

Application Type Renewal Facility Type Municipal Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0081302
APS ID	276590
Authorization ID	1170691

Applicant and Facility Information

Applicant Name South Londonderry Township Municipal Authority			Facility Name	South Londonderry Campbelltown West STP
Applicant Address	27 W N	larket Street	Facility Address	777 S Lingle Road
	Palmyr	a, PA 17078-8736		Campbelltown, PA 17010
Applicant Contact	Scott G	albraith	Facility Contact	Scott Galbraith
Applicant Phone	(717) 838-5556		Facility Phone	(717) 838-5556
Client ID	43038		Site ID	250911
Ch 94 Load Status	Not Ov	erloaded	Municipality	South Londonderry Township
Connection Status	No Lim	itations	County	Lebanon
Date Application Recei	ved	January 24, 2017	EPA Waived?	Yes
Date Application Accep	oted	February 28, 2017	If No, Reason	
Purpose of Application		NPDES permit renewal to disch	arge treated sewage	

Summary of Review

1.0 General Discussion

This fact sheet supports the re-issuance of an existing NPDES permit for discharge of treated domestic wastewater from Campbelltown West wastewater treatment plant located in South Londonderry Township, Lebanon County. South Londonderry Township Municipal Authority owns and operates the wastewater treatment plant, which provides sanitary services to South Londonderry Township. The sewer collection system is not combined and there is no bypasses or overflows approved in the collection system. The oxidation ditch treatment plant at the site has a hydraulic design capacity of 0.215 MGD and an organic design capacity of 453 lbs/day- BOD5. The facility discharge to Spring Creek which is classified for Warm Water Fishes (WWF). The existing NPDES permit was issued on July 31, 2012 with an effective date of August 1, 2012 and expiration date of July 31, 2017. The applicant submitted an administratively complete NPDES renewal application to the Department on January 24, 2017 and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application.

A topographic map showing the discharge location is presented in attachment A.

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-

Approve	Deny	Signatures	Date
х		J. Pascal Kwedza, P.E. / Environmental Engineer	June 18, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Program Manager	

Summary of Review

day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Changes to the existing Permit

- Monthly monitoring of Total nitrogen, Nitrate-Nitrite -N and TKN have been added to collect adequate data for the Chesapeake Bay Program.
- Total Copper monitoring/limitation has been added

1.3 Existing Permit Limits and Monitoring Requirements

	MONITORING REQUIREMENTS								
	Ma	ass Units Ibs	s/day		Concen				
Discharge Parameter	Average Monthly	Average Weekly	Maximum Daily	Average Monthly	Average Weekly	Maximum Daily	Inst. Maximum	Monitoring Frequency	Sample Type
Flow (mgd)	Monitor & Report	XXX	Monitor & Report	xxx	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	xxx	XXX	xxx		From 6.0	to 9.0 inclusive	9	1/day	Grab
D.O.	XXX	XXX	XXX	M	inimum of 5	.0 mg/l at all ti	mes	1/day	Grab
TRC	xxx	xxx	XXX	<0.1	xxx	XXX	0.30	1/day	Grab
TSS	53.7	80.6	xxx	30	45	XXX	60	1/week	24-hour comp
CBOD₅ May 1 - Oct 31	35.8	53.7	XXX	20	30	ХХХ	40	1/week	24-hour comp
CBOD₅ Nov 1 - Apr 30	44.8	71.7	xxx	25	40	ххх	50	1/week	24-hour comp
NH3N (5/1 to 10/31)	5.3	xxx	xxx	3.0	xxx	xxx	6.0	1/week	24-hr comp
NH3N (11/1 to 4/30)	16.1	xxx	ххх	9.0	xxx	xxx	18	1/week	24-hr comp
Fecal Col. (5/1 to 9/30)	xxx	XXX	xxx	200	XXX	XXX	1000	1/week	Grab
Fecal Col. (10/1 to 4/30)	xxx	XXX	xxx	2,000	XXX	xxx	10,000	1/week	Grab
Total Phosphorus	3.5	XXX	XXX	2.0	XXX	ХХХ	4.0	1/week	24-hour comp

1.4 Discharge, Receiving Waters and Water Supply Inf	ormation	
		045
Outfall No. 001	Design Flow (MGD)	.215
Latitude <u>40° 16' 41.14"</u>	Longitude	-76º 35' 14.88"
Quad Name Palmyra	Quad Code	1633
Wastewater Description: Sewage Effluent		
Pageiving Waters Spring Creek	Stream Code	00507
Receiving Waters <u>Spring Creek</u> NHD Com ID 56400739	Stream Code RMI	<u> </u>
Drainage Area 1.90 Q ₇₋₁₀ Flow (cfs) 0.20	Yield (cfs/mi²) Q ₇₋₁₀ Basis	0.14
Q ₇₋₁₀ Flow (cfs) <u>0.20</u> Elevation (ft) 440	Slope (ft/ft)	USGS Gage Station
Watershed No. 7-D	Chapter 93 Class.	WWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired		
Cause(s) of Impairment Water/Flow Variability, Silta	ation	
Source(s) of Impairment Natural Sources, Agricultur		
TMDL Status	Name	
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake	Suez Water	
PWS Waters Swatara Creek	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	<16

Changes Since Last Permit Issuance: None

Other Comments:

1.4.1 Water Supply Intake

The nearest downstream water supply intake is approximately 16 miles downstream by Suez Water on Swatara Creek near Hummelstown, Dauphin County. No impact is expected from this discharge on the intake.

2.0 Treatment Facility Summary									
Treatment Facility Name: S Londonderry Campbell W STP									
WQM Permit No.	Issuance Date								
3890401									
	Degree of			Avg Annual					
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
Sewage	Secondary	Oxidation Ditch	Gas Chlorine	0.215					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
0.215	453	Not Overloaded							

Changes Since Last Permit Issuance: Post aeration system was installed.

