

## Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonMunicipal
Major / Minor
Minor
Minor

# NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0081191

APS ID 700259

Authorization ID 1421798

| Applicant and Facility Information |         |                    |                  |                              |  |  |  |
|------------------------------------|---------|--------------------|------------------|------------------------------|--|--|--|
| Applicant Name                     | MHC P   | A Dutch Country LP | Facility Name    | PA Dutch Country Golf Course |  |  |  |
| Applicant Address                  | 185 Lel | nman Road          | Facility Address | 185 Lehman Road              |  |  |  |
|                                    | Manhei  | m, PA 17545-8720   |                  | Manheim, PA 17545-8720       |  |  |  |
| Applicant Contact                  | Greggo  | ry Kane            | Facility Contact | Chris Dove                   |  |  |  |
| Applicant Phone                    | (312)27 | '9-1692            | Facility Phone   | (717) 665-4636               |  |  |  |
| Client ID                          | 275114  |                    | Site ID          | 452871                       |  |  |  |
| Ch 94 Load Status                  | Not Ove | erloaded           | Municipality     | Manheim Borough              |  |  |  |
| Connection Status                  | 1       |                    | County           | Lancaster                    |  |  |  |
| Date Application Rece              | eived   | December 14, 2022  | EPA Waived?      | Yes                          |  |  |  |
| Date Application Acce              | epted   | January 13, 2023   | If No, Reason    |                              |  |  |  |

#### **Summary of Review**

#### 1.0 General Discussion

This factsheet supports the renewal of an existing NPDES permit for discharge of treated domestic sewage from wastewater treatment plant that serves a campground. The facility is a package plant with design capacity of 0.025 mgd. Sewage flow by gravity into an aerated 8.300-gallon equalization tank via an interceptor tank where rags and debris are captured. Flow is lifted by a pair of submersible pumps from the equalization tank to the first of four aeration tanks (6,300 gallon each) via a flow diversion box. Effluent from the aeration tanks flow to two 4,000-gallon clarifier tanks for clarification. Sludge is wasted to a 6,300-gallon sludge tank and hauled out by a license hauler periodically. Effluent from the clarifiers flow through a sand filter. clear well tank, a chlorine tablet feeder for chlorination prior to a 600-gallon chlorine contact tank. The facility discharges final effluent to a wet weather swale which leads to the Chickies Creek which is classified as warm water fishes (WWF). The outfall begins at the head of the swale where an intermittent spring/seep has been observed to be flowing during periods of high groundwater. Normally, during the summer operating season of the campground, the swale is dry and the effluent eventually soaks into the ground. This swale is completely wooded and thus completely shaded. It is completely isolated with no dwellings or farms close by. The discharge is about 500 feet from the confluence of Chickies Creek. The campground closes during the winter season, however the treatment plant operates year-round with flow from the park manager's residence and re-seeded occasionally with holding tank waste. Past protection report document that Chickies Creek is five to eight feet wide and six inches to one foot deep with a rocky/sandy substrate, no measurement effort was carried out during this renewal. The area is not limestone but contains large boulders of sandstone as big as ten feet in diameter. The area can easily be described as a beautiful tumbling mountain stream. The point of first use was determined to be at the confluence of Chickies Creek. Discharge limits has been developed based on the intermittent swale technical guidance and water quality analysis will be done for

| Approve | Deny | Signatures                                              | Date             |
|---------|------|---------------------------------------------------------|------------------|
|         |      | J. Pascal Kwedza                                        |                  |
| X       |      | J. Pascal Kwedza, P.E. / Environmental Engineer         | February 8, 2024 |
|         |      |                                                         |                  |
|         |      | Maria D. Bebenek for                                    |                  |
| X       |      | Daniel W. Martin, P.E. / Environmental Engineer Manager | March 5, 2024    |
|         |      | Maria D. Bebeuek                                        |                  |
| Х       |      | Maria D. Bebenek, P.E, / Program Manager                | March 5, 2024    |

#### **Summary of Review**

aquatic considerations at the POFU on Chickies Creek which is classified for warm water fishes. The existing NPDES permit was issued on March 08, 2018 with an expiration date of March 31, 2023. The applicant submitted a complete NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A

#### 1.1 Sludge use and disposal description and location(s):

Sludge is hold up in an aerobic digester and hauled out by a licensed hauler periodically

#### 1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

#### 1.3 Changes to the existing Permit

Annual E. Coli monitoring has been added.

## **1.3 Existing Limitation and Monitoring Requirements**

|                                               |                    |                   | Effluent L       | imitations          |             |                     | Monitoring Re            | quirements        |
|-----------------------------------------------|--------------------|-------------------|------------------|---------------------|-------------|---------------------|--------------------------|-------------------|
| Parameter                                     | Mass Units         | (lbs/day) (1)     |                  | Concentrat          | ions (mg/L) |                     | Minimum (2)              | Required          |
| Parameter                                     | Average<br>Monthly | Average<br>Weekly | Minimum          | Average<br>Monthly  | Maximum     | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type    |
|                                               |                    | Report            |                  |                     |             |                     |                          |                   |
| Flow (MGD)                                    | Report             | Daily Max         | XXX              | XXX                 | XXX         | XXX                 | Continuous               | Measured          |
| pH (S.U.)                                     | XXX                | XXX               | 6.0<br>Inst Min  | XXX                 | XXX         | 9.0                 | 1/day                    | Grab              |
| DO                                            | XXX                | XXX               | 5.0<br>Daily Min | XXX                 | XXX         | XXX                 | 1/day                    | Grab              |
| TRC                                           | XXX                | XXX               | XXX              | 0.5                 | XXX         | 1.6                 | 1/day                    | Grab              |
| CBOD5                                         | XXX                | XXX               | XXX              | 10                  | XXX         | 20                  | 2/month                  | 8-Hr<br>Composite |
| TSS                                           | XXX                | XXX               | XXX              | 10                  | XXX         | 20                  | 2/month                  | 8-Hr<br>Composite |
| Fecal Coliform (No./100 ml) Oct 1 - Apr 30    | XXX                | XXX               | XXX              | 2000<br>Geo Mean    | XXX         | 10000               | 2/month                  | Grab              |
| Fecal Coliform (No./100 ml)<br>May 1 - Sep 30 | XXX                | XXX               | XXX              | 200<br>Geo Mean     | XXX         | 1000                | 2/month                  | Grab              |
| Nitrate-Nitrite                               | XXX                | XXX               | XXX              | Report<br>Avg Qrtly | XXX         | XXX                 | 1/quarter                | 8-Hr<br>Composite |
| Total Nitrogen                                | XXX                | XXX               | XXX              | Report<br>Avg Qrtly | XXX         | XXX                 | 1/quarter                | Calculation       |
| Ammonia<br>Nov 1 - Apr 30                     | XXX                | XXX               | XXX              | 9.0                 | XXX         | 18                  | 2/month                  | 8-Hr<br>Composite |
| Ammonia                                       |                    |                   |                  |                     |             |                     |                          | 8-Hr              |
| May 1 - Oct 31                                | XXX                | XXX               | XXX              | 3.0                 | XXX         | 6                   | 2/month                  | Composite         |
| TKN                                           | XXX                | XXX               | XXX              | Report<br>Avg Qrtly | XXX         | XXX                 | 1/quarter                | 8-Hr<br>Composite |
| Total Phosphorus                              | XXX                | XXX               | XXX              | 2.0                 | XXX         | 4                   | 2/month                  | 8-Hr<br>Composite |

