

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.PA0080748APS ID14511Authorization ID1354573

Applicant and Facility Information

Applicant Name	Northern Lebanon County Authority	Facility Name	Jonestown STP
Applicant Address	PO Box 434	Facility Address	400 Jonestown Road
	Jonestown, PA 17038-0434		Jonestown, PA 17038
Applicant Contact	James Darkes	Facility Contact	James Darkes
Applicant Phone	(717) 865-7202	Facility Phone	(717) 865-7202
Client ID	65331	Site ID	252109
Ch 94 Load Status	Not Overloaded	Municipality	Union Township
Connection Status	No Limitations	County	Lebanon
Date Application Receiv	ved May 14, 2021	EPA Waived?	No
Date Application Accep	ted May 28, 2021	If No, Reason	Significant CB Discharge
Purpose of Application	NPDES permit renewal for discharg	ge of treated sewage	

Summary of Review

1.0 General Discussion

This factsheet is developed for the renewal of an existing NPDES permit for discharge of treated sewage from the Jonestown wastewater treatment plant. Northern Lebanon County Authority owns, maintains and operates the Jonestown wastewater treatment plant located in Union Township, Lebanon County. The sequential batch reactor (SBR) treatment process discharges treated wastewater to Swatara Creek which is classified for warm water fishes and migratory fishes. The collection system has no combined sewers. The facility has a design average annual flow of 0.75 MGD and the hydraulic design capacity is 0.9 MGD and the organic design capacity is 2,502lbs/day. The facility receives 18% of the flow flows from Union Township, 48% of the flow from Swatara Township and 34% of the flow from Jonestown Borough. The existing NPDES permit was issued on January 27, 2017 with an effective date of February 1, 2017 and expiration date of January 31, 2022. The applicant submitted a timely NPDES renewal application to the Department. A topographic map showing the discharge location is presented in attachment A. A draft permit was issued on January 25, 2022, but the facility has retired on-lots and has recently connected flows from Swatara Mobile Home Park(PA0084255) and requested adjustment in Total Nitrogen Cap load to account for credits from the retired mobile home park and offsets from the retired on-lots. The permit is being re-drafted to address permittee's request. See section 4.4.9 of the factsheet for details.

1.1 Sludge use and disposal description and location(s):

Sludge is wasted from the SBRs to the two aerobic digesters for digestion. Digested sludge is sent to either the retrofitted sludge holding tank or the retrofitted primary clarifier for thickening prior to hauling out to Annville Township Authority STP.

Approve	Deny	Signatures	Date
х		J. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	April 11, 2022
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	April 27, 2022
х		Maria D. Bebenek Maria D. Bebenek. P.E. / Program Manager	April 27, 2022

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

- Quarterly monitoring of E. Coli has been added
- Monthly monitoring of Total Copper and Total Zinc has been added.
- 75lbs of Total Nitrogen offsets has been added for connection of retired on-lots
- 91lbs of Total Nitrogen and 15lbs of Total Phosphorus has been to the Chesapeake Bay Cap loads for connection of a decommissioned package plant that served a mobile home park.

1.4 Existing Limit and Monitoring Requirements

			Efflu	ent Limitati	ons		Monitoring Re	quirements	
Discharge Parameter		Mass Units (Ibs/day)		Conce	ntrations (n	ng/L)	Minimum	Required	
	Monthly Average	Weekly Average	Mini mum	Monthly Average	Weekly Average	Instantaneous Maximum	Measurement Frequency	Sample Type	
Flow (mgd)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/Day	Grab	
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/Day	Grab	
TSS	188	281	XXX	30	45	60	2/week	24-hr comp	
CBOD ₅	156	250	XXX	25	40	50	2/week	24-hr comp	
Fecal Coliform (5/1 to 9/30) ⁽⁵⁾	XXX	XXX	XXX	200	XXX	ХХХ	2/week	Grab	
Fecal Coliform (10/1 to 4/30)	XXX	XXX	XXX	2,000	XXX	XXX	2/week	Grab	
Total Phosphorus	12.5	XXX	XXX	2.0	XXX	4.0	2/week	24-hr comp	
Ammonia Nov 1 - Apr 30	Report	xxx	ххх	Report	xxx	Report	2/week	24-hr comp	
Ammonia May 1 - Oct 31	84	xxx	ххх	13.5	xxx	27	2/week	24-hr comp	

Summary of Review

1.4.1 Chesapeake Bay Permit Requirements

		Effluent L		Monitoring Requirements			
Discharge	Mass Lo	pad(lbs)	Cor	ncentrations (r	ng/l)	Minimum	
Parameter	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Required Sample Type
AmmoniaN	Report	Report	xxx	Report	xxx	1/week	24-hr Comp
KjeldahlN	Report	xxx	xxx	Report	xxx	2/Week	24-hr Comp
Nitrate-Nitrite as N	Report	xxx	xxx	Report	xxx	1/Week	24-hr Comp
Total Nitrogen	Report	Report	xxx	Report	xxx	1/Month	Calculate
Total Phosphorus	Report	Report	xxx	Report	xxx	2/week	24-hr Comp
Net Total Nitrogen	Report	7,306	xxx	XXX	xxx	1/Month	Calculate
Net Total Phos.	Report	974	xxx	xxx	xxx	1/Month	Calculate

