

Application TypeRenewalFacility TypeIndustrialMajor / MinorMinor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0080586

 APS ID
 276925

 Authorization ID
 1307804

Applicant and Facility Information

Applicant Name	Morton Bldg Inc.	Facility Name	Morton Bldg Manufacturing
Applicant Address	3370 York Road	Facility Address	3370 York Road
	Gettysburg, PA 17325-8258		Gettysburg, PA 17325-8258
Applicant Contact	Robert Mcmaster	Facility Contact	Robert Mcmaster
Applicant Phone	(717) 624-8000	Facility Phone	(717) 624-8000
Client ID	80413	Site ID	250875
SIC Code	3448	Municipality	Straban Township
SIC Description	Manufacturing - Prefabricated Metal Buildings	County	Adams
Date Application Recei	ved August 6, 2019	EPA Waived?	Yes
Date Application Accept	ted August 28, 2019	If No, Reason	
Purpose of Application	NPDES permit renewal.		

Summary of Review

Morton Building, Inc. has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued on February 20, 2015 and became effective on March 1, 2015. The existing permit expiration date was February 29, 2020.

The permit authorized discharge of treated sewage from the existing wastewater treatment plant (WWTP) located in Straban Township, Adams County to Unnamed Tributary of Swift Run (WWF).

The discharge design flow and hydraulic capacity is 0.003 MGD. The facility manufactures the wood and steel components, and directly discharges stormwater to a stormwater retention pond which is located in the southeast corner of the 20.5 acres of the operating facility. Therefore, the facility is subject to NPDES regulations per the General Stormwater NPDES permit for Industrial which is included in Part C Condition III Requirement applicable to Stormwater Outfalls in this proposed permit.

WQM No. 01104040 was issued on October 4, 2010.

Changes from the previous permit: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
Ň			
Х		Hilary H. Le / Environmental Engineering Specialist	March 16, 2020
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E./ Clean Water Program Manager	

Discharge, Receiv	ng Waters and Water Supply Inform	ation	
Quad Name	1 2 51' 54.36" Gettysburg cription: Sewage Effluent	Design Flow (MGD) Longitude Quad Code	0.003 -77º 7' 37.92"
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Us Assessment Stat	Unnamed Tributary to Swift Run (WWF) 133624954 0.42 mi. ² 0.006 560.45 7-F	Stream Code RMI Yield (cfs/mi ²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	08955 0.71 mile 0.015 USGS StreamStats WWF
Cause(s) of Impa Source(s) of Impa TMDL Status		Name	
Nearest Downstr PWS Waters PWS RMI	eam Public Water Supply Intake Susquehanna River 28.52 miles	Wrightsville Borough Municipa Flow at Intake (cfs) Distance from Outfall (mi)	al Authority, York County Approximate 69 miles

Changes Since Last Permit Issuance:

Drainage Area

The discharge is to unnamed tributary of Swift Run at RMI 0.71 miles. A drainage area upstream of the discharge is estimated to be 0.42 mi.², according to USGS StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Stream Flow

According to USGS StreamStats, the Q_{7-10} at the discharge point is 0.0061 cfs and the drainage area is 0.42 mi.² which results in a Q_{7-10} low flow yield of 0.015 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $\begin{array}{l} Q_{7\text{-}10} = 0.0061 \mbox{ cfs} \\ \mbox{Low Flow Yield} = 0.0061 \mbox{ cfs} / 0.42 \mbox{ mi.}^2 \approx 0.015 \mbox{ cfs/mi.}^2 \\ Q_{30\text{-}10} = 1.36 \mbox{ }^* \mbox{ 0.0061 \mbox{ cfs}} \approx 0.008 \mbox{ cfs} \\ Q_{1\text{-}10} = 0.64 \mbox{ }^* \mbox{ 0.0061 \mbox{ cfs}} \approx 0.004 \mbox{ cfs} \end{array}$

Unnamed Tributary to Swift Run

25 Pa Code § 93.90 classifies Unnamed Tributary to Swift Run as warm water fishes (WWF) surface water. Based on the 2018 Integrated Report, Swift Run (Assessment ID 11591), is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

Potable Water Supply Intake

The nearest downstream public water supply intake is the Wrightsville Borough Municipal Authority, York County intake on the Susquehanna River, approximately 69 miles from the point of discharge. Given the nature and dilution, the discharge is not expected to significantly impact the water supply.