| 1.4 Discharge, Receiving Waters and Water Supp | ly Information                                       |
|------------------------------------------------|------------------------------------------------------|
| 0.44.11.11.004                                 | D : El (MOD) 005                                     |
| Outfall No. 001                                | <del></del>                                          |
| Latitude 40° 14' 9.97"                         |                                                      |
| Quad Name                                      | Quad Code                                            |
| Wastewater Description: Sewage Effluent        |                                                      |
| Receiving Waters UNT of Chickies Creek         | Stream Code 07919@ POFU                              |
| NHD Com ID 57461967                            | RMI 27.8@POFU                                        |
| Drainage Area 1.2@POFU                         | Yield (cfs/mi²)                                      |
| Q <sub>7-10</sub> Flow (cfs)                   |                                                      |
| Elevation (ft) 580                             | Clana (ft/ft)                                        |
| Watershed No. 7-G                              | Chapter 03 Class \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| Existing Use                                   | Eviating Lies Qualifier                              |
| Exceptions to Use                              | Exceptions to Critoria                               |
| Assessment Status Attaining Use(s)             |                                                      |
| Causa(a) of Impairment                         |                                                      |
| Source(s) of Impairment                        |                                                      |
| TMDL Status                                    | Name                                                 |
|                                                |                                                      |
| Background/Ambient Data                        | Data Source                                          |
| pH (SU)                                        |                                                      |
| Temperature (°F)                               |                                                      |
| Hardness (mg/L)                                |                                                      |
| Other:                                         |                                                      |
|                                                |                                                      |
| Nearest Downstream Public Water Supply Intake  | Columbia Borough Water Company                       |
| PWS Waters Susquehanna River                   | Flow at Intake (cfs)                                 |
| PWS RMI                                        | Distance from Outfall (mi) <40                       |

Changes Since Last Permit Issuance: None

#### 1.4.1 Water Supply Intake

The nearest water supply intake is 40 miles downstream at Columbia Borough, Lancaster County on the Susquehanna River by the Columbia Borough Water Company. No impact is expected from this discharge.

|                       | 2.0 Treatment Facility Summary |                  |                     |              |  |  |  |
|-----------------------|--------------------------------|------------------|---------------------|--------------|--|--|--|
| Treatment Facility Na | me: PA Dutch Country Ca        | ampground        |                     |              |  |  |  |
| WQM Permit No.        | Issuance Date                  |                  |                     |              |  |  |  |
|                       |                                |                  |                     |              |  |  |  |
|                       | Degree of                      |                  |                     | Avg Annual   |  |  |  |
| Waste Type            | Treatment                      | Process Type     | Disinfection        | Flow (MGD)   |  |  |  |
| Sewage                | Tertiary                       | Activated sludge | Hypochlorite        | 0.025        |  |  |  |
|                       | •                              |                  |                     |              |  |  |  |
|                       |                                |                  |                     |              |  |  |  |
| Hydraulic Capacity    | Organic Capacity               |                  |                     | Biosolids    |  |  |  |
| (MGD)                 | (lbs/day)                      | Load Status      | Biosolids Treatment | Use/Disposal |  |  |  |
| 0.025                 |                                | Not Overloaded   |                     | <u>-</u>     |  |  |  |

Changes Since Last Permit Issuance: None

#### **2.1 Treatment Facility**

The existing treatment plant consists of grease traps, one equalization tank, with two manholes to provide additional equalization if needed, four aeration tanks, two clarifiers, one sludge holding tank, two sand filters, mud well, clear well, tablet chlorinator with a chlorine contact tank.

#### 2.2 Chemical Used

Soda ash for pH adjustment, Aluminum Phosphate for Phosphorus reduction and Calcium Hypochlorite for disinfection.

### 3.0 Compliance History

## 3.1 DMR Data for Outfall 001 (from December 1, 2022 to November 30, 2023)

| Parameter                      | NOV-23  | OCT-23  | SEP-23    | AUG-23  | JUL-23  | JUN-23  | MAY-23  | APR-23  | MAR-23  | FEB-23  | JAN-23  | DEC-22  |
|--------------------------------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Flow (MGD)                     |         |         |           |         |         |         |         |         |         |         |         |         |
| Average Monthly                | 0.00028 | 0.00417 | 0.0039    | 0.00426 | 0.0044  | 0.00341 | 0.00261 | 0.00166 | 0.00023 | 0.00021 | 0.00021 | 0.0003  |
| Flow (MGD)                     |         |         |           |         |         |         |         |         |         |         |         |         |
| Daily Maximum                  | 0.00308 | 0.00911 | 0.00667   | 0.00704 | 0.00704 | 0.00628 | 0.0059  | 0.00522 | 0.00081 | 0.00091 | 0.00135 | 0.00155 |
| pH (S.U.)                      |         |         |           |         |         |         |         |         |         |         |         |         |
| Instantaneous                  |         |         |           |         |         |         |         |         |         |         |         |         |
| Minimum                        | 7.8     | 7.8     | 7.7       | 7.8     | 7.8     | 7.9     | 7.8     | 7.9     | 7.8     | 8.0     | 7.9     | 7.8     |
| pH (S.U.)                      |         |         |           |         |         |         |         |         |         |         |         |         |
| Instantaneous                  |         |         |           |         |         |         |         |         |         |         |         |         |
| Maximum                        | 8.1     | 8.2     | 8.2       | 8.2     | 8.2     | 8.2     | 8.2     | 8.3     | 8.2     | 8.2     | 8.2     | 8.1     |
| DO (mg/L)                      |         |         |           |         |         |         |         |         |         |         |         |         |
| Instantaneous                  |         |         |           |         |         |         |         |         |         |         |         |         |
| Minimum                        | 8.1     | 7.5     | 8.0       | 7.7     | 7.6     | 8.1     | 9.4     | 9.3     | 9.5     | 10.1    | 9.1     | 7.7     |
| TRC (mg/L)                     |         |         |           |         |         |         |         |         |         |         |         |         |
| Average Monthly                | 0.3     | 0.3     | 0.4       | 0.4     | 0.4     | 0.4     | 0.3     | 0.5     | 0.4     | 0.4     | 0.4     | 0.3     |
| TRC (mg/L)                     |         |         |           |         |         |         |         |         |         |         |         |         |
| Instantaneous                  |         |         |           |         |         |         |         |         |         |         |         |         |
| Maximum                        | 0.83    | 0.72    | 0.76      | 0.82    | 0.8     | 0.76    | 0.88    | 1.23    | 1.39    | 0.88    | 1.24    | 0.69    |
| CBOD5 (mg/L)                   | 0.4     | 0.4     | 0.4       | 0.4     | 0.4     | 0.4     | 0.4     | 0.4     | 0.4     | 0.4     | 0.4     | 0.4     |
| Average Monthly                | < 2.4   | < 2.4   | < 2.4     | < 2.4   | < 2.4   | < 2.4   | < 2.4   | < 2.4   | < 2.4   | < 2.4   | < 2.4   | < 2.4   |
| TSS (mg/L)                     | 4.5     | 4.5     | 0.5       |         | 4       | _       | 0.5     | 4.5     | 0       | 2.5     |         |         |
| Average Monthly Fecal Coliform | 1.5     | 1.5     | 2.5       | 2       | 1       | 3       | 2.5     | 4.5     | 2       | 3.5     | 8       | 4       |
|                                |         |         |           |         |         |         |         |         |         |         |         |         |
| (No./100 ml)<br>Geometric Mean | < 1     | < 1     | < 1       | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     |
| Fecal Coliform                 | < 1     | < 1     | < 1       | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     |
| (No./100 ml)                   |         |         |           |         |         |         |         |         |         |         |         |         |
| Instantaneous                  |         |         |           |         |         |         |         |         |         |         |         |         |
| Maximum                        | 1       | < 1     | 1         | < 1     | < 1     | 2       | < 1     | < 1     | < 1     | < 1     | 2       | < 1     |
| Nitrate-Nitrite (mg/L)         |         |         |           | _ ` '   | _ ` '   |         |         |         |         | _ ` '   |         | _ ` '   |
| Average Quarterly              |         |         | < 90.4    |         |         | < 130.4 |         |         | < 26.4  |         |         | 113     |
| Total Nitrogen (mg/L)          |         |         | , , , , , |         |         | 1 100.1 |         |         | 1 20.7  |         |         |         |
| Average Quarterly              |         |         | < 90.9    |         |         | < 130.9 |         |         | < 26.9  |         |         | < 113.5 |
| Ammonia (mg/L)                 |         |         |           |         |         |         |         |         |         |         |         |         |
| Average Monthly                | < 0.1   | < 0.1   | < 0.2     | < 0.1   | < 0.2   | < 0.3   | < 0.1   | < 0.1   | < 0.1   | < 0.1   | < 0.1   | < 0.1   |
| TKN (mg/L)                     |         |         |           |         |         |         |         |         |         |         |         |         |
| Average Quarterly              |         |         | < 0.5     |         |         | < 0.5   |         |         | < 0.5   |         |         | < 0.5   |