2.1 Treatment Facility

The treatment plant consists of muffin monster, bar screen as back-up, 1 oxidation ditch, 3 clarifiers 1 online and the rest used only during high flows, 1 chlorine contact tank, 1 de-chlorination tank, post aeration system, 2 sludge digesters and 4 reed beds. Ferric chloride is added for phosphorus removal, chlorine gas is used for disinfection, sulfur dioxide is added for de-chlorination and lime added for pH adjustment. Portions of the township's flow originally intended for the West Plant is pumped to the East plant via the Carriage Park Pump Station to preserve capacity at the West Plant for new development.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from February 1, 2018 to January 31, 2019)

Parameter	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18	AUG-18	JUL-18	JUN-18	MAY-18	APR-18	MAR-18	FEB-18
Flow (MGD)												
Average Monthly	0.180	0.186	0.187	0.145	0.207	0.240	0.219	0.113	0.123	0.110	0.106	0.114
Flow (MGD)												
Daily Maximum	0.317	0.289	0.296	0.177	0.373	0.362	0.961	0.143	0.224	0.143	0.126	0.145
pH (S.U.)												
Minimum	6.74	6.67	6.44	6.70	6.84	6.72	6.18	6.47	6.10	6.59	6.45	6.46
pH (S.U.)												
Maximum	7.22	7.21	7.22	7.35	7.49	7.29	7.57	7.22	7.12	7.32	7.24	7.16
DO (mg/L)												
Minimum	5.95	4.77	6.16	5.09	5.36	5.20	4.86	5.26	5.22	5.45	5.13	5.99
TRC (mg/L)												
Average Monthly	0.05	0.04	0.03	0.01	0.04	0.01	0.01	0.02	0.01	0.00	0.02	0.03
TRC (mg/L)												
Instant. Maximum	0.28	0.27	0.24	0.09	0.21	0.08	0.07	0.16	0.08	0.05	0.28	0.20
CBOD5 (lbs/day)												
Average Monthly	5.72	3.58	4.12	< 3.55	< 5.07	< 5.26	< 6.15	4.76	3.18	6.06	10.13	4.09
CBOD5 (lbs/day)												
Weekly Average	10.58	5.75	5.31	5.67	7.54	6.69	15.65	7.84	4.73	8.17	18.90	5.95
CBOD5 (mg/L)												4 = 0
Average Monthly	3.58	2.60	3.02	< 2.88	< 3.13	< 2.90	< 3.80	5.30	3.60	6.93	11.30	4.58
CBOD5 (mg/L)	1.10	0.50	4 40	4.00	4 50	4.00	5.40	0.70	5.00	0.07	00.00	7.00
Weekly Average	4.10	3.50	4.40	4.20	4.50	4.60	5.10	8.70	5.30	9.07	20.60	7.00
BOD5 (lbs/day)												
Raw Sewage Influent	257	296	379	356	370	363	075	249	076	394	202	074
 Ave. Monthly	357	296	379	300	370	303	375	249	276	394	283	274
BOD5 (lbs/day) Raw Sewage Influent												
<pre> br/>> Daily Maximum</pre>	418	360	587	521	458	534	448	266	357	831	465	316
BOD5 (mg/L)	410	300	507	521	430	- 554	440	200	557	031	405	510
Raw Sewage Influent												
 Ave. Monthly	249	221	268	295	225	191	331	276	279	425	325	306
TSS (lbs/day)	243	221	200	235	225	131		210	213	420	525	500
Average Monthly	< 8.21	< 6.72	< 7.40	< 6.04	< 8.24	< 9.51	< 47.08	6.06	< 6.08	25.63	< 69.64	< 6.40
TSS (lbs/day)	< 0.2 i	< 0.1 <i>L</i>	× 7.40	× 0.04	< 0.2 ∓	< 0.01	\$ 47.00	0.00	× 0.00	20.00	\$ 00.04	× 0.40
Raw Sewage Influent												
 Ave. Monthly	239	226	329	247	264	516	191	193	126	184	185	162

