

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0081787

 APS ID
 277295

 Authorization ID
 1183586

Applicant and Facility Information

Applicant Name	Telco [Development Inc.	Facility Name	Gretna Springs MHP
Applicant Address	5 Maple	e Avenue	Facility Address	5 Maple Avenue
	Manhei	m, PA 17545-8911		Manheim, PA 17545-8911
Applicant Contact	Earl Hu	irst	Facility Contact	Earl Hurst
Applicant Phone	(717) 272-1313		Facility Phone	(717) 272-1313
Client ID	65475		Site ID	445620
Ch 94 Load Status	Not Ov	erloaded	Municipality	West Cornwall Township
Connection Status			County	Lebanon
Date Application Receiv	ved	May 24, 2017	EPA Waived?	Yes
Date Application Accep	ate Application Accepted June 8, 2017		If No, Reason	
Purpose of Application				

Summary of Review

1.0 General Discussion

This fact sheet supports the re-issuance of an existing NPDES permit for discharge of treated domestic wastewater from Telco Development (Gretna Springs) adult/retirement community wastewater treatment plant located in West Cornwall Township, Lebanon County. The adult/retirement community was planned to contain 211 residential units with original designed capacity for 0.528 MGD to be built in two phases. The first phase for 0.0264 MGD was constructed and is now believed to be able to handle the entire development. Careful observation of flows will need to be maintained to ensure adequate treatment capacity. Telco Developer Inc owns, and operates the wastewater treatment plant, which provides sanitary services for the adult/retirement community. The discharge goes to Chiques (Chickies) Creek which is classified for warm water fishes (WWF) and Migratory Fishes (MF). The existing NPDES permit was issued on November 28, 2012 with an effective date of December 1, 2012 and expiration date of November 30, 2017. The applicant submitted permit renewal application to the Department on May 24, 2017. The permittee is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application.

A topographic map showing the discharge location is presented in attachment A

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*,

Approve	Deny	Signatures	Date
x		J. Pascal Kwedza, P.E. / Environmental Engineer	July 18, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Program Manager	

Summary of Review

DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Changes to the existing Permit

- Monitoring for Total nitrogen, Nitrate-Nitrite, and TKN has been increased to semiannual to collect adequate data for the Chesapeake Bay Program.
- Ammonia-Nitrogen limit is more stringent

1.3 Existing Permit Limits and Monitoring Requirements

	MONITORING REQUIREMENTS							
	Mass Uni	ts (lbs/day)		Concentrat	tions (mg/l)			
Discharge	Average	Maximum	Inst.	Average	Maximum	Inst.	Monitoring	Sample
Parameter	Monthly	Daily	Minimum	Monthly	Daily	Maximum	Frequency	Туре
	Monitor	Monitor						
Flow (mgd)	& Report	& Report	XXX	XXX	XXX	XXX	continuous	Measured
рН (S.U.)	xxx	xxx	6.0	xxx	xxx	9.0	1/day	Grab
D.O.	xxx	xxx	5.0	xxx	xxx	xxx	1/day	Grab
Total Residual Chlorine	xxx	xxx	XXX	0.22	xxx	0.73	1/day	Grab
Total	7000	7000	7000	0.22	7000	0.10	1/003	24-hour
Suspended Solids	XXX	XXX	XXX	30	XXX	60	2/month	comp
•								24-hour
CBOD ₅	XXX	XXX	XXX	25	XXX	50	2/month	comp
Fecal Coliform								
(5/1 to 9/30)	XXX	XXX	XXX	200	XXX	1,000	2/month	Grab
Fecal Coliform		2007						- ·
(10/1 to 4/30)	XXX	XXX	XXX	2,000	XXX	10,000	2/month	Grab
Nitrate-Nitrite	xxx	xxx	XXX	Report	xxx	xxx	1/yr	24-hour comp
Total Nitrogen	xxx	xxx	XXX	Report	xxx	xxx	1/yr	Calculation
Ammonia	l			· · ·			Í	24-hour
Nov 1 - Apr 30	XXX	XXX	XXX	3.5	XXX	7.0	2/month	comp
Ammonia								24-hour
May 1 - Oct 31	XXX	XXX	XXX	10.5	XXX	21	2/month	comp
								24-hour
TKN	XXX	XXX	XXX	Report	XXX	XXX	1/yr	comp
								24-hour
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4.0	2/month	comp

1.4 Discharge, Receiving Waters and Water Supply Information						
Outfall No. 001	_ Design Flow (MGD)	.0264				
Latitude 40° 14' 49.96"	_ Longitude	76º 26' 37.54"				
Quad Name <u>Manheim</u>	_ Quad Code	1734				
Wastewater Description: Sewage Effluent						
Receiving Waters Chiques Creek	Stream Code	07919				
NHD Com ID 57461967	RMI	28.6				
Drainage Area 0.4 sq mi	Yield (cfs/mi ²)					
Q ₇₋₁₀ Flow (cfs) 0.06	Q7-10 Basis	USGS 01576500				
Elevation (ft)	Slope (ft/ft)					
Watershed No. 7-G	Chapter 93 Class.	WWF, MF				
Existing Use	Existing Use Qualifier					
Exceptions to Use	Exceptions to Criteria					
Assessment Status <u>Attaining Use(s)</u>						
Cause(s) of Impairment						
Source(s) of Impairment						
TMDL Status	Name					
Background/Ambient Data	Data Source					
pH (SU)						
Temperature (°F)						
Hardness (mg/L)						
Other:						
Nearest Downstream Public Water Supply Intake	Columbia Borough					
PWS Waters Susquehanna	Flow at Intake (cfs) 3801					
PWS RMI	Distance from Outfall (mi)	<41				

