

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0081582

 APS ID
 275376

 Authorization ID
 1462991

	Applicant and Facility Information							
Applicant Name	Possum Valley Municipal Authority Adams County	_ Facility Name	Possum Valley STP					
Applicant Address	609 Clearview Road	_ Facility Address	609 Clearview Road					
	Aspers, PA 17304-9703	<u>-</u>	Aspers, PA 17304-9703					
Applicant Contact	Stephen Russell	_ Facility Contact	Steve Russell					
Applicant Phone	(717) 677-8551	_ Facility Phone	(717) 677-8551					
Client ID	6159	_ Site ID	252213					
Ch 94 Load Status	Not Overloaded	_ Municipality	Menallen Township					
Connection Status	No Limitations	County	Adams					
Date Application Rece	eived November 27, 2023	EPA Waived?	Yes					
Date Application Acce	epted November 28, 2023	If No, Reason						
Purpose of Application	NPDES permit renewal.		_					

Summary of Review

Terrence L. Sheldon, P.E. RLA, on behalf of the Possum Valley Municipal Authority (Authority/Permittee), applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. The permit was reissued on May 21, 2019 and became effective on June 1, 2019. The permit expires on May 31, 2024.

The average annual design flow and hydraulic design capacity is 0.12 MGD, and the organic loading capacity is 325.0 lbs BOD₅/day. The renewal application indicated the STP receives its 60% from the Bendersville Borough and 40% from Menallen Township.

The WQM Part II permit No. WQG02012102 pump station was issued on 2/09/2022.

Sludge use and disposal description and location(s): N/A because sludge hauled by Peck's Septic Service.

Changes from the previous permit: E. Coli monitoring and report requirements will add to the proposed permit.

Based on the review outlined in this fact sheet, it is recommended that the permit be drafted. A public notice of the draft permit will be published in the *Pennsylvania Bulletin* for public comments for 30 days.

Approve	Deny	Signatures	Date
Х		Hilaryle Hilary H. Le / Environmental Engineering Specialist	March 8, 2024
Х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	March 22, 2024

Discharge, Receiving	Discharge, Receiving Waters and Water Supply Information							
Outfall No. 001		Design Flow (MGD)	0.12					
Latitude 39° 58	8' 30.71"	Longitude	-77º 13' 28.58"					
Quad Name Bigl	lerville	Quad Code						
Wastewater Descrip	otion: Sewage Effluent							
Receiving Waters	Opossum Creek (TSF & MF)	Stream Code	9057					
NHD Com ID	57470197	RMI	4.77					
Drainage Area	17.3 mi. ²	Yield (cfs/mi²)	See comment below					
Q ₇₋₁₀ Flow (cfs)	See comment below	Q ₇₋₁₀ Basis	See comment below					
Elevation (ft)	602.37	Slope (ft/ft)						
Watershed No.	7-F	Chapter 93 Class.	TSF, MF					
Existing Use		Existing Use Qualifier						
Exceptions to Use		Exceptions to Criteria						
Assessment Status	Attaining Use(s) supports	aquatic life. Impaired for recreat	ional uses					
Cause(s) of Impairm	nent <u>Pathogens</u>							
Source(s) of Impairn	ment <u>Unknown source</u>							
TMDL Status	Tentative	Name Opossum Cr	reek					
Nearest Downstrear	m Public Water Supply Intake	PPL Brunner Island						
PWS Waters S	Susquehanna River	Flow at Intake (cfs)						
PWS RMI 5	3.7 miles	Distance from Outfall (mi)	Approximate 67.0 miles					

Changes Since Last Permit Issuance: none

Drainage Area

The discharge is to Opossum Creek at RMI 4.77 miles. A drainage area upstream of the discharge is 17.3 mi.², according to USGS PA StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

The USGS gauging station No. 01574000 on the West Conewago Creek near at Manchester PA has the following data:

$$\label{eq:cfs} \begin{split} \text{Yield} &= 39.2 \text{ cfs/512 mi}^2 = 0.077 \text{ cfs/mi}^2 \\ \text{Q}_{7\text{-}10} &= 0.077 \text{ cfs/mi}^2 * 17.3 \text{ mi}^2 = 1.32 \text{ cfs} \\ \text{Q}_{30\text{-}10} &= 1.32 \text{ cfs} * 1.36 = 1.8 \text{ cfs} \\ \text{Q}_{1\text{-}10} &= 1.32 \text{ cfs} * 0.64 = 0.84 \text{ cfs} \end{split}$$

Node	Distance (miles)	Q ₇₋₁₀ (cfs)	Drainage Area (mi.²)	LFY (cfs/mi.2)
Modeling Point #1	4.77	5.28	17.3	0.3052
Modeling Point #2	4.24	4.95	18.4	0.269
Modeling Point #3	4.14	5.09	19.5	0.261
Modeling Point #4	3.14	5.04	20.1	0.251
		0.27		

Receiving Water Characteristics

Under 25 Pa Code §93.9f, Opossum Creek is designated as Trout Stocking Fishes and Migratory Fishes (TSF & MF). The discharge is located within a stream segment listed as attaining uses.

NPDES Permit Fact Sheet Possum Valley STP Public Water Supply

The nearest downstream public water supply intake is for PPL Brunner Island on Susquehanna River, approximately 67.0 miles downstream of this discharge. Considering distance and dilution, the discharge is not expected to impact the water supply.

303d Listed Streams

Based on the 2022 Integrated Report, Opossum Creek, assessment unit IDs 18577 & 13022, is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review. The surface waters are an attaining stream that supports aquatic life. The surface waters are also impaired for pathogens from an unknown source.