1.5 Discharge, Receiving Waters and Water Supply I	nformation				
Outfall No. 001	Design Flow (MGD)	.75			
Latitude 40° 24' 11"	Longitude	-76º 29' 11"			
Quad Name Fredericksburg	Quad Code	1634			
Wastewater Description: Sewage Effluent					
Receiving Waters Swatara Creek	Stream Code	09361			
NHD Com ID 56396579	RMI	39.22			
Drainage Area 291.0	Yield (cfs/mi ²)	0.0656			
Q ₇₋₁₀ Flow (cfs) <u>12.5</u>	Q ₇₋₁₀ Basis	USGS Gage station			
Elevation (ft)	Slope (ft/ft)				
Watershed No. 7-D	Chapter 93 Class.	WWF, MF			
Existing Use	Existing Use Qualifier				
Exceptions to Use	Exceptions to Criteria				
Assessment Status Attaining Use(s)					
Cause(s) of Impairment					
Source(s) of Impairment					
TMDL Status	Name				
Background/Ambient Data	Data Source				
pH (SU)					
Temperature (°F)					
Hardness (mg/L)					
Other:					
Necrost Downstroom Dublic Water Cumby Intels	Denneukienie American Weter				
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water				
PWS Waters Swatara Creek	Flow at Intake (cfs)				
PWS RMI	Distance from Outfall (mi)	<30			

Changes Since Last Permit Issuance: None

1.5.1 Water Supply Intake

The closest water supply intake located downstream from the discharge is Pennsylvania American Water Co. in South Hanover Township, Dauphin County. The distance downstream from the discharge to the intake is approximately 30 miles. No impact is expected from this discharge

2.0 Treatment Facility Summary

WQM Permit No.	Issuance Date			
3874404 12-1	June 24, 2013			
	Degree of	D	Disinfection	Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
	Secondary With Ammonia And	Sequencing Batch		
Sewage	Phosphorus	Reactor	Ultraviolet	0.75
lydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
0.9	2,502	Not Overloaded	Aerobic Digestion	Other WWTP

Changes Since Last Permit Issuance: None

2.1 Treatment Facility Description

The treatment plant consists of influent pump station, screening unit, 2 SBRs, post SBR equalization, 2 aerobic digesters, 2 sludge holding tanks, 2 sidestream equalization tanks and UV for disinfection and standby effluent pumps.

2.2 Treatment Chemicals

- Sodium Hydroxide for alkalinity or pH adjustment as needed
- Delpac 1525 for phosphorus removal
- Micro C 2000 for carbon Source

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from December 1, 2020 to November 30, 2021)

Parameter	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20
Flow (MGD)												
Average Monthly	0.267	0.258	0.499	0.2449	0.240	0.2351	0.253	0.282	0.3994	0.319	0.3156	0.420
Flow (MGD)												
Daily Maximum	0.357	0.453	1.97	0.389	0.291	0.265	0.325	0.432	1.21	0.669	0.5096	2.082
pH (S.U.)												
Minimum	7.29	7.17	7.08	7.23	7.29	7.26	6.90	6.94	6.71	6.89	6.87	6.74
pH (S.U.)												
Maximum	7.53	7.39	7.43	7.44	7.50	7.48	7.35	7.14	7.10	7.12	7.13	7.25
DO (mg/L)												
Minimum	8.52	7.95	7.94	7.29	7.31	7.46	8.04	8.95	9.20	9.49	9.35	8.68
CBOD5 (lbs/day)												
Average Monthly	< 5	< 4	< 10	< 4	< 4	< 5	< 5	< 7	< 7	< 7	6	6
CBOD5 (lbs/day)												
Weekly Average	5	< 4	29	4	5	7	8	10	< 13	8	7	10
CBOD5 (mg/L)												
Average Monthly	< 2.3	< 2.0	< 2.2	< 2.0	< 2.2	< 2.5	< 2.6	< 2.9	< 2.1	< 2.8	< 2.4	2.5
CBOD5 (mg/L)												
Weekly Average	2.6	2.0	3.0	2.0	2.4	3.7	4.4	4.3	2.3	3.6	2.7	3.1
BOD5 (lbs/day)												
Raw Sewage Influent												
 Ave. Monthly	612	508	686	503	530	562	559	591	633	537	545	578
BOD5 (lbs/day)												
Raw Sewage Influent												
 Daily Maximum	721	587	1132	567	574	689	666	660	760	565	616	711
BOD5 (mg/L)												
Raw Sewage Influent	070	0.40	407	054	005	070	050	050	004	014	045	000
 Ave. Monthly	272	248	197	254	265	276	253	258	224	211	215	229
TSS (lbs/day)	4	. 1	10	. 5	4	. 0	. 2	C	. 10	. 10	. 10	. 10
Average Monthly	4	< 4	16	< 5	4	< 2	< 3	6	< 13	< 10	< 10	< 10
TSS (lbs/day) Raw Sewage Influent												
<pre> Ave. Monthly</pre>	470	418	662	404	351	342	460	449	524	581	480	580
TSS (lbs/day)	470	410	002	404	301	342	400	449	524	501	400	560
Raw Sewage Influent												
<pre> Daily Maximum</pre>	556	479	1516	475	372	370	716	523	616	941	607	717
TSS (lbs/day)	550	413	1310	475	512	570	710	525	010	341	007	/ 1/
Weekly Average	7	6	67	9	6	4	5	9	< 26	< 15	< 13	< 13
weekiy Avelaye	1	0	07	3	0	-	5	9	< 20	< 1J	< 13	< 13

