobenzene	µg/L	<	 ╞╪	+	╞		 		 	
	Aldrin	µg/L	<	Þ	+	+					
	alpha-BHC	µg/L	<	Ľ		İ					
	beta-BHC	µg/L	<								
	gamma-BHC	µg/L	<	\vdash	_	+					
	delta BHC	µg/L	<			-					
	Chlordane	µg/L	<	H	-	÷					
	4.4-DDT	uo/L	<	H	Ť	Ť					
	4 4-DDF	uo/l	<		1	t		 		 	
	44-DDD	10/	~		+	+		 			
	Dieldrin	Hall Hall	-	 ╞┿	+	+		 			
	Dieldriff	Pg/L	-	 ┝┼	┿	┿		 	 	 	
	aipna-Endosuitan	µg/L	<	 Þ	÷	÷					
	beta-Endosulfan	µg/L	<		i	İ					
đ	Endosulfan Sulfate	µg/L	<		_	+					
5	Endrin	µg/L	<			_					
້ອ	Endrin Aldehyde	µg/L	<			┢					
	Heptachlor	µg/L	٨	H		┢					
	Heptachlor Epoxide	µg/L	<			Ì					
	PCB-1016	µg/L	<								
	PCB-1221	µg/L	<		-	+					
	PCB-1232	ua/L	<	Ħ	+	t		 			
	PCB-1242	uo/l	<	 \vdash	+	+		 			
	PCB-1249	ug/l	~	Ħ	Ŧ	Ŧ		 		 	
	DOD 1240	HQ/L			-	Ŧ		 			
	PGB-1204	µg/L	<	 \vdash	+	+		 			
	PCB-1200	µg/L	<	 ⊨⊧	+	╞		 	 	 	
	PCBs, Total	µg/L	<	 Þ	+	+					
	Toxaphene	µg/L	<			1					
	2,3,7,8-TCDD	ng/L	<								
	Gross Alpha	pCi/L			_	+					
~	Total Beta	pCi/L	٨			┢	-				
<u>₽</u>	Radium 226/228	pCi/L	٨	F†	1	Ť					
ē	Total Strontium	µg/L	٨								
G	Total Uranium	µg/L	<		-	t					
	Osmotic Pressure	mOs/ka		F.	+	÷					
				H	╈	t		 			
				 ΗŤ	Ť	Ť		 		 	
					+	+		 			
				H	+	+					
				+	+	+					
				Ħ	+	Ŧ					
						T					
				H	-	+					
				4	-	+					
				Ħ	+	+					
				H							
				T T		1	1				

Page 3

Toxics Management Spreadsheet Version 1.1, October 2020

Stream / Surface Water Information

Conewago Industrial Park, NPDES Permit No. PA0080055, Outfall 001

Instructions	Discha	rge Stream							
Receiving Su	rface Wa	ater Name:				l	No. Reaches to Mod	el: <u>1</u>	Statewide Criteria Great Lakes Criteria
Location	n	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*	ORSANCO Criteria
Point of Disc	harge	009217	7	364	44.2			Yes	-
End of Rea	ich 1	009217	6.2	322	44.6			Yes	

Q 7-10

Location	PMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	TSWI1	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	7	0.1										100	7		
End of Reach 1	6.2	0.1													

Qh

Location	DMI	PMI	LFY	Flow	Flow (cfs)		W/D Width	Depth Velocit	Time	Tributary		Stream		Analysis	
Location	TXIMIT	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dows)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	7														
End of Reach 1	6.2														

1/29/2021

Toxics Management Spreadsheet Version 1.1, October 2020

Model Results

Conewago Industrial Park, NPDES Permit No. PA0080055, Outfall 001

Instructions Results	RETURN TO INPUTS	SAVE AS P	DF	т 📄 🖲 А	All 🔿 Inputs 🔿 Results 🔿 Limits					
Hydrodynamics Wasteload Allocations ACC (min): 15 PME: 0.985 Applyin Hardpers (mg/l): 100 Applyin pH: 7.02										
		0.000	Analysis hardin	iss (mgn).	Too Analysis pri. 7.00					
Pollutants	Conc CV (µg/L)	nc Fate Coef	WQC WQ Obj (µg/L) (µg/L)	WLA (µg/L)	Comments					
Total Cobalt	0 0	0	95 95.0	1,660						
Total Iron	0 0	0	N/A N/A	N/A						
Total Zinc	0 0	0	117.180 120	2,094	Chem Translator of 0.978 applied					
	CT (min): 20.052 PMF	: 1	Analysis Hardn	ess (mg/l):	100 Analysis pH: 7.02					
Pollutants	Conc CV (µg/L)	nc Fate Coef	WQC WQ Obj (µg/L) (µg/L)	WLA (µg/L)	Comments					
Total Cobalt	0 0 0	0	19 19.0	381						
Total Iron	0 0	0	1,500 1,500	30,071	WQC = 30 day average; PMF = 1					
Total Zinc	0 0	0	118.139 120	2,402	Chem Translator of 0.986 applied					
₹ THH CC	CT (min): 20.052 PMF	: 1	Analysis Hardn	ess (mg/l):	N/A Analysis pH: N/A					
Pollutants	Conc Stream Trib Cor (ug/L) CV (µg/L)	nc Fate Coef	WQC WQ Obj (µg/L) (µg/L)	WLA (µg/L)	Comments					
Total Cobalt	0 0	0	N/A N/A	N/A						
Total Iron	0 0	0	N/A N/A	N/A						
Total Zinc	0 0	0	N/A N/A	N/A						
CRL CC	CT (min): 6.765 PMF	: 1	Analysis Hardn	ess (mg/l):	N/A Analysis pH: N/A					
Pollutants	Conc Stream Trib Cor (ug/L) CV (µg/L)	nc Fate Coef	WQC WQ Obj (µg/L) (µg/L)	WLA (µg/L)	Comments					
Total Cobalt	0 0	0	N/A N/A	N/A						

1/29/2021

Total Iron	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML MDL (lbs/day) (lbs/day)		AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments		
Total Cobalt	0.38	mg/L	Discharge Conc ≤ 10% WQBEL		
Total Iron	N/A	N/A	Discharge Conc < TQL		
Total Zinc	1.34	mg/L	Discharge Conc ≤ 10% WQBEL		