	Treatment Facility Summary								
Treatment Facility Na	me: Possum Valley STP								
WQM Permit No.	Issuance Date								
WQG02012102	2/09/2022								
	Degree of			Avg Annual					
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
Sewage			Hypochlorite	0.12					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
0.12	325	Not Overloaded		_					

Changes Since Last Permit Issuance: none

Other Comments:

Per DEP's recent visit to the WWTP on August 30, 2023; the treatment facility consists of the following units:

- · One influent screen
- One equalization tank/basin
- Two aeration basins
- Two clarifiers
- · Two chlorine contact tanks
- Two post aerations
- Two sludge holding tanks

Chemical used:

Hypochlorite is used for disinfection at a rate of 1.0 lb/day. Sodium Aluminate is used for pH builder and coagulation at a rate of 8 gpd.

Biosolids:

The total sewage sludge/biosolids production within the facility for the previous year was 17.991 dry tons.

Industrial/Commercial Users:

The permit application indicated there is no industrial/commercial contributor to the treatment plant.

Compliance History						
Summary of DMRs:	A summary of the past 12-month DMR data is presented on the pages 6 & 7.					
Summary of Inspections:	 08/30/2023: Mr. Hoy, DEP Water Quality Specialist, conducted compliance evaluation inspection. There were no violations noted during inspection. The field sample test results were within permit limits. Recommendations: 1. NIST thermometers should be calibrated or replaced on an annual basis. 2. Maintaining a sample storage temperature of <= 6 °C. 3. Completing the laboratories section of the daily effluent supplemental report. 4. Keeping a complete copy of the current permit on-site for reference. Requests: 1. Revising the December 2022 sewage sludge supplemental report and ensuring the box is unchecked when hauling does occur. 2. The TRC sample is left to react for three minutes before recording the result. 07/13/2021: Mr. Bettinger, DEP Water Quality Specialist, conducted compliance evaluation inspection. The field sample test results were within permit limits. Effluent appeared clear. Recommendations: 1. Revising the July 2020 Daily Supplemental Form to reflect the laboratory sampling result for total Phosphorus on 7/7/2020 and submit the revision on Greenport. 2. Utilizing NIST traceable thermometer in the influent and effluent composite samples to verify sampler refrigerator temperature. 3. Cleaning and Maintaining a path to outfall 001. 					
Other Comments:	There are currently no open violations associated with the permittee or the facility.					

Other Comments:

The table below summarizes the influent/effluent testing results submitted along with the application.

	fluent Testing Resul		Effluent Testing Results				
Parameter	Min/Max Value	Average Value	Parameter	Min/Max Value	Average Value		
BOD ₅ (mg/L)	95/265 mg/L	172 mg/L	pH (minimum)	6.2 S.U.			
BOD ₅ (lbs/day)	66/233 lbs/day	124 lbs/day	pH (maximum)	7.4 S.U.			
TSS (mg/L)	34/232 mg/L	116 mg/L	D.O (minimum)	7.6 mg/L	8.86 mg/L		
TSS (lbs/day)	18/153 lbs/day	79 lbs/day	TRC	0.28/0.49 mg/L	0.38 mg/L		
TN (mg/L)	32.5 mg/L	32.5 mg/L	Fecal Coliform	<1/1986 No./100mL	75 No./100 mL		
TN (lbs/day)	22.7 lbs/day	22.7 lbs/day	CBOD₅	<2/6.9 mg/L	4.1 mg/L		
TP (mg/L)	2.9 mg/L	2.9 mg/L	TSS	1/13 mg/L	3.9 mg/L		
TP (lbs/day)	2.0 lbs/day	2.0 lbs/day	NH ₃ -N	<0.1/0.67 mg/L	0.13 mg/L		
NH ₃ -N (mg/L)	16 mg/L	16.0 mg/L	TN	<0.4/55 mg/L	34 mg/L		
NH ₃ -N (lbs/day)	11.2 lbs/day	11.2 lbs/day	TP	<0.1/1.4 mg/L	0.37 mg/L		
TDS (mg/L)	214 mg/L	214 mg/L	Temp	38/40 F	39 F		
TDS (lbs/day)	150 lbs/day	150 lbs/day	TKN	<0.3/0.5 mg/L	0.4 mg/L		
TKN	31 mg/L	31 mg/L	NO ₂ -N + NO ₃ -N	<0.3/50 mg/L	28 mg/L		
NO ₂ -N + NO ₃ -N	1.9 mg/L	1.9 mg/L	TDS	264/510 mg/L	382 mg/L		
			Chloride	44/60 mg/L	51 mg/L		
			Bromide	< 0.5 mg/L	< 0.5 mg/L		
			Sulfate	27/34 mg/L	30 mg/L		
			Oil and Grease	<5/11 mg/L	< 5 mg/L		
			Total Copper	0.0015/0.0021 mg/L	0.0018 mg/L		
			Total Lead	< 0.001 mg/L	< 0.001 mg/L		
			Total Zinc	0.045/0.061 mg/L	0.052 mg/L		

Compliance History

DMR Data for Outfall 001 (from February 1, 2023 to January 31, 2024)