TSS (mg/L)												
Average Monthly	2.0	< 2.0	3.0	< 3.0	2.0	< 1.0	< 1.0	3.0	< 4.0	< 4.0	< 4.0	< 4.0
TSS (mg/L)												
Raw Sewage Influent												
 Ave. Monthly	208	202	167	205	175	168	203	194	177	213	187	234
TSS (mg/L)												
Weekly Average	3.0	3.0	7.0	5.0	3.0	2.0	2.0	3.0	< 4.0	< 4.0	< 4.0	4.4
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	12	< 11	44	26	12	19	19	13	2	7	12	14
Fecal Coliform												
(CFU/100 ml)												
Instant. Maximum	23	84	300	44	18	33	26	25	5	17	22	44
Nitrate-Nitrite (mg/L)												
Average Monthly	3.54	3.19	4.27	3.47	2.89	2.87	3.18	3.53	3.85	4.1	3.78	4.25
Nitrate-Nitrite (lbs)												
Total Monthly	235	202	465	225	176	167	208	260	494	282	320	382
Total Nitrogen (mg/L)												
Average Monthly	< 4.17	< 3.9	< 4.97	< 4.33	3.94	4.02	4.1	4.45	5.3	5.61	< 4.67	< 5.3
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	< 277	< 246	< 557	< 279	241	235	266	327	664	379	393	464
Total Nitrogen (lbs)												
Total Monthly	< 277	< 246	< 557	< 279	241	235	266	327	664	379	< 393	< 464
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual			< 4502									
Total Nitrogen (lbs)												
Total Annual			< 4502									
Ammonia (lbs/day)												
Average Monthly	< 0.1	< 0.1	< 0.3	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.6	< 0.5	< 0.3	< 0.4
Ammonia (mg/L)												
Average Monthly	< 0.05	< 0.06	< 0.1	< 0.10	< 0.1	< 0.10	< 0.1	< 0.1	< 0.22	< 0.24	< 0.13	< 0.15
Ammonia (lbs)	_	_		_	_	-	-	_				
Total Monthly	< 3	< 4	< 10	< 6	< 6	< 6	< 6	< 7	< 20	< 15	< 11	< 12
Ammonia (lbs)												
Total Annual			< 115									
TKN (mg/L)		a = <i>i</i>	c –									
Average Monthly	< 0.63	< 0.71	< 0.7	< 0.86	1.05	1.16	0.92	0.93	1.45	1.51	< 0.9	< 1.05
TKN (lbs)			- ·		0-			a-	455	a -		
Total Monthly	< 42	< 44	< 91	< 54	65	68	58	67	170	97	< 73	< 82
Total Phosphorus	4.65		0.54			o –		4.00	0.00	4.07		
(lbs/day) Ave. Monthly	1.62	1.3	2.51	1.47	1.04	0.7	0.9	1.99	2.60	1.35	1.47	0.90

Total Phosphorus (mg/L)												
Average Monthly	0.72	0.6	0.72	0.70	0.54	0.38	0.44	0.81	0.75	0.57	0.55	0.31
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	48.5	39	< 75.23	45.63	32.17	22.21	28.65	59.77	80.48	37.89	45.60	26.61
Total Phosphorus (lbs)												
Total Monthly	48.5	39	75.23	45.63	32.17	22.21	28.65	59.77	80.48	37.89	45.60	26.61
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual			545									
Total Phosphorus (lbs)												
Total Annual			545									
UV Dosage												
(mjoules/cm ²)												
Minimum	41	51	32	73	75	80	85	75	33	89	64	37

3.3 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met consistently. No effluent violation was recorded during the period reviewed.

3.4 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations were found during plant inspections. The facility is operated and well maintained.

4.0 Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	.75
Latitude	40° 24' 11.00"	Longitude	-76º 29' 11.00"
Wastewater De	escription: Sewage Effluent		

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC limitation not applicable, the facility utilizes UV for disinfection.

4.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) \times design flow (mgd) \times 8.34

4.4 Water Quality-Based Limitations

4.4.1 Receiving Stream

The receiving stream is the Swatara Creek. According to 25 PA § 93.9o, Swatara Creek is protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). It is located in Drainage List O and State Watershed 7-D. It has been assigned stream code 09361. According to the Department's Pennsylvania Integrated Water Quality Monitoring and Assessment Report, the stream segment receiving the discharge is attaining it uses.

4.4.2 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No 01573000 on Swatara Creek at Harper Tavern. The Q_{7-10} and drainage area at the gage is 22.1ft3/s and 337 mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (22.1 \text{ ft}^3/\text{s})/337 \text{ mi}^2 = 0.0656 \text{ ft}^3/\text{s}/\text{ mi}^2$
- $Q_{30-10} / Q_{7-10} = 1.40$
- $Q_{1-10} / Q_{7-10} = 0.80$

The drainage area at discharge calculated from streamstats = 291.0 mi² (this is different from the drainage area of 191.0 mi² used in the previous protection report and has changed the Q_{7-10} significantly)

The Q_{7-10} at discharge = 291mi² x 0.0.0656ft³/s/mi² = 19.1ft³/s.

4.4.3 NH₃N Calculations

 $NH_{3}N$ calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $NH_{3}N$ criteria used in the attached computer model of the stream:

STP pH	=7.2 (DMR median)
STP Temp	=25°C (Default)
Stream pH	=7.0 (Default)
Stream Temp	=20°C (Default)
Background NH ₃ N	=0.00 (Default)

4.4.4 CBOD₅

Due to the proximity of Fort Indiantown Gap discharge (PA0028142) and Monroe Valley discharge (PA0247570) to Northern Lebanon County Authority Discharge, they were modeled together. The results of WQM 7.0 stream model presented in attachment B indicates that for the Northern Lebanon County Authority Discharge of 0.75MGD, an average monthly limit (AML) of 25mg/l is required to protect the water quality of the stream. This limit is consistent with the existing permit and the STP has been consistently achieving below 10 mg/l CBOD₅. Therefore, a limit of 25mg/l AML, 40mg/l average weekly limit (AWL) and 50 mg/l IMAX is recommended for this permit cycle. Mass limits are calculated as follows:

Mass based AML (lb/day) = $25 \text{ (mg/L)} \times 0.75 \text{(mgd)} \times 8.34 = 156$

Mass based AWL (lb/day) = $40(mg/L) \times 0.75(mgd) \times 8.34 = 250$

<u>4.4.5 NH₃-N</u>

The results of WQM 7.0 stream model presented in attachment B also indicates that a summer limit of 20 mg/l NH_3 as a monthly average is necessary to protect the aquatic life from toxicity effects. This is less stringent than the existing limit of 13.5 mg/l and will not be written in the permit due to anti-backsliding restrictions. The existing summer average limit of 13.5 mg/l with monitoring during winter months is recommended for the current permit renewal. Mass limits are calculated as follows:

Mass based AML (lb/day) for the summer months = $13.5 \text{ (mg/L)} \times 0.75 \text{ (mgd)} \times 8.34 = 84$

4.4.6 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.4.7 Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/l AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/l per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2)

Mass based AML (lb/day) = $30 \text{ (mg/L)} \times 0.75 \text{ (mgd)} \times 8.34 = 188$

Mass based AWL (lb/day) = $45(mg/L) \times 0.75(mgd) \times 8.34 = 281$

4.4.8 Total Phosphorus:

The existing phosphorus limitation of 2mg/l to control phosphorus discharges to the Lower Susquehanna River Basin is superseded by the Chesapeake Bay Strategy but would be continued due to anti-backsliding.