# NPDES Permit Fact Sheet PA Dutch Country Golf Course

#### NPDES Permit No. PA0081191

| Total Phosphorus |     |     |     |     |     |     |     |     |     |     |     |     |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (mg/L)           |     |     |     |     |     |     |     |     |     |     |     |     |
| Average Monthly  | 1.8 | 1.8 | 1.2 | 1.7 | 1.7 | 1.0 | 0.3 | 0.4 | 0.5 | 0.6 | 0.9 | 0.9 |

#### 3.2 Summary of Discharge Monitoring Reports (DMRs):

DMRs reviewed for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met consistently. No effluent violations were noted on DMRs for the period reviewed.

#### 3.3 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations were found during plant inspections. The facility is operated and maintained well.

| 4.0 Development of Effluent Limitations |                |                   |                 |  |  |  |
|-----------------------------------------|----------------|-------------------|-----------------|--|--|--|
| Outfall No.                             | 001            | Design Flow (MGD) | .025            |  |  |  |
| Latitude                                | 40° 14' 11.28" | Longitude         | -76° 26' 52.25" |  |  |  |
| Wastewater Description: Sewage Effluent |                | <del></del>       |                 |  |  |  |

#### 4.1 Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

#### 4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant               | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|-------------------------|-----------------|-----------------|--------------------|------------------|
| CBOD <sub>5</sub>       | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
|                         | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended         | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Solids                  | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| рН                      | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 – 9/30)            | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 – 9/30)            | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

Comments: See Dry stream limitations and water quality analysis sections of the report.

#### 4.3 Dry Stream limitation TSS, CBOD<sub>5</sub> & NH<sub>3</sub>-N

Existing effluent limits are based on the August 18, 1997 Implementation Guidance for Evaluating Wastewater Discharges to Drainage Ditches and Swales (ID # 391-2000-014). The guidance referenced was revised in 2008 but is only applicable to new and expanding facilities which this facility is not. Since the area is used as a public campground, the treated effluent is very accessible to campers and hikers. The guidance requires the minimum treatment of 10 mg/l CBOD $_5$  and Suspended Solids and the use of filters for treatment. This facility does have filters and past DMRs and inspection reports show good compliance with these limits. It is recommended that the limits continue for another permit cycle if water quality analysis yields less stringent limitation. A geologist's review is waived since the discharge is existing and no groundwater impacts have been reported.

#### 4.4 Water Quality-Based Limitations

#### 4.4.1 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for CBOD<sub>5</sub>, NH<sub>3</sub>-N and DO in permits. The model simulates mixing and degradation of NH<sub>3</sub>-N in the stream and compares calculated instream NH<sub>3</sub>-N concentrations to NH<sub>3</sub>-N water quality criteria and also simulates mixing and consumption of D.O. in the stream due to the degradation of CBOD<sub>5</sub> and NH<sub>3</sub>N and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits.

#### 4.4.2 Streamflows:

Streamflow will be correlated with past streamflow records taken from the nearby USGS gage station on the Conestoga River at Lancaster City.  $Q_{7-10}$ ,  $Q_{30-10}$ , and winter  $Q_{7-10}$  will be calculated by 0.16 cfs/mi<sup>2</sup>, 1.27 and 1.17 x  $Q_{7-10}$ .  $Q_{1-10}$  will be calculated using a factor of 0.64 x  $Q_{7-10}$ , which was derived by Central Office in their February 1987 NH<sub>3</sub> Implementation Guidance. The drainage area at the point of use is taken from the previous protection report = 1.2 mi<sup>2</sup>. The resulting streamflows at the point of first at the confluence of chickies creek are as follows:

#### 4.4.3 NH<sub>3</sub>N Calculations

 $NH_3N$  calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID #391-2000-013). The following data is necessary to determine the instream  $NH_3N$  criteria used in the attached computer model of the stream:

STP pH = 7.6 (Taken from past DMRs between July – September)

STP Temp =  $25^{\circ}$ C (Default)

Stream pH = 7.85 (Taken from the Chickies Creek WQN station at the stream mouth)

Stream Temp = 20°C (Taken from the Chickies Creek WQN station at the stream mouth)

Background  $NH_3N = 0.0$  (Assumed)

#### 4.4.4 CBOD<sub>5</sub> & NH<sub>3</sub>-N

The attached results of the WQM 7.0 stream model presented in attachment B indicates that a limit of 25 mg/l CBOD<sub>5</sub> and 7.5 mg/l NH as a monthly average is necessary to protect the aquatic life from toxicity effects at the point of first use. However, the existing dry stream limit referenced above (10 CBOD5 mg/l and 3.0 mg/l NH<sub>3</sub>-N) are more stringent and will remain for the current permit cycle. The facility is meeting the limitation based on DMR and inspection data.