	Trea	atment Facility Summa	ary	
reatment Facility Na	me: Morton Bldg Manufactu	ring		
WQM Permit No.	Issuance Date			
01104040	10/4/2010			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Industrial			Hypochlorite	0.0026
industrial			Typoononio	0.0020
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposa
0.003		Not Overloaded		

Changes Since Last Permit Issuance:

The facility is a 3,000 GPD system with the following treatment units:

One (1), Bar Screen One (1), Equalization Tank One (1), Aeration Tank One (1), Final Clarifier One (1), Chlorine Contact Tank One (1), Post-Aeration Tank One (1), Sludge Holding Tank

Sodium Hypochlorite is used for disinfection. Sodium Bisulfate is used for de-chlorination. Sodium Carbonate is used for pH adjustment as need. Aluminum sulfate is used for coagulant/phosphate precipitation as need. Anti-foam is used for surfactant as need.

	Compliance History
Summary of DMRs:	See DMR reported from February 1, 2019 to January 31, 2020 Table below (Page # 4).
Summary of Inspections:	8/1/2018: Mr. Bowen, DEP WQS, conducted routine partial inspection. The field test results were within permitted limits. There were no violations noted during inspection.10/31/2017: Mr. Bowen, DEP WQS, conducted compliance evaluation inspection. There
	were some recommendations such as clean the contact tank and effluent pump sump, lower the clarifier level before brushing down clarifier, use approved test methods for pH and D.O., and submit non-compliance form for September 2017 fecal coliform IMAX exceedance. The field test results were within permitted limits. There were no violations noted during inspection.
Other Comments:	There are currently no open violations associated with the permittee or the facility.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from February 1, 2019 to January 31, 2020)

Parameter	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19
Flow (MGD)												
Average Monthly	0.0005	0.0005	0.0005	0.0005	0.0006	0.0004	0.0004	0.0005	0.0006	0.0007	0.0006	0.0007
Flow (MGD)												
Daily Maximum	0.0007	0.0008	0.0008	0.0008	0.0008	0.0006	0.0008	0.0007	0.0011	0.0032	0.0008	0.0010
pH (S.U.)												
Minimum	8.2	8.1	8.4	8.3	8.3	8.2	7.9	8.3	8.2	8.1	8.2	8.2
pH (S.U.)												
Maximum	8.8	8.6	8.7	8.6	8.6	8.6	8.8	8.7	8.6	8.7	8.6	8.6
DO (mg/L)												
Minimum	13.4	11.6	10.2	8.6	8.2	8.2	8.5	8.8	9.6	10.5	12.4	14.2
TRC (mg/L)												
Average Monthly	0.12	0.11	0.11	0.10	0.10	0.10	0.10	0.08	0.11	0.12	0.12	0.09
TRC (mg/L)												
Instantaneous												
Maximum	0.23	0.23	0.27	0.32	0.27	0.27	0.22	0.16	0.22	0.37	0.32	0.20
CBOD5 (mg/L)											-	
Average Monthly	3.8	2.45	< 2.0	2.6	< 2.0	2.5	2.05	< 2.0	< 2.0	3.1	3	2.35
TSS (mg/L)	_	_	_			_		_	_	_		_
Average Monthly	< 5	< 5	< 5	6.5	6.5	< 5	5.5	5	< 5	< 5	9	5
Fecal Coliform												
(CFU/100 ml)	2.2	.10	.10	24.6	4 7	00.0	20.0	10.0	. 1	. 1	60.0	20
Geometric Mean	2.2	< 1.0	< 1.0	34.6	1.7	98.6	29.0	19.6	< 1	< 1	60.3	29
Fecal Coliform (CFU/100 ml)												
Instantaneous												
Maximum	5	< 1	< 1.0	1200	3	270	84	77	< 1	< 1	260	44
Nitrate-Nitrite (mg/L)	5		< 1.0	1200	5	270	04				200	
Average Monthly	81.2	69.6	40.7	78.4	72.1	71.1	47.5	52.8	46.3	11.6	47.8	58.4
Total Nitrogen (mg/L)	0112	0010	1011	10.1	,			02.0	1010	1110		0011
Average Monthly	82.2	70.6	41.7	80.1	73.1	72.1	48.5	53.8	47.3	12.6	48.8	59.4
Ammonia (mg/L)												
Average Monthly	0.125	0.107	< 0.10	0.238	0.17	0.113	0.15	< 0.10	< 0.10	0.182	0.1999	0.207
TKN (mg/L)												
Average Monthly	1.0	< 1.0	< 1.0	1.7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phosphorus												
(mg/L)												
Average Monthly	6.9	6.4	5.0	13.2	10.5	12.2	4.7	5.6	2.3	0.59	5.1	6.0