NPDES Permit No. PA0081302

NPDES Permit Fact Sheet South Londonderry Campbelltown West STP

TSS (lbs/day)												
Raw Sewage Influent												
<pre> Daily Maximum</pre>	560	345	488	389	496	1442	270	298	222	251	279	222
TSS (lbs/day)	500	545	400		430	1772	210	230		201	215	
Weekly Average	< 13.22	< 8.21	< 10.79	< 7.21	< 9.76	< 11.55	174.94	6.71	8.03	53.07	161.46	9.01
TSS (mg/L)	< 15.22	< 0.21	< 10.75	< 1.21	< 5.70	< 11.55	174.34	0.71	0.00	55.07	101.40	5.01
Average Monthly	< 5.20	< 5.00	< 5.20	< 5.00	< 5.00	< 5.00	< 18.00	6.75	< 6.20	29.50	< 77.00	< 7.00
TSS (mg/L)	< 0.20	< 0.00	< 0.20	< 0.00	< 0.00	< 0.00	< 10.00	0.75	< 0.20	23.50	<11.00	< 7.00
Raw Sewage Influent												
<pre> Ave. Monthly</pre>	181	166	253	225	162	250	162	219	125	204	205	183
TSS (mg/L)	101	100	200	225	102	200	102	215	120	204	200	100
Weekly Average	6.00	< 5.00	6.00	< 5.00	< 5.00	< 5.00	57.00	8.00	9.00	63.00	176.00	9.00
Fecal Coliform	0.00	< 5.00	0.00	< 5.00	< 5.00	< 5.00	57.00	0.00	9.00	03.00	170.00	3.00
(CFU/100 ml)												
Geometric Mean	46	12	13	9	10	52	69	10	9	2	41	6
Fecal Coliform	UF	12	10		10			10		۷.		
(CFU/100 ml)												
Instant. Maximum	12800	6300	131	182	26	3600	2200	53	24	20	8090	7
Nitrate-Nitrite (mg/L)	12000	0000	101	102	20	0000	2200	00	21	20	0000	
Average Monthly	28.22	28.55	27.04	21.80	23.90	25.94	35.85	41.28	38.66	48.25	43.32	39.33
Nitrate-Nitrite (lbs)	20.22	20.00	27.04	21.00	20.00	20.04	00.00	41.20	00.00	40.20	40.02	00.00
Total Monthly	1353.46	1190.09	1142.40	879.78	1164.90	1524.27	1216.75	1121.10	1184.82	1291.20	1184.82	999.88
Total Nitrogen (mg/L)	1000.40	1100.00	1142.40	010.10	1104.00	1024.27	1210.70	1121.10	1104.02	1201.20	1104.02	000.00
Average Monthly	< 29.22	< 29.55	< 27.84	< 23.05	< 25.00	< 27.12	< 36.90	< 42.30	< 39.70	< 48.57	< 47.88	< 40.33
Total Nitrogen (lbs)	<	< 20100	<	120.00	< 20.000	<	<	< 12.000	<	<	< 11.000	<
Total Monthly	1402.44	1231.63	1103.10	< 924.73	1220.10	1594.33	1266.04	1149.00	1216.75	1357.80	1313.78	1025.08
Total Nitrogen (lbs)					<14683.							
Total Annual					70							
Ammonia (lbs/day)												
Average Monthly	0.351	< 0.292	< 0.411	0.460	0.210	< 0.707	1.017	0.473	0.807	0.734	0.519	0.211
Ammonia (mg/L)												
Average Monthly	0.220	< 0.210	< 0.259	0.401	0.350	< 0.393	1.125	0.505	0.839	0.820	0.599	0.236
TKN (mg/L)												
Average Monthly	< 1.00	< 1.00	< 1.00	< 1.25	< 1.10	< 1.18	< 1.05	< 1.03	1.04	< 2.55	< 4.56	< 1.00
TKN (lbs)					-				_			
Total Monthly	< 49.29	< 41.54	< 43.20	< 45.26	< 55.20	< 70.06	< 49.29	< 27.90	< 31.93	< 66.60	< 128.84	< 25.48
Total Phosphorus												
(lbs/day) Ave. Monthly	1.17	1.08	0.62	0.59	0.71	1.21	1.86	0.91	1.07	1.86	3.75	0.49
Total Phosphorus												
(mg/L) Ave. Monthly	0.74	0.80	0.43	0.48	0.43	0.63	0.93	1.01	1.07	2.13	4.15	0.54
Total Phosphorus (lbs)												
Total Monthly	36.27	33.48	18.60	18.29	21.30	37.51	57.66	27.30	33.17	55.80	116.31	13.72
Total Phosphorus (lbs)												
Total Annual					413.28							
			L	1		L	L	L	1	L	1	·]

Effluent Violations for Outfall 001, from: March 1, 2018 To: February 28, 2019

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
DO	07/31/18	Min	4.86	mg/L	5.0	mg/L
DO	12/31/18	Min	4.77	mg/L	5.0	mg/L
TSS	03/31/18	Avg Mo	< 69.64	lbs/day	53.7	lbs/day
TSS	03/31/18	Wkly Avg	161.46	lbs/day	80.6	lbs/day
TSS	07/31/18	Wkly Avg	174.94	lbs/day	80.6	lbs/day
TSS	03/31/18	Avg Mo	< 77.00	mg/L	30	mg/L
TSS	03/31/18	Wkly Avg	176.00	mg/L	45	mg/L
TSS	04/30/18	Wkly Avg	63.00	mg/L	45	mg/L
TSS	07/31/18	Wkly Avg	57.00	mg/L	45	mg/L
Fecal Coliform	01/31/19	IMAX	12800	CFU/100 ml	10000	CFU/100 ml
Fecal Coliform	07/31/18	IMAX	2200	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	08/31/18	IMAX	3600	CFU/100 ml	1000	CFU/100 ml
Total Phosphorus	03/31/18	Avg Mo	3.75	lbs/day	3.5	lbs/day
Total Phosphorus	04/30/18	Avg Mo	2.13	mg/L	2.0	mg/L
Total Phosphorus	03/31/18	Avg Mo	4.15	mg/L	2.0	mg/L
Fecal Coliform	02/28/19	IMAX	11800	CFU/100 ml	10000	CFU/100 ml
Fecal Coliform	01/31/19	IMAX	12800	CFU/100 ml	10000	CFU/100 ml

Seventeen effluent violations were noted on DMR during the past 12 months of operations as shown on the table above. TSS, D.O. Total Phosphorus and Fecal Coliform violation occurred during the period, no reasons were given for these violations. The violations need to be addressed satisfactorily prior to final permit issuance. The following paragraph will be added to the cover letter of the draft permit asking the permittee to address violations.

NPDES Permit Fact Sheet South Londonderry Campbelltown West STP

NPDES Permit No. PA0081302

"According to DEP's records, there are unresolved violation(s) at one or more facilities you own or operate. In accordance with DEP's Clean Water Program standard operating procedures, an applicant's compliance history is considered prior to making a final decision on any permit application. Please take the opportunity to address these violations during this draft comment period. DEP may not be able to issue a final permit until the violation(s) are resolved"

The violations appear to be operation related, if structural adjustment to the treatment unit is required to address the violations, the facility will be required to submit a corrective action plan to the Department for approval.

