

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0080900

 APS ID
 275137

 Authorization ID
 1215334

Applicant and Facility Information

Applicant Name	Berrysburg Municipal Authority	Facility Name	Berrysburg STP
Applicant Address	PO Box 183	Facility Address	North Chestnut Street
	Berrysburg, PA 17005-0183		Berrysburg, PA 17005
Applicant Contact	Kent Zimmerman	Facility Contact	Brian Strait
Applicant Phone	(717) 362-4368	Facility Phone	
Client ID	64225	Site ID	451875
Ch 94 Load Status	Not Overloaded	Municipality	Berrysburg Borough
Connection Status	No Limitations	County	Dauphin
Date Application Receiv	ved January 3, 2018	EPA Waived?	Yes
Date Application Accep	ted February 1, 2018	If No, Reason	
Purpose of Application	Permit renewal for discharge of trea	ted sewage	

Summary of Review

1.0 General Discussion

This factsheet supports the renewal of an existing NPDES permit for a discharge of treated domestic sewage from a municipal wastewater treatment plant that serves Berrysburg Borough. This facility discharges effluent to a stream that is considered dry at the point of discharge. The design capacity of the plant is 0.035MGD. The previous protection report indicates that the existing limits were developed following 1987 "Implementation Guide for Evaluating Wastewater Discharges to Drainage Swales and Ditches" The guidance document has been revised three times (August 1997, March 2003, and April 12, 2008) since development of the original permit limits. However, the revised guidance is applicable to new and expanding discharges and existing facilities causing impairments. This facility is not subject to the revised requirements since no expansion is proposed for this renewal and the discharge is not impacting negatively on the receiving creek and the surrounding wells. The existing limits will remain in the permit if water quality analysis confirmed their adequacy to protect water quality and uses at the point of first use. Treated sewage is discharged to Unnamed Tributary of Wiconisco Creek (WWF) which is designated for warm water fishes (WWF) and Migratory Fishes (MF). The existing NPDES permit was issued on July 30, 2013 with an effective date of August 1, 2013 and expiration date of July 31, 2018. The applicant submitted permit renewal application to the Department on January 3, 2018. The permittee is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application.

A topographical map showing discharge location is presented in attachment A

Approve	Deny	Signatures	Date				
Х		J. Pascal Kwedza, P.E. / Environmental Engineer	September 9, 2019				
х		Daniel W. Martin, P.E. / Environmental Engineer Manager	September 17, 2019				
Х		Maria D. Bebenek, P.E. / Program Manager	September 17, 2019				

Summary of Review

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Changes to the existing Permit

- Semi Annual monitoring for Total nitrogen species and Total Phosphorus will replace annual monitoring to collect adequate data for the Chesapeake Bay Program.
- Required sample type has been changed to 24-hour composite for consistency with sampling equipment.
- Ammonia limit is slightly more stringent
- Daily UV intensity monitoring has been added

1.3 Existing Permit Limits and Monitoring Requirements

			Effluent Limitations					Monitoring Requirements		
Parameter	Mass Unit	s (lbs/day)		Concentrat	tions (mg/L)		Minimum			
r arameter	Average Monthly	Daily Max	Min	Average Monthly	Weekly Average	Instant. Max	Measurement Frequency	Required Sample Type		
Flow (MGD)	Report	Report	XXX	XXX	XXX	xxx	Continuous	Measured		
pH (S.U.)	XXX	ххх	6.0	XXX	XXX	9.0	1/day	Grab		
Dissolved Oxygen	XXX	ххх	5.0	XXX	XXX	ххх	1/day	Grab		
UV Intensity (µw/cm²)	XXX	xxx	Report	xxx	xxx	xxx	1/day	Recorded		
CBOD5	4.3	6.5 Wkly Avg	ХХХ	15	22.5	30	2/month	8-Hr Composite		
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	xxx	2/month	8-Hr Composite		
TSS Raw Sewage Influent	Report	Report	xxx	Report	XXX	xxx	2/month	8-Hr Composite		
Total Suspended Solids	4.3	6.5 Wkly Avg	ххх	15	22.5	30	2/month	8-Hr Composite		
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	xxx	xxx	XXX	200 Geo Mean	XXX	1,000	2/month	Grab		
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	ххх	xxx	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab		
Ammonia-Nitrogen May 1- Oct 31	1.1	xxx	XXX	2.5	XXX	5.0	2/month	8-Hr Composite		
Ammonia-Nitrogen Nov 1 - Apr 30	3.5	xxx	XXX	7.5	XXX	15	2/month	8-Hr Composite		
Total Nitrogen	xxx	xxx	XXX	Report Annl Avg	XXX	XXX	1/year	Calculation		
Total Phosphorus	XXX	XXX	xxx	Report Annl Avg	XXX	xxx	1/year	8-Hr Composite		