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.003
Latitude	39º 51' 53.81	"	Longitude	-77º 7' 37.94"
Wastewater D	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model indicates that a monthly average limit of 25 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. However, the existing limits of 25 mg/L average monthly (AML), and 50 mg/L instantaneous maximum (IMAX) will remain in the proposed permit as per guidance document 391-2000-014. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits.

Ammonia (NH₃-N):

NH₃-N calculations were first based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH₃-N criteria used in the attached computer model of the stream:

Discharge pH	=	7.0	(Default)
Discharge Temperature	=	20°C	(Default)
Stream pH	=	7.0	(Default)
Stream Temperature	=	20°C	(Default)
Background NH ₃ -N	=	0	(Default)

The model input data and results are attached. The printout of the WQM 7.0 output indicates that at a discharge of 0.003 MGD, limits (rounded according to the NPDES Technical Guidance 362-0400-001) of 5.46 mg/L NH₃-N as a monthly average (AML) and 10.92 mg/L NH₃-N instantaneous maximum (IMAX) are necessary to protect the aquatic life from toxicity effects. However, the more stringent in existing limits of 5.0 mg/L AML and 10.0 mg/L IMAX will remain in the proposed permit due to anti-backsliding requirements.

The winter effluent limit will be set at three-times the summer limits; therefore, the average monthly winter limit for NH_3-N will be 15.0 mg/L (5.0 mg/L x 3). For the same reason, the instantaneous maximum limit for the winter season will be 30 mg/L (10 mg/L x 3).

Additionally, past DMRs and inspection reports show that the facility has been consistently achieving concentrations under these limits.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/L AML and 60 mg/L IMAX will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 Pa. Code § 92a.47(a)(1).

Dissolved Oxygen (D.O.):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. This is consistent with the previous permit and current Department criteria.

pH:

The effluent discharge pH should remain above 6.0 and below 9.0 standard units according to 25 Pa. Code § 95.2(2).

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100 ml and 25 Pa. Code § 92a.47.(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean and an instantaneous maximum not greater than 10,000/100 ml.

Toxics:

This is a minor sewage facility receiving domestic wastewater only and the current application does not require sampling of toxic pollutants (or heavy metals) for those facilities with design flows less than 0.1 MGD. Therefore, no reasonable potential analysis for toxic pollutants has been performed for this permit renewal.

Total Residual Chlorine:

The attached computer printout utilizes the equations and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC), dated 11/15/94 (ID No. 391-2000-015) for developing chlorine limitations. The attached printout indicates that an average monthly water quality limit of 0.2 mg/L and 0.6 mg/L max daily would be needed to prevent toxicity concerns. This is consistent with the existing permit. The treatment facility is meeting this limit.

Phosphorus:

Phosphorus limitations are based on the Department's Implementation Guidance for Section 95.9 Phosphorus Discharge to Free Flowing Streams, dated 10/27/97 (ID No. 391-2000-018). This Guidance requires phosphorus control to be implemented at the technology-based limit of 2.0 mg/L if the discharge is to a stream or tributary that has a nutrient-related problem, provided that the discharger contributes 0.25% or more of the total point source phosphorus loading to the Lower Susquehanna. To determine the percentage of phosphorus contributed by the point discharge, the following calculations are utilized:

Phosphorus Loading from Discharger = (Flow Rate) x (Total P. Concentration) x (Density of Water) = (0.003 MGD)(12.675 mg/L)(8.34 (lb/MG)(L/mg)) = 0.317 lbs. P/day

Phosphorus Loading from Discharger Corrected for Biological Uptake = (Calculated Loading from Discharge) x (0.99^{Distance} from Outfall to Lower Susquehanna(mi.))