3.3 Summary of Inspections:

The facility has been inspected 7 times during the past permit cycle. D.O and TSS violations occurred during plant inspection on April 9, 2018. A notice of violation was sent on May 21, 2018 for the violations on April 9, 2018 and DMR violations that occurred in March and April of 2018 shown on the effluent violation table above. A response to the NOV could not explain the unusual cloudy effluent experienced at the facility that led to the violations. It appears from DMR data that TSS and Phosphorus violations have been addressed. The director of Public Works for the Authority explained that, Fecal Coliform violations were due to malfunction of one of the disinfection treatment trains prior to combining in the chlorine contact tank. March and April Fecal Coliform results are well below permit limits.

4.0 Develop	ment of Effluent Limitations		
Outfall No.	001	Design Flow (MGD)	.215
Latitude	40º 16' 53.06"	Longitude	-76º 35' 27.31"
Wastewater D	Description: Sewage Effluent		

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	nt Limit (mg/l) SBC		Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

4.2 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.3 Water Quality-Based Limitations

4.3.1 Receiving Stream

The receiving stream is Spring Creek. According to 25 PA § 93.90, this stream is protected for Warm Water Fishes (WWF). It is located in Drainage List o and State Watershed 7-D. It has been assigned stream code 09507. According to the Department's Integrated Water Quality Monitoring and Assessment Report, Spring Creek is impaired due to siltation and flow variability. The Stream is listed as Category 4c Waterbodies, this pollution type does not require a TMDL. See 303d listed streams section of the report for further discussion.

4.3.2 Stream flows

The Technical Support Document for Water Quality-Based Toxics Control (TSD) (EPA, 1991) and the Pennsylvania Water Quality Standards PA WQS) recommend the flow conditions for use in calculating water quality-based effluent limits (WQBELs) using steady-state modeling. The TSD and the PA WQS state that WQBELs intended to protect aquatic life uses should be based on the lowest seven-day average flow rate expected to occur once every ten years (Q7-10) for chronic criteria and the lowest one-day average flow rate expected to occur once every ten years (Q1-10) for acute criteria. However, because the chronic criterion for ammonia is a 30-day average concentration not to be exceeded more than once every three years, EPA has used the Q₃₀₋₁₀ for the chronic ammonia criterion instead of the Q₇₋₁₀. The Q₃₀₋₁₀ is a biologically-based design flow intended to ensure an excursion frequency of once every three years for a 30-day average flow rate. These flows were determined by correlating with the yield of USGS gage No. 01573560 on Swatara Creek near Hershey. The Q7-10 and drainage area at the gage is 67.7ft3/s and 483mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (67.7 \text{ft}^3/\text{s})/483 \text{ mi}^2 = 0.14 \text{ft}^3/\text{s}/\text{mi}^2$
- $Q_{30-10} / Q_{7-10} = 0.89$ •
- $Q_{1-10} / Q_{7-10} = 1.23$ •

The drainage area at the point of discharge calculated using StreamStats = 1.53 mi².

The summer Q_{7-10} at discharge = 1.53 mi² x 0.14 ft³/s/mi² = 0.21 ft³/s.

4.3.3 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the attached computer model of the stream:

- Discharge pH
- Discharge Temperature •
- Stream pH •

= $25 \circ C$ (Default) = 7.0 ((Default)

= 6.7 (DMR median)

- Stream Temperature •
- Background NH₃-N
- = 20 °C ((Default) = 0.0 (Default)
- **Discharge flow** = 0.02MGD

4.3.4 CBOD₅ & NH₃-N

WQM7.0 is a steady state model that simplifies many natural processes into a reach-by-reach simulation was used for the water quality analysis. The attached result of the WQM 7.0 stream model (attachment B) indicates that an average monthly limit of 25mg/l is adequate to protect the water quality of the stream. However due to anti-backsliding, the previous permit limit of 20mg/l for the summer months and 25mg/l for winter months will remain. Past DMRs and inspection reports show that the STP has been consistently achieving these limits.

The attached model results of the WQM 7.0 stream model (attachment B) also indicates that a summer limit of 3.0 mg/l NH₃ as a monthly average is necessary to protect the aquatic life from toxicity effects. Winter limit is 3 times the summer. This is consistent with the existing permit.

4.3.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l as well, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.3.6 Total Suspended Solids(TSS):

There is no water quality criterion for TSS. The existing limit of 30 mg/l AML based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1), 40 CFR 133.102b(1), 25 PA § 92a.47(a)(1) and 92a.47(a)(2) will remain in the permit.

4.3.7 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/I TN and 0.8 mg/I TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal at a monitoring frequency following Table 6-3 of DEP's Technical Guidance for Development and Specification of effluent Limitations (No. 362-0400-001). Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away.

EPA published the Chesapeake Bay Total Maximum Daily Load (TMDL) in December of 2010. Despite extensive restoration efforts during the past 25 years, the TMDL was prompted by insufficient progress and continued poor water quality in the Chesapeake Bay and its tidal tributaries.

In order to address the TMDL, Pennsylvania developed in addition to the Bay Strategy, a Chesapeake Watershed Implementation Plan (WIP) Phase 1 in January 2011 and Phase 2 in March 2012. In accordance with the Phase 2 WIP and its supplement, re-issuing permits for significant dischargers follow the same phased approach formulated in the original Bay strategy, whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewal. This facility is, classified as a phase 4, and had monitored Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen is the past but is required to resume monthly monitoring during this permit cycle to collect data. There is limitation on Total Phosphorus in the permit, no monitoring is required.

4.3.8 Phosphorus

The existing phosphorus limitation of 2mg/l to control phosphorus discharges to the Lower Susquehanna River Basin is superseded by the Chesapeake Bay Strategy but would be continued due to anti-backsliding.