1.4 Discharge, Receiving Waters and Water Supply Information									
Outfall No. 001		Design Flow (MGD)	.035						
Latitude <u>40° 35' 59.14</u> "		Longitude	-76º 48' 55.26"						
Quad Name Elizabethvill	e	Quad Code	1431						
Wastewater Description:	Sewage Effluent								
Unnam Receiving Waters Creek	ed Tributary of Wiconisco (WWF)	Stream Code	16979						
NHD Com ID 549725	531	RMI	0.70						
Drainage Area 0.1 & 0	.13 @POFU	Yield (cfs/mi ²)	0.0389						
Q ₇₋₁₀ Flow (cfs) 0 & 0.0	05@POFU	Q7-10 Basis	USGS Gage Station						
Elevation (ft) 690		Slope (ft/ft)							
Watershed No. 6-C		Chapter 93 Class.	WWF						
Existing Use		Existing Use Qualifier							
Exceptions to Use		Exceptions to Criteria							
Assessment Status	Attaining Use(s)								
Cause(s) of Impairment									
Source(s) of Impairment									
TMDL Status		Name							
Background/Ambient Data pH (SU)		Data Source							
Temperature (°F)									
Hardness (mg/L)									
Other:									
Nearest Downstream Public	Water Supply Intake	Suez Water PA							
PWS Waters Susqueha	anna River	Flow at Intake (cfs)							
PWS RMI		Distance from Outfall (mi)	>45						

Changes Since Last Permit Issuance:

1.4.1 Water Supply Intake

The nearest downstream water supply intake is approximately 45 miles downstream by Suez Water PA on Susquehanna River in Susquehanna Township, Dauphin County. No impact is expected from this discharge on the intake.

2.0 Treatment Facility Summary									
Treatment Facility Name: Berrysburg STP									
WQM Permit No.	Issuance Date								
2282406 A-4	2/28/2019								
2282406 A-3	9/22/2015								
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)					
Sewage	Tertiary	SBR	Ultraviolet	0.035					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
0.035	58	Not Overloaded	Aerobic Digestion	Other WWTP					

Changes Since Last Permit Issuance: A new continuous flow SBR treatment system was installed to replace the existing extended aeration system

2.1 Treatment Facility

The plant consists of a headworks with mechanical fine screen and a bypass bar screen, a distribution box, two continuous flow SBRs (4,446 ft³ each), two UV disinfection units rated for 218 gpm each, two aerobic digestion tanks, a sludge holding tank, and a 6' diameter concrete manhole with effluent baffle for post aeration (currently under construction).

2.2 Chemicals

- Caustic Soda alkalinity adjustment as needed
- Aluminum Sulfate to promote phosphorus precipitation and removal
- Acetic Acid as carbon source if needed

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from August 1, 2018 to July 31, 2019)

Parameter	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18	AUG-18
Flow (MGD)												
Average Monthly	0.0144	0.015	0.018	0.0181	0.0206	0.0167	0.0182	0.019	0.0234	0.0153	0.0321	0.01224
Flow (MGD)												
Daily Maximum	0.0234	0.0227	0.0519	0.0485	0.0549	0.0259	0.045	0.045	0.0517	0.0554	0.0736	0.037
pH (S.U.)												
Minimum	7.16	7.12	7.03	6.9	6.83	6.79	6.7	7.02	7.03	7.08	7.25	7.06
pH (S.U.)												
Maximum	7.49	7.43	7.47	7.57	7.70	7.51	7.52	7.59	7.57	7.63	7.70	7.68
DO (mg/L)												
Minimum	2.09	1.36	2.62	2.53	1.81	2.14	2.45	2.36	2.78	2.73	2.76	2.44
CBOD5 (lbs/day)												
Average Monthly	0.4	0.6	0.4	0.7	0.9	2.0	0.5	0.4	0.4	1.0	1.0	0.5
CBOD5 (lbs/day)												
Weekly Average	0.4	0.7	0.5	1.0	0.9	3.0	0.5	0.5	0.5	2.0	1.0	0.7
CBOD5 (mg/L)												
Average Monthly	5.1	4.5	3.9	6.5	5.0	9.2	4.2	3.0	3.0	4.0	4	3
CBOD5 (mg/L)												
Weekly Average	7.2	5.5	4.7	9.9	6.9	15.0	4.3	3.0	3.0	5.0	5.0	3.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 http://www.aver.index.ever.	24	46	24	20	35	37	22.0	49	26	0.58	73	19
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	25	65	33	21	51	58	29.0	49	28	0.97	82	26
BOD5 (mg/L)												
Raw Sewage Influent												
 http://www.worthly	273	344	243	172	169	225	168	366	187	202	261	129
TSS (lbs/day)												
Average Monthly	0.6	0.9	0.8	1.0	1.0	2.0	1.0	0.3	0.7	1.0	1.0	0.5
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Aver. Monthly	19	39	17	15	14	15	14.0	33	15	40	46	43
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	19	59	24	20	21	16	22.0	39	15	68	71	76
TSS (lbs/day)												
Weekly Average	0.7	1.0	1.0	2.0	2.0	2.0	2.0	0.5	0.9	2.0	1.0	0.7
TSS (mg/L)												
Average Monthly	6.8	7.0	7.0	10.8	6.0	10.0	9.0	1.9	< 5.0	5.0	< 3.8	3.03

NPDES Permit Fact Sheet South Londonderry Campbelltown East STP

NPDES Permit No. PA0087700

TSS (mg/L)												
Raw Sewage Influent												
 br/> Ave. Monthly	314	296	186	129	65	95	110	258	105	128	165	226
TSS (mg/L)												
Weekly Average	8.5	8.0	8.0	16.5	7.0	13.0	15.0	2.8	< 5.0	5.0	< 5.0	3.05
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 15	< 2	< 2	< 2	5	< 2	< 2	< 2	< 2	10	20	14
Fecal Coliform												
(CFU/100 ml)												
Instant. Maximum	110	< 2	< 2	< 2	6	2	< 2	< 2	< 2	10	40	20
UV Intensity (µw/cm ²)												
Minimum	5.1	5.6	5.6	2.4	2.0	1.7	1.9	2.3	2.3	2.7	3.7	4.1
Total Nitrogen (mg/L)												
Annual Average								90.36				
Ammonia (lbs/day)												
Average Monthly	< 0.04	< 0.40	0.03	0.2	0.5	3.0	0.04	0.02	0.6	0.30	0.07	0.08
Ammonia (mg/L)												
Average Monthly	0.34	0.32	< 0.3	1.82	2.19	19.3	0.304	0.171	0.676	0.9	0.264	0.5
Total Phosphorus												
(mg/L)												
Annual Average								22.15				

3.2 Effluent Violations for Outfall 001, from: August 1, 2018 To: June 30, 2019

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
DO	06/30/19	Min	1.36	mg/L	5.0	mg/L
DO	05/31/19	Min	2.62	mg/L	5.0	mg/L
DO	04/30/19	Min	2.53	mg/L	5.0	mg/L
DO	09/30/18	Min	2.76	mg/L	5.0	mg/L
DO	08/31/18	Min	2.44	mg/L	5.0	mg/L
DO	11/30/18	Min	2.78	mg/L	5.0	mg/L
DO	10/31/18	Min	2.73	mg/L	5.0	mg/L
DO	02/28/19	Min	2.14	mg/L	5.0	mg/L

NPDES Permit Fact Sheet South Londonderry Campbelltown East STP

DO	03/31/19	Min	1.81	mg/L	5.0	mg/L
DO	01/31/19	Min	2.45	mg/L	5.0	mg/L
DO	12/31/18	Min	2.36	mg/L	5.0	mg/L
Ammonia	02/28/19	Avg Mo	3.0	lbs/day	2.2	lbs/day
Ammonia	02/28/19	Avg Mo	19.3	mg/L	7.5	mg/L

Numerous effluent violations for DO were noted on DMRs during the past 12 months of operations as shown on the table above. The new SBR system does not have post aeration system and is unable to meet minimum DO limit consistently. The permittee is under a corrective action plan and received WQM permit approval on 2/28/2019 to install a post aeration system to address occurrence DO violations. Ammonia violation occurred in February 2019, but no reason was given for this effluent violation. The violation appears to be a one-time occurrence. The Department is waiting for installation of the post aeration to complete prior to assessing civil penalty for the violations. The violations need to be addressed satisfactorily prior to final permit issuance. The following paragraph will be added to the cover letter of the draft permit asking the permittee to address violations.

"According to DEP's records, there are unresolved violation(s) at one or more facilities you own or operate. In accordance with DEP's Clean Water Program standard operating procedures, an applicant's compliance history is considered prior to making a final decision on any permit application. Please take the opportunity to address these violations during this draft comment period. DEP may not be able to issue a final permit until the violation(s) are resolved"

3.3 Summary of Inspections:

The new SBR treatment facility went online on February 16, 2018 and has been inspected 2 times. No effluent violation noted during plant inspections. Other than lack of post aeration which being addressed, no major issues noted during facility inspections. The facility is operated and maintained well.

4.0 Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	.035
Latitude	40° 35' 59.17"	Longitude	-76º 48' 55.53"
Wastewater D	escription: Sewage Effluent	_	

4.1 Basis for Effluent Limitations

In general, the Clean Water Act (AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CPOD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC is not applicable to this discharge

4.2 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.3 Water Quality-Based Limitations

The stream is a dry swale at the point of discharge. The point of first use (POFU) according to previous protection reports is located 600 feet downstream of the discharge point. Streamflows for the water quality analysis to protect the POFU were determined by correlating with the yield of USGS gauging station No. 0155500 on Mahantango. The Q₇₋₁₀ and drainage area at the gage is 6.38ft³/s and 164 mi² respectively. The resulting yields are as follows:

 $Q_{7-10} = 6.38 \text{ cfs} / 164 \text{ sq. mi} = 0.0389 \text{ cfs} / \text{sq.mi}$ $Q_{30-10} / Q_{7-10} = 1.47$ $Q_{1-10} / Q_{7-10} = 0.74$

The drainage area at the POFU from previous protection report is 0.13 sq. mi.

The design flow at the POFU is calculated as:

 $Q_{7-10} = 0.04$ cfs x 0.13 sq. mi = 0.005 cfs

4.3.1 NH₃N Calculations

 $NH_{3}N$ calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $NH_{3}N$ criteria used in the attached computer model of the stream:

Discharge pH

- = 7.16 (DMR median July Sept.)
- = 20.4 ° C (Summer avg from Inspection Report)

- Stream pH
- Stream Temperature

Discharge Temperature

- Background NH₃-N
- = 7.0 (Default) = 20 °C (Default) = 0.0 (default

4.3.2 CBOD₅ & NH₃-N

The attached result of the WQM 7.0 stream model (attachment B) indicates that a limit of $25mg/I CBOD_5$ is adequate to protect the water quality of the stream at the POFU. This is slightly less stringent than the existing limit of $15mg/I CBOD_5$, therefore the existing limit will remain in the permit due to anti-backsliding. Past DMRs and inspection reports show the STP has been consistently achieving less than 15 mg/I CBOD₅.

The attached result of the WQM 7.0 stream model also indicates that a summer monthly average limit of 2.0mg/l for NH3 is necessary to protect the aquatic life from toxicity effects at the POFU. This is slightly more stringent than the existing limit of 2.5mg/l. However, DMR and Inspection data indicate the facility can meet the new limit with operational adjustment. Therefore, a summer limit of 2.0mg/l is recommended for this renewal. Winter limit is three times the summer limit.

4.3.3 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.3.4 Total Residual Chlorine:

The facility utilizes UV for disinfection, TRC limit is not required. Daily minimum UV light intensity reporting in μ W/cm² is required. The operator confirmed the facility is capable of measuring UV light intensity.

4.3.5 Toxics

A reasonable potential (RP) analysis was done for pollutants in the discharge. The discharge consists entirely of domestic wastewater with no pollutants of concern that need further analysis.

4.3.6 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal at a monitoring frequency following Table 6-3 of DEP's Technical Guidance for Development and Specification of effluent Limitations (No. 362-0400-001). Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away.

NPDES Permit Fact Sheet South Londonderry Campbelltown East STP

EPA published the Chesapeake Bay Total Maximum Daily Load (TMDL) in December of 2010. Despite extensive restoration efforts during the past 25 years, the TMDL was prompted by insufficient progress and continued poor water quality in the Chesapeake Bay and its tidal tributaries.

In order to address the TMDL, Pennsylvania developed in addition to the Bay Strategy, a Chesapeake Watershed Implementation Plan (WIP) Phase 1 in January 2011 and Phase 2 in March 2012. In accordance with the Phase 2 WIP and its supplement, re-issuing permits for significant dischargers follow the same phased approach formulated in the original Bay strategy, whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewal. This facility is, classified as a phase 5, has been monitoring TP and TN annually but will be required to monitor Total Phosphorus, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen semi-annually throughout the next permit cycle collect adequate data for future analysis.

4.3.7 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.3.8 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.035 MGD and the facility receives flow from no significant Industrial users. There is no approved pretreatment program for the facility, however, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

No storm water outfall is associated with this facility

5.3 Special Permit Conditions

The permit will contain the following special conditions:

Stormwater Prohibition, Approval Contingencies, Proper Waste/solids Management, Restriction on receipt of hauled in waste under certain conditions and dry stream conditions.

5.4 Biosolids Management

Digested sludge is hauled out periodically be a license hauler.

5.5 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.6 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.7 303d Listed Streams:

TMDL was approved for portions of Wiconisco creek its tributaries; however, this discharge is not located on the affected stream segment. No further action will be required.

NPDES Permit Fact Sheet South Londonderry Campbelltown East STP

5.8 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.9 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Deremeter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average	Weekly	Daily	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			5.0					
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab
								24-Hr
CBOD5	4.3	6.5	XXX	15.0	22.5	30	2/month	Composite
BOD5		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
TSS		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
								24-Hr
TSS	4.3	6.5	XXX	15.0	22.5	30	2/month	Composite
Fecal Coliform (No./100 ml)				2,000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10,000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1,000	2/month	Grab
		2004			2004	2004		
UV Intensity (µw/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
		2004			Report	2004		24-Hr
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite
					Report			
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Calculation
Ammonia								24-Hr
Nov 1 - Apr 30	1.75	XXX	XXX	6.0	XXX	12	2/month	Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Red	quirements
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average	Weekly	Daily	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
Ammonia								24-Hr
May 1 - Oct 31	0.58	XXX	XXX	2.0	XXX	4	2/month	Composite
					Report			24-Hr
TKN	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite
					Report			24-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite

Compliance Sampling Location: Outfall 001

7.0 Tools	and References Used to Develop Permit
	WQM for Windows Model (see Attachment C)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\square	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	Other:
	Other:

7. Attachments

A. Topographical Maps

B. WQM Model

		<u>WQM</u>	7.0 Ef	fluent Limit	<u>s</u>		
	SWP Basin	Stream Code		Stream Name	e		
	06C	16979	Т	rib 16979 of Wiconis	sco Creek		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.700	Berrysburg	PA PA0080900	0.035	CBOD5	25		
				NH3-N	2.02	4.04	
				Dissolved Oxygen			5
		9					

Thursday, September 5, 2019

Version 1.0b

Page 1 of 1

					P								
	SWF Basi	P Strea n Coo	am de	Stre	eam Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	06C	16	979 Trib 1	6979 of W	liconisco C	reek	0.70	00	690.00	0.13	0.00000	0.00	
					S	tream Da	ta						
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> ıp pH	Terr	<u>Stream</u> ıp pH	
001.0.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)	
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.0	00	0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Berrysburg PA	PA0080900	0.0350	0.0000	0.0000	0.000	20.00	7.16
	Par	ameter D	ata				
Par	ameter Name	Dis Co	c Trit nc Cor	o Stre no Co	am Fa Inc Co	te oef	
(6)	ameter Name	(mg	/L) (mg/	′L) (mę	g/L) (1/d:	ays)	
CBOD5		2	5.00 2	2.00	0.00	1.50	
Dissolved Ox	ygen	:	5.00 8	3.24	0.00	0.00	
NH3-N		2	5.00 0	0.00	0.00	0.70	

Input Data WQM 7.0

	SWP Basin	Strea Coc	ım le	Stre	eam Name		RMI	Eleva (ft)	tion E	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	06C	169	979 Trib 16	6979 of W	iconisco C	reek	0.20	0 6	82.00	0.17	0.00000	0.00	~
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>T</u> Temp	<u>ributary</u> pH	Terr	<u>Stream</u> p pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(ºC)		(°C)	
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.	00 7.0	0	0.00 0.00)
14 40		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

		Dis	scharge D	ata					
	Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	l Design Disc Flow (mgd)	Res Fa	erve ctor	Disc Temp (°C)	Disc pH
-			0.0000	0.0000	0.000	00	0.000	0.00	7.00
		Pa	rameter D	ata					
			Dis	nc Tri	ib St nc (ream Conc	Fate Coef		
	Ра	rameter Name	(mg	ı/L) (mg	g/L) (r	ng/L)	(1/days)	
	CBOD5		2	5.00	2.00	0.00	1.5	0	
	Dissolved O	xygen		5.00	8.24	0.00	0.0	0	
	NH3-N		2	5.00	0.00	0.00	0.7	0	

			WQ	VI 7.0	Hydr	odyn	amic	Out	<u>outs</u>			
	SW	<u>P Basin</u>	Strea	<u>ım Code</u>				Stream	Name			
		06C	1	6979	Trib 16979 of Wiconisco Creek							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	.(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
0.700	0.01	0.00	0.01	.0541	0.00303	.358	2.55	7.13	0.06	0.471	20.00	7.14
Q1-10	0 Flow											
0.700	0.00	0.00	0.00	.0541	0.00303	NA	NA	NA	0.06	0.477	20.00	7.15
Q30-'	10 Flow											
0.700	0.01	0.00	0.01	.0541	0.00303	NA	NA	NA	0.07	0.460	20.00	7.14

Thursday, September 5, 2019

Version 1.0b

Page 1 of 1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0080900

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.74	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.47	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	<
D.O. Goal	5		

Thursday, September 5, 2019

Version 1.0b

Page 1 of 1

· .		<u>Vi</u>		U Was	leioau		callo	ns		
	SWP Basin	Stream	n Code			Stream	Name			
	06C	169	979	· -	Trib 16	979 of W	liconisco	Creek		
NH3-N	Acute Alloca	ations								
RMI	Discharge 1	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multipl Criteric (mg/L	e Mi on N	ultiple WLA mg/L)	Critical Reach	Percent Reductio	n
0.7	00 Berrysburg P	A	8.64	9.25	8	.64	9.25	Ò	0	_
NH3-N RMI	Chronic Allo	Bame C	ns aseline riterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (ma/L)	Muli W	liple LA a/L)	Critical Reach	Percent Reduction	_
0.7	00 Berrysburg P/	Ą	1.77	2.02	1	.77	2.02	0	0	_
)issolv RMI	ed Oxygen A Discharge	Allocat e Name	i ons <u>C</u> Baselin (mg/L)	<u>BOD5</u> e Multipie) (mg/L)	<u>NH3</u> Baseline (mg/L)	<u>3-N</u> Multiple (mg/L)	<u>Dissolv</u> Baseline (mg/L)	<u>ed Oxygen</u> e Multiple (mg/L)	Critical Reach	Percent Reductio
0	70 Berrysburg D/	<u>م</u>		г ос						

¢.

WQM 7.0 Wasteload Allocations

Version 1.0b

SWP Basin	Stream	Code			Stream Name	
06C	1697	79		Trib 16	979 of Wiconisco C	reek
RMI	Tota	al Discharge	Flow (mad	l) Ana	alvsis Temperature (°	C) Analysis pH
0.700		0.03	5		20.000	7.143
Reach Width (ft)		Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
2.553		0.35	8		7.129	0.065
Reach CBOD5 (mg/L)		Reach Kc (1/days)	E	Reach NH3-N (mg/L)	Reach Kn (1/days)
22.98		1.48	3		1.84	0.700
Reach DO (mg/L)		<u>Reach Kr (</u>	1/daγs)		Kr Equation	Reach DO Goal (mg/L)
5.284		23.22	:1		Owens	5
Reach Travel Time (days)) ·		Subreact	Results		
0.471		TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
·		0.047	21.43	1.78	6.29	
		0.094	19.9 9	1.72	6.73	
		0.141	18.64	1.67	6.97	
		0.188	17.38	1.61	7.13	
		0.235	16.21	1.56	7.27	
		0.282	15.12	1.51	7.39	
		0.329	14.10	1.46	7.51	
		0.377	13.15	1.42	7.61	
		0.424	12.26	1.37	7.71	
		0.471	11.43	1.33	7.80	

WQM 7.0 D.O.Simulation

Thursday, September 5, 2019

Version 1.0b

Page 1 of 1