Parameter	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23
Flow (MGD)												
Average Monthly	0.111	0.088	0.071	0.072	0.074	0.071	0.071	0.069	0.076	0.072	0.086	0.075
Flow (MGD)												
Daily Maximum	0.195	0.166	0.123	0.105	0.116	0.091	0.087	0.082	0.152	0.171	0.16	0.086
pH (S.U.)												
Instantaneous												
Minimum	6.5	6.3	6.6	6.7	6.6	6.7	6.5	6.5	6.4	6.6	6.5	6.5
pH (S.U.)												
Instantaneous												
Maximum	7.0	7.1	7.0	7.3	7.1	7.0	7.1	7.1	7.1	7.0	6.9	7.1
DO (mg/L)												
Instantaneous												
Minimum	9.8	7.7	7.6	7.3	7.1	6.9	6.7	7.6	8.0	7.8	9.8	9.1
TRC (mg/L)												
Average Monthly	0.32	0.34	0.34	0.35	0.33	0.33	0.34	0.33	0.39	0.37	0.35	0.35
TRC (mg/L)												
Instantaneous												
Maximum	0.40	0.43	0.48	0.48	0.37	0.46	0.48	0.4	0.53	0.53	0.60	0.48
CBOD5 (lbs/day)												
Average Monthly	< 2	< 2	< 2	< 1	< 1	< 1	< 9	< 1	< 1	1.0	< 2	< 2
CBOD5 (lbs/day)		_	_			_						
Weekly Average	< 2	< 2	< 2	< 1	< 2	2	16	< 1	< 1	1.0	3	< 2
CBOD5 (mg/L)		_	_	_		_		_	_			
Average Monthly	< 3	< 2	< 2	< 2	< 2	< 3	< 16	< 2	< 2	3.0	< 4	< 2
CBOD5 (mg/L)							00			0.0	_	
Weekly Average	3	< 2	< 2	< 2	< 2	3	30	< 3	< 2	3.0	5	3
BOD5 (lbs/day)												
Raw Sewage Influent	. 70	77	400	00	7	00	400	400	470	400	00	400
Average Monthly	< 76	77	108	68	/	80	100	128	172	186	88	103
BOD5 (lbs/day)												
Raw Sewage Influent	00	02	150	70	03	90	140	146	24.0	200	0.5	145
 Apple (mg/l)	93	93	153	70	93	80	113	146	212	209	95	115
BOD5 (mg/L) Raw Sewage Influent												
Average Monthly	< 99	105	147	123	125	136	163	234	290	322	130	163
TSS (lbs/day)	< 99	105	147	123	120	130	103	234	290	322	130	103
Average Monthly	2.0	1.3	1.4	2.2	2.1	1.8	5.3	1.9	2.0	1.8	2.8	1.9
Average Monthly	2.0	1.3	1.4	۷.۷	Z. I	1.0	ე.ა	1.9	2.0	1.0	2.0	1.9

NPDES Permit Fact Sheet

NPDES Permit No. PA0081582

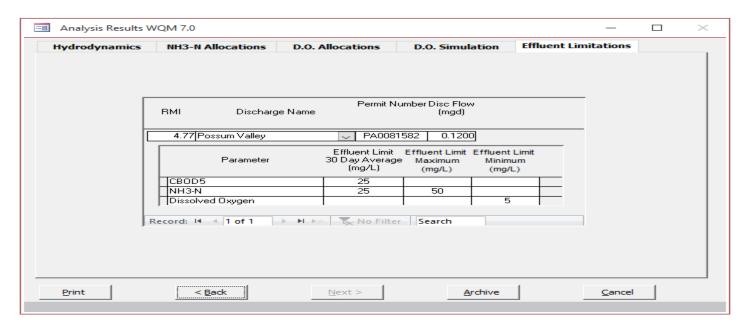
Possum Valley STP

49	37	65	39	49	44	58	108	160	183	42	47
55	44	102	49	54	47	78	110	207	237	50	58
2	2	2	3	4	3	10	3	2.0	2	4	2
3	2	2	4.0	4	3	10	4	4	3	4	3
60	46	84	70	80	74	92	198	268	312	58	74
3	2	2	6	6	5	19	5	4	4	5	3
5	6	7	< 2	5	< 3	2	1	1	23	4	29
9	34	11	3	15	8	2	2	2	23	8	79
	55										
	55										
< 0.08	< 0.08	< 0.07	< 0.06	< 0.06	< 0.06	< 0.06	< 0.05	< 0.06	< 0.3	< 0.07	< 0.06
< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.1	< 0.1
	< 1										
0.2	0.2	< 0.09	0.1	0.2	0.2	< 0.3	0.1	0.1	0.2	0.3	0.1
0.21	0.21	< 0.12	0.20	0.26	0.30	< 0.60	0.25	0.18	0.35	0.36	0.22
	9 < 0.08 < 0.1	55 44 2 2 3 2 60 46 3 2 5 6 9 34 55 <0.08 < 0.08 <0.1 < 0.1 <1	55 44 102 2 2 2 3 2 2 60 46 84 3 2 2 5 6 7 9 34 11 55 55 < 0.08	55 44 102 49 2 2 2 3 3 2 2 4.0 60 46 84 70 3 2 2 6 5 6 7 <2	55 44 102 49 54 2 2 2 3 4 3 2 2 4.0 4 60 46 84 70 80 3 2 2 6 6 5 6 7 <2	55 44 102 49 54 47 2 2 2 3 4 3 3 2 2 4.0 4 3 60 46 84 70 80 74 3 2 2 6 6 5 5 6 7 <2	55 44 102 49 54 47 78 2 2 2 3 4 3 10 3 2 2 4.0 4 3 10 60 46 84 70 80 74 92 3 2 2 6 6 5 19 5 6 7 <2	55 44 102 49 54 47 78 110 2 2 2 3 4 3 10 3 3 2 2 4.0 4 3 10 4 60 46 84 70 80 74 92 198 3 2 2 6 6 5 19 5 5 6 7 <2	55 44 102 49 54 47 78 110 207 2 2 2 3 4 3 10 3 2.0 3 2 2 4.0 4 3 10 4 4 60 46 84 70 80 74 92 198 268 3 2 2 6 6 5 19 5 4 5 6 7 <2	55 44 102 49 54 47 78 110 207 237 2 2 2 3 4 3 10 3 2.0 2 3 2 2 4.0 4 3 10 4 4 3 60 46 84 70 80 74 92 198 268 312 3 2 2 6 6 5 19 5 4 4 5 6 7 <2	55 44 102 49 54 47 78 110 207 237 50 2 2 2 2 3 4 3 10 3 2.0 2 4 3 2 2 4.0 4 3 10 4 4 3 4 60 46 84 70 80 74 92 198 268 312 58 3 2 2 6 6 5 19 5 4 4 5 5 6 7 <2

Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	0.12				
Latitude	39° 58' 30.71"	Longitude	-77º 13' 28.58"				
Wastewater D	Description: Sewage Effluent	_					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:


Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Ammonia (NH₃-N):

 NH_3N calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH_3-N criteria used in the attached WQM 7.0 computer model of the stream:

*	Discharge pH	=	7.0	(Default)
*	Discharge Temperature	=	20°C	(Default)
*	Stream pH	=	7.0	(Default)
*	Stream Temperature	=	20°C	(Default)
*	Background NH₃-N	=	0 mg/L	(Default)

Regarding NH₃-N limits, the attached computer printout of the WQM 7.0 stream model (version 1.1) indicates that a limit of 25.0 mg/L as a monthly average and 50.0 mg/L instantaneous maximum (IMAX) are necessary to protect the aquatic life from toxicity effects at the point of discharge. However, the existing summer limits of 6.0 mg/L monthly average, & 12.0 mg/L IMAX are more stringent and will remain in the proposed permit. Per anti-backsliding policy, the existing winter average monthly limit of 18.0 mg/L & IMAX limit of 36.0 mg/L will remain in place. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Summer average monthly mass limit: $6.0 \text{ mg/L} \times 0.12 \text{ MGD} \times 8.34 = 6.00 \text{ lbs/day}$ Winter average monthly mass limit: $18.0 \text{ mg/L} \times 0.12 \text{ MGD} \times 8.34 = 18.01 (18.0) \text{ lbs/day}$

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model (ver. 1.1) indicates that a monthly average limit of 25.0 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. However, the existing permit 25.0 mg/L as AML, 40.0 mg/L as weekly average limit (AWL), & 50.0 mg/L as IMAX for all year round will remain in the proposed permit. Recent DMRs and inspection reports show that the facility has typically been achieving concentrations below this limit. Mass limits are calculated as follows:

Average monthly mass limit: $25.0 \text{ mg/L} \times 0.12 \text{ MGD} \times 8.34 = 25.02 (25.0) \text{ lbs/day}$ Average weekly mass limit: $40.0 \text{ mg/L} \times 0.12 \text{ MGD} \times 8.34 = 40.03 (40.0) \text{ lbs/day}$

Dissolved Oxygen (D.O.):

The D.O. goal is 6.0 mg/L. However, a minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. It is recommended that this limit be maintained in the proposed permit to ensure the protection of water quality standards. This approach is consistent with DEP's current Standard Operating Procedure (SOP) No. BCW-PMT-033, version 2.0 revised February 5, 2024, and has been applied to other point source dischargers throughout the state.

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml.

E. Coli:

As recommended by DEP's SOP No. BCW-PMT-033, version 2.0 revised February 5, 2024, a routine monitoring for E. Coli will be included in the proposed permit under 25 Pa. Code § 92a.61. This requirement applies to all sewage dischargers greater than 0.002 MGD in their new and reissued permits. A monitoring frequency of 1/quarter will be included in the permit to be consistent with the recommendation from this SOP.

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

pH:

The effluent discharge pH should remain above 6.0 and below 9.0 standard units according to 25 Pa. Code § 95.2(1).

Total Suspended Solids (TSS):

The existing technology-based limits of 30.0 mg/L average monthly, 45.0 mg/L weekly average, and 60.0 mg/L IMAX will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: $30.0 \text{ mg/L} \times 0.12 \text{ MGD} \times 8.34 = 30.02 (30.0) \text{ lbs/day}$ Average weekly mass limit: $45.0 \text{ mg/L} \times 0.12 \text{ MGD} \times 8.34 = 45.04 (45.0) \text{ lbs/day}$

Raw Sewage Influent Monitoring:

As a result of negotiation with EPA, influent monitoring of TSS and BOD₅ are required for any POTWs; therefore, influent sampling of BOD₅ and TSS will remain in the proposed permit. A 24-hr composite sample type will be required to be consistent with the proposed sampling frequency for TSS and BOD₅ in the effluent.

Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The average monthly limit of 0.5 mg/L and IMAX limit of 1.64 mg/L. However, the existing permit 0.4 mg/L as AML, & 1.4

mg/L as IMAX are more stringent and will remain in the proposed permit. Recent DMRs and inspection reports show that the facility has typically been achieving concentrations below this limit.

TRC EVAL	UATION											
Input appropri	ate values ir	1 A3:A9 and D3:D9										
1.32	= Q stream	n (cfs)	0.5	= CV Daily								
0.12	= Q discha	rge (MGD)	0.5	= CV Hourly								
30	= no. samp	oles	- 1	= AFC Partia	al Mix Factor							
0.3	= Chlorine	Demand of Stream	1	= CFC Partial Mix Factor								
O	= Chlorine	Demand of Discharge	15	5 = AFC_Criteria Compliance Time (min)								
	= BAT/BP.	_		0 = CFC Criteria Compliance Time (min)								
O	= % Facto	r of Safety (FOS)		=Decay Coef	fficient (K)							
Source	Reference	AFC Calculations		Reference	CFC Calculations							
TRC	1.3.2.iii	WLA afc =	2.287	1.3.2.iii	WLA cfc = 2.222							
PENTOXSD TRO	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581							
PENTOXSD TRO	5.1b	LTA_afc=	0.852	5.1d	LTA_cfc = 1.292							
Source Effluent Limit Calculations												
PENTOXSD TRO	PENTOXSD TRG 5.1f AML MULT = 1.231											
PENTOXSD TRO	5.1g	AVG MON L	.IMIT (mg/l) =	0.500	BAT/BPJ							
		INST MAX L	.IMIT (mg/l) =	1.635								
WLA afc		AFC_tc)) + [(AFC_Yc*Q		e(-k*AFC_tc)))							
		AFC_Yc*Qs*Xs/Qd)]*(1-										
LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2	2+1)^0.5)									
LTA_afc	wla_afc*LTA	AMULI_afc										
WLA_cfc	/ 044/-/ ba	CFC_tc) + [(CFC_Yc*Qs	* 044/04*-	/ k*CEC +-> >								
WLA_CIC		CFC_te) + [(CFC_16 Qs CFC_Yc*Qs*Xs/Qd)]*(1-		(-K CFC_tc)								
LTAMULT cfc		(cvd^2/no samples+1))-2.3		2/no eamplee+	0.50							
LTA cfc	wla cfc*LTA		20 214(040 2	emo_sampics.	1, 0.0,							
AML MULT	EXP(2.326*L	N((cvd^2/no samples+1)^	0.5)-0.5*LN(c	vd^2/no samp	les+1))							
AVG MON LIMIT		PJ,MIN(LTA afc,LTA cfc)*										
INST MAX LIMIT		on_limit/AML_MULT)/L1		c)								
	-											