Changes Since Last Permit Issuance:

Other Comments:

1.4.1 Water Supply Intake

The nearest water supply intake is 41 miles downstream at Columbia Borough, Lancaster County on the Susquehanna River by the Columbia Borough Water Company. No impact is expected from this discharge.

2.0 Treatment Facility Summary Treatment Facility Name: Gretna Springs Adult Community WQM Permit No. **Issuance Date** Degree of Avg Annual Waste Type Treatment Process Type Disinfection Flow (MGD) Extended aeration Secondary Hypochlorite 0.0264 Sewage **Hydraulic Capacity Organic Capacity** Biosolids (MGD) (lbs/day) Load Status **Biosolids Treatment** Use/Disposal 0.0264 Aerobic Digestion Not Overloaded

Changes Since Last Permit Issuance: None

2.1 Treatment Facility

Treatment units are:

- EQ tank
- 4 aeration tanks in series
- 2 clarifiers
- Tablet chlorinator w/CCT
- Tablet dechlorinator w/contact tank
- 2 sludge holding tanks

EQ tank receives wastewater from 2 pump stations, influent is pumped from EQ tank to the 1st of the 4 aeration tanks in series. Lime is manually added as needed to the 2nd aeration tank for pH control, Delpac is added to 3rd aeration tank at set daily dose, RAS to returned to 1st and 2nd aeration tanks. Effluent from the 4th aeration tank is divided equally to the two clarifiers. WAS is sent to 2 holding tanks. Chlorinated effluent goes through 2 contact tanks, dechlorinated at end of the 2nd contact tank prior to discharge. Pump stations have alarms, emergency generator powers plant community building and pump stations, 2 blowers for plant w/1 as back-up, 1 small blower for holding tanks, composite sampler uses peristaltic pump & can be set for 24 hr. sampling.

3.0 Compliance History

DMR Data for Outfall 001 (from June 1, 2018 to May 31, 2019)

Parameter	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18	AUG-18	JUL-18	JUN-18
Flow (MGD)												
Average Monthly	0.019	0.018	0.019	0.018	0.018	0.016	0.022	0.017	0.019	0.02	0.018	0.016
Flow (MGD)												
Daily Maximum	0.031	0.025	0.037	0.025	0.031	0.022	0.033	0.021	0.033	0.034	0.037	0.019
pH (S.U.)												
Minimum	7.27	7.22	7.24	7.30	7.32	7.2	7.16	7.41	7.43	7.33	7.36	6.93
pH (S.U.)												
Maximum	7.58	7.6	7.67	7.61	7.59	7.51	7.59	7.66	7.76	7.63	7.64	7.67
DO (mg/L)												
Minimum	8.2	8.8	8.6	10.10	9.9	8.2	7.80	7.7	7.3	7.2	7.1	6.70
TRC (mg/L)												
Average Monthly	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02
TRC (mg/L)												
Instantaneous												
Maximum	0.08	0.07	0.05	0.07	0.08	0.07	0.06	0.09	0.09	0.04	0.04	0.03
CBOD5 (mg/L)												
Average Monthly	4	< 3	3	< 3	< 3	< 3	< 3	3	< 3	< 3	< 3	< 4
TSS (mg/L)												
Average Monthly	8	3	6	3	6	14	10	1	4	1	1	1
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 3	< 2	< 3	< 2	< 2	< 1	< 2	< 2	7	< 3	< 1	9
Fecal Coliform												
(CFU/100 ml)												
Instantaneous		_		-	_	_	-	_	-		-	
Maximum	4	< 2	4	< 2	< 2	< 2	< 2	< 2	8	6	< 2	22
Nitrate-Nitrite (lbs/day)									o -			
Annual Average									< 3.7			
Nitrate-Nitrite (mg/L)									07.4			
Annual Average									< 27.4			
Total Nitrogen												
(lbs/day)												
Annual Average									< 3.7			
Total Nitrogen (mg/L)												
Annual Average									< 27.9			
Ammonia (mg/L)	102	- 0.1	101	101	101	- 0.1	101	- 0.1	101	10.1	101	10.1
Average Monthly	< 0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

TKN (lbs/day) Annual Average									< 0.07			
TKN (mg/L) Annual Average									< 0.5			
Total Phosphorus (lbs/day) Annual Average									0.07			
Total Phosphorus (mg/L) Annual Average									0.53			
Total Phosphorus (mg/L) Average Monthly	0.40	0.3	0.5	0.32	0.48	0.47	0.6	0.56	0.55	0.67	0.6	0.51