4.4.9 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

As outlined in the current Phase 3 WIP and the current supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals.

This facility falls in phase 2 of the strategy and is currently required to meet a total maximum annual Total Nitrogen Cap load of 7,306 lbs/year based on a design annual wasteflow of 0.4 MGD and 6 mg/l total nitrogen and a TP cap load of 974 lbs/year based on annual wasteflow of 0.4 MGD and 0.8 mg/l total phosphorus.

Swatara Mobile Home Park is a 0.0088MGD package plant with Permit Number PA0084255 was decommissioned and the flow is connected to the Northern Lebanon County Authority (NLCA) Jonestown STP for treatment. The Cap load will be transferred from the Mobile Home Park to NLCA Jonestown STP in accordance with the Phase III WIP Wastewater Supplement, revised September 13, 2021. The loadings are calculated based on actual average flow of 0.0012MGD (presented in attachment D) with a default TN of 25 mg/l and TP of 4mg/l. A cap load of 91lbs/year (0.0012 x 25x 8.34 x365) TN and 15lbs/year (0.0012 x4x8.34 x365) TP will be added to the original cap load of NLCA Jonestown STP. The total TN and TP cap loads for NLCA Jonestown STP are respectively 7397lbs/year and 989lbs/year. Swatara Mobile Home Park was considered non-significant, and its load will be moved from the non-significant aggregate load to the Phase 1 aggregate in the next WIP wastewater supplement update.

The Department approved a total nitrogen offset of 1,575lbs of nitrogen based on 63EDUs at 25lbs/EDU for the Northern Lebanon County Authority Treatment Plant. The offset is for 63EDUs on-lot disposal systems that have been connected to the sewer conveyance system. These on-lot systems were put into use prior to January 1, 2003 and retired after January 1, 2003. The approved offsets are only for compliance purposes and are not available for trading or selling and will not be added to the base TN cap load. The permit will show the base cap load on the effluent page and show the offsets as a foot note with a language indicating the offsets may be applied throughout the compliance year or during the truing period. The Department's approval letters and the complete list of addresses of the dwellings that were served by the retired on-lot systems that are now connected to the sewage conveyance system are attached to the 2016 factsheet. The Department has approved an additional 75lbs of Nitrogen based on 3EDUs at 25lbs/EDU for the facility for a total nitrogen offset of 1,650lbs. The complete list of addresses of the dwellings that were served by the retired on-lot systems that are now connected to the sewage conveyance system are presented in attachment E.

4.4.10 Total Residual Chlorine

The discharge does not have the reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee no longer add chlorine to the wastewater for disinfection. Therefore, the proposed permit does not contain effluent limits for total residual chlorine. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. Daily UV dosage monitoring is required in the permit to ensure efficiency of the UV unit.

4.4.11 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) to calculate WQBELs. The results of the TMS are presented in attachment C. Monitoring of Total Copper and Total Zinc is recommended. Monthly monitoring of Total Copper and Total Zinc is required in the permit to collect additional data for analysis at the next permit renewal.

The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

4.4.12 TDS, Chloride, Sulfate, Bromide, and 1,4-dioxane

The maximum daily TDS discharge submitted with the application is 350 mg/l which is equivalent to 2190lbs/day based on the permitted flow of 0.75 MGD. The discharge level for TDS is well below 1000 mg/l and the 20,000lbs/day cut-off to require monitoring in the permit. There is no data on 1,4-dioxane.

4.4.13 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.14 Stormwater

There is no stormwater outfall associated with this facility.

4.4.15 Industrial Users

The Jonestown Wastewater Treatment Plant receives wastewater from three non-significant industrial users. The industrial users listed are Jonestown Auto Suds Carwash (0.0035mgd), Wabash National Truck body Fabricating (0.002mgd) and Raylin Properties Concrete Fabricating (0.0004mgd).

4.4.16 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.75 MGD and the facility receives no flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

4.4.17 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. Quarterly monitoring of E. Coli is required in the permit following DEP recommendation of 1/quarter monitoring of E. Coli at a minimum for this type of facility.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The facility discharge to a stream segment designated as High-Quality Waters. The discharge is not expected to impact the stream negatively. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

The discharge is into a stream segment which is identified as Class A Wild Trout Stream by PA Fish and Boat Commission. The discharge is not expected to the stream negatively.

5.4 303d Listed Streams

The discharge is not located on a 303d listed stream segment.

5.5 Special Permit Conditions

The permit contains the following special conditions:

• Stormwater Prohibition, Approval Contingencies, Solids Management, Restriction on receipt of hauled in waste under certain conditions, and chlorine minimization.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	XXX	Continuous	Measured
рН (S.U.)	ххх	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
DO	XXX	xxx	5.0	XXX	XXX	ххх	1/day	Grab
CBOD5	156	250	xxx	25.0	40.0	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	1/week	24-Hr Composite
TSS	188	281	XXX	30.0	45.0	60	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	XXX	xxx	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	ХХХ	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Nitrate-Nitrite (lbs)	Report Total Mo	xxx	XXX	XXX	XXX	ХХХ	1/month	Calculation
Total Nitrogen	ххх	XXX	XXX	Report	XXX	xxx	1/month	Calculation