4.3.9 Total Residual Chlorine:

The attached computer printout presented in attachment C utilizes the equations and calculations as presented in the Department's 2003 Implementation Guidance for Residual Chlorine (TRC) (ID # 391-2000-015) for developing chlorine limitations. The results presented in attachment C indicates that a water quality limit of 0.09 mg/l and 0.31 mg/l IMAX would be needed to prevent toxicity concerns. The recommended limit is consistent with existing permit of <0.1 mg/l on an average and 0.30 mg/l maximum. Past DMRs document that the STP has been capable of achieving about 0.1 mg/l on an average and 0.3 mg/l maximum. Therefore, <0.1 mg/l on an average and 0.30 mg/l maximum is again recommended for the current permit renewal

4.3.10 Toxics

A reasonable potential (RP) analysis was done for pollutants submitted with the application. All pollutants were entered into a Toxics Screening Analysis spreadsheet to determine if any pollutants are parameters of concern that require PENTOXSD modeling. All pollutants above the most stringent Chapter 93 criteria are considered parameters of concern. This also includes samples that resulted in non-detect, but the method detection limit that was used is higher than DEP's target quantitation limit (QL). All pollutants that were determined to be candidates for PENTOXSD modeling were entered into the PENTOXSD model. The most stringent WQBELs recommended by the PENTOXSD model were then entered into the same Toxics Screening Analysis spreadsheet in order to determine which parameters of concern needs limitation or monitoring. Total Copper was determined to be parameter of concern and was analyzed with the PENTOXSD Model. The most stringent WQBELs recommended by the PENTOXSD model were then entered into the same Toxics Screening Analysis spreadsheet in order to determine if limitation or monitoring was necessary. A monthly average limit of 0.015 mg/l was recommended for Total Copper. See the Toxic screenings spreadsheet presented in attachment E for details. The permit will require monitoring in the interim and offer the permittee an opportunity to collect

NPDES Permit Fact Sheet South Londonderry Campbelltown West STP

data to refine the PENTOXSD model and /or conduct a site-specific study for copper. The limit or an amended permit will become effective 3 years after permit issuance date.

The recommended limit follows the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL

4.3.11 TDS, Sulfate, Chloride, Bromide & 1,4-Dioxane

Under the authority of §92a.61, DEP has determined it should implement increased monitoring in NPDES permits for TDS, sulfate, chloride, bromide, and 1,4-dioxane. The following approach will be implemented for point source discharges upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/L.

The maximum daily TDS discharge submitted with the application is 560 mg/L which is equivalent to 1,005lbs/day based on the permitted flow of 0.215 MGD. The discharge level for TDS is below the minimum 1000 mg/l and 20,000lbs/day, to require monitoring, therefore no monitoring of TDS, Chloride, Sulfate, and Bromide will be required in the permit. There is no data for 1,4-dioxane, therefore no monitoring is required for 1,4-dioxane

4.3.12 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.3.13 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.215 MGD and the facility receives flow from no significant Industrial users. There is no approved pretreatment program for the facility, however, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

No storm water outfall is associated with this facility

5.3 Special Permit Conditions

The permit will contain the following special conditions:

NPDES Permit Fact Sheet South Londonderry Campbelltown West STP

1. Stormwater Prohibition. 2. Approval Contingencies, 3. Management of collected screenings, slurries, sludges and other solids 4. Restrictions on flow acceptance under certain conditions. 5. Chlorine minimization

5.4 Biosolids Management

Digested sludge is hauled out by a licensed hauler (Gingrich Hauling) periodically or spread on reed beds onsite during warmer months.

5.5 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.6 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.7 303d Listed Streams:

The discharge is located on a 303d listed stream segment as impaired for aquatic life and recreational use due to pathogens, siltation and flow variability. The cause of the impairment for pathogens is unknown, siltation is agriculture and Urban Runoff/Storm Sewers. The Stream is listed as Category 4c Waterbodies, this pollution type does not require a TMDL. No action is warranted at this time.

5.8 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.9 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

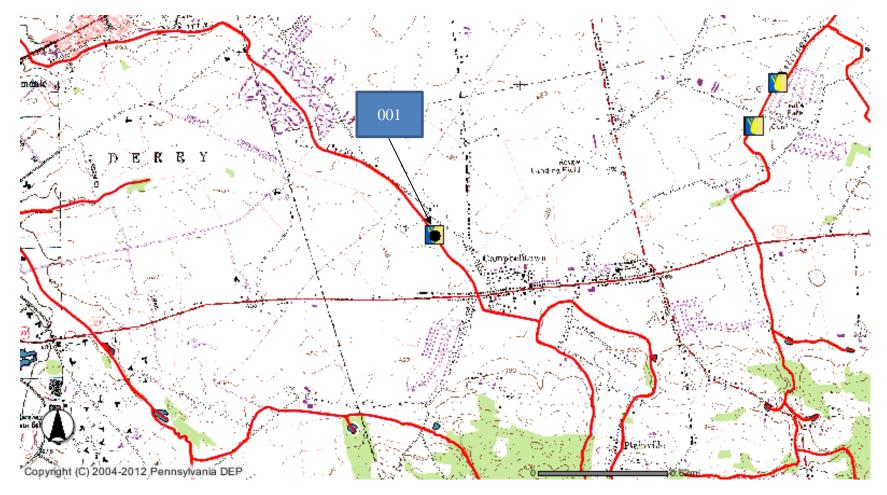
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Phase 1 through Permit Expiration Date.