Toxics:

The data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003, version 1.4, revised 5/2023) and DEP's SOP No. BPNPSM-PMT-033. Spreadsheet results are attached to this fact sheet. The Toxics Management Spreadsheet uses the following logic:

- a. Establish average monthly and IMAX limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Pollutant testing results on the current (2023) application were reviewed in comparison with DEP's Toxic Management Spreadsheet, version 1.4, May 2023, output recommends no routine monitoring requirements. Therefore, no monitoring requirements are added in the proposed permit.

Total Phosphorus:

The existing monthly average of 2.0 mg/L & IMAX of 4.0 mg/L limits will be carried over in the proposed permit. The mass-based limit is 2.0 lbs./day as average monthly which will be carried over as well. Minimum monitoring frequency will remain the same as 2/month.

Average monthly mass limit: $2.0 \text{ mg/L} \times 0.12 \text{ MGD} \times 8.34 = 2.0 (2.0) \text{ lbs/day}$

NPDES Permit Fact Sheet Possum Valley STP Total Dissolved Solids (TDS):

TDS and its associated solids including Bromide, Chloride, and Sulfate have become statewide pollutants of concern. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- -Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- -Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/L.

The sample result shows that effluent contains a maximum TDS concentration of 510.0 mg/L and Bromide concentration of < 0.5 mg/l. Accordingly, the requirement to monitor these pollutants is not necessary. The resulting TDS load would be 510.4 lbs/day: 510 mg/L TDS x 0.12 MGD x 8.34 c.f.

Chesapeake Bay Strategy:

According to DEP's Chesapeake Bay Phase II Watershed Implementation Plan (WIP) Wastewater Supplement, this facility is considered a phase 5 non-significant sewage discharger with design flow less than 0.2 MGD but greater than 0.002 MGD. In general, DEP will issue permits for all phase 5 facilities with monitoring and reporting for Total Nitrogen (TN) and Total Phosphorus (TP) throughout the permit term at a frequency no less than annually. Furthermore, DEP's SOP No. BPNPSM-PMT-033 states that in general, at a minimum, monitoring for TN and TP should be included in new and reissued permits for sewage discharges with design flows > 2,000 gpd. At this time, the Department is not requiring a total maximum annual nitrogen or phosphorus loading cap. Nitrate-Nitrite as N, Total Kjeldahl Nitrogen, and TN monitoring is already included in the existing permit and will remain in the proposed renewal.

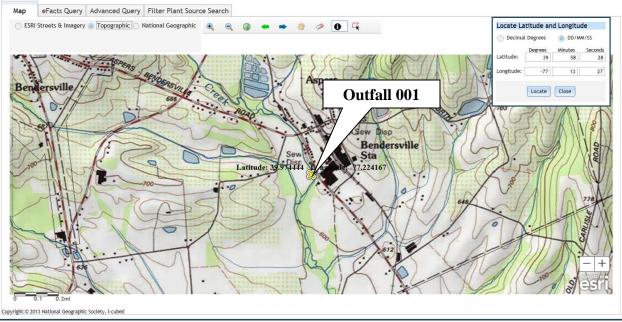
Stormwater:

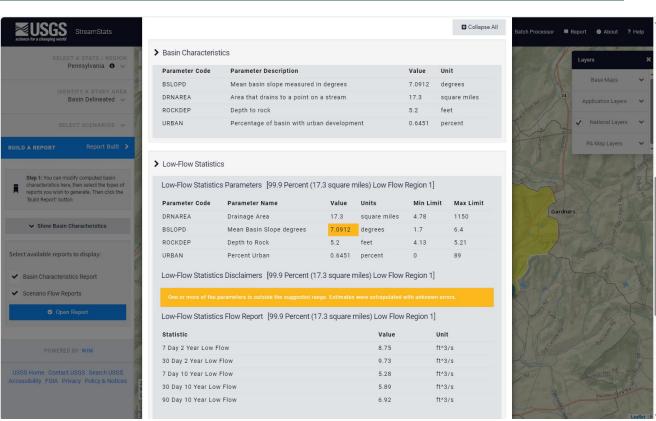
There is no known stormwater outfall associated with this facility.

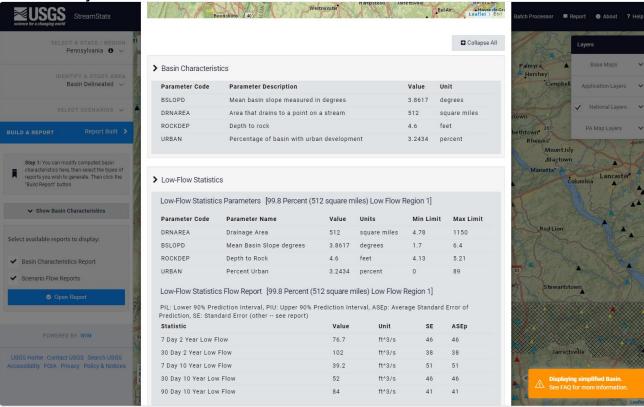
WETT:

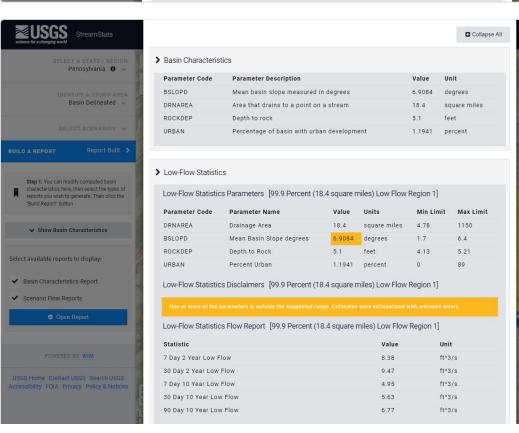
Minor facilities and facilities without a formal EPA approved pretreatment program are exempted from WETT.