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

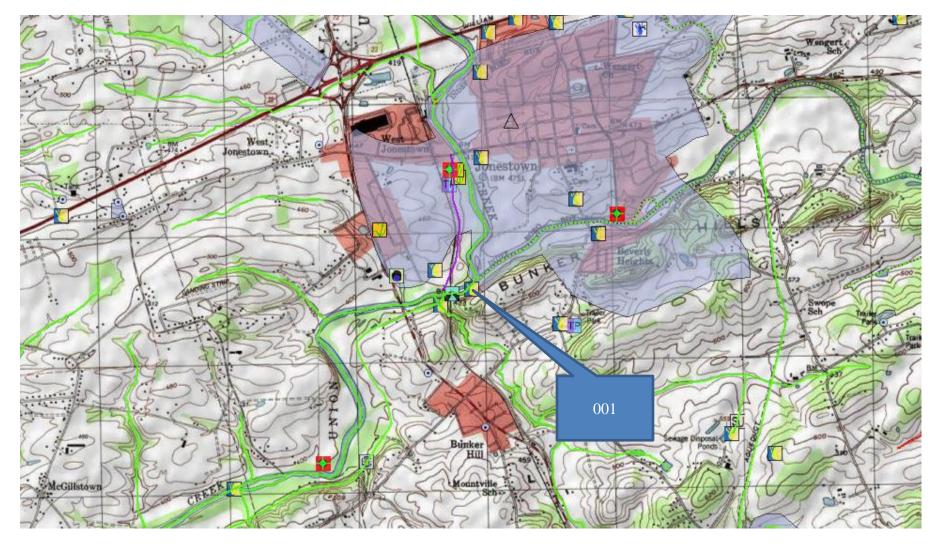
			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
	Report							
Total Nitrogen (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Ammonia								24-Hr
Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	84	XXX	XXX	13.5	XXX	27	2/week	Composite
	Report							
Ammonia (Ibs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
								24-Hr
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/week	Composite
	Report							
TKN (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	12.5	XXX	XXX	2.0	XXX	4	2/week	Composite
Total Phosphorus (lbs)	Report Total Mo	xxx	xxx	xxx	xxx	xxx	1/month	Calculation
UV Dosage (mjoules/cm²)	xxx	XXX	Report	XXX	XXX	XXX	1/day	Recorded
								24-Hr
Copper, Total	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Zinc, Total	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite

Compliance Sampling Location: Outfall 001

6.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required			
Falameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Total Nitrogen (lbs)		7397							
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation	
Total Nitrogen (lbs)	XXX	Report Total Annual	XXX	xxx	xxx	XXX	1/year	Calculation	
Ammonia (Ibs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation	
Total Phosphorus (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation	
Total Phosphorus (lbs) Effluent Net	XXX	989 Total Annual	XXX	XXX	XXX	xxx	1/year	Calculation	

Compliance Sampling Location: Outfall 001

	7.0 Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
\square	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\square	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing effluent limitations for individual sewage permit
	Other: WIP 3 and Supplement

8. Attachment

A. Topographical Map

B. WQM Model Results

	SWP Basin Stre	am Code		Stream Name	2		
	07D	9361		SWATARA CRE	EK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
44.390	Monroe Valley	PA0247570	0.100	CBOD5	25		
				NH3-N	20.26	40.52	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
39.220	Nor Leb Co Auth	PA0080748	0.750	CBOD5	25		
				NH3-N	20.26	40.52	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
29.700	Fort IndianTG	PA0028142	1.000	CBOD5	25		
				NH3-N	20.26	40.52	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Sunday, January 23, 2022

Version 1.1

Page 1 of 1

	SWF Basir			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	93	361 SWAT	ARA CRE	EEK		44.39) 0	417.00	170.00	0.00000	0.00	\checkmark
					S	tream Da	ita						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> np pH	Terr	<u>Stream</u> ıp pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
27-1 0	0.065	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.0	00	0.00 0.00)
ຊ1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Rese Fact	rve T tor	Disc Гemp (°C)	Disc pH
Monroe Valley	PA0247570	0.1000	0.1000	0.1000) 0.	000	25.00	7.0
	Pa	rameter D	ata					
Pc	arameter Name	Dis Co			eam onc	Fate Coef		
Fd		(mg	/L) (mg	/L) (m	g/L)	(1/days)		
CBOD5		2	5.00 2	2.00	0.00	1.50)	
Dissolved O	xygen		5.00 8	8.24	0.00	0.00)	
NH3-N		2	5.00 (0.00	0.00	0.70)	

	SWP Basin			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	93	361 SWAT	ARA CRE	EK		39.22	20	392.00	291.00	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> np pH	Terr	<u>Stream</u> ıp pH	
Conta.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.065	0.00	0.00	0.000	0.000	0.0	0.00	0.00	0 2	0.00 7.0	00	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Res Fa	erve ctor	Disc Temp (°C)	Disc pH
Nor Leb Co Auth	PA0080748	0.7500	0.7500	0.750) C	0.000	25.00	7.20
	Pa	rameter D	ata					
Para	meter Name	Dis Co			eam onc	Fate Coef		
1 die		(mg	/L) (mg	/L) (m	ıg/L)	(1/days)	I	
CBOD5		2	5.00 2	2.00	0.00	1.5	C	
Dissolved Oxy		5.00	8.24	0.00	0.0	C		
NH3-N		2	5.00	0.00	0.00	0.7	0	

	SWP Basin			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	93	361 SWAT	ARA CRE	EK		29.70	00	363.00	323.00	0.00000	0.00	
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> np pH	Terr	<u>Stream</u> ıp pH	
Conta.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.065	0.00	0.00	0.000	0.000	0.0	0.00	0.00	0 2	0.00 7.0	00	0.00 0.00)
ຊ1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Res		Disc Femp (°C)	Disc pH
Fort IndianTG	PA0028142	1.0000	1.0000	1.000	0 (0.000	25.00	6.90
	Pa	rameter D	ata					
D	arameter Name	Dis Co			ream Conc	Fate Coef		
1.6		(mg	/L) (mg	/L) (n	ng/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50)	
Dissolved O	xygen		5.00	8.24	0.00	0.0	D	
NH3-N		2	5.00	0.00	0.00	0.70	٦ ١	