		Effluent Limitations								
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required				
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured		
pH (S.U.)	xxx	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab		
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab		
TRC	XXX	XXX	XXX	<0.1	XXX	0.30	1/day	Grab		
CBOD5 Nov 1 - Apr 30	44.8	71.7	XXX	25	40	50	1/week	24-Hr Composite		
CBOD5 May 1 - Oct 31	35.8	53.7	XXX	20	30	40	1/week	24-Hr Composite		
BOD5 Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	1/week	24-Hr Composite		
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite		
TSS	53.7	80.6	XXX	30	45	60	1/week	24-Hr Composite		
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab		
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	10000	1/week	Grab		
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/month	24-Hr Composite		
Total Nitrogen	XXX	xxx	XXX	xxx	Report Daily Max	XXX	1/month	Calculation		

Outfall 001, Continued (from Phase 1 through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faranieler	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia								24-Hr
Nov 1 - Apr 30	16.1	XXX	XXX	9.0	XXX	18	1/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	5.3	XXX	XXX	3.0	XXX	6	1/week	Composite
					Report			24-Hr
TKN	XXX	XXX	XXX	XXX	Daily Max	XXX	1/month	Composite
								24-Hr
Total Phosphorus	3.5	XXX	XXX	2.0	XXX	4	1/week	Composite
·								24-Hr
Total Copper	0.027	XXX	XXX	0.015	XXX	0.030	1/week	Composite


Compliance Sampling Location: Outfall 001

∇	
	WQM for Windows Model (see Attachment B)
	PENTOXSD for Windows Model (see Attachment C)
	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment E)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
<u>Ц</u>	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
<u> </u>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-00 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 39 2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\ge	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\ge	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxyge and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharge 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Pond and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Progra for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainag Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\boxtimes	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/9
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolve Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Desig Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\ge	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV and Other Discharge Characteristics, 391-2000-024, 10/98.
<u> </u>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\ge	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\ge	SOP: 1. Establishing effluent limitation for individual sewage permit,
	Other:

NPDES Permit Fact Sheet South Londonderry Campbelltown West STP

Attachments

A. Topographical Map

B. WQM Model Results

		<u>WQM</u>	7.0 Ef	fluent Limits	5		
	SWP Basin	Stream Code		Stream Name	2		
	07D	9507		SPRING.CREE	ĸ		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
6.500	Campbelltown	W ÞA0081302	0.215	CBOD5 NH3-N	25 3.15	6.3	
				Dissolved Oxygen			5

Wednesday, April 10, 2019

Version 1.0b

Page 1 of 1

18

	SWF Basi			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	9	507 SPRIN	NG CREE	ĸ		6.50	00	440.00	1.53	0.00000	0.00	\checkmark
					S	tream Da	ta	www.u.u.u.u.u					
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Tem	<u>Stream</u> ip pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)	
Q7-10	0.140	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.	00	0.00 0.00)
Q1-10 Q30-10		0.00 0.00	0.00 0.00	0.000 0.000	0.000 0.000								

Input Data WQM 7.0

	Dis	scharge D	ata				
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Campbelltown W	PA0081302	0.2150	0.0000	0.0000	0.00	0 25.00	6.70
	Pai	rameter D	ata				
Para	meter Name	Dis Co				ate oef	
	meter Name	(mg	ı/L) (mgi	′L) (mg	1/L) (1/c	lays)	
CBOD5	r Prinke	2	5.00 2	2.00	0.00	1.50	
Dissolved Oxy	gen		5.00 8	8.24	0.00	0.00	
NH3-N		2	5.00 0	00.	0.00	0.70	

	SWP Basin	Strea Cod		Stre	eam Name		RMI	Ele	evation (ft)	Draina Are (sq r	a	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	07D	95	507 SPRIN	IG CREE	к		3.5	00	400.00		5.10 C).00000)	0.00	✓
					St	ream Dat	a								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ter	<u>Tributa</u> np	<u>ary</u> pH	Ter	<u>Stream</u> np	<u>р</u> рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C	C)		
Q7-10 Q1-10 Q30-10	0.140	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	20.00	7.00		0.00	0.00	
					Di	scharge I	Data								
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Di: Flo	sc Re:	serve actor	Disc Temp (°C))isc pH		
						0.000	0.00	0 0.	0000	0.000	0.	.00	7.00		
					Pa	arameter l	Data								
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coe					
						(m	g/L) (I	ng/L)	(mg/L)	(1/da	ys)				
			CBOD5				25.00	2.00	0.00) 1	.50				
			Dissolved	Oxygen			5.00	8.24	0.00) (.00				
			NH3-N				25.00	0.00	0.00	o c	.70				

Input Data WQM 7.0

				<u>VI (.U</u>	nyui	<u>ouyii</u>	anne	Out	<u>puis</u>			
		<u>P Basin</u> 07D		am Code 9507				Stream PRING				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
6.500	0.21	0.00	0.21	.3326	0.00253	.469	9.05	19.3	0.13	1.422	23.04	6.79
Q1-1	0 Flow											
6.500	0.19	0.00	0.19	.3326	0.00253	NA	NA	NA	0.13	1.457	23.18	6.79
Q30-	10 Flow											
6.500	0.26	0.00	0.26	.3326	0.00253	NA	NA	NA	0.14	1.355	22.79	6.81

WQM 7.0 Hydrodynamic Outputs

Wednesday, April 10, 2019

Version 1.0b

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.89	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.23	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Wednesday, April 10, 2019

Version 1.0b

		-				llocatio			
	SWP Basin	Strea	am Code		<u>St</u>	ream Name			
	07D	1	9507		SPI	RING CREEK			
NH3-N	Acute Alloc	ation	IS						
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reductior	ı
6.5	00 Campbelltov	vn W	8.66	13.63	8.66	13.63	0	0	_
									_
NH3-N	Chronic All	locati	ons						
NH3-N RMI	Chronic All Discharge N		ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Muitiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
RMI		lame	Baseline Criterion	WLA	Criterion	WLA			-
RMI 6.5	Discharge N	lame vn W	Baseline Criterion (mg/L) 1.76	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L)	Reach	Reduction	-
RMI 6.5	Discharge N 00 Campbelltow	lame vn W	Baseline Criterion (mg/L) 1.76 ations	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L) 3.15	Reach	Reduction 0	-
RMI 6.5	Discharge N 00 Campbelltow	lame vn W Alloc	Baseline Criterion (mg/L) 1.76 ations	WLA (mg/L) 3.15 CBOD5 ne Multiple	Criterion (mg/L) 1.76 <u>NH3-N</u> Baseline Mu	WLA (mg/L) 3.15	Reach 0 ved Oxygen ne Multiple	Reduction 0 Critical	- Percent Reductio

Wednesday, April 10, 2019

Version 1.0b

<u>SWP Basin</u> <u>Str</u> 07D	ream Code 9507			<u>Stream Name</u> SPRING CREEK	
<u>RMI</u>	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature (°C) <u>Analysis pH</u>
6.500	0.21	5		23.041	6.794
Reach Width (ft)	<u>Reach De</u>	oth (ft)		Reach WDRatio	Reach Velocity (fps)
9.048	0.469	9		19.304	0.129
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	<u>1/daγs)</u>	<u>R</u>	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u>
15.99	1.24	-		1.91	0.885
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.270	24.01	7		Owens	5
Reach Travel Time (days) 1.422	TravTime (days)	Subreach CBOD5 (mg/L)	n Results NH3-N (mg/L)	D.O. (mg/L)	
	0,142	13.05	1.69	7.11	
	0.284	10.65	1.49	7.39	
	0.427	8.69	1.31	7.61	
	0.569	7.09	1.16	7.79	
	0.711	5.78	1.02	7.80	
	0.853	4.72	0.90	7.80	
	0.995	3.85	0.7 9	7.80	
	1.138	3.14	0.70	7.80	
	1.280	2,56	0.62	7.80	
	1.422	2.09	0.54	7.80	

WQM 7.0 D.O.Simulation

Version 1.0b

C. PENTOXSD Model Results

PENTOXSD Analysis Results

Recommended Effluent Limitations	
----------------------------------	--

<u>SWP Basin</u> 07D	n <u>Stream Code:</u> 9507			<u>Stream</u> SPRING			
RMI	Name		rmit mber	Disc Flow (mgd)			,
6.50	Campbelltown W	PAOC	81302	0.2150	_		
		Effluent Limit			Max. Daily	Most S	tringent
	Parameter	(µg/L)	Gover Crite		Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
COPPER		14.751	AF	С	23.015	14.751	AFC

Thursday, April 11, 2019

Version 2.0d

PENTOXSD

Stre Co		RMI	Elevatio (ft)		rainage Area (sq mi))	Slope	PWS (mg				pply FC				
9	507	6.50	440			53	0.00000		0.00			V	-			
									Stream Da	ita		•				
		LFY	Trib Flow	Strear Flow			Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	<u>rv</u> pH	<u>Strean</u> Hard	pH	<u>Analys</u> Hard	<u>is</u> pH
		(cfsm)	(cfs)	(cfs)	•		(ft)	(ft)	(fps)		(mg/L)		(mg/L)		(mg/L)	
Q7-10		0.14	0		0	0	0	Ò	0	0	100	7	Ō	0	0	0
Qh			0		0	0	0	0	0	0	100	7	0	0	0	0
								D	ischarge D	ata						-
	Na	ime	Permi Numb		xisting Disc Flow	[rmitted Disc Tow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	thh PMF	CRL PMF	Disc Hard	Disc pH	
			-		(mgd)	(n	ngd)	(mgd)						(mg/L)		_
Ca	mpbe	lltown W	PA0081	302	0.215		0	0	0	0	0	0	0	100	6.5	
					D 1		77 . 11.		arameter D			- .		0.11		
	Pa	arameter N	lame		Dis Cor (µg/l	C	Trib Conc (μg/L)	Disc Daily CV	Hourly	Stean / Cond (µg/I	CV CV	Fate Coe		Crit Mod	Max Disc Conc (µg/L)	
COPP	ER				1000	000	0	0.	5 0.5	0	0	0	0	1	0	
Strea Coo		RMI	Elevatio (ft)		rainage Area (sq mi)	•	Slope	PWS \ (mg				pply FC				
9	507	3.50	400.			0	0.00000		0.00			✓	-			
									Stream Da	ita						
		LFY	Trib Flow	Strear Flow			Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	ry pH	<u>Strean</u> Hard) pH	<u>Analys</u> Hard	i <u>s</u> pH
		(cfsm)	(cfs)	(cfs)			(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10		0.14	. 0		0	0	0	0	0	0	100	7	0	0	0	0
Qh			0		0	0	0	0	0	0	100	7	0	0	0	0
								D	ischarge D	ata						
	Na	me	Permi Numbe	ər	xisting Disc Flow	0	mitted Disc low	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	thh PMF	CRL PMF	Disc Hard	Disc pH	
_					(mgd)	(n	ngd)	(mgd)						(mg/L)		_
					0		0	0	0	0	0	0	0	100	7	
	_								arameter D					<u> </u>		
	Pa	arameter N			Diso Con (µg/l	C	Trib Conc	Disc Daily CV	Hourly		cV cV	Fate Coel		Crit Mod	Conc	
COPP	50				(µg/i 0	~~~	(µg/L) 0	0.9	5 0.5	(μg/L 0	-/0	0	0	1	(µg/L) 0	