= (0.317 lbs. P/day)(0.99^{95.63}) = 0.121 lbs. P/day

Percentage of Phosphorus Loading from Discharger Relative to Total Phosphorus Loading from Watershed = $(0.121 \text{ lbs.} P/\text{day})/(3814 \text{ lbs.} P/\text{day}) \times 100\% = 0.003\%$.

0.003% < 0.25%; therefore, a Total Phosphorus limit is not required.

Chesapeake Bay Strategy:

The Department formulated a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). Sewage discharges have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6.0 mg/L TN and 0.8 mg/L TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. Phase 4 (0.2 - 0.4 MGD) will be required to monitor and report TN and TP during permit renewal monthly and Phase 5 (below 0.2 MGD) will monitor during current permit renewal once a year unless two years of monitoring were completed and documented. Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. This plant is classified as a phase 5 and will be required to monitor and report Nitrate-Nitrite as N, Total Kjeldahl Nitrogen, Total Phosphorus, and Total Nitrogen. The once per month monitoring and report requirements for these parameters will remain in the proposed permit.

Stormwater Requirements:

Morton Building Inc. is classified under SIC Code 3448 for Prefabricated Metal Buildings and Components which is subject to 40 CFR §122.26(b)(14)(xi), standard stormwater conditions will be included in Part C of the permit. Raw materials, intermediates, and final products at this facility are not exposed to stormwater. Additionally, the sample analysis submitted along with application summarized in Table below.

NPDES Permit Fact Sheet Morton Bldg Manufacturing

Pollutant	Average Concentration	Maximum Concentration
	Grab Sample	Grab Sample
Oil and Grease (mg/L)	ND	ND
BOD5 (mg/L)	2.7	2.7
COD (mg/L)	23	23
TSS (mg/L)	14	14
Total Nitrogen (mg/L)	ND	ND
Total Phosphorus (mg/L)	ND	ND
pH (S.U.)	Min. 8.07/Max. 8.07	Min. 8.07/Max. 8.07

Therefore, there are no limit requirements for stormwater outfall 002.

Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

303d Listed Streams:

The discharge is not located on a 303d listed stream segment.

WQM 7.0 model inputs:

Node 1: Trib 08955 of Swift Ru	n (stream code 08955)
Elevation:	560.45 ft (USGS National Map Viewer)
Drainage Area:	0.42 mi. ² (USGS PA StreamStats)
River Mile Index:	0.710 miles (PA DEP eMapPA)
Low Flow Yield:	0.015 cfs/mi. ²
Discharge Flow:	0.003 MGD (NPDES PA0080586)
Node 2: Just before conjunction	n to Trib 08954 to Swift Run
Elevation:	510.73 ft (USGS National Map Viewer)
Drainage Area:	0.76 mi. ² (USGS PA StreamStats)
River Mile Index:	0.10 mile (PA DEP eMapPA)
Low Flow Yield:	0.015 cfs/mi. ²
Discharge Flow:	

WQM 7.0 Data is attached.