3.2 Compliance History	
Summary of DMRs:	Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation presented on the table above indicate permit limits have been met consistently. No permit violation noted on DMRs during the period reviewed.
Summary of Inspections:	The facility was inspected 8 times during the past permit cycle. Inspection reports review for the facility during the period indicate permit limits have been met satisfactorily. The reports indicate good operation and maintenance of the facility. The facility has good compliance record

4.0 Development of Effluent Limitations								
Outfall No.	001	Design Flow (MGD)	.0264					
Latitude	40º 14' 48.00"	Longitude	-76º 26' 37.00"					

4.1 Basis for Effluent Limitations

Wastewater Description: Sewage Effluent

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Weekly averages are not applicable to this discharge

4.2 Water Quality-Based Limitations

4.2.1 Streamflows

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No. Streamflow will be correlated with past streamflow records taken from the nearby USGS gage station on the Conestoga River at Lancaster City. Q_{7-10} , Q_{30-10} , and winter Q_{7-10} will be calculated by 0.16 cfs/mi², 1.27 and 1.17 x Q_{7-10} . Q_{1-10} will be calculated using a factor of 0.64 x Q_{7-10} , which was derived by Central Office in their February 1987 NH₃ Implementation Guidance. The drainage area at the discharge point taken from the previous protection report = 0.4 mi². The resulting streamflows at the point of first at the confluence of chickies creek are as follows:

Q 7-10	=	0.4 mi ² x 0.16 cfs/mi ²	=	0.06 cfs
Q30-10	=	0.06 cfs x 1.36	=	0.08cfs
Q7-10 (winter)	=	0.06 cfs x 1.17	=	0.07 cfs
Q 1-10	=	0.06 cfs x 0.64	=	0.04 cfs

NH₃N Calculations

 NH_3N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID #391-2000-013). The following data is necessary to determine the instream NH_3N criteria used in the attached computer model of the stream:

STP pH	=	7.36	(Taken from past DMRs between July – September)
STP Temp	=	25°C	(Default)
Stream pH	=	7.85	(Taken from the Chickies Creek WQN station at the stream mouth)
Stream Temp	=	20°C	(Taken from the Chickies Creek WQN station at the stream mouth)
Background NH ₃ N	=	0.0	(Assumed)

4.2.4 CBOD₅ :

Gretna Springs MHP's discharge, the discharge from PA Dutch Country Golf course and the discharge from Pinch Pond Campground were modelled together due to their proximity to each other. The attached model result of WQM 7.0 stream model (attachment B) indicates that, for Gretna Springs' discharge of 0.026MGD, a limitation of 25 mg/l CBOD5 as a monthly average limit (AML) and 50 mg/l as instantaneous maximum (IMAX) is adequate to protect the water quality of the stream. This limit is consistent with the existing permit and the STP has been complying with this limitation. Therefore, a limit of 25mg/l AML, and 50 mg/l IMAX is again recommended for this permit cycle.

4.2.5 NH₃-N:

The attached model result of the WQM 7.0 stream model (attachment B) also indicates that a limitation of 2.5mg/l NH₃-N as a monthly average is necessary to protect the aquatic life from toxicity effects during the summer months. This limit is slightly more stringent than the existing permit, but the facility's DMR data indicate the facility can meet the new limit. Therefore, an average monthly summer limit of 2.5mg/l will be required in the permit. Winter months will have 3 times the summer limit(7.5mg/l)

4.2.6 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.2.7 Total Suspended Solids(TSS):

There is no water quality criterion for TSS. A limit of 30 mg/I AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1)

4.2.8 Total Residual Chlorine:

The attached computer printout presented in attachment C utilizes the equations and calculations as presented in the Department's 2003 Implementation Guidance for Residual Chlorine (TRC) (ID # 391-2000-015) for developing chlorine limitations. The results presented in attachment C indicates that a water quality limit of 0.22 mg/l monthly average and IMAX of 0.73 mg/l would be needed to prevent toxicity concerns. The limitation recommended is consistent with the existing. DMR and inspection report indicate the facility is meeting the permit requirement.

4.2.9 Toxics

A reasonable potential (RP) analysis was done for pollutants in the discharge. The discharge consists entirely of domestic wastewater with no pollutants of concern that need further analysis.

4.2.10 Chesapeake Bay Strategy:

NPDES Permit Fact Sheet Gretna Springs MHP

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal at a monitoring frequency following Table 6-3 of DEP's Technical Guidance for Development and Specification of effluent Limitations (No. 362-0400-001). Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away.

EPA published the Chesapeake Bay Total Maximum Daily Load (TMDL) in December of 2010. Despite extensive restoration efforts during the past 25 years, the TMDL was prompted by insufficient progress and continued poor water quality in the Chesapeake Bay and its tidal tributaries.