Input Data WQN	17.0
----------------	------

	SWF Basir			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	9	361 SWA1	TARA CRE	EEK		22.20	00	343.19	371.00	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
Contai	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C))	
Q7-10	0.065	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.0	00 0	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Desigr Disc Flow (mgd)	Res Fa	erve	Disc Гemp (°C)	Disc pH
		0.0000	0.0000	0.000	00	0.000	25.00	7.00
	Pa	rameter D	ata					
Pa	rameter Name	Dis Co			tream Conc	Fate Coef		
10		(mg	/L) (mg	ı/L) (ı	mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50)	
Dissolved O:	kygen		5.00	8.24	0.00	0.00)	
NH3-N		2	5.00	0.00	0.00	0.70)	

	SWP Basin S	tream Code		St	ream Name		
	07D	9361		SWA	TARA CREEP	(
-13-N	Acute Allocat	ions					
RMI	Discharge Nar	Baseline ne Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reductior
44.3	90 Monroe Valley	16.64	50	16.64	50	0	0
39.2	20 Nor Leb Co Auth	n 16.11	50	16.05	50	0	0
29.7	00 Fort IndianTG	16.32	50	15.77	50	0	0
-13-N	Chronic Alloc	ations					
RMI	Discharge Name	Baseline criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
T XIVII							
	90 Monroe Valley	1.88	25	1.88	25	0	0
44.3	90 Monroe Valley 20 Nor Leb Co Auth		25 25	1.88 1.85	25 25	0 0	0 0

WQM 7.0 Wasteload Allocations

		CBC	DD5	NH	3-N	Dissolved	Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
44.39 N	Ionroe Valley	25	25	25	20.26	5	5	3	14	
39.22 N	lor Leb Co Auth	25	25	25	20.26	5	5	3	14	
29.70 F	ort IndianTG	25	25	25	20.26	5	5	3	14	

Sunday, January 23, 2022

Version 1.1

0.100 each Der 0.833 ach Kc (0.10° ach Kr (? 1.428 avTime (days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385	pth (ft) 3 1/days) 1 1/days) 8 Subreach CBOD5 (mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	Results NH3-N (mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	Avgin Stremperature (°C 20.069) Reach WDRatio 70.864 Reach NH3-N (mg/L) 0.28 Kr Equation Tsivoglou D.O. (mg/L) 8.22 8.23	7.000 <u>Reach Velocity (fps)</u> 0.228 <u>Reach Kn (1/days)</u> 0.704 <u>Reach DO Goal (mg/L)</u> 5
0.100 each Der 0.833 ach Kc (0.10° ach Kr (? 1.428 avTime (days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 scharge 0.850	0 pth (ft) 3 1/days) 1 1/days) 8 Subreach CBOD5 (mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	Results NH3-N (mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	20.069 <u>Reach WDRatio</u> 70.864 <u>Reach NH3-N (mg/L)</u> 0.28 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 8.22 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23	7.000 <u>Reach Velocity (fps)</u> 0.228 <u>Reach Kn (1/days)</u> 0.704 <u>Reach DO Goal (mg/L)</u> 5 5
each Der 0.833 ach Kc (0.10° ach Kr (? 1.428 avTime (days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 scharge 0.850	pth (ft) 3 1/days) 1 1/days) 8 Subreach CBOD5 (mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	Results NH3-N (mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	Reach WDRatio 70.864 Reach NH3-N (mg/L) 0.28 Kr Equation Tsivoglou D.O. (mg/L) 8.22 8.23	Reach Velocity (fps) 0.228 Reach Kn (1/days) 0.704 Reach DO Goal (mg/L) 5
0.833 ach Kc (0.10 ach Kr (1.428 avTime (days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 scharge 0.850	3 1/days) 1 1/days) 8 Subreach CBOD5 (mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	Results NH3-N (mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	70.864 Reach NH3-N (mg/L) 0.28 Kr Equation Tsivoglou D.O. (mg/L) 8.22 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23	0.228 <u>Reach Kn (1/days)</u> 0.704 <u>Reach DO Goal (mg/L)</u> 5 5 <u>Analysis pH</u>
ach Kc (0.10 ach Kr (1.428 avTime (days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 scharge 0.850	1/days) 1 1/days) 8 Subreach CBOD5 (mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	Results NH3-N (mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	Reach NH3-N (mg/L) 0.28 Kr Equation Tsivoglou D.O. (mg/L) 8.22 8.23	Reach Kn (1/days) 0.704 Reach DO Goal (mg/L) 5
0.10 ach Kr (1 1.428 avTime (days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	1 1/days) 8 Subreach CBOD5 (mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	Results NH3-N (mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	0.28 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 8.22 8.23 8.	0.704 <u>Reach DO Goal (mg/L)</u> 5 5 <u>Analysis pH</u>
ach Kr (1.428 avTime (days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	1/days) 8 Subreach CBOD5 (mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	NH3-N (mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	Kr Equation Tsivoglou D.O. (mg/L) 8.22 8.23	Reach DO Goal (mg/L) 5 2) Analysis pH
1.428 avTime (days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	B Subreach CBOD5 (mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	NH3-N (mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	Tsivoglou D.O. (mg/L) 8.22 8.23 8.23 8.23 8.23 8.23 8.23 8.23	5 <u>Analysis pH</u>
days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	CBOD5 (mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	NH3-N (mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	(mg/L) 8.22 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23	
days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	CBOD5 (mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	NH3-N (mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	(mg/L) 8.22 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23	
days) 0.138 0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	(mg/L) 2.29 2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	(mg/L) 0.25 0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	(mg/L) 8.22 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23	
0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23	
0.277 0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	2.25 2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	0.23 0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23	
0.415 0.554 0.692 0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	2.22 2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	0.21 0.19 0.17 0.16 0.14 0.13 0.12 0.11	8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23	
0.554 0.692 0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	2.19 2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	0.19 0.17 0.16 0.14 0.13 0.12 0.11	8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23	
0.692 0.831 0.969 1.108 1.246 1.385 scharge 0.850	2.16 2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	0.17 0.16 0.14 0.13 0.12 0.11	8.23 8.23 8.23 8.23 8.23 8.23 8.23	
0.831 0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	2.13 2.10 2.07 2.04 2.02 Flow (mgd) 0	0.16 0.14 0.13 0.12 0.11	8.23 8.23 8.23 8.23 8.23 8.23	
0.969 1.108 1.246 1.385 <u>scharge</u> 0.850	2.10 2.07 2.04 2.02 Flow (mgd) 0	0.14 0.13 0.12 0.11	8.23 8.23 8.23 8.23 8.23	
1.108 1.246 1.385 <u>scharge</u> 0.850	2.07 2.04 2.02 Flow (mgd) 0	0.13 0.12 0.11	8.23 8.23 8.23 lysis Temperature (°C	
1.246 1.385 <u>scharge</u> 0.850	2.04 2.02 Flow (mgd) 0	0.12 0.11	8.23 8.23 lysis Temperature (°C	
1.385 <u>scharge</u> 0.850	2.02 Flow (mgd) 0	0.11	8.23 lysis Temperature (°C	
scharge 0.850	Flow (mgd) 0		lysis Temperature (°C	
0.850	0	Ana		
			20.325	7.009
<u>each De</u> p	oth (ft)			
			<u>Reach WDRatio</u>	Reach Velocity (fps)
0.926			86.820	0.272
ach Kc (R	teach NH3-N (mg/L)	Reach Kn (1/days)
0.234 /ach Kr (1.22 <u>Kr Equation</u>	0.718 <u>Reach DO Goal (mg/L)</u>
1.07			Tsivoglou	<u>1 (mg/L)</u> 5
1.071	/		Tarvogiou	3
	Subreach			
avTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
0.214	3.16	1.05	7.34	
0.428	3.01	0.90	6.89	
0.643	2.86	0.77	6.62	
0.857	2.71	0.66	6.50	
1.071	2.58	0.57	6.47	
		0.42		
1.714	2.21	0.36	6.72	
			7.01	
	0.643 0.857 1.071 1.285 1.500	0.6432.860.8572.711.0712.581.2852.451.5002.331.7142.211.9282.10	0.6432.860.770.8572.710.661.0712.580.571.2852.450.491.5002.330.421.7142.210.361.9282.100.31	0.643 2.86 0.77 6.62 0.857 2.71 0.66 6.50 1.071 2.58 0.57 6.47 1.285 2.45 0.49 6.52 1.500 2.33 0.42 6.60 1.714 2.21 0.36 6.72 1.928 2.10 0.31 6.86