Antidegradation (93.4):


The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.


Anti-Backsliding


Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.


Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

NPDES Permit Fact Sheet Possum Valley STP WQM 7.0:

The following data were used in the attached computer model (WQM 7.0) of the stream:

* Discharge pH 7.0 (Default)

* Discharge Temperature 20°C (Default per 391-2000-013)

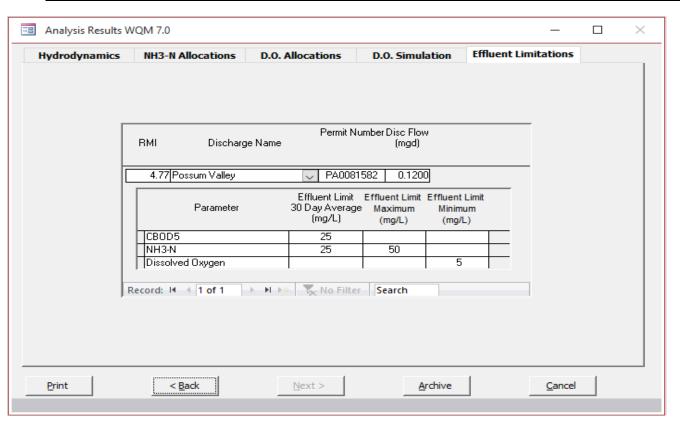
* Stream pH 7.0 (Default per 391-2000-013)

* Stream Temperature 20°C (Default per 391-2000-013)

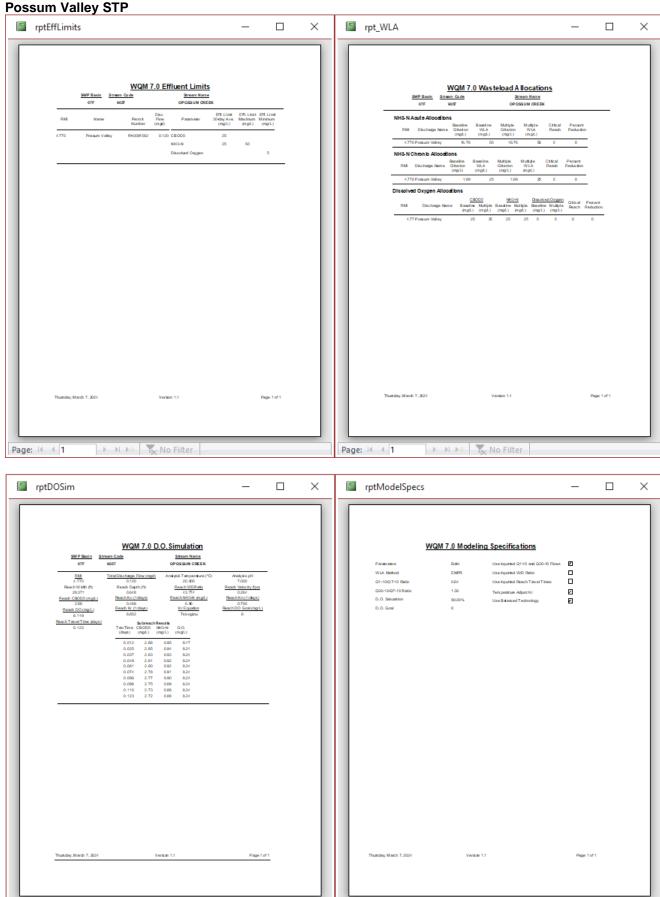
The following two nodes were used in modeling:

Node 1: Outfall 001 at Opossum Creek (09057)

Elevation: 602.37 ft (USGS National Map)
Drainage Area: 17.3 mi² (USGS StreamStats)
River Mile Index: 4.77 (PA DEP eMapPA)


Low Flow Yield: 0.27 cfs/mi² Discharge Flow: 0.12 MGD

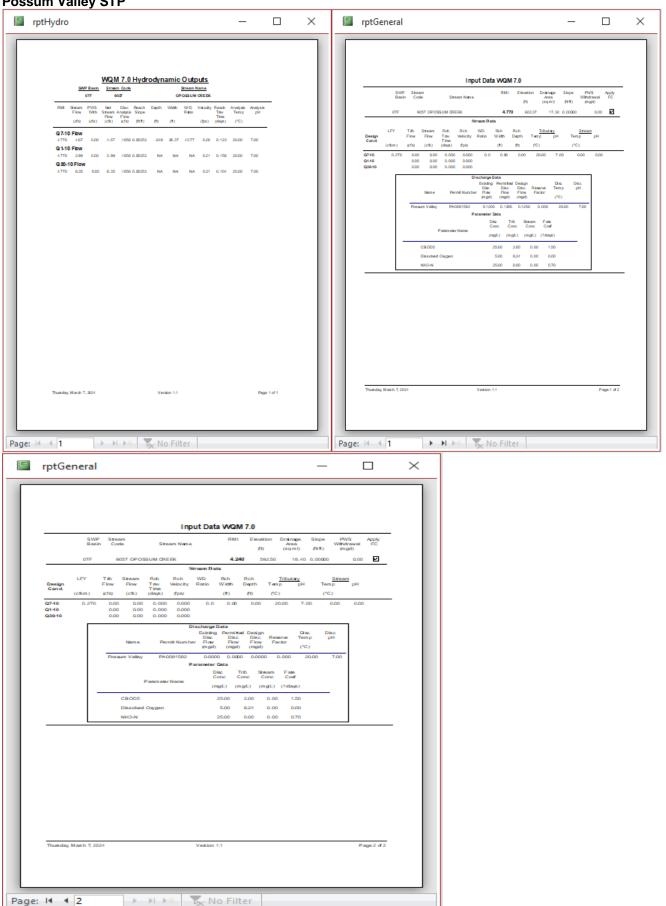
Node 2: At the confluence UNT to 09097


Elevation: 592.50 ft (USGS National Map)
Drainage Area: 18.4 mi² (USGS StreamStats)
River Mile Index: 4.24 (PA DEP eMapPA)