In order to address the TMDL, Pennsylvania developed in addition to the Bay Strategy, a Chesapeake Watershed Implementation Plan (WIP) Phase 1 in January 2011 and Phase 2 in March 2012. In accordance with the Phase 2 WIP and its supplement, re-issuing permits for significant dischargers follow the same phased approach formulated in the original Bay strategy, whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewal. This facility is, classified as a phase 5, and has been monitoring and will continue monitoring and reporting Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen semi-annually throughout the next permit cycle. There is limitation on Total Phosphorus no monitoring is required

4.2.11 Phosphorus

The average monthly limit of 2mg/l phosphorus in the existing permit was based on the requirement to control phosphorus loading to Lower Susquehanna River Basin. That requirement has been superseded by the development of Chesapeake Bay TMDL in 2010, however due to anti-backsliding restrictions the limit will remain in the permit.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

No storm water outfall is associated with this facility

5.3 Biosolids Management

Sludge is hold up in 2 sludge holding tanks and hauled out by a licensed hauler (Klines) periodically to Manheim.

5.4 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.5 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.6 303d Listed Streams:

The discharge is not located on a 303d listed stream segment. The withdrawn 2001 Chickies Creek TMDL does not apply to this area of Chickies Creek.

5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

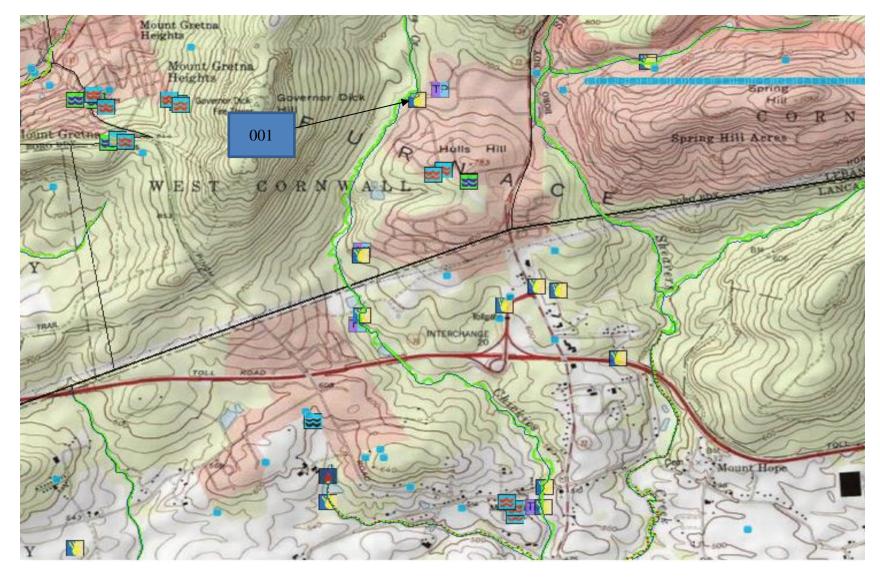
5.8 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


								<u>s</u>
Parameter		(ius/uay) 🖤			uons (mg/∟)	• • •		Required
	Average	Average		Average	N	Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
	_	Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0		9.0			
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab
DO	XXX	XXX	5.0	XXX	xxx	ххх	1/day	Grab
TRC	XXX	XXX	XXX	0.22	XXX	0.73	1/day	Grab
								24-Hr
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Composite
								24-Hr
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
					Report			24-Hr
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite
					Report			
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Calculation
Ammonia								24-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15	2/month	Composite
Ammonia		1						24-Hr
May 1 - Oct 31	XXX	XXX	XXX	2.5	XXX	5	2/month	Composite
					Report			24-Hr
TKN	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite
		1			, , , , , , , , , , , , , , , , , , ,			24-Hr
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	Composite

Compliance Sampling Location: Outfall 001

7.0 Tools and References Used to Develop Permit WQM for Windows Model (see Attachment B) PENTOXSD for Windows Model (see Attachment C) TRC Model Spreadsheet (see Attachment C) Temperature Model Spreadsheet (see Attachment D) Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-102, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-102, 10/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharge J31-2000-008, 10/1997. </th <th></th>	
PENTOXSD for Windows Model (see Attachment) TRC Model Spreadsheet (see Attachment C) Temperature Model Spreadsheet (see Attachment) Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-003, 12/97. Implementation Guidance Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges to Lakes, PC and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics,	
Image: Constraint Constrant Constrant Constrant Constraint Constraint Constraint Constrain	
Temperature Model Spreadsheet (see Attachment) Toxics Screening Analysis Spreadsheet (see Attachment) Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-003, 12/97. Implementation Guidance Or Section 9.5.6 Management of Point Source Phosphorus Discharges to Lakes, Pc and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharge Vasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industri	
Toxics Screening Analysis Spreadsheet (see Attachment) Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-003, 12/97. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharge sto Lakes, Pc and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Pc and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 39	
Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharge 191-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Pc and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance f	
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharge 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a))) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharge 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Po and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharge 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Source Phosphorus Discharges to Lakes, Point Source Phosphorus Discharges to Lakes, Point Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharge 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implements, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Pc and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharga 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.)04,
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischargs 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. 	
Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	391-
 Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Ox and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. 	
 and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. 	
391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	-
and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.	
	ram
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.	age
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.	
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.	
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10	
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Disso Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.	
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge De Hardness, 391-2000-021, 3/99.	Ū
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determine of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.	tion
Design Stream Flows, 391-2000-023, 9/98.	
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98.	CV)
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.	
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.	
SOP: Establishing Effluent limitation for individual sewage permit	
Other: WIP 2 and supplement	