PENTOXSD Analysis Results

Hydrodynamics

<u>.</u>	WP Basii 07D	n		<u>n Code:</u> 507			-	<u>m Name</u> G CREE	-				
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)		
		Q7-10 Hydrodynamics											
6.500	0.2142	0	0.2142	0.3326	0.0025	0.4687	9.0484	19.304	0.1289	1.422	1.067		
3,500	0.714	0	0.714	NA	0	0	0	0	0	0	NA		
	Qh Hydrodynamics												
6.500	1.9325	0	1.9325	0.3326	0.0025	0.8760	9.0484	10.329	0.2858	0.6415	1.982		
3.500	5.5350	0	5.5350	NA	0	0	0	0	0	0	NA		

Thursday, April 11, 2019

Version 2.0d

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name F	Permit Num	ber						
6.50	Campbelltown W	PA008130	2						
				ļ	FC		-		
Q7-	-10: CCT (min)	1.067	PMF	1	Analysis p	H 6.635	Analysis	Hardness	100
	Parameter	-	tream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	COPPER	· · · · · · · · · · · · · · · · · · ·	0	0	0	0	13.439	13.999	23.015
		Dis	solved	WQC. CH	nemical tran	slator of 0.9	96 applied.		
				c	FC				
Q7-10:	CCT (min)	1.067	PMF	1	Analysis p	H 6.635	Analysi	s Hardness	100
	Parameter		ream Sonc.	Stream CV	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
		(ug/L)		(µg/L)		(µg/L)	(µg/Ĺ)	(µg/L)
	COPPER		0	0	0	0	8.956	9.329	15.337
		Dis	solved	WQC. CI	nemical tran	slator of 0.9	96 applied.		
				т	нн				
Q7-10:	CCT (min)	1.067	PMF	NA	Analysis	pH NA	Analysi	s Hardness	NA
	Parameter	C	ream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
		()	Jg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0	NA	NA	NA
				C	RL				
Qh:	CCT (min)	1.982	PMF	. 1					
	Parameter		tream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0	NA	NA	NA

Thursday, April 11, 2019

Version 2.0d

D. TRC Calculations

1A	В	С	D	Е	F	G
2	TRC EVAL	UATION		Enter	Facility Na	me in E3
3	Input appropri	iate values i	n B4:B8 and E4:E7			
4	0.2	= Q stream	n (cfs)	0.5	= CV Daily	
5	0.215	= Q discha	arge (MGD)	0.5	= CV Hourly	
6	30	= no. samp	oles		= AFC_Partia	
7		•	Demand of Stream		= CFC_Partia	
8		•	Demand of Disch			ia Compliance Time (min)
9	0.5	= BAT/BPJ		720		ia Compliance Time (min)
		= % Facto	r of Safety (FOS)		=Decay Coef	
10		Reference	AFC Calculations		Reference	CFC Calculations
11	TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.198
	PENTOXSD TRO		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
13 14	PENTOXSD TRO	5.1b	LTA_afc=	0.079	5.1d	LTA_cfc = 0.115
14			Effluent	Limit Calo	oulations	
	PENTOXSD TRO	5.1f		$_{\rm MULT} =$		
-	PENTOXSD TR					AFC
18		g	INST MAX LIMIT	· • •		
				(
	WLA afc	(.019/e(-k*	AFC_tc)) + [(AFC_	Yc*Qs*.	019/Qd*e(-k*	AFC_tc))
		•	AFC_Yc*Qs*Xs/Qd	·- 、	•	
	LTAMULT afc		l(cvh^2+1))-2.326*LN	(cvh^2+1)^0.5)	
	LTA_afc	wla_afc*LTA	AMULT_afc			
	WLA_cfc	(044/0/ 6*	CFC_tc) + [(CFC_\	/~* ^ ~* (044/0d*a(k*(
	WLA_CIC	•	CFC_Yc*Qs*Xs/Qd		•	5FC_(C))
	LTAMULT_cfc	•	l(cvd^2/no_samples+		•	samples+1)^0 5)
	LTA_cfc	wla_cfc*LTA	• – •	1)) 2.020		
	AML MULT	EXP(2.326*L	N((cvd^2/no_sample	es+1)^0.5)-0.5*LN(cvd^2	/no_samples+1))
	AVG MON LIMIT	MIN(BAT_B	PJ,MIN(LTA_afc,LTA	_cfc)*AM	IL_MULT)	
	INST MAX LIMIT	1.5*((av_m	on_limit/AML_MU	LT)/LTAI	MULT_afc)	

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0081302

E. Toxic Screening Analysis Spreadsheet

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.5

Facility: Cambelltown West STP			NPDES Permit No	D.:	PA0081	302		Outfall: 001
Analysis Hardness (mg/L): 100			Discharge Flow (MGD):	0.215		Analy	/sis pH (SU): 7
Parameter		laximum Concentration in pplication or DMRs (μg/L)	Most Stringent Criterion (µg/L)	PE	didate for NTOXSD odeling?	Most Str WQBEL		Screening Recommendation
Total Dissolved Solids		560000	500000	0000 Yes				
Chloride		120000	250000	No				
Bromide		200	N/A		No			
Sulfate		54200	250000		No			
Total Aluminum			750					
Total Antimony			5.6					
Total Arsenic			10					
Total Barium			2400					
Total Beryllium			N/A					
Total Boron			1600					
Total Cadmium			0.271					
Total Chromium			N/A					
Hexavalent Chromium			10.4					
Total Cobalt			19					
Total Copper		12	9.3	9.3 Yes		14.	7	Establish Limits
Free Available Cyanide			5.2					
Total Cyanide			N/A					
Dissolved Iron			300					
Total Iron			1500					
Total Lead			3.2					
Total Manganese			1000					
Total Mercury			0.05					
Total Nickel			52.2					
Total Phenols (Phenolics)			5					
Total Selenium			5.0					
Total Silver			3.8					
Total Thallium			0.24					
Total Zinc		78	119.8		No			
Total Molybdenum			N/A					