WQM 7.0 D.O.Simulation

Sunday, January 23, 2022

Version 1.1

Page 1 of 2

<u>SWP Basin</u> 07D	<u>Stream Code</u> 9361		s	<u>Stream Name</u> WATARA CREEK	
RMI	Total Discha	arge Flow (mgd	Ana	<u>ysis Temperature (°C)</u>	<u>Analysis pH</u>
29.700		1.850		20.600	7.001
Reach Width (ft)	Reach	Depth (ft)		Reach WDRatio	Reach Velocity (fps)
87.244	().951		91.777	0.288
Reach CBOD5 (mg/L)	Reach	<u>Kc (1/days)</u>	R	<u>each NH3-N (mg/L)</u>	<u>Reach Kn (1/days)</u>
3.49		0.337		1.54	0.733
Reach DO (mg/L)		<u>Kr (1/days)</u>		Kr Equation	Reach DO Goal (mg/L)
6.983	(0.996		Tsivoglou	5
Reach Travel Time (days)	Subreac	Results		
1.593	TravTi		NH3-N	D.O.	
	(days	s) (mg/L)	(mg/L)	(mg/L)	
	0.	159 3.30	1.37	6.31	
	0.	319 3.13	1.22	5.83	
	0.4	478 2.96	1.08	5.51	
	0.	637 2.80	0.96	5.31	
	0.	797 2.65	0.86	5.20	
	0.1	956 2.51	0.76	5.17	
	1.	115 2.37	0.68	5.20	
	1.	275 2.24	0.60	5.27	
		434 2.12	0.54	5.38	
		593 2.01	0.48	5.51	

WQM 7.0 D.O.Simulation

Page 2 of 2

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.8	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.4	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Sunday, January 23, 2022

Version 1.1

Page 1 of 1

		<u>P Basin</u> 07D		<u>im Code</u> 9361				<u>Stream</u> VATARA	<u>Name</u> CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
44.390	11.05	0.00	11.05	.1547	0.00092	.833	58.99	70.86	0.23	1.385	20.07	7.00
39.220	18.91	0.00	18.91	1.3149	0.00058	.926	80.42	86.82	0.27	2.142	20.33	7.01
29.700	20.99	0.00	20.99	2.8619	0.00050	.951	87.24	91.78	0.29	1.593	20.60	7.00
Q1-1	0 Flow											
44.390	8.84	0.00	8.84	.1547	0.00092	NA	NA	NA	0.20	1.566	20.09	7.00
39.220	15.13	0.00	15.13	1.3149	0.00058	NA	NA	NA	0.24	2.406	20.40	7.01
29.700	16.80	0.00	16.80	2.8619	0.00050	NA	NA	NA	0.26	1.776	20.73	7.00
Q30-	10 Flow	/										
44.390	15.47	0.00	15.47	.1547	0.00092	NA	NA	NA	0.27	1.150	20.05	7.00
39.220	26.48	0.00	26.48	1.3149	0.00058	NA	NA	NA	0.32	1.793	20.24	7.01
29.700	29.39	0.00	29.39	2.8619	0.00050	NA	NA	NA	0.34	1.346	20.44	7.00