8. Attachments

A. Topographical Map

B. WQM Model Results

	SWP Basin	Stream Code		Stream Name	!		
	07G	7919		CHICKIES CREI	EK		
RMI	Name	Perm Numb		Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limil Minimum (mg/L)
28.600	Gretna Sprin	gs PA008	1787 0.026	CBOD5	25		
				NH3-N	2.91	5.82	
				Dissolved Oxygen			5
RMI	Name	Perm		Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limil Minimum (mg/L)
27.800	PA Dutch Cou	untr PA008 ⁻	1191 0.025	CBOD5	25	a	
				NH3-N	6.48	12.96	
				Dissolved Oxygen			5
RMI	Name	Perm Numb		Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
27.300	Pinch Ponc	1 PA0086	6461 0.017	CBOD5	25		
				NH3-N	18.31	36.62	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Wednesday, July 17, 2019

Version 1.0b

Page 1 of 1

	SWP Basir			Str	eam Name		RMI	Elevati (ft)	on Drair Ar (sq	ea	Wit	PWS hdrawal mgd)	Appl FC
	07G	79	919 CHICI	KIES CRE	ΈK		28.60	0 62	5.00	0.40	0.00000	0.00	V
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	<u>tary</u> pH	<u>Stre</u> Temp	am pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.160	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.85	0.00	0.00	
Q1-10		0.00	0.00	0.000	0,000								
230-10		0.00	0.00	0.000	0.000								
					Di	scharge [Data						
			Name	Pe	rmit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH		
		Gretr	na Springs	PA	0081787	0.0264	1 0.026	64 0.0264	0.000	25	.00 7.36	5	
					Pa	arameter I	Data						
					- 11	Di Ce			am Fai onc Co				
				Paramete	r Name	/	-4.5 /-		-11 \ (1 4				

(mg/L) (1/days)

1.50

0.00

0.70

0.00

0.00

0.00

(mg/L)

2.00

8.24

0.00

(mg/L)

25.00

5.00

25.00

Input Data WQM 7.0

 $\{ \cdot : \cdot \}$

CBOD5

NH3-N

Dissolved Oxygen

	SWF Basi			Stre	eam Name		RMI	Elevat (ft)	A	inage rea 1 mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07G	79	919 CHIC	KIES CRE	EK		27.80	0 58	30.00	1.20	0.00000	0.00	
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribi</u> Temp	<u>utary</u> pH	Tem	<u>Stream</u> p pH	
eena.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.160	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.8	35 C	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					Di	scharge	Data						
			Name	Per	mit Numbe	Existing Disc Flow	Permitte Disc Flow	ed Design Disc Flow	Reserve Factor	Dis Terr			

Input Data WQM 7.0

Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Res	erve T ctor	Disc Temp (°C)	Disc pH
PA Dutch Countr	PA0081191	0.0250	0.0250	0.025	io (0.000	25.00	7.40
	Pa	rameter Da	ita					
Par	ameter Name	Disc Cor			ream Conc	Fate Coef		
1 416		(mg/	L) (mg	/L) (r	ng/L)	(1/days)		
CBOD5		25	5.00 2	2.00	0.00	1.50)	
Dissolved Oxy	/gen	6	i.00 8	3.24	0.00	0.00) .	
NH3-N		25	i.00 (0.00	0.00	0.70	1	

•

Wednesday, July 17, 2019

Version 1.0b

Page 2 of 4

	SWP Basir			Stre	am Name		RMI	Eleva (fi		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07G	79	919 CHICH	KIES CRE	EK		27.30)0 5	540.00	2.35	0.00000	0.00	
					S	tream Da	ta				,		
Design Cond,	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>T</u> Temp	<u>ributary</u> pH	Terr	<u>Stream</u> p pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(ºC)		(°C)	
Q7-10	0.160	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.	.00 7.8	35	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	charge D	ata					•
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Res Fa	erve -	Disc Femp (°C)	Disc pH
Pinch Pond	PA0086461	0.0172	0.0172	0.017	2 (000.	25.00	7.0
	Pai	rameter D	ata					
		Dis Co			eam Ionc	Fate Coef		
P	arameter Name	(mg	ı/L) (mg	/L) (n	ng/L)	(1/days))	
CBOD5		2	5.00	2.00	0.00	1.50	0	
Dissolved C	Dxygen		5.00	8.24	0.00	0,0	D	
NH3-N		2	5.00	0.00	0.00	0.7	n	

	SWP Basir	Strea Coo		Str	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)		lope V ft/ft)	PWS Vithdrawal (mgd)	Apply FC
	07G	7	919 CHICH	KIES CRE	EK		26.30	00	520.00	2.	36 0.0	00000	0.00	\checkmark
					St	ream Data	ı							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ıp p	эH	<u>S</u> Temp	<u>tream</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.160	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 29	0.00	7.85	0.0	0.00	
			/		Di	scharge D	ata							
			Name	Pei	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	Dis Flo	sc Res ow Fa	erve T ctor	Dísc [°] emp (°C)	Disc pH		
						0.0000	0.000	00 0.0	0000	0.000	0.00	07.	.00	
					Pa	rameter D)ata							
			ſ	Paramete	r Name	Dis Co		Frib Conc	Stream Conc	Fate Coef				
				ulullioto	- Hame	(mg	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			2	5.00	2.00	0,00	1.50)			
			Dissolved	Oxygen			5.00	8.24	0.00	0.00)			
			NH3-N			2	5.00	0.00	0.00	0.70)			