TRC results

Trce EVALUATION Input appropriate values in A3:A9 and D3:D9 0.00061 = Q stream (cfs) 0.5 = CV Daily 0.003 = Q discharge (MGD) 0.5 = CV Hourly 30 = no. samples 1 = AFC_Partial Mix Factor 0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.438 1.3.2.iii WLA cfc = 0.420 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1f AML MULT = 1.231 Source Effluent Limit Calculations PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 INST MAX LIMIT (mg/l) = 0.657 + Xd + (AFC_tc_l) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc_l))
0.0061 = Q stream (cfs) 0.5 = CV Daily 0.003 = Q discharge (MGD) 0.5 = CV Hourly 30 = no. samples 1 = AFC_Partial Mix Factor 0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.438 1.3.2.iii WLA cfc = 0.420 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.163 5.1d LTA_cfc = 0.244 Source Effluent Limit Calculations FC INST MAX LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657
0.003 30= Q discharge (MGD)0.5 = CV Hourly30= no. samples1= AFC_Partial Mix Factor0.33= Chlorine Demand of Stream1= CFC_Partial Mix Factor0= Chlorine Demand of Discharge15= AFC_Criteria Compliance Time (min)0.55= BAT/BPJ Value720= CFC_Criteria Compliance Time (min)0= % Factor of Safety (FOS)= Decay Coefficient (K)SourceReferenceAFC CalculationsReferenceTRC1.3.2.iiiWLA afc = 0.4381.3.2.iiiPENTOXSD TRG5.1aLTAMULT afc = 0.3735.1cPENTOXSD TRG5.1bLTA_afc= 0.1635.1dSourceEffluent Limit CalculationsPENTOXSD TRG5.1fAML MULT = 1.231PENTOXSD TRG5.1gAVG MON LIMIT (mg/l) = 0.201PENTOXSD TRG5.1gAVG MON LIMIT (mg/l) = 0.657WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
30 = no. samples 1 = AFC_Partial Mix Factor 0.33 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.55 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.438 1.3.2.iii WLA cfc = 0.420 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc = 0.163 5.1d LTA_cfc = 0.244 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 INST MAX LIMIT (mg/l) = 0.657 + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = BAT//BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.438 1.3.2.iii WLA cfc = 0.420 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.163 5.1d LTA_cfc = 0.244 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 INST MAX LIMIT (mg/l) = 0.657 + Xd + (AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))
0= Chlorine Demand of Discharge15= AFC_Criteria Compliance Time (min)0.5= BAT/BPJ Value720= CFC_Criteria Compliance Time (min)0= % Factor of Safety (FOS)= Decay Coefficient (K)Source Reference AFC CalculationsTRC1.3.2.iiiWLA afc = 0.438PENTOXSD TRG5.1aLTAMULT afc = 0.373PENTOXSD TRG5.1bLTA_afc= 0.163Source Effluent Limit CalculationsTACLTA_afc= 0.163Source Colspan="2">Effluent Limit CalculationsPENTOXSD TRG 5.1aDETOXSD TRG 5.1bAFC CalculationsFfluent Limit CalculationsPENTOXSD TRG 5.1fAML MULT = 1.231PENTOXSD TRG 5.1gAVG MON LIMIT (mg/l) = 0.201AFCINST MAX LIMIT (mg/l) = 0.657
0.5= BAT/BPJ Value720= CFC_Criteria Compliance Time (min)0= % Factor of Safety (FOS)= Decay Coefficient (K)Source Reference AFC CalculationsTRC1.3.2.iiiWLA afc = 0.438PENTOXSD TRG5.1aLTAMULT afc = 0.373PENTOXSD TRG5.1bLTA_afcc = 0.163Source Effluent Limit CalculationsSource Effluent Limit CalculationsPENTOXSD TRG 5.1fPENTOXSD TRG5.1fAVG MON LIMIT (mg/l) = 0.201AFCINST MAX LIMIT (mg/l) = 0.657WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
0 = % Factor of Safety (FOS) =Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.438 1.3.2.iii WLA cfc = 0.420 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.163 5.1d LTA_cfc = 0.244 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) Source
TRC 1.3.2.iii WLA afc = 0.438 1.3.2.iii WLA cfc = 0.420 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.163 5.1d LTA_cfc = 0.244 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 ULA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) MULA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))
PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.163 5.1d LTA_cfc = 0.244 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 INST MAX LIMIT (mg/l) = 0.657 + Xd + (AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))
PENTOXSD TRG 5.1b LTA_afc= 0.163 5.1d LTA_cfc = 0.244 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 INST MAX LIMIT (mg/l) = 0.657 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) +
Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 INST MAX LIMIT (mg/l) = 0.657 AFC WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 INST MAX LIMIT (mg/l) = 0.657 AFC WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 INST MAX LIMIT (mg/l) = 0.657 AFC WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.201 AFC INST MAX LIMIT (mg/l) = 0.657 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
INST MAX LIMIT (mg/l) = 0.657 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)
LTA_afc wla_afc*LTAMULT_afc
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)
LTA_cfc wla_cfc*LTAMULT_cfc
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)
INST MAA LIMIT 1.3 ((av_mon_limit/AML_MOLT//LTAMOLT_AIC)