WQM 7.0 Hydrodynamic Outputs

C. Toxics Management Spreadsheet (TMS) Results

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discharge	Stream			
Facility: N	lorthern Leb	anon County	Jonestown STP	NPDES Permit No.: PA0089748	Outfall No.: 001
_					
Evaluation Type	pe: Major	Sewage / Ind	lustrial Waste	Wastewater Description: Sewage	

	Discharge Characteristics									
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	Complete Mix Times (min)					
(MGD)*	Hardness (mg/l)*	рн (50)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh		
0.75	100	7.2								

					0 if lef	t blank	0.5 if le	eft blank	0) if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		350									
Group 1	Chloride (PWS)	mg/L		91.4									
18	Bromide	mg/L	۷	0.2									
5	Sulfate (PWS)	mg/L		44.1									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µg/L		5									
3	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L											
5	Dissolved Iron	µg/L											
	Total Iron	µg/L											
	Total Lead	µg/L		0.3									
	Total Manganese	µg/L											
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	µg/L		95									
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Northern Lebanon County Jonestown STP, NPDES Permit No. PA0089748, Outfall 001

Statewide Criteria

Instructions Discharge Stream

Receiving Surface Water Name: Swatara Creek

No. Reaches to Model:

		O Great Lakes Criteria
al	Apply Fish	ORSANCO Criteria

1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	009361	39.22	392	291			Yes
End of Reach 1	009631	29.7	363	323			Yes

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	n	Analys	is
Location	TXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	рН
Point of Discharge	39.22	0.065										100	7		
End of Reach 1	29.7	0.065													

Qh

Location	RMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	EXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	рН	Hardness	pН	Hardness	pН
Point of Discharge	39.22														
End of Reach 1	29.7														

Model Results					Norther	n Lebanon (County Jones	town STP, NPDE	S Permit No.	PA0089748, Outfall 001
Instructions Results	RETURN	TO INPU	TS)	SAVE AS	PDF	PRINT	A ()	NI () Inputs) Results	() Limits
Hydrodynamics										
Wasteload Allocations										
☑ AFC CCT	「 (min):	15	PMF:	0.202	Anal	ysis Hardne	ss (mg/l):	100	Analysis pH:	7.04
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		C	omments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Total Copper	0	0		0	13.439	14.0	60.2		Chem Trans	lator of 0.96 applied
Total Lead	0	0		0	64.581	81.6	351		Chem Transl	ator of 0.791 applied
Total Zinc	0	0		0	117.180	120	515		Chem Transl	ator of 0.978 applied
☑ CFC CCT	「 (min): ###	####	PMF:	1	Ana	lysis Hardne	ess (mg/l):	100	Analysis pH:	7.01
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		C	omments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Total Copper	0	0		0	8.956	9.33	161		Chem Trans	lator of 0.96 applied
Total Lead	0	0		0	2.517	3.18	55.0		Chem Transl	ator of 0.791 applied
Total Zinc	0	0		0	118.139	120	2,073		Chem Transl	ator of 0.986 applied
☑ <i>THH</i> CC 1	「(min): ###	####	PMF:	1	Ana	lysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		C	omments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A			
Chloride (PWS)	0	0		0	250,000	250,000	N/A			
Sulfate (PWS)	0	0		0	250,000	250,000	N/A			

Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
☑ CRL CC	T (min): ###	####	PMF:	1	Ana	ilysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (Ibs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	38.6	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	330	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

D. Flow Data

PERMIT	AUTH_CLIENT	MONITORING	IONITORING	PARAMET	LOAD_UN	LOAD_1_\	LOAD_1_LIMIT	LOAD_1_SBC	LOAD_2_V	LOAD_2_L	LOAD_2_S CONC_U
PA0084255	SWATARA MOBILE HOMES	1/1/2019	1/31/2019	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	2/1/2019	2/28/2019	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	3/1/2019	3/31/2019	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	4/1/2019	4/30/2019	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	5/1/2019	5/31/2019	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	6/1/2019	6/30/2019	Flow	MGD	0.002	Monitor and Report	Average Monthly	0.003	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	7/1/2019	7/31/2019	Flow	MGD	0.002	Monitor and Report	Average Monthly	0.003	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	8/1/2019	8/31/2019	Flow	MGD	0.002	Monitor and Report	Average Monthly	0.005	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	9/1/2019	9/30/2019	Flow	MGD	0.002	Monitor and Report	Average Monthly	0.003	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	10/1/2019	10/31/2019	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.003	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	11/1/2019	11/30/2019	Flow	MGD	0.002	Monitor and Report	Average Monthly	0.01	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	12/1/2019	12/31/2019	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	1/1/2020	1/31/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	2/1/2020	2/29/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	3/1/2020	3/31/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	4/1/2020	4/30/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.001	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	5/1/2020	5/31/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	6/1/2020	6/30/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.001	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	7/1/2020	7/31/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.001	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	7/1/2020	7/31/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.001	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	8/1/2020	8/31/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.001	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	9/1/2020	9/30/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.001	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	10/1/2020	10/31/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	11/1/2020	11/30/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.004	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	12/1/2020	12/31/2020	Flow	MGD	0.001	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
PA0084255	SWATARA MOBILE HOMES	1/1/2021	1/31/2021	Flow	MGD	0.0013	Monitor and Report	Average Monthly	0.002	Monitor a	Daily Maximum
Average Flo	w					0.001204					

E. Details of On-lots Retired

	*	= estimated per As	sessment Office
		Date	
Property Address		Connected	Date Built
435 State Route 72, Jonestown, PA 17038		6/24/2016	*1960
09 Mountville Drive, Lebanon, PA 17046		9/2/2016	*1950
i Elderberry Lane, Lebanon, PA 17046		6/20/2019	*1925