Input Data WQM 7.0

	<u>sw</u>	P Basin	<u>Strea</u>	ım Code				Stream	Name			
		07G	7	7919			Cł	ICKIES	CREEK			
RMI	Stream Flow	PWS With	Flow	Disc Analysis Flow	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	linity		(14)		(103)	(03)3/	(0)	
Q7-10	0 Flow											
28.600	0,06	0.00	0.06	.0408	0.01065	.359	3.78	10.53	0.08	0.632	21.95	7.59
27.800	0.19	0.00	0.19	.0795	0.01515	.41	6.21	15.14	0.11	0.287	21.46	7.65
27.300	0.38	0.00	0.38	.1061	0.00379	.453	9.41	20.77	0.11	0.540	21.10	7.63
Q1-1(0 Flow											
28.600	0.04	0.00	0.04	.0408	0.01065	NA	NA	NA	0.07	0.726	22.50	7.54
27.800	0.12	0.00	0.12	.0795	0.01515	NA	NA	NA	0.09	0.338	21.96	7.60
27.300	0.24	0.00	0.24	.1061	0.00379	NA	NA	NA	0.09	0.650	21.53	7.57
Q30-	10 Flow	,										
28.600	0.09	0.00	0.09	.0408	0.01065	NA	NA	NA	0.09	0.565	21.60	7.63
27.800	0.26	0.00	0.26	.0795	0.01515	NA	NA	NA	0.12	0.252	21.17	7.69
27.300	0,51	0.00	0.51	.1061	0.00379	NA	NA	NA	0.13	0.471	20,86	7.67

WQM 7.0 Hydrodynamic Outputs

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0081787

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	5		

Wednesday, July 17, 2019

Version 1.0b

20

Page 1 of 1

	SWP Basin Stre	eam Code		<u>St</u>	ream Name		
	07G	7 9 19		CHIC		۲ 	
H3-N	Acute Allocatio	ns					•
RMI	Discharge Name	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
28.60	0 Gretna Springs	4.64	· 9.:	3 4.64	8.18	3	12
27.80	00 PA Dutch Countr	4.06	16.9	5 4.41	14.93	3	12
27.30	0 Pinch Pond	4.6	46.1	7 4.78	40.65	3	12
IH3-N	Chronic Allocat	tions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
28.60	0 Gretna Springs	1.19	3.73	3 1.19	2.91	3	22
27.80	0 PA Dutch Countr	1.07	8.3	1 1.19	6.48	3 -	22
27,30	0 Pinch Pond	1.16	23.4	7 1.22	18.31	3	22
issolv	ed Oxygen Allo	cations					
			BOD5	<u>NH3-N</u>	Dissol	ved Oxyger	