Low Flow Yield: 0.27 cfs/mi² Discharge Flow: 0.00 MGD

Node	Distance (miles)	Q ₇₋₁₀ (cfs)	Drainage Area (mi.²)	LFY (cfs/mi.2)	Elevation (ft)
Modeling Point #1	4.77	5.28	17.3	0.3052	602.37
Modeling Point #2	4.24	4.95	18.4	0.269	592.50
Modeling Point #3	4.14	5.09	19.5	0.261	588.16
Modeling Point #4	3.14	5.04	20.1	0.251	567.01
		Average	0.27		

NPDES Permit Fact Sheet



Page: I ← 1

→ ► I ► * No Filter

→ → I → * Tx No Filter

Page: I ← I

NPDES Permit Fact Sheet Possum Valley STP Toxics Data:

The following input data were used for Toxic Management Spreadsheet (TMS) Analysis:

Discharge pH = 7.0 (Application)
 Stream pH = 7.0 (Default)
 Discharge Hardness = 100 mg/L

* Stream Hardness = 100 mg/L (downstream hardness)

The following two nodes were used in modeling:

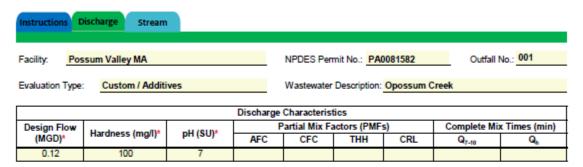
Node 1: Outfall 001 at Opossum Creek (09057)

Elevation: 602.37 ft (USGS National Map)
Drainage Area: 17.3 mi² (USGS StreamStats)
River Mile Index: 4.77 (PA DEP eMapPA)

Low Flow Yield: 0.27 cfs/mi² Discharge Flow: 0.12 MGD

Node 2: At the confluence UNT to 09097

Elevation: 592.50 ft (USGS National Map)
Drainage Area: 18.4 mi² (USGS StreamStats)
River Mile Index: 4.24 (PA DEP eMapPA)


Low Flow Yield: 0.27 cfs/mi² Discharge Flow: 0.00 MGD

Node	Distance (miles)	Q ₇₋₁₀ (cfs)	Drainage Area (mi.²)	LFY (cfs/mi.²)	Elevation (ft)
Modeling Point #1	4.77	5.28	17.3	0.3052	602.37
Modeling Point #2	4.24	4.95	18.4	0.269	592.50
Modeling Point #3	4.14	5.09	19.5	0.261	588.16
Modeling Point #4	3.14	5.04	20.1	0.251	567.01
		Average	0.27		

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

				0 If let	t blank	0.5 f k	ft blank	0	If left blan	k	1 If lef	blank
Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
Total Dissolved Solids (PWS)	mg/L		510									
Chloride (PWS)	mg/L		60									
Bromide	mg/L	<	0.5									
Sulfate (PWS)	mg/L		34									
Total Copper	mg/L		0.0021									
Total Lead	mg/L	<	0.001									
Total Zinc	mg/L		0.061									

Discharge Information 3/7/2024 Page 1

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Possum Valley MA, NPDES Permit No. PA0081582, Outfall 001

Receiving Surface W	ater Name:	Opossum	Creek					No. Rea	ches to	Model	l: <u>1</u>		0	tewide Criteri at Lakes Crit			
Location Stream Code* RMI* Elevation (ft)* DA (mi²)						Slop					_	RSANCO Criteria					
Point of Discharge	009057	4.7	7 602.	37	17.3						Yes		t				
End of Reach 1	009057	4.2	4 592	.5	18.4					\neg	Yes		t				
Q 7-10	RMI	LFY	Flov	v (cfs)		N/D	Width	Depth	Velocit		avei ime	Tributa	ry	Stream		Analys	
		(cfs/mi ²)*	Stream	Trib	outary R	latio	(ft)	(ft)	y (fps)		ave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	4.77	0.27												100	7		
End of Reach 1	4.24	0.27												100	7		
Q _h																	
Location	RMI	LFY	Flov	v (cfs)	١	N/D	Width	Depth	Velocit		ime	Tributa	ry	Stream	m	Analys	is
Location	KWII	(cfs/mi ²)	Stream	Trib	outary R	latio	(ft)	(ft)	y (fps)		me ave)	Hardness	pН	Hardness	pН	Hardness	pН
	4.77					$\overline{}$											
Point of Discharge	7.11																

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Possum Valley MA, NPDES Permit No. PA0081582, Outfall 001