#### 4.4.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l as well, this limit will be continued in the renewed permit with a daily monitoring requirement.

#### 4.4.6 Total Suspended Solids (TSS):

There are no water quality criteria for TSS. The existing dry stream limits of 10 mg/l will remain in the permit

#### 4.4.7 Chesapeake Bay Strategy

The Department formulated a strategy to comply with the Chesapeake Bay nutrient TMDL requirements for PA. Sewage discharges have been prioritized based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal. Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. This facility is classified as a phase 5, monitored Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen in the past and will continue to monitor them quarterly for this permit cycle to collect data for Chesapeake Bay program implementation.

#### 4.4.8 Phosphorus

The average monthly limit of 2mg/l phosphorus in the existing permit was based on the requirement to control phosphorus loading to Lower Susquehanna River Basin. That requirement has been superseded by the development of Chesapeake Bay TMDL in 2010, however due to anti-backsliding restrictions the limit will remain in the permit.

#### 4.4.9 Total Residual Chlorine:

The attached TRC result presented in attachment C utilizes the equations and calculations as presented in the Department's 2003 Implementation Guidance for Residual Chlorine (TRC) (ID # 391-2000-015) for developing chlorine limitations. The attached result indicates that an average monthly water quality limit of 0.5 mg/l and Imax of 1.6 mg/l would be needed to prevent toxicity concerns. This limit is consistent with the existing permit and the facility is complying with the limit.

#### 4.4.10 Toxics

A reasonable potential (RP) analysis was done for pollutants in the discharge. The discharge consists entirely of domestic wastewater with no pollutants of concern that needs further analysis.

#### 4.3.11 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E.coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD and 1/year for design flows of 0.002 – 0.05 MGD. Your discharge of 0.025 MGD requires 1/year monitoring as included in the permit

#### 5.0 Other Requirements

#### 5.1 Anti-backsliding

Not applicable to this permit

#### 5.2 Stormwater:

No storm water outfall is associated with this facility

#### 5.3 Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

#### 5.4 Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

#### 5.5 303d Listed Streams:

The discharge is not located on a 303d listed stream segment. The withdrawn 2001 Chickies Creek TMDL does not apply to this area of Chickies Creek.

#### **5.6 Special Permit Conditions**

The permit will contain the following special conditions:

# NPDES Permit Fact Sheet PA Dutch Country Golf Course

1. Stormwater Prohibition. 2. Approval Contingencies, 3. Management of collected screenings, slurries, sludges and other solids 4. Requirement to connect if a public sewer becomes available in the area. 5. Dry stream discharge condition, 6. Chlorine minimization

#### 5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

#### 5.8 Effluent Monitoring frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

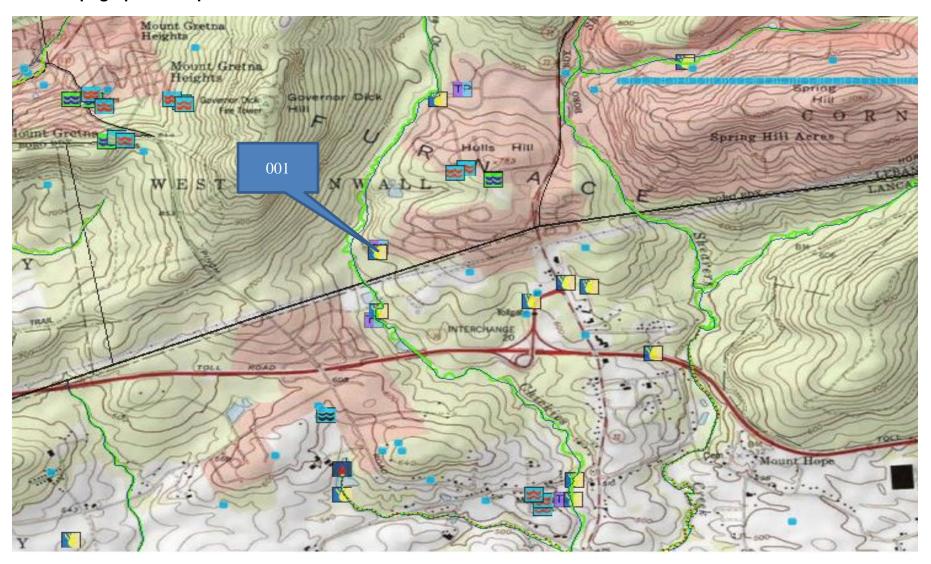
#### **6.0 Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

#### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                                               |                    |                     | Effluent L       | imitations         |             |                     | Monitoring Re            | quirements        |
|-----------------------------------------------|--------------------|---------------------|------------------|--------------------|-------------|---------------------|--------------------------|-------------------|
| Parameter                                     | Mass Units         | (lbs/day) (1)       |                  | Concentrat         | ions (mg/L) |                     | Minimum <sup>(2)</sup>   | Required          |
| Parameter                                     | Average<br>Monthly | Average<br>Weekly   | Minimum          | Average<br>Monthly | Maximum     | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type    |
| Flow (MGD)                                    | Report             | Report<br>Daily Max | XXX              | XXX                | XXX         | XXX                 | Continuous               | Measured          |
| pH (S.U.)                                     | XXX                | XXX                 | 6.0<br>Inst Min  | XXX                | XXX         | 9.0                 | 1/day                    | Grab              |
| DO                                            | XXX                | XXX                 | 5.0<br>Daily Min | XXX                | XXX         | XXX                 | 1/day                    | Grab              |
| TRC                                           | XXX                | XXX                 | XXX              | 0.5                | XXX         | 1.6                 | 1/day                    | Grab              |
| CBOD5                                         | XXX                | XXX                 | XXX              | 10                 | XXX         | 20                  | 2/month                  | 8-Hr<br>Composite |
| TSS                                           | XXX                | XXX                 | XXX              | 10                 | XXX         | 20                  | 2/month                  | 8-Hr<br>Composite |
| Fecal Coliform (No./100 ml) Oct 1 - Apr 30    | XXX                | XXX                 | XXX              | 2000<br>Geo Mean   | XXX         | 10000               | 2/month                  | Grab              |
| Fecal Coliform (No./100 ml)<br>May 1 - Sep 30 | XXX                | XXX                 | XXX              | 200<br>Geo Mean    | XXX         | 1000                | 2/month                  | Grab              |
| E. Coli (No./100 ml)                          | XXX                | XXX                 | XXX              | XXX                | XXX         | Report              | 1/year                   | Grab              |
| Nitrate-Nitrite                               | XXX                | XXX                 | XXX              | XXX                | Report      | XXX                 | 1/quarter                | 8-Hr<br>Composite |
| Total Nitrogen                                | XXX                | XXX                 | XXX              | XXX                | Report      | XXX                 | 1/quarter                | Calculation       |
| Ammonia<br>Nov 1 - Apr 30                     | XXX                | XXX                 | XXX              | 9.0                | XXX         | 18                  | 2/month                  | 8-Hr<br>Composite |
| Ammonia<br>May 1 - Oct 31                     | XXX                | XXX                 | XXX              | 3.0                | XXX         | 6                   | 2/month                  | 8-Hr<br>Composite |

### Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)


|                  |                    |                   | Effluent L | imitations         |             |                     | Monitoring Red           | quirements     |
|------------------|--------------------|-------------------|------------|--------------------|-------------|---------------------|--------------------------|----------------|
| Parameter        | Mass Units         | (lbs/day) (1)     |            | Concentrat         | ions (mg/L) |                     | Minimum <sup>(2)</sup>   | Required       |
| Faranietei       | Average<br>Monthly | Average<br>Weekly | Minimum    | Average<br>Monthly | Maximum     | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
|                  |                    |                   |            |                    |             |                     |                          | 8-Hr           |
| TKN              | XXX                | XXX               | XXX        | XXX                | Report      | XXX                 | 1/quarter                | Composite      |
|                  |                    |                   |            |                    |             |                     |                          | 8-Hr           |
| Total Phosphorus | XXX                | XXX               | XXX        | 2.0                | XXX         | 4                   | 2/month                  | Composite      |

Compliance Sampling Location: At Outfall 001

|             | Tools and References Used to Develop Permit                                                                                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\square$   | WQM for Windows Model (see Attachment B)                                                                                                                                                                           |
|             | Toxics Management Spreadsheet (see Attachment )                                                                                                                                                                    |
|             | TRC Model Spreadsheet (see Attachment C)                                                                                                                                                                           |
|             | Temperature Model Spreadsheet (see Attachment )                                                                                                                                                                    |
|             | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
|             | Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.                                                                                                             |
|             | Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.                                                                                                                                                |
|             | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.                                                                                                                  |
|             | Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.                                                                                                                       |
|             | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.                                                                                                      |
|             | Pennsylvania CSO Policy, 386-2000-002, 9/08.                                                                                                                                                                       |
| $\boxtimes$ | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
|             | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.                                                                                           |
| $\boxtimes$ | Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.                                                                                                                                              |
|             | Implementation Guidance Design Conditions, 386-2000-007, 9/97.                                                                                                                                                     |
|             | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.                                                    |
|             | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.                                                                             |
|             | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.                                                                   |
|             | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.                                                              |
| $\boxtimes$ | Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.                                                                                                                                    |
|             | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.                                             |
| $\boxtimes$ | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.                                                                                                                           |
|             | Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.                                                                                                                                              |
| $\boxtimes$ | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.                                                                                                       |
|             | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.       |
|             | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.                                                                               |
|             | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999. |
|             | Design Stream Flows, 386-2000-003, 9/98.                                                                                                                                                                           |
|             | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.                                     |
|             | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.                                                                                                                         |
| $\boxtimes$ | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
|             | SOP: Establishing effluent limitation for individual sewage permit                                                                                                                                                 |
|             | Other:                                                                                                                                                                                                             |

#### **Attachments**

## A. Topographical Map



#### **B. WQM Model Results**

## **WQM 7.0 Effluent Limits**

|        | -               | n <u>Code</u><br>919 |                       | Stream Name<br>CHICKIES CRE | -                                    |                                  |                                  |
|--------|-----------------|----------------------|-----------------------|-----------------------------|--------------------------------------|----------------------------------|----------------------------------|
| RMI    | Name            | Permit<br>Number     | Disc<br>Flow<br>(mgd) | Parameter                   | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl, Limit<br>Minimum<br>(mg/L) |
| 27.800 | PA Dutch Countr | PA0081191            | 0.025                 | CBOD5                       | 25                                   |                                  |                                  |
|        |                 |                      |                       | NH3-N                       | 7.05                                 | 14.1                             |                                  |
|        |                 |                      |                       | Dissolved Oxygen            |                                      |                                  | 5                                |

### Input Data WQM 7.0

|                          | SWP<br>Basin | Strea<br>Cod         |                | Stre                    | am Name         |             | RMI                               |              | vation<br>(ft) | Drainage<br>Area<br>(sq mi) |                      | ope<br>v/ft)     | PWS<br>Vithdrawal<br>(mgd) | Apply<br>FC |
|--------------------------|--------------|----------------------|----------------|-------------------------|-----------------|-------------|-----------------------------------|--------------|----------------|-----------------------------|----------------------|------------------|----------------------------|-------------|
|                          | 07G          | 79                   | 19 CHICK       | IES CRE                 | EK              |             | 27.8                              | 00           | 580.00         | 1.                          | 20 0.0               | 00000            | 0.00                       | <b>v</b>    |
|                          |              |                      |                |                         | St              | ream Da     | ta                                |              |                |                             |                      |                  |                            |             |
| Design                   | LFY          | Trib<br>Flow         | Stream<br>Flow | Rch<br>Trav<br>Time     | Rch<br>Velocity | WD<br>Ratio | Rch<br>Width                      | Rch<br>Depth |                | <u>Tributary</u><br>p p     | ;<br>bH              | <u>S</u><br>Temp | <u>tream</u><br>pH         |             |
| Cond.                    | (cfsm)       | (cfs)                | (cfs)          | (days)                  | (fps)           |             | (ft)                              | (ft)         | (°C            | )                           |                      | (°C)             |                            |             |
| Q7-10<br>Q1-10<br>Q30-10 | 0.160        | 0.00<br>0.00<br>0.00 |                | 0.000<br>0.000<br>0.000 |                 | 0,0         | 0.00                              | 0.0          | 00 2           | 0.00                        | 7.85                 | 0.0              | 00 0.00                    | )           |
|                          | ſ            |                      |                |                         | D               | ischarge    | Data                              |              |                |                             |                      |                  |                            |             |
|                          |              |                      | Name           | Pe                      | rmit Numbe      | Disc        | g Permiti<br>Disc<br>Flow<br>(mgd | : Dis        | sc Res         |                             | Disc<br>Temp<br>(°C) | Disc<br>pH       |                            |             |
|                          |              | PA D                 | utch Coun      | tr PA                   | 0081191         | 0.02        | 50 0.02                           | 50 0.        | 0250           | 0.000                       | 25.0                 | 0 7              | <b>.</b> 60                |             |
|                          |              |                      |                |                         | P               | arameter    | Data                              |              |                |                             |                      |                  |                            |             |
|                          |              |                      |                | Paramete                | ar Name         |             |                                   | Trib<br>Conc | Stream<br>Conc | Fate<br>Coef                |                      |                  |                            |             |
|                          |              |                      |                | r arannok               | i Hullo         | (1          | ng/L) (                           | mg/L)        | (mg/L)         | (1/days                     | )                    |                  |                            |             |
|                          | -            |                      | CBOD5          |                         |                 | 3,3702      | 25.00                             | 2.00         | 0.00           | ) 1.5                       | 60                   |                  |                            |             |
|                          |              |                      | Dissolved      | Oxygen                  |                 |             | 5.00                              | 8.24         | 0.00           | 0.0                         | 00                   |                  |                            |             |
|                          |              |                      | NH3-N          |                         |                 |             | 25.00                             | 0.00         | 0.00           | 0.7                         | 0                    |                  |                            |             |