25

25

25

25

25

25

2.91

6.48

18.31

2.91

6.48

18.31

5

5

5

5

5

5

0

0

0

0

0

0

Wednesday, July 17, 2019

28.60 Gretna Springs 27.80 PA Dutch Countr

27.30 Pinch Pond

Version 1.0b

SWP Basin St	ream Code			Stream Name	
07G	7919 CHICKIES CREEK				
<u>RMI</u>	Total Discharge	rge Flow (mgd) Analysis Temperature (°C)			Analysis pH
28.600	0.02			21.948	7.591
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
3.776	0.35	-	_	10.529	0.077
Reach CBOD5 (mg/L)	Reach Kc		<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
10.96	1.23 <u>Reach Kr (</u>			1.13 <u>Kr Equation</u>	0.813 Reach DO <u>Goal (mg/L</u>)
Reach DO (mg/L)	27.27		Owens		<u>1 (each Do Goar (mgre</u> 5
6.980	21.21	5		Owens ,	J.
<u>leach Travel Time (days)</u> 0.632	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.063	10.06	1.08	7.75	
	0.126	9.24	1.02	7.95	
· · · · · · · · · · · · · · · · · · ·	0.120	8.49	0.97	7.95	
	0.253	7.80	0.92	7.95	
	0.316		0.88	7.95	
	0.379	6.57	0.83	7.95	
	0.442		0.79	7,95	
	0.505	5.54	0.75	7.95	
	0.568	5.09	0.71	7.95	
	0.632	4.68	0.68	7.95	
		F inn (mark)	\ A		Anchois all
<u>RMI</u> 27.800	Total Discharge 0.05		<u>1 Ana</u>	lysis Temperature (°C) 21.464	<u>Analysis pH</u> 7.653
Reach Width (ft)	Reach De				Reach Velocity (fps)
iteacii widui (ii)					0.107
6 209		n .		10 14 1	
6.209 Reach CBOD5 (mo/L)	0.41		R	15.141 each NH3-N (mg/L)	
Reach CBOD5 (mg/L)		(1/days)	R	15.141 <u>each NH3-N (mg/L)</u> 1.19	0.107 <u>Reach Kn (1/days)</u> 0.784
<u>Reach CBOD5 (mg/L)</u> 6.31	0.41 <u>Reach Kc</u>	(<u>1/days)</u> 9	R	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u> 0.784
Reach CBOD5 (mg/L)	0.41 <u>Reach Kc</u> 1.09	(<u>1/days)</u> 9 (<u>1/days)</u>	<u> </u>	<u>each NH3-N (mg/L)</u> 1.19	<u>Reach Kn (1/days)</u> 0.784
<u>Reach CBOD5 (mg/L)</u> 6.31 <u>Reach DO (mg/L)</u> 7.669	0.41 <u>Reach Kc</u> 1.09 <u>Reach Kr</u>	(<u>1/daγs)</u> 9 (<u>1/days)</u> 36	. –	<u>each NH3-N (mg/L)</u> 1.19 <u>Kr Equation</u>	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>
<u>Reach CBOD5 (mg/L)</u> 6.31 <u>Reach DO (mg/L)</u> 7.669	0.41 <u>Reach Kc</u> 1.09 <u>Reach Kr</u>	(<u>1/days)</u> 9 <u>1/days)</u> 36 Subreach	. –	<u>each NH3-N (mg/L)</u> 1.19 <u>Kr Equation</u>	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goai (mg/L</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 each Travel Time (days)	0.41 <u>Reach Kc</u> 1.09 <u>Reach Kr (</u> 26.08	(<u>1/days)</u> 9 <u>1/days)</u> 36 Subreach	Results	<u>leach NH3-N (mg/L)</u> 1.19 <u>Kr Equation</u> Owens	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 each Travel Time (days)	0.41 <u>Reach Ko</u> 1.09 <u>Reach Kr (</u> 26.04 TravTime (days)	(<u>1/days)</u> 9 _ <u>1/days)</u> 36 Subreach CBOD5 (mg/L)	n Results NH3-N (mg/L)	<u>Leach NH3-N (mg/L)</u> 1.19 <u>Kr Equation</u> Owens D.O. (mg/L)	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L)</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 Reach Travel Time (days)	0.41 <u>Reach Kc</u> 1.09 <u>Reach Kr (</u> 26.00 TravTime (days) 0.029	(<u>1/days)</u> 9 <u>1/days)</u> 36 Subreach CBOD5 (mg/L) 6.10	n Results NH3-N (mg/L) 1.16	Leach NH3-N (mg/L) 1.19 <u>Kr Equation</u> Owens D.O. (mg/L) 8.02	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 leach Travel Time (days)	0.41 <u>Reach Ko</u> 1.09 <u>Reach Kr (</u> 26.00 TravTime (days) 0.029 0.057	(<u>1/days)</u> 9 <u>1/days)</u> 36 Subreach CBOD5 (mg/L) 6.10 5.90	Results NH3-N (mg/L) 1.16 1.13	<u>Leach NH3-N (mg/L)</u> 1.19 <u>Kr Equation</u> Owens D.O. (mg/L) 8.02 8.02	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 each Travel Time (days)	0.41 <u>Reach Ko</u> 1.09 <u>Reach Kr (</u> 26.00 TravTime (days) 0.029 0.057 0.086	(<u>1/days</u>) 9 . <u>1/days</u>) 36 Subreach CBOD5 (mg/L) 6.10 5.90 5.70	Results NH3-N (mg/L) 1.16 1.13 1.11	Leach NH3-N (mg/L) 1.19 <u>Kr Equation</u> Owens D.O. (mg/L) 8.02 8.02 8.02 8.02	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 each Travel Time (days)	0.41 <u>Reach Kc</u> 1.09 <u>Reach Kr (</u> 26.00 TravTime (days) 0.029 0.057 0.086 0.115	(1/days) 9 1/days) 36 Subreach CBOD5 (mg/L) 6.10 5.90 5.70 5.51	Results NH3-N (mg/L) 1.16 1.13 1.11 1.08	Leach NH3-N (mg/L) 1.19 <u>Kr Equation</u> Owens D.O. (mg/L) 8.02 8.02 8.02 8.02 8.02 8.02 8.02	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 each Travel Time (days)	0.41 <u>Reach Ko</u> 1.09 <u>Reach Kr (</u> 26.00 TravTime (days) 0.029 0.057 0.086 0.115 0.143	(1/days) 9 . 1/days) 36 Subreach CBOD5 (mg/L) 6.10 5.90 5.70 5.51 5.33	1.16 NH3-N (mg/L) 1.16 1.13 1.11 1.08 1.06	Leach NH3-N (mg/L) 1.19 <u>Kr Equation</u> Owens D.O. (mg/L) 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 each Travel Time (days)	0.41 <u>Reach Ko</u> 1.09 <u>Reach Kr (</u> 26.00 TravTime (days) 0.029 0.057 0.086 0.115 0.143 0.172	(1/days) 9 1/days) 36 Subreach CBOD5 (mg/L) 6.10 5.90 5.70 5.51 5.33 5.16	Results NH3-N (mg/L) 1.16 1.13 1.11 1.08 1.06 1.04	Leach NH3-N (mg/L) 1.19 <u>Kr Equation</u> Owens D.O. (mg/L) 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02 8.02	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 leach Travel Time (days)	0.41 <u>Reach Ko</u> 1.09 <u>Reach Kr (</u> 26.00 TravTime (days) 0.029 0.057 0.086 0.115 0.143 0.172 0.201	(1/days) 9 1/days) 36 Subreach CBOD5 (mg/L) 6.10 5.90 5.70 5.51 5.33 5.16 4.98	Results NH3-N (mg/L) 1.16 1.13 1.11 1.08 1.06 1.04 1.01	Leach NH3-N (mg/L) 1.19 Kr Equation Owens D.O. (mg/L) 8.02	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 Reach Travel Time (days)	0.41 <u>Reach Ko</u> 1.09 <u>Reach Kr (</u> 26.00 TravTime (days) 0.029 0.057 0.086 0.115 0.143 0.172 0.201 0.229	(1/days) 9 1/days) 36 Subreach CBOD5 (mg/L) 6.10 5.90 5.70 5.51 5.33 5.16 4.98 4.82	Results NH3-N (mg/L) 1.16 1.13 1.11 1.08 1.06 1.04 1.01 0.99	Leach NH3-N (mg/L) 1.19 Kr Equation Owens D.O. (mg/L) 8.02	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>
Reach CBOD5 (mg/L) 6.31 Reach DO (mg/L) 7.669 Reach Travel Time (days)	0.41 <u>Reach Ko</u> 1.09 <u>Reach Kr (</u> 26.00 TravTime (days) 0.029 0.057 0.086 0.115 0.143 0.172 0.201	(1/days) 9 1/days) 36 Subreach CBOD5 (mg/L) 6.10 5.90 5.70 5.51 5.33 5.16 4.98 4.82	Results NH3-N (mg/L) 1.16 1.13 1.11 1.08 1.06 1.04 1.01	Leach NH3-N (mg/L) 1.19 Kr Equation Owens D.O. (mg/L) 8.02	<u>Reach Kn (1/days)</u> 0.784 <u>Reach DO Goal (mg/L</u>