Existing Effluent Limitations and Monitoring Requirements

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day)		Concentrations (mg/L)				Minimum	Required
	Average Monthly	Daily Maximum	Minimum	Average Monthly		Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	ххх	ххх	XXX	XXX	Continuous	Measured
pH (S.U.)	ХХХ	XXX	6.0	ХХХ	XXX	9.0	1/day	Grab
Dissolved Oxygen	ХХХ	xxx	5.0	xxx	XXX	xxx	1/day	Grab
Total Residual Chlorine	ххх	xxx	XXX	0.2	XXX	0.6	1/day	Grab
CBOD ₅	ххх	xxx	XXX	25	XXX	50	2/month	Grab
Total Suspended Solids	ххх	xxx	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	ххх	xxx	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Ammonia-Nitrogen May 1 – Sep 30	ххх	XXX	XXX	5.0	XXX	10.0	2/month	Grab
Ammonia-Nitrogen Oct 1 - Apr 30	ххх	XXX	XXX	15.0	XXX	30.0	2/month	Grab
Nitrate-Nitrite as N	ххх	xxx	XXX	Report	XXX	XXX	1/month	8-Hr Composite
Total Kjeldahl Nitrogen	ххх	xxx	XXX	Report	XXX	xxx	1/month	8-Hr Composite
Total Phosphorus	XXX	xxx	XXX	Report	XXX	xxx	1/month	8-Hr Composite
Total Nitrogen	ххх	xxx	XXX	Report	XXX	XXX	1/month	Calculation

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Parameter	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	ххх	Continuous	Measured
рН (S.U.)	xxx	xxx	6.0 Daily Min	xxx	xxx	9.0	1/day	Grab
DO	ххх	xxx	5.0 Daily Min	xxx	xxx	xxx	1/day	Grab
TRC	xxx	XXX	XXX	0.2	xxx	0.60	1/day	Grab
CBOD5	ХХХ	XXX	XXX	25	xxx	50	2/month	Grab
TSS	XXX	XXX	XXX	30	xxx	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	xxx	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab
Nitrate-Nitrite	ххх	xxx	xxx	Report	XXX	ххх	1/month	Grab
Total Nitrogen	xxx	xxx	xxx	Report	xxx	ххх	1/month	Calculation
Ammonia Nov 1 - Apr 30	XXX	xxx	xxx	15	XXX	30	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	5.0	XXX	10	2/month	Grab
TKN	ХХХ	XXX	XXX	Report	XXX	ХХХ	1/month	Grab
Total Phosphorus	ххх	xxx	xxx	Report	XXX	ххх	1/month	Grab

Compliance Sampling Location:

Other Comments:

Tools and References Used to Develop Permit

WQM for Windows Model (see Attachment) PENTOXSD for Windows Model (see Attachment) TRC Model Spreadsheet (see Attachment) Temperature Model Spreadsheet (see Attachment) Toxics Screening Analysis Spreadsheet (see Attachment) Water Quality Toxics Management Strategy, 361-0100-003, 4/06.) Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-21 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.	
TRC Model Spreadsheet (see Attachment) Temperature Model Spreadsheet (see Attachment) Toxics Screening Analysis Spreadsheet (see Attachment) Water Quality Toxics Management Strategy, 361-0100-003, 4/06.) Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-21. 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08.	
Temperature Model Spreadsheet (see Attachment) Toxics Screening Analysis Spreadsheet (see Attachment) Water Quality Toxics Management Strategy, 361-0100-003, 4/06.	
Toxics Screening Analysis Spreadsheet (see Attachment) Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-211/12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08.	
Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-211 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08.	
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-211 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08.	
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-21. 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08.	
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-211 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08.	
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-21 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08.	
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-21. 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08.	
12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08.	
	33-004,
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.	
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Ac 2000-002, 4/97.	xt, 391-
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.	
Implementation Guidance Design Conditions, 391-2000-006, 9/97.	
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.	
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Disc 391-2000-008, 10/1997.	
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, and Impoundments, 391-2000-010, 3/99.	
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation P for Toxics, Version 2.0, 391-2000-011, 5/2004.	rogram
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, D Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.	rainage
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.	
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.	
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018	
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dis Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.	
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Hardness, 391-2000-021, 3/99.	Ũ
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determ of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.	nination
Design Stream Flows, 391-2000-023, 9/98.	
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variati and Other Discharge Characteristics, 391-2000-024, 10/98.	on (CV)
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.	
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.	
SOP:	
Other:	