## Input Data WQM 7.0

|                          | SWP<br>Basir |                      |                      | Stre                                    | eam Name                |             | RMI                               |                                | vation<br>(ft) | Drainage<br>Area<br>(sq mi) |                      | lope<br>ft/ft) | PW<br>Withda<br>(mg | rawal   | Apply<br>FC |
|--------------------------|--------------|----------------------|----------------------|-----------------------------------------|-------------------------|-------------|-----------------------------------|--------------------------------|----------------|-----------------------------|----------------------|----------------|---------------------|---------|-------------|
|                          | 07G          | 79                   | 919 CHICK            | KIES CRE                                | EK                      |             | 27.61                             | 0                              | 494.00         | 3.                          | .40 0.4              | 00000          |                     | 0.00    | <b>V</b>    |
|                          |              |                      | 14,800               |                                         | St                      | ream Dat    | a                                 | 1/104/_                        |                |                             |                      |                |                     |         |             |
| Design<br>Cond.          | LFY          | Trib<br>Flow         | Stream<br>Flow       | Rch<br>Trav<br>Time                     | Rch<br>Velocity         | WD<br>Ratio | Rch<br>Width                      | Rch<br>Depth                   | Tem            | <u>Tributary</u><br>p p     | H                    | Tem            | <u>Stream</u><br>p  | ı<br>pH |             |
| Jona,                    | (cfsm)       | (cfs)                | (cfs)                | (days)                                  | (fps)                   |             | (ft)                              | (ft)                           | (°C            | )                           |                      | (°C)           | )                   |         |             |
| Q7-10<br>Q1-10<br>Q30-10 | 0.160        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000                 | 0.000<br>0.000<br>0.000 | 0.0         | 0.00                              | 0.0                            | 0 2            | 0.00                        | 7.85                 | (              | 0.00                | 0.00    | ***         |
|                          |              | V.2712               | 10.000               | . v                                     | Di                      | scharge l   | Data                              |                                |                |                             |                      |                |                     |         |             |
|                          |              |                      | Name                 | Per                                     | mit Number              | Disc        | Permitte<br>Disc<br>Flow<br>(mgd) | d Desig<br>Disc<br>Flow<br>(mg | c Res          | erve T<br>ctor              | Disc<br>remp<br>(°C) | Dis<br>pl      |                     |         |             |
|                          |              |                      |                      | *************************************** |                         | 0.0000      | 0.000                             | 0.0                            | 000 (          | 0.000                       | 0.00                 | )              | 7.00                |         |             |
|                          |              |                      |                      |                                         | Pa                      | rameter I   | Data                              |                                |                |                             |                      |                |                     |         |             |
|                          |              |                      | F                    | Parameter                               | · Name                  | Di:<br>Co   |                                   | rib S<br>onc                   | Stream<br>Conc | Fate<br>Coef                |                      |                |                     |         |             |
|                          | _            |                      |                      |                                         |                         | (m          | g/L) (m                           | g/L)                           | (mg/L)         | (1/days)                    |                      |                | Ì                   |         |             |
|                          |              |                      | CBOD5                |                                         |                         | 2           | 25.00                             | 2.00                           | 0.00           | 1.50                        | )                    |                |                     |         |             |
|                          |              |                      | Dissolved            | Oxygen                                  |                         |             | 3.00                              | 8.24                           | 0.00           | 0.00                        | )                    |                |                     |         |             |
|                          |              |                      | NH3-N                |                                         |                         | 2           | 25.00                             | 0.00                           | 0.00           | 0.70                        | 1                    |                |                     |         |             |

## **WQM 7.0 Hydrodynamic Outputs**

|        | <u>sw</u>               | <u>P Basin</u>       | Strea                          | m Code                            |                           |               | •             | Stream       |                   |                                 |                          |                |   |
|--------|-------------------------|----------------------|--------------------------------|-----------------------------------|---------------------------|---------------|---------------|--------------|-------------------|---------------------------------|--------------------------|----------------|---|
|        |                         | 07G                  | 7                              | 919                               |                           |               | Cł            | lickies      | CREEK             |                                 |                          |                |   |
| RMI    | Stream<br>Flow<br>(cfs) | PWS<br>With<br>(cfs) | Net<br>Stream<br>Flow<br>(cfs) | Disc<br>Analysis<br>Flow<br>(cfs) | Reach<br>Slope<br>(ft/ft) | Depth<br>(ft) | Width<br>(ft) | W/D<br>Ratio | Velocity<br>(fps) | Reach<br>Trav<br>Time<br>(days) | Analysis<br>Temp<br>(°C) | Analysis<br>pH |   |
|        |                         |                      | -00000                         |                                   |                           |               |               |              |                   |                                 |                          |                | - |
| Q7-1   | 0 Flow                  |                      |                                |                                   |                           |               |               |              |                   |                                 |                          |                |   |
| 27.800 | 0.19                    | 0.00                 | 0.19                           | .0387                             | 0.08573                   | .473          | 4.34          | 9.19         | 0.11              | 0.103                           | 20.84                    | 7.80           |   |
| Q1-1   | 0 Flow                  |                      |                                |                                   |                           |               |               |              |                   |                                 |                          |                |   |
| 27.800 | 0,12                    | 0.00                 | 0.12                           | .0387                             | 0.08573                   | NA            | NA            | NA           | 0.09              | 0.126                           | 21.20                    | 7.78           |   |
| Q30-   | 10 Flow                 | 1                    |                                |                                   |                           |               |               |              |                   |                                 |                          |                |   |
| 27,800 | 0.24                    | 0.00                 | 0.24                           | .0387                             | 0.08573                   | NA            | NA            | NA           | 0.13              | 0.092                           | 20.68                    | 7.81           |   |

## **WQM 7.0 Modeling Specifications**

| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | <b>V</b>     |
|--------------------|--------|-------------------------------------|--------------|
| WLA Method         | EMPR   | Use Inputted W/D Ratio              |              |
| Q1-10/Q7-10 Ratio  | 0.64   | Use Inputted Reach Travel Times     |              |
| Q30-10/Q7-10 Ratio | 1.27   | Temperature Adjust Kr               | $\checkmark$ |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | <b>V</b>     |
| D.O. Goal          | 5      |                                     |              |

## **WQM 7.0 Wasteload Allocations**

|              | SWP Basin St     | ream Code<br>7919           | 2                 |                           | •                               | Stream<br>HCKIES   | Name<br>CREEK           |                   |                      |          |
|--------------|------------------|-----------------------------|-------------------|---------------------------|---------------------------------|--------------------|-------------------------|-------------------|----------------------|----------|
| NH3-N        | Acute Allocati   | ons                         |                   |                           |                                 |                    |                         |                   |                      |          |
| RM!          | Discharge Na     | Baseli<br>ne Criter<br>(mg/ | ion               | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | ١ ١                | illiple<br>VLA<br>ng/L) | Critical<br>Reach | Percent<br>Reduction | 1        |
| 27.80        | 00 PA Dutch Coun | r.                          | 5.33              | 22.25                     | 5.3                             | 33                 | 22.25                   | 0                 | 0                    |          |
| NH3-N<br>RMI | Chronic Alloc    | Baselin                     | n                 | aseline<br>WLA<br>(mg/L)  | Multiple<br>Criterion<br>(mg/L) |                    | iiple<br>LA<br>g/L)     | Critical<br>Reach | Percent<br>Reduction | _        |
| 27,8         | 00 PA Dutch Coun | tr                          | .97               | 7.05                      |                                 | 97                 | 7,05                    | 0                 | 0                    | _        |
| Dissolv      | ed Oxygen Al     | ocations                    | ;                 | -2001                     |                                 |                    |                         |                   |                      |          |
|              |                  |                             | CB                | OD5                       | NH3                             | <u>-N</u>          | Dissol                  | ved Oxyger        | Critical             | Percent  |
| RMI          | Discharge        |                             | aseline<br>(mg/L) | Multiple<br>(mg/L)        | Baseline<br>(mg/L)              | Multiple<br>(mg/L) | Baselir<br>(mg/L        | •                 | Reach                | Reductio |
| 27.          | 80 PA Dutch Cour | tr                          | 25                | 25                        | 7.05                            | 7.05               | 5 5                     | 5                 | 0                    | 0        |

## WQM 7.0 D.O.Simulation

| SWP Basin Str<br>07G     | ream Code<br>7919  |            |           | Stream Name<br>HICKIES CREEK |                       |
|--------------------------|--------------------|------------|-----------|------------------------------|-----------------------|
| RMI                      | Total Discharge    | Flow (mgd) | Anal      | ysis Temperature (           | <u>C) Analysis pH</u> |
| 27.800                   | 0.025              |            |           | 20.838                       | 7.797                 |
| Reach Width (ft)         | Reach Dep          | th (ft)    |           | Reach WDRatio                | Reach Velocity (fps)  |
| 4.343                    | 0.473              |            |           | 9.190                        | 0.112                 |
| Reach CBOD5 (mg/L)       | Reach Kc (1        | /days)     | <u>Re</u> | each NH3-N (mg/L             | *                     |
| 5.86                     | 1.048              |            |           | 1.18                         | 0.747                 |
| Reach DO (mg/L)          | <u>Reach Kr (1</u> |            |           | Kr Equation                  | Reach DO Goal (mg/L)  |
| 7.699                    | 20.470             | 3          |           | Owens                        | 5                     |
| Reach Travel Time (days) |                    | Subreach   | Results   |                              |                       |
| 0.103                    | TravTime           | CBOD5      | NH3-N     | D,O.                         |                       |
|                          | (days)             | (mg/L)     | (mg/L)    | (mg/L)                       |                       |
|                          | 0.010              | 5.79       | 1.17      | 7.82                         |                       |
|                          | 0.021              | 5.73       | 1.16      | 7.93                         |                       |
|                          | 0.031              | 5.66       | 1.15      | 8.01                         |                       |
|                          | 0.041              | 5.60       | 1.15      | 8.08                         |                       |
|                          | 0.052              | 5.54       | 1.14      | 8.12                         |                       |
|                          | 0.062              | 5.47       | 1.13      | 8.12                         |                       |
|                          | 0.072              | 5,41       | 1.12      | 8.12                         |                       |
|                          | 0,083              | 5.35       | 1.11      | 8.12                         |                       |
|                          | 0.093              | 5.29       | 1.10      | 8.12                         |                       |
|                          | 0.103              | 5.23       | 1.09      | 8.12                         |                       |
|                          |                    |            |           |                              |                       |

## C. TRC Calculations

|                                                    | iate values ii                                                                                                   | n A3:A9 and D3:D9                                                                                                                                                               |                                                                               |                                                   |                          |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|--------------------------|
| 0.19                                               | = Q stream                                                                                                       | ı (cfs)                                                                                                                                                                         | 0.5                                                                           | = CV Daily                                        |                          |
| 0.025                                              | = Q discha                                                                                                       | rge (MGD)                                                                                                                                                                       | 0.5                                                                           | = CV Hourly                                       |                          |
| 30                                                 | = no. samp                                                                                                       | les                                                                                                                                                                             | 1                                                                             | = AFC_Partia                                      | al Mix Factor            |
| 0.3                                                | = Chlorine                                                                                                       | Demand of Stream                                                                                                                                                                | 1                                                                             | = CFC_Partia                                      | al Mix Factor            |
| C                                                  | = Chlorine                                                                                                       | Demand of Discharge                                                                                                                                                             | 15                                                                            | = AFC_Crite                                       | ria Compliance Time (min |
| 0.5                                                | = BAT/BPJ                                                                                                        | Value                                                                                                                                                                           | 720                                                                           | = CFC_Crite                                       | ria Compliance Time (min |
| C                                                  | = % Facto                                                                                                        | r of Safety (FOS)                                                                                                                                                               | 0                                                                             | =Decay Coef                                       | ficient (K)              |
| Source                                             | Reference                                                                                                        | AFC Calculations                                                                                                                                                                |                                                                               | Reference                                         | CFC Calculations         |
| TRC                                                | 1.3.2.iii                                                                                                        | WLA afc =                                                                                                                                                                       | 1.586                                                                         | 1.3.2.iii                                         | WLA cfc = 1.539          |
| PENTOXSD TRG                                       | 5.1a                                                                                                             | LTAMULT afc =                                                                                                                                                                   | 0.373                                                                         | 5.1c                                              | LTAMULT cfc = 0.581      |
| PENTOXSD TRG                                       | 5.1b                                                                                                             | LTA_afc=                                                                                                                                                                        | 0.591                                                                         | 5.1d                                              | LTA_cfc = 0.895          |
|                                                    |                                                                                                                  |                                                                                                                                                                                 |                                                                               |                                                   |                          |
| Source                                             |                                                                                                                  | Effluer                                                                                                                                                                         | t Limit Calcu                                                                 |                                                   |                          |
| PENTOXSD TRG                                       |                                                                                                                  |                                                                                                                                                                                 | AML MULT =                                                                    |                                                   |                          |
| PENTOXSD TRG                                       | 5.1g                                                                                                             |                                                                                                                                                                                 | -IMIT (mg/l) =                                                                | 0.500                                             | BAT/BPJ                  |
|                                                    |                                                                                                                  |                                                                                                                                                                                 | 18 81T / US                                                                   |                                                   |                          |
|                                                    |                                                                                                                  | INST MAX L                                                                                                                                                                      | -IMIT (mg/l) =                                                                | 1.635                                             |                          |
|                                                    |                                                                                                                  | INST MAX L                                                                                                                                                                      | .IMIT (mg/l) =                                                                | 1.635                                             |                          |
| WLA afc                                            |                                                                                                                  | AFC_tc)) + [(AFC_Yc*Qs                                                                                                                                                          | s*.019/Qd*e                                                                   |                                                   |                          |
|                                                    | + Xd + (A                                                                                                        | (AFC_tc)) + [(AFC_Yc*Qs<br>(FC_Yc*Qs*Xs/Qd)]*(1-F                                                                                                                               | s*.019/Qd*e<br>OS/100)                                                        |                                                   |                          |
| LTAMULT afc                                        | + Xd + (A<br>EXP((0.5*LN                                                                                         | AFC_tc)) + [(AFC_Yc*Qs<br>IFC_Yc*Qs*Xs/Qd)]*(1-F0<br>I(cvh^2+1))-2.326*LN(cvh^2                                                                                                 | s*.019/Qd*e<br>OS/100)                                                        |                                                   |                          |
|                                                    | + Xd + (A                                                                                                        | AFC_tc)) + [(AFC_Yc*Qs<br>IFC_Yc*Qs*Xs/Qd)]*(1-F0<br>I(cvh^2+1))-2.326*LN(cvh^2                                                                                                 | s*.019/Qd*e<br>OS/100)                                                        |                                                   |                          |
| LTAMULT afc<br>LTA_afc                             | + Xd + (A<br>EXP((0.5*LN<br>wla_afc*LTA                                                                          | AFC_tc)) + [(AFC_Yc*Qs<br>AFC_Yc*Qs*Xs/Qd)]*(1-Fo<br>((cvh^2+1))-2.326*LN(cvh^<br>MULT_afc                                                                                      | s*.019/Qd*e<br>OS/100)<br>2+1)^0.5)                                           | (-k*AFC_tc)).                                     |                          |
| LTAMULT afc                                        | + Xd + (A<br>EXP((0.5*LN<br>wla_afc*LTA<br>(.011/e(-k*                                                           | AFC_tc)) + [(AFC_Yc*Qs<br>IFC_Yc*Qs*Xs/Qd)]*(1-F0<br>I(cvh^2+1))-2.326*LN(cvh^<br>IMULT_afc<br>CFC_tc) + [(CFC_Yc*Qs                                                            | s*.019/Qd*e<br>OS/100)<br>2+1)^0.5)<br>*.011/Qd*e(                            | (-k*AFC_tc)).                                     |                          |
| LTAMULT afc<br>LTA_afc<br><b>WLA_cfc</b>           | + Xd + (A<br>EXP((0.5*LN<br>wla_afc*LTA<br>(.011/e(-k*<br>+ Xd + (0                                              | AFC_tc)) + [(AFC_Yc*Qs<br>FC_Yc*Qs*Xs/Qd)]*(1-Fd<br>(cvh^2+1))-2.326*LN(cvh^3<br>MULT_afc<br>CFC_tc) + [(CFC_Yc*Qs<br>FC_Yc*Qs*Xs/Qd)]*(1-Fd                                    | s*.019/Qd*e<br>OS/100)<br>2+1)^0.5)<br>*.011/Qd*e(<br>OS/100)                 | (-k*AFC_tc)).<br>-k*CFC_tc)).                     |                          |
| LTAMULT afc LTA_afc  WLA_cfc  LTAMULT_cfc          | + Xd + (A<br>EXP((0.5*LN<br>wla_afc*LTA<br>(.011/e(-k*<br>+ Xd + (0<br>EXP((0.5*LN                               | AFC_tc)) + [(AFC_Yc*Qs<br>IFC_Yc*Qs*Xs/Qd)]*(1-Fc<br>I(cvh^2+1))-2.326*LN(cvh^2<br>IMULT_afc<br>ICFC_tc) + [(CFC_Yc*Qs<br>IFC_Yc*Qs*Xs/Qd)]*(1-Fc<br>I(cvd^2/no_samples+1))-2.3 | s*.019/Qd*e<br>OS/100)<br>2+1)^0.5)<br>*.011/Qd*e(<br>OS/100)                 | (-k*AFC_tc)).<br>-k*CFC_tc)).                     |                          |
| LTAMULT afc<br>LTA_afc<br><b>WLA_cfc</b>           | + Xd + (A<br>EXP((0.5*LN<br>wla_afc*LTA<br>(.011/e(-k*<br>+ Xd + (0                                              | AFC_tc)) + [(AFC_Yc*Qs<br>IFC_Yc*Qs*Xs/Qd)]*(1-Fc<br>I(cvh^2+1))-2.326*LN(cvh^2<br>IMULT_afc<br>ICFC_tc) + [(CFC_Yc*Qs<br>IFC_Yc*Qs*Xs/Qd)]*(1-Fc<br>I(cvd^2/no_samples+1))-2.3 | s*.019/Qd*e<br>OS/100)<br>2+1)^0.5)<br>*.011/Qd*e(<br>OS/100)                 | (-k*AFC_tc)).<br>-k*CFC_tc)).                     |                          |
| LTAMULT afc LTA_afc  WLA_cfc  LTAMULT_cfc          | + Xd + (A<br>EXP((0.5*LN<br>wla_afc*LTA<br>(.011/e(-k*<br>+ Xd + (C<br>EXP((0.5*LN<br>wla_cfc*LTA                | AFC_tc)) + [(AFC_Yc*Qs<br>IFC_Yc*Qs*Xs/Qd)]*(1-Fc<br>I(cvh^2+1))-2.326*LN(cvh^2<br>IMULT_afc<br>ICFC_tc) + [(CFC_Yc*Qs<br>IFC_Yc*Qs*Xs/Qd)]*(1-Fc<br>I(cvd^2/no_samples+1))-2.3 | s*.019/Qd*e<br>OS/100)<br>2+1)^0.5)<br>*.011/Qd*e(<br>OS/100)<br>826*LN(cvd^2 | (-k*AFC_tc)).<br> -k*CFC_tc) ).<br>2/no_samples+1 | . <b>.</b><br>I)^0.5)    |
| LTAMULT afc LTA_afc  WLA_cfc  LTAMULT_cfc  LTA_cfc | + Xd + (A<br>EXP((0.5*LN<br>wla_afc*LTA<br>(.011/e(-k*<br>+ Xd + (C<br>EXP((0.5*LN<br>wla_cfc*LTA<br>EXP(2.326*L | AFC_tc)) + [(AFC_Yc*Qs<br>AFC_Yc*Qs*Xs/Qd)]*(1-Fo<br>AMULT_afc<br>ACFC_tc) + [(CFC_Yc*Qs<br>ACFC_Yc*Qs*Xs/Qd)]*(1-Fo<br>AMULT_cfc                                               | s*.019/Qd*e<br>OS/100)<br>2+1)^0.5)<br>*.011/Qd*e(<br>OS/100)<br>326*LN(cvd^2 | (-k*AFC_tc)).<br> -k*CFC_tc) ).<br>2/no_samples+1 | . <b>.</b><br>I)^0.5)    |