WQM 7.0 D.O.Simulation

Wednesday, July 17, 2019

Version 1.0b

Page 1 of 2

WQM 7.0 D.O.Simulation

<u>SWP Basin</u> 07G	<u>Stream Code</u> 7919				к	
<u>RMI</u>	Total Discharge	rge Flow (mgd) Analysis Temperature (°C)		Analysis pH		
27,300	0.06	069 21.101			7.630	
Reach Width (ft)	<u>Reach De</u>	Depth (ft) Reach WDRatio			Reach Velocity (fps)	
9.412	0.45	53 20.775		0.113		
Reach CBOD5 (mg/L)	Reach Kc ((1/days) Reach NH3-N (mg/L)		<u>/L)</u>	Reach Kn (1/days)	
4.68	0.84		1.54			0.762
Reach DO (mg/L)	<u>Reach Kr (</u>					Reach DO Goal (mg/L)
7.940	22.37	1		Owens		. 5
<u>Reach Travel Time (day:</u> 0.540	TravTime (days) 0.054 0.108 0.162 0.216 0.270 0.324 0.378 0.432	(days) (mg/L) 0.054 4.46 0.108 4.25 0.162 4.05 0.216 3.86 0.324 3.50 0.378 3.34 0.432 3.18 0.486 3.03		Results NH3-N D.O. (mg/L) 1.48 8.08 1.42 8.08 1.36 8.08 1.31 8.08 1.26 8.08 1.21 8.08 1.16 8.08 1.11 8.08 1.07 8.08		5

Wednesday, July 17, 2019

Version 1.0b

Page 2 of 2

C. TRC Calculations

Copy of TRC_CALC1

			<u> </u>	<u></u>					
TRC EVALUA									
Input appropriate values in A3:A9 and D3:D9									
	= Q stream (= CV Daily					
	= Q discharg			5 = CV Hourly					
	= no. sample			1 = AFC_Partial Mix Factor					
	0.3 = Chlorine Demand of Stream			1 = CFC_Partial Mix Factor					
		emand of Discharge		5 = AFC_Criteria Compliance Time (min)					
	= BAT/BPJ V			720 = CFC_Criteria Compliance Time (min)					
. 0	0 = % Factor of Safety (FOS)		0	0 =Decay Coefficient (K)					
Source				Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.468 LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTA cfc = 0.272				
PENTOXSD TRG	5.1b	LTA_afc= 0.182		5.1d	$LTA_CIC = 0.272$				
Source	Effluent Limit Calculations								
PENTOXSD TRG	5.1f AML MULT = 1.231								
PENTOXSD TRG	5.1g								
	INST MAX LIMIT (mg/l) = 0.731								
WLA afc		FC_tc)) + [(AFC_Yc*Qs*.019		C_tc))					
	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
LTAMULT afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)								
LTA_afc	wla_afc*LTAMULT_afc								
WLA_cfc	(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)								
LTA_cfc	sfc wla_cfc*LTAMULT_cfc								
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)									