Instructions Results	RETURN	TO INPU	TS] [SAVE AS	PDF	PRINT	⊚ A	ll Inputs Results Limits				
Hydrodynamics												
✓ Wasteload Allocations												
✓ AFC CCT (min): 15 PMF: 0.675 Analysis Hardness (mg/l): 100 Analysis pH: 7.00												
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments				
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A					
Chloride (PWS)	0	0		0	N/A	N/A	N/A					
Sulfate (PWS)	0	0		0	N/A	N/A	N/A					
Total Copper	0	0		0	13.439	14.0	252	Chem Translator of 0.98 applied				
Total Lead	0	0		0	64.581	81.6	1,468	Chem Translator of 0.791 applied				
Total Zinc 0 0 0 117.180 120 2,154 Chem Translator of 0.978 applied												
☑ CFC CC												
Pollutants	Conc	Stream	Trib Conc	Fate	WQC							
Total Dissolved Solids (PWS)	(un/L)	CV	(µg/L)	Coef	(µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments				
Total Dissolved Solids (1 115)	(ug/L)						WLA (µg/L) N/A	Comments				
Chloride (PWS)	0 0	CV		Coef	(µg/L)	(µg/L)		Comments				
	0	CV 0		Coef 0	(µg/L) N/A	(µg/L) N/A	N/A	Comments				
Chloride (PWS)	0	0 0		Coef 0 0	(µg/L) N/A N/A	(µg/L) N/A N/A	N/A N/A	Comments Chem Translator of 0.96 applied				
Chloride (PWS) Sulfate (PWS)	0 0	0 0 0		Coef 0 0	(µg/L) N/A N/A N/A	(µg/L) N/A N/A N/A	N/A N/A N/A					
Chloride (PWS) Sulfate (PWS) Total Copper	0 0 0	0 0 0 0		0 0 0 0	(µg/L) N/A N/A N/A 8.956	(µg/L) N/A N/A N/A 9.33	N/A N/A N/A 244	Chem Translator of 0.96 applied				
Chloride (PWS) Sulfate (PWS) Total Copper Total Lead Total Zinc	0 0 0 0 0 0 T (min): 32	0 0 0 0 0		0 0 0 0 0	(µg/L) N/A N/A N/A 8.956 2.517 118.139	(µg/L) N/A N/A N/A 9.33 3.18	N/A N/A N/A 244 83.2 3,135	Chem Translator of 0.96 applied Chem Translator of 0.791 applied				
Chloride (PWS) Sulfate (PWS) Total Copper Total Lead Total Zinc THH CCC Pollutants	0 0 0 0	0 0 0 0 0	(µg/L)	0 0 0 0 0	(µg/L) N/A N/A N/A 8.956 2.517 118.139 Ana WQC (µg/L)	(µg/L) N/A N/A N/A N/A 9.33 3.18 120 N/Q Obj (µg/L)	N/A N/A N/A 244 83.2 3,135 ss (mg/l):	Chem Translator of 0.96 applied Chem Translator of 0.791 applied Chem Translator of 0.986 applied				
Chloride (PWS) Sulfate (PWS) Total Copper Total Lead Total Zinc Pollutants Total Dissolved Solids (PWS)	0 0 0 0 0 0 T (min): 32.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	Coef 0 0 0 0 0 1 Fate Coef 0	(µg/L) N/A N/A N/A 8.956 2.517 118.139 Ana WQC (µg/L) 500,000	(µg/L) N/A N/A N/A N/A 9.33 3.18 120 Nysis Hardne WQ Obj (µg/L) 500,000	N/A N/A N/A 244 83.2 3,135 sss (mg/l): WLA (µg/L)	Chem Translator of 0.96 applied Chem Translator of 0.791 applied Chem Translator of 0.986 applied N/A Analysis pH: N/A				
Chloride (PWS) Sulfate (PWS) Total Copper Total Lead Total Zinc THH CCC Pollutants	0 0 0 0 0 0 T (min): 32:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	Coef 0 0 0 0 0 1 Fate Coef	(µg/L) N/A N/A N/A 8.956 2.517 118.139 Ana WQC (µg/L)	(µg/L) N/A N/A N/A N/A 9.33 3.18 120 N/Q Obj (µg/L)	N/A N/A N/A 244 83.2 3,135 ss (mg/l):	Chem Translator of 0.96 applied Chem Translator of 0.791 applied Chem Translator of 0.986 applied N/A Analysis pH: N/A				

Model Results 3/7/2024 Page 3

Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
☑ CRL CC	T (min): 10.	864	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Total Zinc

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Copper	0.16	mg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	N/A	N/A	Discharge Conc < TQL
Total Zinc	1.38	mg/L	Discharge Conc ≤ 10% WQBEL

Model Results 3/7/2024 Page 4

Existing Effluent Limitations and Monitoring Requirements

Outfall 001,

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faranietei	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.4	XXX	1.4	1/day	Grab
CBOD5	25	40	XXX	25	40	50	2/month	24-Hr Composite
BOD5		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
TSS	30	45	XXX	30	45	60	2/month	24-Hr Composite
TSS		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
Fecal Coliform (No./100 ml)		•		2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
Nitrate-Nitrite	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	2/year	24-Hr Composite
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	2/year	Calculation
Ammonia				g				24-Hr
Nov 1 - Apr 30	18	XXX	XXX	18	XXX	36	2/month	Composite
Ammonia								24-Hr
May 1 - Oct 31	6.0	XXX	XXX	6.0	XXX	12	2/month	Composite
TKN	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	2/year	24-Hr Composite
				3			· ,	24-Hr
Total Phosphorus	2.0	XXX	XXX	2.0	XXX	4	2/month	Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab	
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab	
TRC	XXX	XXX	XXX	0.4	XXX	1.4	1/day	Grab	
CBOD5	25.0	40.0	XXX	25.0	40.0	50.0	2/month	24-Hr Composite	
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	24-Hr Composite	
TSS	30.0	45.0	XXX	30.0	45.0	60.0	2/month	24-Hr Composite	
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	24-Hr Composite	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab	
Ammonia May 1 - Oct 31	6.0	XXX	XXX	6.0	XXX	12.0	2/month	24-Hr Composite	
Ammonia Nov 1 - Apr 30	18.0	XXX	XXX	18.0	XXX	36.0	2/month	24-Hr Composite	
Total Phosphorus	2.0	XXX	XXX	2.0	XXX	4.0	2/month	24-Hr Composite	
Nitrate-Nitrite	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	2/year	24-Hr Composite	
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	2/year	Calculation	

NPDES Permit No. PA0081582

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Farameter		Average	Instant.	Measurement	Sample			
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
				Report				24-Hr
TKN	XXX	XXX	XXX	Annl Avg	XXX	XXX	2/year	Composite

Compliance Sampling Location:

Other Comments:

Tools and References Used to Develop Permit	
<u> </u>	T
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
<u> </u>	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
\boxtimes	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: BPNPSM-PMT-033
	Other: